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Dear colleagues!

For seven consecutive years the «Current Trends in Cryptology» work-
shop gathers together leading national and foreign cryptography specialists.
The year 2018 has seen 23 papers provided by authors from 5 countries. 16
papers have been included into the workshop program after a thorough review
by members of a program committee, which is traditionally international. I
would like to point out that this year an issue of including of some articles
into the program provoked a lot of debates among the program committee
members. At the same time, since the workshop is a place to share new ideas,
views, and conceptions it was unanimously agreed to give authors of the dis-
putable articles an opportunity to represent the results of their researches
and to talk them over with the workshop’s audience.

More than 100 delegates from 9 countries all over the world have reg-
istered for participation in the 7th workshop. The number approximately
corresponds to that of the previous years.

Subject of the included to the workshop program articles is vast and cover
issues concerning synthesis and analysis of specific cryptographic mechanisms
as well as fundamental problems of cryptography. An actively discussed post-
quantum cryptography will be also mentioned.

In accordance with an established practice, scientific part of the Work-
shop will be enlarged by panel discussions of the most actual and urgent
cryptography issues. Traditionally, the discussions are attended by represen-
tatives of cryptographic devices developers and producers, scientific commu-
nity and regulatory authorities. Two panel discussions with an extremely
pressing subjects, in our opinion, will be organized this year. The first one
will be dedicated to the role and place of cryptography in digitalization of the
society and, particularly, within the current «Digital Economy of the Russian
Federation» program.

The second one will be devoted to the issues concerning peculiarities and
distinctive aspects of blockchain and distributed ledger technology-based sys-
tems. Similar issues were raised within a last year’s workshop panel discussion
that appeared to be successful both in the entry list and discussed topics.
This year we are to discuss, among others, changes in views on these tech-
nologies and on approaches of its implementation have undergone over the
past year as well as issues of realization and non-realization of announced
projects.

The workshop «Current Trends in Cryptology» has proved itself to be
the place where everyone can take a look at state-of-the-art results of the
researches conducted by foreign cryptography specialists and, moreover, ask
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them questions in person. Lightweight cryptography – one of the most pop-
ular direction of modern cryptography – is the subject of the report to be
delivered by Thomas Peyrin. Phillip Rogaway, one of the «provable security»
founders, will speak on authenticated encryption, another equally discussed
issue. Aleksandr A. Nechayev’s disciple Oleg Kozlitin, invited speaker of the
Academy of Cryptography of the Russian Federation – one of the organizers
of the Workshop – will share his research results in mathematical problems
in cryptography.

The range of the discussed questions, high level professionalism partic-
ipants, and impartial selection of papers allows to consider the workshop
«Current Trends in Cryptology» to be a leading Russian scientific forum on
cryptography.

Dear colleagues, we are facing three days of difficult but interesting work
the results of which, I hope, will allow to develop the existing approaches
and lay the groundwork for the new ones to solve the tasks which the modern
society comes across increasingly in course of digitalization. Thereon I would
like to declare the 7th workshop «Current Trends in Cryptography» open.

President of the Academy of Cryptography of the Russian Federation

Aleksandr Shoitov
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Invited Talks



The Rise of Authenticated Encryption

Phillip Rogaway

Department of Computer Science University of California, Davis, USA

Abstract

To many theory-oriented cryptographers, symmetric encryption is among our
most passé of problems. Yet from the point of view of providing a useful theory and
desirable schemes, the area is very much alive. For this talk I’ll explore the long di-
alectic that has taken us from semantic security to robust authenticated-encryption.
I’ll trace the history of AE, explaining why it emerged, how it has evolved, and what
some modern AE schemes now look like.
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Pseudorandom Generators Based on Shift
Registers Over Finite Commutative Rings

Oleg Kozlitin

Academy of Cryptography of the Russian Federation

Abstract

One of the most popular ways of pseudo-random sequence constructing is to use
the shift registers over finite commutative rings. The shift register with linear feed-
back function (LFSR) and non-linear output function is a classical representative of
such kind generators. There are a lot of cryptographic parameters of LFSR which
have to be studied. Among them are the periodical properties, the statistical prop-
erties and the linear complexity (rank) of output sequence. Consideration of these
parameters is a main content of many papers. In that connection, mention must be
made of the articles by A.A. Nechaev, V.L. Kurakin, A.S. Kuzmin, A.V. Mikhalev,
V.N. Tsypyshev, O.V. Kamlovskiy, D.N. Bylkov and other authors.

The aim of this report is to describe two methods of generalization of the classical
LFSR. The first method is to use polynomial feedback function. The pseudo-random
generator with polynomial feedback function is called polynomial generator. The
polynomial shift register is a special case of the polynomial generator. The poly-
nomial generator over residue ring was investigated in the articles by V.S. Anashin
and M.V. Larin. Some results about periodical properties of polynomial generator
over arbitrary finite commutative ring with identity were received by V.E. Viktoren-
kov. The cycle structure of polynomial generator over Galois ring was described by
D.M. Ermilov.

In this report the periodical properties of polynomial generator over finite chain
ring (finite commutative local ring of main ideals) and the cycle structure of multi-
dimensional polynomial generator over Galois ring will be discussed.

The second method of generalization is to use several linear feedback functions
instead of one linear feedback function. The use of multidimensional linear shift
register (k-LFSR) is one of the possible ways to solve this problem. Originally, k-
LFSR was proposed by Japanese mathematicians T. Nomura and A. Fukuda as
a decoder of two-dimensional cyclic code. Later this automation was studied by
A.A. Nechaev, A.V. Mikhalev, V.L. Kurakin and A.S. Kuzmin as a pseudo-random
generator. Since 2003, the so-called self-controlled k-LFSR has been investigated.
Some cryptographic properties of output sequence of self-controlled 2-LFSR over
Galois ring will be described in this report. Also we will discuss the ways of optimal
choice of the automation’s parameters (an output function and a control function).

9



Lightweight Symmetric-Key Cryptography

Thomas Peyrin

Nanyang Technological University, Singapore

Abstract

In this talk, we will review the current state of the art of lightweight cryptography,
a recent trend in symmetric-key cryptography design that aims at providing secure
algorithms for very constrained devices such as RFID tags. After a short introduction
to cryptographic primitives design, we will first discuss the problems faced by the
research community to come up with such specific lightweight algorithms and why
previous solutions are often not fit for such use cases. Then, we will explain the
current solutions that have emerged and identify some questions that remain open.
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Cryptography for Society. Security Issues from
Common Users’ Point of View

Dmitry Malinkin

OJSC «Rostelecom», Search engine «Sputnik», Moscow, Russia

Abstract

Cryptography initially served the state and military interests, it was considered
important only for domain experts. But since the World Wide Web has entangled
the globe, cryptographic methods were brought out to common people. Almost ev-
eryone is now using encryption: politicians, law enforcers, developers and large IT
companies, hackers, fighters for data privacy and freedom of information and com-
mon people who want to keep their data private. Moreover, Russian users often do
not even know that they use a secure channel in an instant messenger or a browser
with secure encryption. But more and more people start asking questions: Who cre-
ated the encryption we’re using? If it is the foreign company, then will our personal
information be available to Western intelligence services? In exchange, Russian IT
companies are considering other questions: What will happen if Western cryptogra-
phy methods are replaced by Russian ones? How will common users react to this?
What are the risks? How not to damage the fragile electronic Government-Citizen
interaction through the transition to Russian cryptography? The very interaction in
which a lot of effort and resources is already invested, and thanks to which the digital
dialogue between the state and its citizens has become simple, plain and fast.
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From «Hype» to Practice

Maxim Shevchenko

JSC «InfoTeCS», Moscow, Russia

Abstract

We saw a lot of pilot projects started last year and aimed to implement
blockchain-based solutions into the real economic sectors. The developers faced quite
a lot of issues to be solved to meet the requirements of legislation and regulations, as
well as a number of practical problems, e.g. of ensuring the security of users private
data.

These problems are now addressed in national and international standardization
workflows. ISO/TC307 started 8 projects focused on the essentials problems of the
technology. A TC26 Working Group prepared the draft of the first Russian guideline
for the blockchain terminology. These terminology guidelines might be a basement
for a conceptual framework of the technology.

During my speech I’ll highlight these issues to start a discussion during the panel
discussion.
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Securely Scaling Distributed Ledger Systems

Philipp Jovanovic

École Polytechnique Fédérale de Lausanne, Switzerland

Abstract

Designing a secure permissionless distributed ledger that performs on par with
centralized payment processors such as Visa is challenging. Most existing distributed
ledgers are unable to «scale-out» – growing total processing capacity with number
of participants – and those that do compromise security or decentralization. This
work presents OmniLedger, the first scale-out distributed ledger that can preserve
long-term security under permissionless operation. OmniLedger ensures strong cor-
rectness and security by using a bias-resistant public randomness protocol to choose
large statistically representative shards to process transactions, and by introducing
an efficient cross-shard commit protocol to handle transactions affecting multiple
shards atomically. In addition, OmniLedger optimizes performance via scalable intra-
shard parallel transaction processing, ledger pruning via collectively-signed state
blocks, and optional low-latency «trust-but-verify» validation of low-value transac-
tions. Evaluation of our working experimental prototype shows that OmniLedger’s
throughput scales linearly in the number of validators available, supporting Visa-
level workloads and beyond, while confirming typical transactions in under two sec-
onds.
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An Authentication Language for Blockchain
Based on Σ-Protocols Enhanced by Boolean

Predicates

Alexander Chepurnoy

IOHK Research, Sestroretsk, Russia
alex.chepurnoy@iohk.io

Abstract

Every coin in Bitcoin is protected by a program in the stack-based Script lan-
guage. An interpreter for the language is evaluating the program against a redeeming
program (in the same language) as well as a context (few variables containing infor-
mation about a spending transaction and the blockchain), producing a single boolean
value as a result. While Bitcoin Script allows for some contracts to be programmed,
its abilities are limited while many instructions were removed after denial-of-service
attacks or security issues discovered. Also, to add new cryptographic primitives, for
example, ring signatures, a hard-fork is required.

Generalizing the Bitcoin Script, we introduce a notion of an authentication lan-
guage where a verifier is running an interpreter which three inputs are a proposition
defined in terms of the language, a context and also a proof generated by a prover
for the proposition against the same context. The interpreter is deterministically
producing a boolean value and must finish evaluation for any possible inputs within
concrete constant time.

We propose an alternative authentication language, named Σ-State. It defines
guarding proposition for a coin as a logic formula which combines predicates over
a context and cryptographic statements provable via Σ-protocols with and, or, k-
out-of-n connectives. A prover willing to spend the coin first reduces the compound
proposition to a (possibly complex) cryptographic statement by evaluating predi-
cates over known shared context (state of the blockchain system and a spending
transaction). Then the prover is turning a corresponding Σ-protocol into a signature
with the help of a Fiat-Shamir transformation. A verifier (a full-node in a blockchain
setting) checks the proposition against the context and the signature. Language ex-
pressiveness is defined by a set of predicates over context and a set of cryptographic
statements. We show how the latter could be updated with a soft-fork by using a
language like ZKPDL [1], and how the former could be updated with a soft-fork by
using versioning conventions. We propose a set of context predicates for a Bitcoin-
like cryptocurrency with a guarantee of constant upper-bound verification time. We
provide several examples: ring and threshold signatures, pre-issued mining rewards,
crowdfunding, and demurrage currency.

References

[1] Sarah Meiklejohn et al. Zkpdl: A language-based system for efficient zero-
knowledge proofs and electronic cash. In USENIX Security Symposium, vol-
ume 10, pages 193–206, 2010.
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Near Birthday Attack On «8 bits» AEAD
Mode

Liliya Ahmetzyanova, Grigory Karpunin, and Grigory Sedov

Crypto-Pro LLC, Moscow, Russia
{lah, karpunin, sedovgk}@cryptopro.ru

Abstract

This work describes an attack on the «8 bits» authentication encryption with
associated data (AEAD) mode proposed during the AEAD standardization process of
the Russian Technical Committee for Standardization TC 26. The «8 bits» mode is
similar to the CCM mode [9] except for several design features. We show that these
distinctive features allow to construct a near birthday attack on «8 bits» mode. We
also propose countermeasures to resist suggested attack.

Keywords: «8 bits» mode, birthday attack, AEAD forgery.

1 Introduction

Authenticated encryption schemes, which aim at providing both confi-
dentiality and integrity of data, have gained renewed attention in the light
of the recently commenced CAESAR competition [2].

The AEAD modes are the most widely spread subset of authenticated
encryption schemes which allow to additionally process associated data that
needs to be authenticated but not encrypted. The importance of the AEAD
schemes development is explained by the exploitation simplicity thereof they
are much easier to implement properly than MAC and encryption schemes
separately under random and independent keys. Also when using the AEAD
scheme we can reduce the key size, state size, and improve the data process-
ing speed. Another advantage of such schemes is their transparent embedding
into high-level schemes and protocols because there is no need of using addi-
tional diversifications for enough key material generation. For example, the
use of such schemes is supposed to be mandatory for the Record protocol in
TLS 1.3 [6].

The AEAD scheme named «8 bits» was proposed during the AEAD stan-
dardization process of the Russian Technical Committee for Standardization
TC 26 and was presented at the seminar «Mathematical methods of crypt-
analysis» in MSU. This scheme is based on the standardized blockcipher
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modes of operation CTR and OMAC. The prototype of «8 bits» is the CCM
mode [9] which is standardized in IEEE 802.11i [3]. The crucial difference
between CCM and «8 bits» is the absence of additional tag encryption that
causes a near birthday attack.

Although the birthday bound is sufficient for practical applications there
are some AEAD modes with no applicable attacks on the authentication
with near birthday complexity [1, 9, 7]. Thus we claim that the near birthday
complexity attack should be considered as a flaw in the construction of AEAD
scheme.

The current paper contains the description of the above-mentioned attack
and is organized as follows. In Section 2 we provide basic definitions and
remind the reader of some notions, in Section 3 the definition of «8 bits» is
provided, and in Section 4 we describe the above-mentioned attack.

2 Preliminaries and Basic Definitions

By Vn we denote the set of n-component bit strings. Also we consider
Vn as a vector space over field F2 = {0, 1}. Let V ∗ be the set of all bit
strings of finite length. For nonnegative integers l and i let strl(i) be a l-bit
representation of i with the least significant bit on the right. For a nonnegative
integer l and a bit string M ∈ Vl let int(M) be an integer i such as strl(i) =
M .

For a bit string M and a positive integer l 6 |M | let msbl(M) (lsbl(M))
be the string, consisting of the leftmost (rightmost) l bits of M .

For bit strings A and B by A‖B we denote their concatenation. For the
bit string A by An we denote the string A concatenated n times. Let |M | be
the bit length of the string M .

For any set A, define Perm(A) as the set of all bijective mappings from
A to A (permutations on A).

A block cipher is a mapping E : Vk × Vn → Vn such that for all K ∈ Vk
mapping E(K, ·) is a permutation on Vn. By n and k we denote the block
size and the key size respectively. By EK(·) we denote the mapping E(K, ·).

We model an adversary using an interactive probabilistic algorithm that
has access to one or more oracles. The resources of A are measured in the
terms of time and query complexities. For a fixed model of computation and
a method of encoding the time complexity includes the description size of
A. The query complexity usually includes the number of queries and the
maximal length of queries or the total legth of queries.
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3 «8 bits» AEAD Mode

The «8 bits» mode is defined for the block size n = 128 bit. The additional
parameter of the mode is a tag size s 6 n. This parameter should be fixed
and known both by the sender and the receiver.

Both the sender and the receiver know the secret key K used for com-
puting a tag and a ciphertext. By P ∈ V ∗ and A ∈ V ∗ we denote a plaintext
and the associated data respectively. The length of both P and A must be
less than 264 bits. P also must have non-zero length. The pair of a plain-
text and the associated data we will call «a message». This mode uses also
an initialization vector IV ∈ V56. This vector must be unique for each new
message.

3.1 OMAC Algorithm

The integrity and authenticity in «8 bits» is achieved using the OMAC
algorithm. Let us remind the reader of the main idea of the OMAC compu-
tation. The detailed description of OMAC can be found in [4].

The algorithm starts with a derivation of MAC keys. The derivation is
made as follows.

R = EK(0128),

K1 =

{
R� 1, if msb1(R) = 0;
(R� 1)⊕B128, otherwise;

K2 =

{
K1 � 1, if msb1(R) = 0;
(K1 � 1)⊕B128, otherwise,

(1)

where B128 = 0120||10000111.
Then the message M ∈ V ∗ is divided into t =

⌈
|M |
n

⌉
blocks

M1, . . . ,Mt−1 ∈ Vn and Mt ∈ Vr, r 6 n, that M = M1‖ . . . ‖Mt−1‖Mt.
The OMAC algorithm then can be described as follows (Pseudocode 1).
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OMAC(s)(M = M1‖ . . . ‖Mt, K)

1: C0 = 0n

2: Ci = EK(Ci−1 ⊕Mi), i = 1, . . . , t− 1
3: if |Mt| = n then
4: K∗ = K1, M∗ = Mt

5: else
6: K∗ = K2, M∗ = Mt‖1‖0n−|Mt|−1

7: T = msbs(EK(Ct−1 ⊕M∗ ⊕K∗))
8: return T

Pseudocode 1: The OMAC algorithm

The mode structure is illustrated by Figure 2. By MAC
(s)
K (M) in the

«8 bits» description the computation of the tag of size s under the key K
according to the OMAC algorithm is denoted.

M

+ + EK
... EK

0
n

1 t - 1M M*

K*

EK + Tmsbs

Figure 2: The OMAC algorithm which takes the message M = M1‖ . . . ‖Mt ∈ V ∗, t =
d|M |/ne, and the key K ∈ Vk as inputs and outputs the tag T ∈ Vs.

3.2 The «8 bits» authenticated encryption and decryption algo-
rithms

Let t be the length of a plaintext in blocks, i.e. t =
⌈
|P |
128

⌉
, s 6 n be

the tag size and d =
⌈
|P |+|A|+72

128

⌉
. The «8 bits» authenticated encryption

and decryption algorithms can be described as follows (see Pseudocode 3,
Pseudocode 4). The probabilistic key generation algorithm 8bits.K() outputs
the key K U←− Vk.
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8bits(s).E(K, IV, P,A)

1: Si = 08‖IV ‖str64(i), i = 1, . . . , t
2: Γ = EK(S1)‖EK(S2)‖ . . . ‖EK(St)
3: C = P ⊕msb|P |(Γ)
4: if |A| = 0 then
5: F = 17‖0
6: else
7: F = 17‖1
8: B = F‖str8(s)‖IV ‖A‖C‖0128d−|C|−|A|−72‖str64(|A|)‖str64(|C|)
9: T = MAC

(s)
K (B)

10: return C‖T

Pseudocode 3: Authenticated Encryption Algorithm of the «8 bits»mode

8bits(s).D(K, IV, C‖T,A, s)
1: if |A| = 0 then
2: F = 17‖0
3: else
4: F = 17‖1
5: B = F‖str8(s)‖IV ‖A‖C‖0128d−|C|−|A|−72‖str64(|A|)‖str64(|C|)
6: T ′ = MAC

(s)
K (B)

7: if T 6= T ′ then
8: return ⊥
9: Si = 08‖IV ‖str64(i), i = 1, . . . , t
10: Γ = EK(S1)‖EK(S2)‖ . . . ‖EK(St)
11: P = C ⊕msb|C|(Γ)
12: return P

Pseudocode 4: Authenticated Decryption Algorithm of the «8 bits» mode

4 Attack

4.1 Adversary model

The standard model relevant for analyzing the AEAD security is the
IND-CCA3 model [8] which allows to investigate the security of proposed
scheme from the point of view of both integrity and confidentiality. The
work [8] states that the scheme is IND-CCA3-secure iff it is IND-CPA- (con-
fidentiality) and Auth-secure (integrity). In the current work we consider the
Auth model in detail and describe the attack which capabilities are covered
by this model.

Definition 1. The advantage of the adversary A in the Auth model for the
AEAD mode is defined as follows:

AdvAuth
AEAD(A) = Pr

[
ExpAuth

AEAD(A) = 1
]
,
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where ExpAuth
AEAD(A) is described in the following way:

ExpAuth
AEAD(A)

K
$←− AEAD.K()

sent← ∅
(IV ′, C ′‖T ′, A′)← AEncrypt

P ← AEAD.D(K, IV ′, C ′‖T ′, A′)
if (C ′‖T ′, A′) /∈ sent and P 6=⊥
then
win← 1

else
win← 0

end if
return win

Oracle Encrypt(IV, P,A)

C‖T $←− AEAD.E(K, IV, P,A)
sent← sent ∪ {(A,C‖T )}
return C‖T

The Auth model allows the adversary to choose adaptively messages for
encryption and receive their ciphertexts and tags. The adversary’s goal is to
make the receiver to accept a «non-authentic» pair of ciphertext C and the
associated data A. In the Auth model the «non-authentic» message means
it was never transmitted by the sender (satisfied the condition /∈ send).

Now consider the «8bits» scheme with s = 128. Suppose that IV is
generated with the use of a counter, i.e. for each new message the initialization
vector IV ′ takes value str56(int56(IV )+1) if the previous initialization vector
was IV . Let the first initialization vector be 056.

4.2 Attack details

The main idea behind the proposed attack is to exploit the information
received from obtained ciphertexts to «break» integrity. In the model relevant
for schemes providing integrity the adversary can observe only tags, while in
the AEAD schemes case the adversary can get additional information from
received ciphertexts. The proposed attack uses the possibility of getting en-
ciphered counter values to find collision with the OMAC values. It results in
the possibility of modifying undetectively the associated data length stored
in the last block of the OMAC-processed string.

The first stage. Let us introduce a parameter l such that 6 6 l < 55. Then
we make 2l queries P1, P2, . . . , P2l, |Pi| = 264 − 128, with empty associated
data to the Encrypt oracle. The Encrypt oracle returns the corresponding
ciphertexts C1, C2, . . . , C2l. Note that for the message Pi the corresponding
initialization vectors are IVi = str64(i − 1). By IV ′ = {IVi| i = 1, . . . , 2l}
we denote the set of all initialization vectors for the messages P1, P2, . . . , P2l.
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Note that the messages length is the greatest possible length multiple of the
block size. The number of 128-bit blocks in any of these messages is equal to
257 − 1.

Let Pi[j] be the j-th 128-bit block of the message Pi and Si[j] be the
string 08‖IV ‖str64(j) which is used for ciphering the block Pi[j]: Ci[j] =
Pi[j] ⊕ EK(Si[j]). Denote by S = {Si[j]| i = 1, . . . , 2l, j = 1, . . . , 257 − 1}
the set of all strings Si[j].

Given the plaintext blocks Pi[j] and the ciphertext blocks Ci[j] at the end
of this stage we get the keystream blocks Γi[j] = EK(Si[j]) for all strings
Si[j] from S.

The second stage. At the second stage we compute 256 − 2l values of ci-
phertexts and OMAC tags for all remained values of initialization vectors
IV ′′ = V56 \ IV ′. More accurately, we make 256 − 2l queries (IV, P,A) to
the Encrypt oracle, where IV ∈ IV ′′, P = 01 ∈ V1, A = 01 ∈ V1. For query
(IV, P,A) the Encrypt oracle returns a pair C‖T , where C is the ciphertext
and T is a tag. The tag T is computed by the MAC

(128)
K algorithm with an

input B formatted as follows

B = F‖str8(128)‖IV ‖A‖C‖054︸ ︷︷ ︸
B0

‖ str64(1)‖str64(1)︸ ︷︷ ︸
B1

.

Since B consists of only two blocks, the tag T is equal to EK(EK(B0)⊕K1⊕
B1).

Note that for any new IV the string B0 is new and B1 is constant
and equal to str64(1)‖str64(1). By B = {(F‖str8(128)‖IV ‖A‖C‖054)| IV ∈
IV ′′} we denote the set of all such blocks B0.

Thus at the end of this stage we have the OMAC tags EK(EK(B0) ⊕
K1 ⊕B1) for all 256 − 2l blocks B0 ∈ B.

The third stage. In this paragraph we estimate the probability p of getting
collision between OMAC tags from the second stage and the one of keystream
blocks Γi[j] from the first stage.

More formally, we estimate the probability

p = PrK [{EK(S)S∈S} ∩ {EK(EK(B0)⊕K1 ⊕B1)}B0∈B 6= ∅]

under the following conditions : S ∩ B = ∅, 0128 /∈ S, 0128 /∈ B, |S| =
2l(257 − 1), |B| = 256 − 2l, the key K1 = K1(EK(0128)) is a function which
depends only on the value EK(0128).
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We estimate this probability in the ideal cipher model, where EK is sup-
posed to be a random permutation on V128.

Then, by the technical Lemma 1 from the Appendix section, we obtain

p > 1− e−
(256−2l)(2l(257−1)−1)

2128 = 1− e−2l−15
(

1− 1
256−l

)(
1− 1

257−
1

257+l

)
.

This estimation increases monotonically on 6 6 l < 55, and if l = 15
then we have p > 0.63 ≈ 1− e−1.

Therefore if we encrypt 215 messages on the first stage then one of OMAC
values collides with one of the keystream blocks with the probability p > 0.63.

Forging tag. Suppose that we have collision and MAC
(128)
K (B) = Γi[j] =

EK(08‖IVi‖str64(j)), where

B = F‖str8(128)‖IV ‖A‖C‖054︸ ︷︷ ︸
B0

‖ str64(1)‖str64(1)︸ ︷︷ ︸
B1

.

Consider pairs (C ′, A′) of the ciphertexts C ′ = 01 ∈ V1 and the associated
data A′ = 0‖C‖0u with u = 0, . . . , 53. Note that the OMAC input for such
pairs is equal to

B′ = F‖str8(128)‖IV ‖A′‖C ′‖055−(u+2)︸ ︷︷ ︸
B′0

‖ str64(u+ 2)‖str64(1)︸ ︷︷ ︸
B′1

.

Note that B′0 = B0 and thus OMAC value MAC
(128)
K (B′) is equal to

EK(EK(B′0)⊕K1 ⊕B′1) = EK(EK(B0)⊕K1 ⊕B′1)
Let us consider the set of strings B̂ = {B̂ ∈ V128|B̂ =

str64(r)‖str64(1), r = 2, . . . , 55. This set describes all possible values of B′1
for pairs (C ′, A′). Note that for all B̂ ∈ B̂ holds

EK(B0)⊕K1 ⊕ B̂ = EK(B0)⊕K1 ⊕B1 ⊕ (B1 ⊕ B̂) =

= 08‖IVi‖str64(j)⊕ ((str64(1)‖str64(1))⊕ (str64(r)‖str64(1))) =

= 08‖IVi‖str64(j)⊕ ((str64(1)⊕ str64(r))‖str64(0)) = 08‖IVt‖str64(j),

where IVt can differ from IVi only in the 6 least significant bits.
Hence 08‖IVt‖str64(j) ∈ S, and we know the corresponding ciphertext
EK(08‖IVt‖str64(j)) from the first stage.

Therefore we can forge the tag value for the pair (C ′, A′) that corresponds
to B̂ as follows

EK(EK(B0)⊕K1 ⊕ B̂) = EK(08‖IVt‖str64(i)),
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where B̂ = str64(r)‖str64(1). Therefore we get 54 forged tags with the prob-
ability p > 0.63.

4.3 Attack complexity

In the current section we estimate the complexity of the described attack.
At the first stage the adversary should form 215 queries with length of

257 − 1 blocks and, hence, store near 272 blocks in a sorted list. So the com-
plexity of the first stage is near 72 · 272 ≈ 279.

The second stage needs processing just one block for (256−215) remained
messages and find the collision with the values from the stored sorted list.
So the complexity of the second stage can be bound by 72 · 256 ≈ 263.

As it is proven in the previous section the success probability p is greater
than 0.63.

Summarizing this section we claim that with the total (time and query)
complexity of near 279 and probability of p > 0.63 the adversary can forge
tag for 54 «non-authentic» messages.

4.4 Provable security

This attack can be interpreted using provable security ideas. Consider «8
bits» in the Auth model supposing that the used block cipher is a family
of all permutations. In this case the adversary complexity can be measured
only in terms of the total length of queries, since the resulting «8 bits» mode
becomes the information theoretic object which security does not depend on
adversary’s time complexity (only on the query complexity).

The adversary constructed in the proposed attack makes 256 encryption
queries of total length of near 272 blocks and then one decryption query of
length no more than 1 block. So we can estimate the advantage in the Auth
model as follows: AdvAuth8bits (A) > 0.63, where A makes the above-mentioned
amount of queries of the certain lengths.

The total length of all queries is slightly bigger than the birthday bound,
but significantly lower than the trivial random guessing forgery attack com-
plexity. For the original CCM mode the proven bound [5] is near the birthday
attack complexity (for the total length of processed data). But there is no
known attacks of such complexity on the CCM mode, hence the complexity
of real attack has to be at least be equal to the birthday attack complexity .
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5 Conclusion

In the current paper the near birthday attack for the «8 bits» mode was
proposed. The described attack is based on the adversary’s possibility to
obtain clear tag values and then to compare them with keystream blocks
used for encryption. Note that the considered mode can be easily modified to
resist this attack with a minor loss in performance. The only modification is
to additionally encrypt the tag value (as in the original CCM mode). Thus,
under secure blockcipher the adversary will not obtain information about tag
values.
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A Appendix

Lemma 1. Let x1, . . . , xs and y1, . . . , yt be different non-zero vectors from
Vn; let β be an arbitrary vector from Vn; let the set of all permutations
Perm(Vn) on Vn. Consider a uniform distribution over Perm(Vn). Then
the following estimation holds

PrP∈Perm(Vn)

[
{P (xm)}sm=1 ∩ {P (P (yk)⊕K1(P (0n))⊕ β))}tk=1 6= ∅

]
> 1− e−

t(s−1)
2n .

Proof. Let us estimate the probability of the opposite event

PrP∈Perm(Vn)

[
{P (xm)}sm=1 ∩ {P (P (yk)⊕K1(P (0n))⊕ β))}tk=1 = ∅

]
=

= PrP∈Perm(Vn)

[
{xm}sm=1 ∩ {P (yk)⊕K1(P (0n))⊕ β)}tk=1 = ∅

]
=

= PrP∈Perm(Vn)

[
{xm ⊕K1(P (0n))⊕ β}sm=1 ∩ {P (yk)}tk=1 = ∅

]
.

Since the set Perm(Vn) have a uniform distribution, we can calculate this
probability by combinatorial methods:

PrP∈Perm(Vn)

[
{xm ⊕K1(P (0n))⊕ β}sm=1 ∩ {P (yk)}tk=1 = ∅

]
=

=
#{P ∈ Perm(Vn)| {xm ⊕K1(P (0n))⊕ β}sm=1 ∩ {P (yk)}tk=1 = ∅}

|Perm(Vn)|
=

=
1

2n!

∑
α∈Vn

#{P ∈ Perm(Vn)| P (0n) = α

and {xm ⊕K1(α)⊕ β}sm=1 ∩ {P (yk)}tk=1 = ∅}. (2)
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Note that given a fixed α the permutations to be enumerated under the
sum sign have the following properties: 1) the value of a permutation on zero
vector 0n is equal to α; 2) the values of a permutation on the vectors y1,. . . ,yt
may be arbitrary not including in the s-element set Sα = {xm ⊕ K1(α) ⊕
β}sm=1. There are two variants α ∈ Sα and α /∈ Sα. Depending on the variant
the number of these permutations may be slightly different:

#{P ∈ Perm(Vn)| P (0n) = α and Sα ∩ {P (yk)}tk=1 = ∅} =

=

{
(2n − s) · (2n − s− 1) · . . . · (2n − s− (t− 1)) · (2n − (t+ 1))!, if α ∈ Sα;

(2n − s− 1) · (2n − s− 2) · . . . · (2n − s− t) · (2n − (t+ 1))!, if α /∈ Sα.
(3)

We need an upper bound of the opposite event probability. So, taking
into account formulas (2) and (3), we have the following inequalities:

PrP∈Perm(Vn)

[
{xm ⊕K1(P (0n))⊕ β}sm=1 ∩ {P (yk)}tk=1 = ∅

]
6

6 2n · (2
n − s) · (2n − s− 1) · . . . · (2n − s− (t− 1)) · (2n − (t+ 1))!

2n!
=

=
2n − s
2n − 1

· 2
n − s− 1

2n − 2
· . . . · 2

n − s− (t− 1)

2n − t
6

(
2n − (s− 1)

2n

)t
=

=

(
1− s− 1

2n

)t
= e

t ln
(

1−s−1
2n

)
6 e−

t(s−1)
2n .

This estimation of the opposite event probability proves the lemma.
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Abstract

Usage of block cipher modes of operation is the main way to achieve different
important properties for the present security techniques in the secret-key cryptog-
raphy. The amount of data to be processed with some mode of operation without
change of key is the crucial characteristic of many informational systems and proto-
cols. In this paper we investigate two different approaches of estimation of the stated
characteristic – direct cryptographic analysis and provable security – and provide
grounded margins that could be used during the synthesis of different systems and
providing the terms of use for such systems.

Keywords: block cipher, mode of operation, provable security.

1 Introduction

Custom approach in design and analysis of block cipher modes of opera-
tion is studying the properties of both mechanisms independently. The core
of this approach is «any secure block cipher in any secure mode of operation
results in secure cryptosystem». Thus, during the analysis of mode of opera-
tion structural properties of a block cipher are out of scope and it is assumed
that block cipher behaves as a random permutation.

In this note we investigate important characteristic of block cipher mode
of operation – maximum amount of data that could be processed without
key change.

First we fix the maximum acceptable value for success probability of
obtaining additional information about unknown part of plaintext. The upper
bound for the stated amount of data can be estimated in two different ways.
First approach is based on construction of particular attacks on a mode
of operation targeting additional information about unknown part of the
plaintext.
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The maximum amount of data to be processed without key change should
be upper bounded in such a way that all known attacks targeting information
about unknown plaintexts have probability of success less than the previously
fixed value.

The second approach is so called «provable security». In this note we
show that bounds obtained by both approaches are very close. For the most
widespread modes of operation we obtain formulas determining exact amount
of data which can be processed without key change. Values obtained by these
formulas were used in recommendations [2] of Russian National Standardiza-
tion Organization GOST R.

2 Terms and definitions, known results

Let EK : {0, 1}n × {0, 1}k → {0, 1}n be the block cipher transformation
of the plaintext block P ∈ {0, 1}n with the use of the key K ∈ {0, 1}k
to the ciphertext block C ∈ {0, 1}n: E(P,K) = C. We will also use the
short variant for the stated notation for trasformation E, plaintext block
P , ciphertext block C and key K as follows: EK(P ) = E(P,K) = C. Let
D(C,K) = E−1(C,K) and DK(C) = E−1

K (C) for all C ∈ {0, 1}n, K ∈
{0, 1}k.

In the following we assume that the key for the block cipher is chosen
uniformly at random and the transformation EK with a uniform random key
is indistinguishable from a random permutation.

There are a lot of papers devoted to the study of block cipher modes of
operation properties (see, for example, [6, 7, 8, 9, 10, 11, 12, 14, 15, 16]).
Almost all of the stated articles are devoted to the «provable security» ap-
proach. Bounds for the amount of data to be processed based on the provable
security results could be considered only as lower values for the upper bound
of the acceptable amount of data to be processed. Upper values for the stated
bound could be found only by the means of the combinatorial-algorithmic
approach by the presentation of concrete cryptanalytic attacks.

Note that in case when stated lower values are close to stated upper
values, the lower values become a reasonable estimations for the maximum
acceptable amount of data to be processed by block cipher mode of operation
without key change.
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2.1 Descriptions of modes of operation

2.1.1 Electronic Code Book mode of operation, ECB

A plaintext P ∈ V ∗, |P | = n · t, is divided into blocks of length n: P =
P1‖P2‖ . . . ‖Pt. Ciphertext blocks are calculates with the following equation:

Ci = EK(Pi), i = 1, t.

The length of data to be encrypted in ECB mode must be a multiple of
block cipher’s block length n, so in some cases original data must be padded
with the use of some padding procedure.

Illustration of encryption process with ECB mode is given in fig. 1.

Figure 1: Encryption in ECB mode

2.1.2 Counter mode of operation, CTR

The parameter of CTR mode is the value 0 < s ≤ n. For encryption
(decryption) of every plaintext with the use of one key the unique initializa-
tion value IV ∈ {0, 1}l for some fixed l ∈ N, l ≥ n is used. Encryption in
CTR mode is based on XOR operation of plaintext with the sequence that
is output of encryption of the counter sequence Si ∈ {0, 1}n, i = 1, 2, . . .
by the block cipher in ECB mode with truncation of every output block to
the length s. The initial value of counter is achieved from the initialization
value: S1 = In(IV ), where In is some fixed function In : {0, 1}l → {0, 1}n.
Subsequent counter values are generated by the means of some function
A : {0, 1}n → {0, 1}n in the following way Si+1 = A(Si), i = 2, 3, . . ..

A plaintext P ∈ V ∗ is divided into blocks of length s (with the exception
of the last one), P = P1‖P2‖ . . . ‖Pt, Pi ∈ {0, 1}s, i = 1, t− 1, Pt ∈ {0, 1}r,
r ≤ s. Ciphertext blocks are calculated as{

Ci = Pi ⊕ Ts(EK(Si)), i = 1, t− 1.
Ct = Pt ⊕ Tr(EK(St)),

Illustration of encryption process in CTR mode is given in fig. 2.
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Figure 2: Encryption in CTR mode

Note that function A and initialization values must be chosen in such a
way that all counter values Si, i = 1, 2, . . . used in encryption process without
key change are pairwise distinct.

2.1.3 Output Feedback Mode of operation

OFB mode of operation has following parameters: s, m and q such that
0 < s ≤ n, m = n · q, q ≥ 1, where q is integer.

During the encryption process without key change for each separate plain-
text unique or pseudorandom value of initialization value IV ∈ {0, 1}l for
some fixed l ∈ N, l ≥ n and binary feedback shift register R of length m
are used. The initial value of R is the value Im(IV ), where Im is some fixed
function Im : {0, 1}l → {0, 1}m. Encryption in OFB mode is based on XOR
operation of plaintext blocks with sequence that is obtained by concatenation
of blocks of length s. To get a regular block of the sequence most significant
n bits of register R are encrypted with the use of a block cipher in ECB mode
and the result is truncated to the length s. Then the register R is shifted to
n positions in the direction of the most significant bits and vacated cells are
filled with previously obtained result of block cipher application.

A plaintext P ∈ V ∗ is divided into blocks of length s (with the exception
of the last one), P = P1‖P2‖ . . . ‖Pt, Pi ∈ {0, 1}s, i = 1, t− 1, Pt ∈ {0, 1}r,
r ≤ s. Ciphertext blocks are calculates as follows

R1 = IV,
Yi = EK(msbn(Ri)), i = 1, t,
Ri = lsbm− n(Ri−1)‖Yi, i = 2, t.
Ci = Pi ⊕ Ts(Yi), i = 1, t− 1,
Ct = Pt ⊕ Tr(Yt).

Illustration of encryption process in OFB mode is given in fig. 3.
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Figure 3: Encryption in OFB mode

2.1.4 Cipher Block Chaining mode of operation

CBC mode of operation has parameter m, m = n · q, for some integer
q ≥ 1. During the encryption process binary shift register R of length m

is used. For encryption of each particular plaintext with the use of one key
pseudorandom initialisation value IV ∈ {0, 1}l for some fixed l ∈ N, l ≥ n is
used. In CBC mode regular block of ciphertext is calculated by encryption in
ECB mode of XOR of regular plaintext block and n most significant bits of
registerR. After that registerR is shifted by n positions in the direction of the
most significant bits and the vacated cells are filled with obtained ciphertext
value. The initial value of register R is obtained as follows: Im(IV ), where
Im is some fixed function, Im : {0, 1}l → {0, 1}m.

A plaintext P ∈ V ∗ is divided into blocks of length n: P = P1‖P2‖ . . . ‖Pt,
Pi ∈ {0, 1}n (in some cases original data must be padded with the use of some
padding procedure). Ciphertext blocks are calculated as follows

R1 = Im(IV ),
Ci = EK(Pi ⊕msbn(Ri)), i = 1, t,
Ri = lsbm− n(Ri−1)‖Ci−1, i = 2, t.

Illustration of encryption process in CBC mode is given in fig. 4.
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Figure 4: Encryption in CBC mode

2.1.5 Cipher Feedback mode of operation

CFB mode of operation has parameters s and m, 0 < s ≤ n, n ≤ m.
During the encryption process of each plaintext with the use of one key
binary shift register R of length m and pseudorandom initialisation value
IV ∈ {0, 1}l for some fixed l ∈ N, l ≥ n are used. The initial value of
register R is obtained with use of a function Im : {0, 1}l → {0, 1}m and is
set to Im(IV ).

Encryption in CFB mode is based on XOR operation of plaintext blocks
with cipher sequence that is obtained by truncation of the result of encryption
in ECB mode of n most significant bits of register R to s bits . Then register
R is shifted by s positions in the direction of the most significant bits and
vacated cells are filled with obtained ciphertext block.

A plaintext P ∈ V ∗ is divided into blocks of length s (with the exception
of the last one), P = P1‖P2‖ . . . ‖Pt, Pi ∈ {0, 1}s, i = 1, t− 1, Pt ∈ {0, 1}r,
r ≤ s. Ciphertext blocks are calculated as follows

R1 = Im(IV ),
Ci = Pi ⊕ Ts(EK(msbn(Ri))), i = 1, t− 1,
Ri = lsbm− s(Ri−1)‖Ci−1, i = 2, t,
Ct = Pt ⊕ Tr(EK(msbn(Rt))).

Illustration of encryption process in CFB mode is given in fig. 5.
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Figure 5: Encryption in CFB mode

2.2 Approaches to the problem solving

Let’s assume that N = u + v plaintext blocks were processed with-
out key change. Denote these plaintext blocks P1, P2, . . . , Pu, P

′
1, P

′
2, . . . , P

′
v,

Pi, P
′
j ∈ {0, 1}n, i = 1, 2, . . . , u, j = 1, 2, . . . , v, and corresponding cipher-

text blocks – C1, C2, . . . , Cu,C ′1, C ′2, . . . , C ′v. In the following we will consider
blocks P1, P2, . . . , Pu to be known and blocks P ′1, P ′2, . . . , P ′v to be unknown.

Let π be the fixed maximum acceptable value for probability of obtaining
additional information about unknown part of the plaintext. The maximum
acceptable amount of data to be processed we will calculate in blocks and will
denote this value as Nmax. The main task is to find functional dependency
between Nmax and π.

From the «provable security» point of view cryptographic properties of
many block cipher modes of operation are already defined. Let’s state some
of the known results in this area. Following commonly used notations, let
A be some distinguisher for some mode of operation. Assume that stated
distinguisher makes at most q queries of the total length µ to the some
oracle. Advantage of the distinguisher A in solving some decisional task T
for some mode of operation E we will denote by ∆TE (A) and the maximum
of this value for all distinguishers with given amount of calculations (time of
work) t, number of queries q of total length µ to some oracle we will denote
∆TE (t, q, µ). Formal definitions for the terms used throughout the article can
be found, for example, in [15]

In [7] some properties of chaining modes of operation are proven. Margins
for the CBC mode of operation in the «left-or-right» notation can be deduced
from results of this article.

It’s worth mentioning that cryptanalytic techniques based on the birthday
paradox are still usable for the block cipher modes of operation analysis even
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in case when instead of block cipher arbitrary random permutation is used.
In particular, the next proposition holds.

Proposition 1. [7, Proposition 15] There is left-or-right distinguisher A for
CBC mode with arbitrary random function, that makes at most q queries of
the total length at most µ bits (µ ≤ l · 2n

2 ), such that

∆lr
CBC(A) ≥ 0, 316 ·

(
1− 2 · 2−

n
2

)
·
(
µ2

n2
− µ

n

)
· 1

2n
.

The next lemma indicates that in the stated case techniques based on the
birthday paradox are the best possible ones.

Lemma 1. [7, Lemma 16]
Let A be some left-or-right distinguisher that distinguish CBC mode with

arbitrary random function from arbitrary random transformation (with the
same domain and range) that makes at most q queries of the total length at
most µ bits. Then

∆lr
CBC(A) ≤

(
µ2

n2
− µ

n

)
· 1

2n
.

Stated proposition and lemma could be used to prove the next

Theorem 1. [7, Theorem 17]
There is a constant c > 0 such that if F is the family of functions from

{0, 1}n to {0, 1}L with ∆prf
F (q′, t′, µ′) ≤ ε′. Then for every q

∆lr
CBCF (t, q, µ) ≤ ε,

where µ = q′n, t = t′ − cµ, ε = 2ε′ +
(
µ2

n2 − µ
n

)
· 1

2n .

Remark 1. In [15] it is stated that similar technique could be used for study-
ing properties of OFB mode.

Let’s state some properties of CFB mode of operation based on [5]. The
best margin in this case is again based on birthday paradox. First we provide
the result of [5] stating that there doesn’t exist any distinguisher better than
one based on birthday paradox.

Lemma 2. [5, Lemma 1]
For any left-or-right distinguisher A for CFB mode with arbitrary ran-

dom function that makes q queries of total length qL bits

∆lr
CFB(A) ≤ q(q − 1)

2n+1
.
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Theorem 2. [5, Theorem 1]
If F – a family of functions from {0, 1}n to {0, 1}L such that

∆prf
F (q′, t′, µ′) ≤ ε′, then ∆lr

CFBF (t, q, µ) ≤ ε, where q = q′, µ = q′L,

t = t′ − q − c (where c – some small-valued constant), ε = 2ε′ + q(q−1)
2n+1 .

Let’s denote CTR mode with random choice of initialization value as
CTR$ and nonce-based CTR mode – as CTRC.

Lemma 3. [7, Lemma 12]
Let F be a family of functions from {0, 1}n to {0, 1}L. Then for any

non-negative integers q, µ and t, where binary order of t is comparable with
q,

∆lr

CTR$F (t, q, µ) ≤ µ(q − 1)

L · 2n
and for µ > L · 2n

∆lr
CTRCF (t, q, µ) = 0.

Theorem 3. [7, Theorem 13]
Let F be a family of functions from {0, 1}n to {0, 1}L.

– There is a constant c > 0 such that if ∆prf
F (t′, q′, µ′) < ε′, then for every

non-negative integer q

∆lr

CTR$F (t, q, µ) < 2 · ε′ + µ(q − 1)

L · 2n
,

where µ = q′L, t = t′ − c · µL(n+ L).

– There is a constant c > 0 such that if ∆prf
F (t′, q′, µ′) < ε′, then for every

non-negative integer q

∆lr
CTRСF (t, q, µ) < 2 · ε′,

where µ = min{q′L,L2n}, t = t′ − c · µL(n+ L).

Let’s note that all stated margins for block cipher modes of operation
are based on properties of pseudorandom functions, but pseudorandom per-
mutations are more suitable for studying block cipher’s properties. In [7] the
following result is proven

Proposition 2. [7, Proposition 8]
Let F = {EK : {0, 1}n → {0, 1}n|K ∈ K} be some family of permuta-

tions. Then |∆prf
F (t, q, µ)−∆prp−cpa

F (t, q, µ)| < q2

2n+1 .
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Remark 2. In particular, from this proposition it follows that ∆prf
F (t, q, µ) <

∆prp−cpa
F (t, q, µ) + q2

2n+1 .

Taking into account Remark 2, Theorem 1, Theorem 2 and Theorem 3
the next proposition could be stated

Proposition 3. Let F = {EK : {0, 1}n → {0, 1}n|K ∈ K} be some family
of permutations such that ∆prp−cpa

F (t′, q′, µ′) ≤ ε′. Then

– there is a constant c > 0 such that for any q

∆lr
CBCF (t, q, µ) ≤ 2ε′ +

q2

2n
+

(
µ2

n2
− µ

n

)
· 1

2n
,

where µ = q′n, t = t′ − cµ;

– there is a constant c > 0 such that

∆lr
CFBF (t, q, µ) ≤ 2ε′ +

q2

2n
+
q(q − 1)

2n+1
,

where q = q′, µ = q′n, t = t′ − q − c;

– there is a constant c > 0 such that for any q

∆lr

CTR$F (t, q, µ) ≤ 2ε′ +
q2

2n
+
µ(q − 1)

L · 2n
,

where µ = q′n, t = t′ − c · 2µ;

– there is a constant c > 0 such that for any q

∆lr
CTRCF (t, q, µ) ≤ 2ε′ +

q2

2n
,

where µ = min{q′n, n2n}, t = t′ − c · 2µ.

Modern block ciphers are developed to achieve broad variety of special
properties. Indistinguishability of permutations family (corresponding to the
block cipher) from the family of arbitrary random permutations seems to be
very important property. In the opposite case existence of effective methods
for distinguishing stated families of permutations could witness the existence
of structural weaknesses in block cipher. Thus in the next sections we will
assume that modes of operations are used with a secure block cipher, i.e.
ε′ = 0.
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3 Some properties of the modes of operations

3.1 ECB

For any P, P ′ ∈ {0, 1}n EK(P ) = EK(P ′) iff P = P ′. Thus, given two
ciphertext blocks C and C ′ we get some information about unknown plaintext
blocks P and P ′. Then for ECB mode of operation Nmax = 1 independently
of π.

In some articles and even national standards ECB mode is offered to
encryption of cipher keys. Let’s assume that stated key has a length of r > 1
blocks. Then after the encrypting of the key in ECB mode we will get r
ciphertext blocks C1, C2, . . . , Cr. In case r is small, all the stated blocks will
be different with high probability (about 1). But in this case we can get
to the conclusion that all blocks of the initial key was different too. Thus,
complexity of brutforce attack will decrease from the value of order 2rn to
the value of order 2n(2n − 1) . . . (2n − r + 1).

3.2 CTR

Let’s assume that s = n and unknown plaintext consists of same block
P ′ repetition.

Since bijection of block cipher, all values Pi ⊕ Ci and P ′ ⊕ C ′j, i ∈ 1, u,
j ∈ 1, v are pairwise distinct. Then unknown plaintext block can’t belong to
the set M = {Pi ⊕ Ci ⊕ C ′j | i ∈ 1, u, j ∈ 1, v}. The average cardinality
of the set M can be estimated as follows (for more information, see, for
example, [1])

|M | = 2n − 2n
(

1− 1

2n

)uv
∼= 2n

(
1− e−

uv
2n
)
,

consequently, the value of P ′ could be chosen from 2ne−
uv
2n values. Thus,

π ≥ 1
2ne

uv
2n , from which it follows that uv ≤ 2n ln(π2n).

Since u+ v = N , uv is maximum iff u = v = N
2 . Thus

Nmax ≤ 2
n
2 +1
√

ln(π2n).

To get the margins for Nmax with different values of s additional research
is required.

From the provable security point of view, for the CTR$ mode there is a
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constant c > 0 such that for any q

∆lr

CTR$F (t, q, µ) ≤ q2

2n
+
µ(q − 1)

L · 2n
,

where µ = q′n, t = t′ − c · 2µ.
Let q = q′, then if ∆lr

CTR$F
(t, q, µ) = ε, we get ε ≤ q2

2n + µ(q−1)
n·2n . The last

inequality holds if q ≥ 1+
√

1+4·2·2n·ε
4 ∼ 2

n−1
2 ·
√
ε.

Thus, if we encrypt no more than 2
n−1

2 plaintext blocks, the advantage of
any distinguisher can be bounded by value ε.

For CTRC mode there is a constant c > 0 such that for any q

∆lr
CTRCF (t, q, µ) ≤ q2

2n
,

where µ = min{q′n, n2n}, t = t′ − c · 2µ.
Then the inequality ∆lr

CTRCF (t, q, µ) = ε holds if q ≥ 2
n
2 ·
√
ε.

Thus, if we encrypt no more than 2
n
2 plaintext blocks, the advantage of

any distinguisher can be bounded by value ε.

3.3 OFB

Let’s assume that s = n and q = 1. In this case

Pi = Ei
K(a)⊕ Ci,

P ′j = Ej+u
K (a)⊕ C ′j,

where a ∈ {0, 1}n is some fixed binary string. If a belongs to the cycle of
permutation EK of length less or equal to N , then there are i ∈ 1, u, j ∈ 1, v
such that Ei

K(a) = Ej+u
K (a) and

P ′j = Pi ⊕ Ci ⊕ C ′j.

Let’s estimate the probability p of the event that for the random permu-
tation given on the set {0, 1}n a randomly chosen value from {0, 1}n belongs
to the cycle of length less or equal to N . Note that

p = 1− 2n − 1

2n
· 2

n − 2

2n
· . . . · 2

n −N + 1

2n
= 1− (2n)!

2nN(2n −N)!
.

By Stirling’s formula, taking into account
(
1 + 1

x

)x ∼= e we get

p ∼= 1− e−
N2

2n + N
2n+1 ∼= 1− e−

N2

2n .
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Since p ≤ π, for the OFB mode we get

Nmax ≤ 2
n
2

√
ln

(
1

1− π

)
.

To get the margins for Nmax with different values of s and q additional
research is required.

From the provable security point of view for the OFB mode of operations
security margins are similar to the CBC mode’s margins.

3.4 CBC

Let’s assume q = 1. Let A denotes the event that there are i ∈ 1, u and
j ∈ 1, v such that corresponding ciphertext blocks are equal, Ci = C ′j. Since
Pi = DK(Ci)⊕ Ci−1, P ′j = DK(C ′j)⊕ C ′j−1 and due to bijectiveness of DK ,
we get

P ′j = Pi ⊕ Ci−1 ⊕ C ′j−1,

that let us identify unknown plaintext block P ′j. Thus, the probability of A
must satisfy the following inequality

P{A} ≤ π. (1)

Let’s estimate the probability of A (for more information, see, for exam-
ple, [13]).

P{A} = 1−
(

1− 1

2n

)uv
∼= 1− e−

uv
2n . (2)

From (1) and (2) we get inequality uv ≤ 2n ln
(

1
1−π
)
.

Since u+ v = N and uv is maximum iff u = v = N
2 ,

Nmax ≤ 2
n
2 +1

√
ln

(
1

1− π

)
.

To get the margins for Nmax with different values of q additional research
is required.

Let’s state CBC mode properties from the provable security point of
view. Taking into account Proposition 3 and assumption about blockcipher’s
properties, we get that there is a constant c > 0 such that for any q

∆lr
CBCF (t, q, µ) ≤ q2

2n
+

(
µ2

n2
+
µ

n

)
· 1

2n
,
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where µ = q′n, t = t′ − cµ. Let q = q′ then with µ = qn we get

∆lr
CBCF (t, q, µ) ≤ q2

2n
+
(
q2 + q

)
· 1

2n
,

consequently ∆lr
CBCF (t, q, µ) ≤ 1

2n−1 · q2 + 1
2n · q.

Let’s denote ∆lr
CBCF (t, q, µ) = ε. Then ε ≤ 1

2n−1 · q2 + 1
2n · q. The last

inequality holds in case

q ≥
√

1 + 2n+3 · ε− 1

4
∼
√
ε · 2

n−1
2 .

Thus, if we encrypt no more than 2
n−1

2 plaintext blocks, advantage of any
distinguisher could be bounded by value ε.

3.5 CFB

Let’s assume s = m = n. Let B denotes the event that there are some
i ∈ 2, u+ 1 and j ∈ 2, v + 1 such that ciphertext blocks Ci−1 and C ′j−1

are equal. Since Pi = EK(Ci−1) ⊕ Ci, P ′j = EK(C ′j−1) ⊕ C ′j and due to
bijectiveness of EK we get

P ′j = Pi ⊕ Ci ⊕ C ′j,

that let us find the value of unknown plaintext block P ′j. Thus the probability
of B must satisfy the inequality P{B} ≤ π. By the same reasoning as in
section 3.4 we get Nmax ≤ 2

n
2 +1
√

ln
(

1
1−π
)
.

To get the margins for Nmax with different values of s and m additional
research is required.

Let’s state CFB mode properties from the provable security point of view.
For this mode of operation there is a constant c > 0 such that

∆lr
CFBF (t, q, µ) ≤ q2

2n
+
q(q − 1)

2n+1
,

where q = q′, µ = q′n, t = t′ − q − c.
Given µ = qn, denoting ∆lr

CFBF (t, q, µ) = ε, we get ε ≤ q2

2n + q(q−1)
2n+1 .

The last inequality holds in case

q ≥ 1 +
√

1 + 3 · 2n+3 · ε
6

∼
√
ε · 1√

3
2
n+1

2 .

Thus, if we encrypt no more than 1√
3
2
n+1

2 plaintext blocks, the advantage
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of any distinguisher could be confined with value ε.

4 Conclusion

For the most commonly used in practice block cipher modes of operation
upper bounds for the value of maximum acceptable amount of blocks to
be processed without key change are given. Summary is given in Table 4.
The value in column «Margin 1» corresponds to the value given by direct
cryptanalysis (for OFB and CBC modes of operations amount of blocks in
one message to be processed is given). The value in column «Margin 2»
corresponds to the value given by provable security approach (given margin
states that if we encrypt no more than stated number of plaintext blocks,
the advantage of any distinguisher could be confined with value ε).

Mode of operation Margin 1 Margin 2
ECB 1 —
CTR 2

n
2

+1
√

ln(π2n) 2
n
2

OFB 2
n
2

√
ln
(

1
1−π

)
2

n−1
2

CBC 2
n
2

+1
√

ln
(

1
1−π

)
2

n−1
2

CFB 2
n
2

+1
√

ln
(

1
1−π

)
1√
3
2

n+1
2

Table 1: Upper bounds for acceptable amount of data to be processed.

The boundaries presented in the second and in the third columns of ta-
ble 4 are very close. So, the amount of data to be processed without key
change can be set equal to the lowest ones which correspond to the numbers
in the third column.
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Abstract

XS-circuits describe block ciphers that utilize 2 operations: X) bitwise modulo 2
addition of binary words and S) substitution of words using key-dependent S-boxes
with possibly complicated internal structure. We propose a matrix model of XS-
circuits which, despite simplicity, covers rather wide range of block ciphers. We
obtain results on invertibility, transitivity and 2-transitivity of mappings induced
by XS-circuits that satisfy our model. We introduce the similarity relation between
circuits and provide canonical representatives of classes of similar circuits.

Keywords: block cipher, round permutation, S-box, circuit, diffusion, transitivity,
2-transitivity.

1 Introduction

A circuit is a directed acyclic graph that describes some algorithm. Leaves
of the circuit are inputs of the algorithm, non-leaves are either intermediate
results or outputs. Non-leaves are labeled by symbols of operations. The con-
figuration when a vertex v with a label O receives arcs from vertices u1, u2, . . .

means that v = O(u1, u2, . . .).
Many symmetric cryptographic algorithms can be described by circuits in

which vertices are binary words of particular length m and operations belong
to the following set:

R) cyclic shift (rotation);

X) bitwise modulo 2 addition;

A) addition of words as integers modulo 2m;

L) bitwise logical AND and OR;

M) multiplication of words as elements of the field of order 2m;

S) substitution of words with preservation of their length m.
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Here R and S are unary operations, they are parametrized by a shift
value and a substitution rule respectively. All other operations are binary.
For small m, S is usually implemented using so-called table S-boxes through
table lookup.

Different combinations of operations give different types of circuits. Some
of them, for example, circuits of types ARX and LRX, have gained much
attention in the last decade. In the circuits mentioned, the operation S is
intentionally not used to avoid table lookup. That is because in modern pro-
cessors the time of lookup can depend on the sequence of lookup queries and
this dependence forms the basis for mounting timing attacks. But S should
not only mean table S-boxes. The operation S can represent a complex cryp-
tographic transformation, possibly built using another circuit with a smaller
length of processing words. The internal circuit of S can be of type ARX
or LRX and, therefore, be protected against timing attacks.

The simplest nontrivial circuits with the operation S are the circuits of
type XS. They describe, for example, Feistel ciphers or encryption modes like
CBC. In the first case, S is instantiated by round functions with (in general)
different round keys. In the second case, S is itself a block cipher with some
fixed key.

The examples above are typical. In the examples, S describes a key-
dependent and therefore a priori secret transformation. Following the cryp-
tographic tradition, we say that S is instantiated by an oracle S: its re-
sponse v = S(u) to a query u can be determined only by querying.

In most cases below we require that S is bijective. Responses of such
an oracle are weakly connected with each other: S returns different v when
processing different u. That is the only a priori information on responses.
For bijective S, we allow access to the inverse oracle S−1 which on a query v
gives a response u.

If a circuit contains several operations S, then they can be instantiated by
independent oracles S1, S2, . . . or by multiple identical instances of a single
oracle S. Feistel ciphers are described by circuits of the first type (call them
inhomogeneous), encryptions modes by circuits of the second type (homoge-
neous).

A circuit of a block cipher usually contains multiple identical parts con-
nected consecutively. These parts represent round permutations of the cipher.
Further we consider the simplest round circuits which contain only one S-
operation. In Section 2 we provide a matrix model of such circuits. Similar
models were proposed in [1, 3, 4, 13]. Our model is stricter, and due to this
fact we obtain more targeting and precise results. In Section 4 we introduce
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cascades, that is, inhomogenious compositions of round circuits. Sections 5,
6 deal with diffusion characteristics of cascades. These characteristics are
related to cryptographic strength of corresponding block ciphers. Section 7
is devoted to the similarity relation between round circuits. Cascades of re-
lated circuits have the same diffusion characteristics. We provide canonical
representatives of classes of similar circuits.

As a final remark, there is only one step from XS- to XMS-circuits. A
circuit of the latter type is used, for example, in the AES block cipher. Usually
XMS-circuits are classified as XLS where L stands not for logical operations
but for linear transformations over tuples of underlying words. Actually, these
transformations are described by circuits of type XM, so the overall XLS-
circuit indeed has type XMS in our notations. It is interesting that XMS-
circuits are also extensively used in message authentication algorithms like
GCM [14]. In these algorithms, S is a block cipher with a fixed key (the
homogenious case).

2 Preliminaries

Consider a circuit with the same number n of inputs and outputs. Call n
its dimension. Let x1, . . . , xn be inputs and y1, . . . , yn be outputs. They are
binary words of length m which we interpret as elements of the field F2m. In
most cases, the specific value of m does not matter, so we usually write F
instead of F2m. Arrange inputs and outputs into the vectors x = (x1, . . . , xn)
and y = (y1, . . . , yn).

Elements of F can be added together using the operation X and substi-
tuted separately using the operation S. To simplify notations for sums, we
multiply each potential summand by zero or unity of the field F and sum
all the resulting products. Multiplication by 1 means inclusion into the sum,
multiplication by 0 means exclusion.

We call the number of S operations used in the circuit its S-complexity.
Further we concentrate mostly on the circuits of S-complexity 1. From these
simplest circuits a circuit of arbitrary complexity can be built.

For each instantiation of its S operations, the circuit induces a mapping
F n → F n : x 7→ y. We are mainly interested in such a circuit that all these
mappings are invertible. Two circuits of the same S-complexity are equiva-
lent if their mappings are necessarily identical under identical instantiations.
Among all pairwise equivalent circuits, find one which contains the minimum
number of X operations. Call this number the X-complexity and assign it to
all circuits of the equivalence class.
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A circuit of dimension n and S-complexity 1 can be described by three
parameters: a column vector a = (a1, . . . , an)

T , a matrix B = (bij), i, j =
1, . . . , n, and a row vector c = (c1, . . . , cn). Coordinates of the vectors and
elements of the matrix belong to the set {0, 1} ⊂ F . Despite binarity, a, B
and c can be used in operations with arbitrary vectors and matrices over F .

The parameters (a,B, c) and an oracle S, some instantiation of S, describe
the following mapping x 7→ y:

1) u← a1x1 + a2x2 + . . .+ anxn;

2) v ← S(u);

3) for i = 1, . . . , n: yi ← b1ix1 + b2ix2 + . . .+ bnixn + civ.

Denote this mapping by (a,B, c)[S]. It can be written in the matrix form:

(a,B, c)[S](x) = xB + S(xa)c.

Let us exclude from consideration zero vectors a and c, because with them
the S-complexity actually reduces to 0. Indeed, if a = 0 then S gets only one
(zero) query, and if c = 0 then S is not queried at all.

It is convenient to encode the parameters (a,B, c) by the matrix

(
B a
c 0

)
=


b11 b12 . . . b1n a1

b21 b22 . . . b2n a2

. . . . . . . . . .

bn1 bn2 . . . bnn an
c1 c2 . . . cn 0

 .

Call it the extended matrix of the circuit. In Table 1 we provide extended
matrices of some well-known circuits.

In each column of an extended matrix there is at least one unity (oth-
erwise, either the corresponding circuit zeroizes some output coordinate
or a = 0). Under direct implementation of the extended matrix, each next
unity in the column requires an extra X addition. From here we obtain the
upper bound on the X-complexity of (a,B, c): the number of unities in its
extended matrix minus the number of columns.

Returning to Table 1, the Feistel, GFN1, Matsui and Skipjack circuits all
have X-complexity 1. The X-complexity of LaiMassey, SMS4 and MARS3 is
equal to 3.
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Circuit Extended matrix Comments

Feistel

0 1 1
1 0 0
1 0 0

 Used in the Lucifer and DES block ciphers
which were developed under the direction of
H. Feistel [9].

LaiMassey

1 0 1
0 1 1
1 1 0

 Used by Lai X. and J. Massey in the IDEA
block cipher [11].

Matsui

0 0 1
1 1 0
0 1 0

 Used by M. Matsui in the MISTY2 block ci-
pher [17].

SkipjackA


0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
1 1 0 0 0

 Used in the Skipjack block cipher [15]. De-
scribes its first and third 8-round cascades.

SkipjackB


0 0 1 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

 Describes the second and forth 8-round cas-
cades of Skipjack.

MARS3


0 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 1 0 0


Used in the MARS block cipher [5]. In the
specification of MARS the circuit is called
the type-3 Feistel network. We modify the
original circuit by replacing two operations A
by X.

SMS4


0 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 0

 Used in the SMS4 block cipher [8].

GFN1


0 0 . . . 0 1 1
1 0 . . . 0 0 0
0 1 . . . 0 0 0

. . . . . . . . .
0 0 . . . 1 0 0
1 0 . . . 0 0 0


The generalization of Feistel to an arbitrary
dimension. Introduced in [21] under the name
Generalized Feistel Network of type 1.

SkipjackG


0 0 . . . 0 0 1
1 0 . . . 0 0 0
0 1 . . . 0 0 0

. . . . . . . . .
0 0 . . . 1 0 0
1 0 . . . 0 1 0


The generalization of the Skipjack circuits to
an arbitrary dimension. Proposed in [19].

Table 1: Extended matrices of XS-circuits of S-complexity 1
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3 Invertibility

We have agreed to concentrate on circuits that induce invertible map-
pings. Let us give a formal definition.

Definition 1. A circuit (a,B, c) with nonzero a and c is invertible if the
corresponding mapping (a,B, c)[S] is invertible for any bijective oracle S
over any field F = F2m.

Theorem 1. A circuit (a,B, c) of dimension n is invertible if and only if
one of the following cases holds:

1. The matrix B is invertible and cB−1a = 0.

2. The matrices B, (B a) and (Bc ) have ranks n− 1, n and n respectively.

In the second case, the extended matrix of the circuit is invertible.

Proof. Let us consider 2 cases: B is invertible or not.
1. Let B be invertible. Then yB−1 = x + S(xa)cB−1 and yB−1a =

xa+ S(xa)cB−1a.
1.1. If cB−1a 6= 0 then

xa+ S(xa) = yB−1a.

For the circuit to be invertible it is necessary that for any v = yB−1a there
exists a solution u = xa of the equation u+S(u) = v. But the mapping u 7→
u + S(u) can be non-bijective (that is, S may not be a complete mapping),
and the target equation may not have solutions for a certain v.

1.2. If cB−1a = 0 then xa = yB−1a and inversion is defined by the
equation

x = yB−1 + S(yB−1a)cB−1.

2. Let B be non-invertible. To determine x from y = xB + S(xa)c it
is necessary to get the response S(xa) of S. This response can be obtained
either directly from y or indirectly by determining xa from y and then using
the query xa to S.

2.1. To determine xa from y there must exist a row vector α ∈ F n such
that Bα = a, cα = 0 and consequently xa = yα. After determining u = xa
we can find v = S(u) and obtain the equation x(B a) = (y+vc, u) in x. This
equation can have more than one soultions since the matrix (B a) does not
have full rank. Indeed, B is not invertible and a = Bα is a linear combination
of columns of B.
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2.2. Suppose that S(xa) can be determined by y. Then α has to sat-
isfy the equations Bα = 0 and cα = 1 which can be used to calcu-
late v = S(xa) = yα and u = xa = S−1(v). After determining u, we again
obtain the equation x(B a) = (y + vc, u). In order that this equation has a
unique solution, the matrix (B a) has to have full rank. If rank(B a) = n
then rankB = n − 1. Therefore, all nonzero row vectors β ∈ F n such
that Bβ = 0 are collinear to α. Since cα = 1 and consequently cβ 6= 0,
rank (Bc ) = n.

3. If rankB = n − 1 and rank(B a) = rank (Bc ) = n then the extended
matrix (B a

c 0 ) has full rank. Indeed, none of the rows of (B a) can be expressed
as a linear combination of other rows. In case the row (c 0) is a linear com-
bination of rows of (B a), the vector c is a linear combination of rows of B.
But it contradicts the fact that (Bc ) has full rank. �

We refer the circuits which correspond to the different cases of Theorem 1
as circuits of type I and type II respectively. From the proof above it follows
that a type I circuit is invertible even if its oracle S is not bijective. In Table 1
only the Skipjack and Matsui circuits are of type II.

Theorem 2. For an invertible circuit (a,B, c) with an oracle S the in-
verse mapping (a,B, c)[S]−1 is again determined by an XS-circuit of S-
complexity 1. This inverse circuit is defined as follows:

1. In the first case of Theorem 1 the inverse circuit uses the same oracle S
and its description is (B−1a,B−1, cB−1).

2. In the second case of Theorem 1 the inverse circuit uses the inverse
oracle S−1 and its extended matrix is inverse of the extended matrix
of (a,B, c).

Proof. Let us continue the previous proof. The inverse circuit of the first case
was already described in clause 1.2. Consider the second case.

The left bottom element of the inverted extended matrix must be 0:(
B a
c 0

)−1

=

(
D α
γ 0

)
.

Indeed, otherwise Bα = a which contradicts the fact that (B a) has full
rank.

Return to the equation x(B a) = (y + vc, u) of clause 2.2. Multiplying
both parts of this equation by the matrix

(
D
γ

)
we obtain

x = yD + vcD + uγ.
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The required result follows from the fact that cD = 0 and u = S−1(v) =
S−1(yα). �

Further we denote the inverse of a circuit (a,B, c) by (a,B, c)−1.
Example 1. The matrix B of the GFN1 circuit is a special circulant: multi-
plication of a row (column) vector on the right (left) by B causes left (right)
cyclic shift of the vector. The matrix B−1 induces cyclic shifts in the re-
verse direction. Therefore, the extended matrix

(
B−1 B−1a
cB−1 0

)
of GFN1−1 has

the form 

0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . . . .
0 0 0 . . . 1 0
1 0 0 . . . 0 1
0 1 0 . . . 0 0

 .

The extended matrix of SkipjackG−1:

0 0 . . . 0 0 1
1 0 . . . 0 0 0
0 1 . . . 0 0 0

. . . . . . . .

0 0 . . . 1 0 0
1 0 . . . 0 1 0



−1

=



0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . . . .
0 0 0 . . . 1 0
0 1 0 . . . 0 1
1 0 0 . . . 0 0

 .

4 Regularity

Combine several instances of a circuit (a,B, c) by connecting one in-
stance’s output to the next instance’s input. Call the resulting XS-circuit a
cascade. Its dimension is the dimension of the underlying circuit (a,B, c).
The cascade is invertible if (a,B, c) is invertible.

In cryptography, instances, parts of a cascade, are usually called rounds.
We suppose that rounds use independent oracles S1, S2, . . . or, in other words,
cascades are inhomogeneous XS-circuits. Suppose also that round oracles are
bijective.

Let (a,B, c)t be the t-round cascade. Its S-complexity equals t and X-
complexity does not exceed the the total X-complexity of the rounds.
If (a,B, c)t is invertible then its inverse is the t-round cascade (a,B, c)−t

which contains t rounds of (a,B, c)−1 and also has S-complexity t.
Setting some y(0) ∈ F n as the cascade input, we obtain y(1) ∈

F n after the first round, y(2) ∈ F n after the second one and so on.
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Let (a,B, c)t[S1, . . . , St] be the mapping y(0) 7→ y(t) induced by the cas-
cade (a,B, c)t with oracles S1, . . . , St.

Round outputs satisfy the following equations:

y(t) = y(0)Bt +
t∑

τ=1

Sτ(y(τ − 1)a)cBt−τ , t = 1, 2, . . . .

They can be rewritten as follows:

y(t) = y(0)Bt +
t∑

τ=1

v(τ)cBt−τ ,

v(t) = St(u(t)),

u(t) = y(0)Bt−1a+
t−1∑
τ=1

v(τ)cBt−1−τa, t = 1, 2, . . . .

Here u(1), . . . , u(t) is the trace of queries and v(1), . . . , v(t) is the trace of
responses. More precisely, we deal with t-traces. Since round oracles are in-
dependent, there exist |F |t different t-traces of each type.

In the cryptographic context, each cascade’s round has to establish com-
plex dependencies between certain coordinates of input and output vectors
and simultaneously has to shuffle all the coordinates. Using related terms
of Shannon, rounds are responsible for confusion and diffusion. In our case
confusion is managed by round oracles, diffusion is maintained by the round
circuit (a,B, c) itself.

Further we introduce several characteristics of diffusion. In particular, we
will analyze how a cascade processes not one but two vectors: y(0) and y′(0).
The additional vector y′(0) produces an additional sequence y′(1), y′(2), . . .
of round outputs. This sequence induces an additional trace of queries and is
induced by an additional trace of responses. A query u′(t) and, consequently,
a corresponding response v′(t) can differ from u(t) and v(t). Traces are com-
patible, that is, each oracle returns the same responses to the same queries
and different responses to different queries.

We are interested in the dynamics of the differences

∆y(t) = y(t) + y′(t), ∆u(t) = u(t) + u′(t), ∆v(t) = v(t) + v′(t)

during the rounds. In the equations above + can be replaced with − (because
F is a field of characteristic 2), that is why the term “difference” is relevant.

The difference ∆u(t) is the input difference of St, ∆v(t) is the output
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one. The relation between these differences can be written as follows:

∆v(t) = ∆St(∆u(t)).

The compatibility of traces means that ∆v(t) = 0 if and only if ∆u(t) = 0.
In cryptography, the event ∆u(t) 6= 0 is called the activation of St. In

case of the activation, the output difference ∆v(t) is hard to predict during
cryptanalysis. The more activations a cascade guarantees while processing
different y(0) and y′(0), the higher quality of diffusion.

Relations between differences are derived from the previous equations by
inserting the symbol ∆ before the expressions y(t), y(0), v(τ), v(t), St, u(t),
etc. For example,

∆u(t) = ∆y(0)Bt−1a+
t−1∑
τ=1

∆v(τ)cBt−1−τa.

Definition 2. The lag of a circuit (a,B, c) is the minimum positive integer l
such that cBl−1a = 1.

The lag l characterizes the relationship between a query u(t) and previous
responses v(1), . . . , v(t−1): For a suffuciently large t the query u(t) depends
on v(t−l) but not on v(t−l+1), . . . , v(t−1). The smaller the lag, the higher
quality of diffusion because unpredictable oracle’s responses are used faster to
create new queries. The lag also characterizes the relationship between ∆u(t)
and ∆v(1), . . . ,∆v(t− 1).

Circuits that provide reasonable (rational) diffusion are described by the
following definitions. Further we justify the relevance of the requirements of
these definitions.

Definition 3. An invertible circuit (a,B, c) of dimension n is regular if the
following conditions hold:

1) the matrix C =


cBn−1

. . .
cB

c

 is invertible;

2) the matrix A =
(
a Ba . . . Bn−1a

)
is invertible.

Definition 4. A circuit (a,B, c) of dimension n is strongly regular if it is
regular and additionally
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Circuit Lag Inverse lag Sum of lags
Feistel 1 1 2
Matsui 2 1 3

SkipjackA 1 4 5
SkipjackB 4 1 5
MARS3 1 1 2
SMS4 1 1 2
GFN1 1 n− 1 n

SkipjackG 1 n n+ 1

Table 2: Lags of the regular standard circuits

3) the matrix Cl =


cB(n−1)l

. . .
cBl

c

 is invertible. Here l is the lag of (a,B, c).

The forthcoming Corollary 3 shows that the lag of a regular circuit doesn’t
exceed its dimension. Therefore, in the last definition, l is finite and the third
condition is correct.

Trivially, if a regular circuit has lag 1 then this circuit is strongly regular.
Further we prove more complicated facts, for example, the fact that mutually
inverse circuits are both regular or both non-regular (Corollaries 1 and 2).
Despite this fact, the following example shows that mutually inverse circuits
are not necessarily strongly regular simultaneously.

Example 2. FourCell is a circuit proposed in [6]. Its extended matrix has
the form 

0 0 0 0 1
1 0 0 1 0
0 1 0 1 0
0 0 1 1 0
0 0 0 1 0

 .

FourCell has lag 4. The circuit is regular but not strongly regular. The inverse
circuit has lag 1 and therefore is strongly regular.

All circuits of Table 1 except LaiMassey are strongly regular. In Table 2
we report their lags as well as inverse lags, that is, lags of inverse circuits.
The lags of GFN1−1 and SkipjackG−1 are easily calculated using Example 1.
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5 Transitivity

Definition 5. A cascade (a,B, c)t of dimension n is transitive if for
any α, β ∈ F n there exist round oracles S1, . . . , St such that

(a,B, c)t[S1, . . . , St](α) = β.

A circuit (a,B, c) is transitive if (a,B, c)t is transitive for some t. The min-
imal such t is the index of transititvity of (a,B, c).

Transitivity indeed characterizes diffusion in the sense that for a suffi-
ciently large t any y(t) is reachable from any y(0). The smaller the index of
transitivity, the faster diffusion.

Example 3. The LaiMassey circuit maps x = (x1, x2) to

y = (y1 + S(x1 + x2), y2 + S(x1 + x2)).

This mapping saves the sum of coordinates: y1 + y2 = x1 + x2. The sum is
not being changed during all further rounds and therefore the circuit is not
transitive.

Theorem 3. The index of transitivity of a circuit (a,B, c) does not exceed
its dimension n. The index equals n if and only if the first condition of
regularity (invertibility of C) holds.

Proof. Let α, β be arbitrary elements of F n. The number of vectors y(t)
reachable from y(0) = α does not exceed the number of t-traces of responses.
With t < n this number is less than |F n| and therefore there exists unreach-
able y(t). Consequently, the index of transitivity cannot be less than n.

Let C be invertible. Then there exists a unique vector v =
(v(1), . . . , v(n)) ∈ F n such that

vC = αBn + β.

The responses v(1), . . . , v(n) transfer y(0) = α to y(n) = β:

y(n) = y(0)Bn +
n∑
τ=1

v(τ)cBn−τ = αBn + vC = β.

Therefore, (a,B, c)n is transitive.
Let (a,B, c)n be transitive. Suppose by contradiction that C is not invert-

ible. Then there exist α, β ∈ F n such that the equation vC = αBn + β does
not have solutions in v. It means that no trace of responses transfers y(0) = α

to y(n) = β, a contradiction. �
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Note that transitivity does not require invertibility. For example, a circuit
of dimension 1 which maps x1 to x1 + S(x1) is transitive but not invertible.
However, below we need invertibility.

Corollary 1. The first condition of regularity holds for an invertible cir-
cuit (a,B, c) if and only if it holds for the inverse circuit (a,B, c)−1.

Proof. By definition, mutually inverse circuits are transitive simultaneously,
their indices of transitivity coincide. The required result follows from the
second part of Theorem 3. �

Call a binary operation Latin if its table is a Latin square or, in other
words, if the operation induces a quasigroup on the underlying set. Latin
operations are often used in cryptography, for example, to instantiate round
oracles using round keys, as in the following theorem. The theorem means
that a circuit which dimension n is equal to its index of transitivity can be
used to extend a Latin operation on F to a Latin operation on F n.

Theorem 4. Let a cascade (a,B, c)n of dimension n be transitive and use
the oracles

Skt (u) = S(u ∗ kt), u ∈ F, t = 1, . . . , n,

where k = (k1, . . . , kn) ∈ F n, S is a fixed permutation on F , and ∗ is a
Latin operation on F . Then the operation

O : F n × F n → F n, (α, k) 7→ (a,B, c)n[Sk1 , . . . , S
k
n](α)

is Latin too.

Proof. Firstly, due to transitivity of (a,B, c)n there exists a unique n-trace
of responses which transfers any given α to any given β. Since ∗ is Latin,
this trace unambiguously determines k, that is, the equation O(α, k) = β
has a unique solution in k. Secondly, due to invertibility any given β and k
unambiguously determine α, that is, the equation O(α, k) = β has a unique
solution in α. In result, O induces a quasigroup on F n. �

6 2-transitivity

Definition 6. A cascade (a,B, c)t of dimension n is 2-transitive if for any
distinct α, α′ ∈ F n and any distinct β, β′ ∈ F n there exist round ora-
cles S1, . . . , St such that

(a,B, c)t[S1, . . . , St](α) = β, (a,B, c)t[S1, . . . , St](α
′) = β′.
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2-transitivity is an important diffusion property of cascades. In particular,
2-transitivity of (a,B, c)t implies absence of so-called impossible differentials,
that is, unrealizable transitions from some difference ∆y(0) = ∆α to some
difference ∆y(t) = ∆β. Such transitions can be used to mount impossible
differential attacks.

In addition, 2-transitivity helps to determine the permutation group gen-
erated by the mappings (a,B, c)[S], where S runs over all bijections over F .
Usually, 2-transitivity is a serious evidence that this group is the alternat-
ing group. It is the largest achievable group (for n ≥ 2), its appearance
demonstrates the welcomed diversity of the mappings (a,B, c)[S].

Unfortunately, 2-transitivity is a rather complicated property which can-
not be supported by such a simple criterion as in the case of transitivity
(Theorem 3). Let us introduce a weakened version of 2-transitivity.

Definition 7. A cascade (a,B, c)t of dimension n is weakly 2-transitive
if there do not exist nonzero ∆α,∆β ∈ F n such that (a,B, c)t[S1, . . . , St]
necessarily, independently of the choice of the round oracles, tranfers the
difference ∆y(0) = ∆α to the difference ∆y(t) = ∆β.

As before, a circuit (a,B, c) is (weakly) 2-transitive if (a,B, c)t is (weakly)
2-transitive for some t. The minimal such t is the index of (weak) 2-
transitivity.

Example 4. Let us continue Example 3. The LaiMassey circuit is not weakly
2-transitive. Indeed, for any nonzero ∆γ ∈ F the difference ∆x = (∆γ,∆γ)
goes to the difference ∆y = (∆γ,∆γ). This difference is being saved during
all further rounds.

Note that (weak) 2-transitivity, as well as transitivity, does not require
invertibility.

Theorem 5. The index of weak 2-transitivity of a circuit (a,B, c) does not
exceed its dimension n. The index equals n if and only if the second condition
of regularity (invertibility of A) holds.

Proof. A cascade (a,B, c)t is not weakly 2-transitive if and only if there ex-
ists a nonzero input difference ∆y(0) which induces the zero vector ∆u =
(∆u(1), . . . ,∆u(t)) of internal differences between queries to the round ora-
cles. The vector ∆u must exist because once two queries to some oracle Sτ
are distinct, the corresponding responses are distinct too and the output dif-
ference ∆y(t) depends on the difference ∆v(τ) between these responses. Note
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that if ∆u = 0, then the differences ∆v(1), . . . ,∆v(t) are zero too. This fact
can be written as

∆y(0)
(
a Ba . . . Bt−1a

)
= 0.

If t < n, then the last equation has a nonzero solution in ∆y(0). This
solution induces zero ∆u and (a,B, c)t is not weakly 2-transitive. This proves
the first part of the theorem.

If A =
(
a Ba . . . Bn−1a

)
is invertible then (a,B, c)n is weakly 2-

transitive. Indeed, otherwise ∆y(0)A = 0 for some nonzero ∆y(0), which is
impossible.

Conversly, if (a,B, c)n is weakly 2-transitive then A is invertible. Indeed,
otherwise there exists a nonzero ∆y(0) which induces ∆u = 0. �

Corollary 2. The second condition of regularity holds for an invertible cir-
cuit (a,B, c) if and only if it holds for the inverse circuit (a,B, c)−1.

Proof. By defintion, mutually inverse circuits are weakly 2-transitive simul-
taneously, their indices of weak 2-transitivity coincide. The required result
follows from the second part of Theorem 5. �

Theorem 6. Let circuits (a,B, c) and (a,B, c)−1 of dimension n be strongly
regular and (

1− 2

|F |

)n−1(
1− 1

|F |

)
>

1

2
.

Then the circuits are 2-transitive and their indices of 2-transitivity do not
exceed

2n+ (n− 1)(l + l′),

where l is the lag of (a,B, c) and l′ is the lag of (a,B, c)−1.

Proof. From the proof of Theorem 5 it follows that for any nonzero input
difference ∆y(0) there exists r ≤ n such that ∆u(r), the difference between
queries to Sr, is nonzero. The corresponding difference ∆v(r) = ∆Sr(∆u(r))
between responses is nonzero too.

Let r be the first round when ∆u(r) 6= 0. By definition of lag

∆u(r + l) = ∆v(r) + ∆y(0)Br+l−1a+
r−1∑
τ=1

∆v(τ)cBr+l−1−τa

= ∆v(r) + ∆y(0)Br+l−1a.

Manipulating responses of Sr (round oracles are free to choose which response
to give), we obtain different ∆v(r). At least |F | − 2 of them provide ∆u(r+
l) 6= 0.
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Having a nonzero ∆u(r + l), we tune a nonzero ∆v(r + l) to achieve a
nonzero ∆u(r+ 2l). Continue in such a manner until the round number r+
(n−1)l. In this round, we do not require that ∆u(r+nl) 6= 0 and have |F |−1
ways to choose ∆v(r + (n− 1)l).

Thus, there exist at least (|F | − 2)n−1(|F | − 1) vectors

∆v = (∆v(r),∆v(r + l), . . . ,∆v(r + (n− 1)l))

with nonzero coordinates.
Let the oracles St, t 6= r + il, implement the identity mapping, that is,

they output input queries. Then

∆y(r + (n− 1)l) = ∆y(0)M + ∆vCl,

whereM is some matrix of order n, Cl is the matrix of the definition of strong
regularity. Due to the invertibility of Cl, different ∆v induce different ∆y(r+
(n− 1)l). Therefore, the difference ∆y(r+ (n− 1)l) can take at least (|F | −
2)n−1(|F | − 1) distinct values.

To provide the required difference ∆v(t), t = r + il, the oracle St first
returns an arbitrary St(u(t)) and then the specific St(u′(t)) = St(u(t)) +
∆v(t). By choosing a vector v = (v(r), v(r + l), . . . , v(r + (n − 1)l)) of the
first responses, achieve that the vector

y(r + (n− 1)l) = y(0)M + vCl

takes a fixed value γ ∈ F n.
In sum, applying the circuit (a,B, c)r+(n−1)l to a given pair (α, α′), α 6=

α′, and running over all possible round oracles, we obtain at least (|F | −
2)n−1(|F | − 1) different pairs (γ, z), z ∈ F n.

The same holds for the inverse circuit (a,B, c)−1: The cir-
cuit (a,B, c)−r

′−(n−1)l′, r′ ≤ n, with various round oracles transfers a given
pair (β, β′), β 6= β′, to at least (|F | − 2)n−1(|F | − 1) different pairs (γ, z′),
z′ ∈ F n.

Under conditions of the theorem,

2(|F | − 2)n−1(|F | − 1) > |F |n

and there must exist a collision z = z′. This collision means that
the pair (α, α′) can be transferred to the pair (β, β′) by the cir-
cuit (a,B, c)r+r

′+(n−1)(l+l′). This implies the required result. �

The additional condition of Theorem 6 is not burdensome. It holds for
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Circuit Upper bound (Theorem 6) Lower bound
Feistel 6 6 [10]
Matsui 7

SkipjackA 22 17 [3]
SkipjackB 22 17 [3]
MARS3 14 12 [16]
SMS4 14 12 [16]

GFN1 (n = 4) 20 20 [7]
SkipjackG (n = 4) 22 17 [16]

Table 3: Bounds on the indices of 2-transitivity

example if |F | = 2m > 4n. In practice, m ≥ 16, n ≤ 8 and the condition
indeed satisifies.

In Table 3 we present bounds on the indices of 2-transitivity of the stan-
dard circuits. Upper bounds are built using Theorem 6 and Table 2. Lower
bounds are the quantities d+ 1, where d is the maximum known number of
rounds such that an impossible differential for (a,B, c)d exists.

Note that the upper bounds for SkipjackA and SkipjackB presented in
Table 3 should not be transferred on the Skipjack cipher itself. In this cipher 8
SkipjackA rounds are followed by 8 SkipjackB rounds and otherwise.

The proof of Theorem 6 can be easily extended to the case when the
last rounds of a cascade differ from the first ones. In particular, using the
fact that SkipjackA and SkipjackB−1 both have lag 1, the cascade of first
7 SkipjackA and then 7 SkipjackB rounds is 2-transitive.

It is interesting that although the 14-round cascade
SkipjackA7SkipjackB7, as well as 22-round cascades SkipjackA22

and SkipjackB22 are 2-transitive (we multiply round circuits from left
to right), the 24-round cascade

SkipjackA4SkipjackB8SkipjackA8SkipjackB4

is not (see [2] for details).

7 Similarity

Definition 8. Circuits (a,B, c) and (a′, B′, c′) of dimension n are similar
if there exists an invertible (0, 1)-matrix P of order n such that a′ = P−1a,
B′ = P−1BP , c′ = cP .

Similarity means that if y = (a,B, c)[S](x) and x′ = xP , y′ = yP
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then y′ = (a,B, c)[S](x′). Indeed, from y = xB + S(xa)c it follows that

yP = xPP−1BP + S(xPP−1a)cP

or
y′ = x′B′ + S(x′a′)c′.

The conclusion above is easily extended to several
rounds: If (a,B, c)t[S1, S2, . . . , St] transfers y(0) to y(t)
then (a′, B′, c′)t[S1, S2, . . . , St] transfers y′(0) = y(0)P to y′(t) = y(t)P .
It means that similar circuits have the same cryptographic quality. In
particular, they have the same type, lag, indices of transitivity and (weak)
2-transitivity, they are (strongly) regular simultaneously. At the same time,
mutually similar circuits can have different X-complexity. To reduce the
number of X operations, a circuit can be replaced by a similar one.

Similarity is an equivalence relation. It is natural to pose the problem of
determining canonical representatives of equivalence classes as well as other
classification problems.

Manipulating P and replacing B by P−1BP , we can bring B to a conve-
nient matrix canonical form. Let us use the Frobenius normal form:

B = diag(B1, B2, . . . , Bk).

Here Bi are Frobenius cells, that is, companion matrices of polynomials
fBi(λ) ∈ F2[λ]. The polynomials divide each other: fB1

(λ)÷ fB2
(λ)÷ . . .÷

fBk(λ).
The condition k = 1 is necessary for regularity of a circuit. Indeed, by

the Cayley–Hamilton theorem the matrix B is a root of fBk . If k > 1,
then deg fBk < n and some nonzero linear combination of the matrix pow-
ers B0, B1, . . . , Bn−1 drops to zero. But it means that the matrices C and A
of the definition of regularity do not have full rank, that is, regularity does
not hold.

Further we consider only single-cell canonical matrices B. Such a matrix
has the form: 

0 0 . . . 0 0 b1

1 0 . . . 0 0 b2

0 1 . . . 0 0 b3

. . . . . . . . .
0 0 . . . 1 0 bn−1

0 0 . . . 0 1 bn

 .

Its characteristic polynomial fB(λ) = λn+bnλ
n−1+. . .+b1. The coefficient b1
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equals 1 for circuits of type I and 0 for circuits of type II.

Theorem 7. Let (a,B, c) be a circuit of dimension n in which B is a Frobe-
nius cell with a characteristic polynomial λn + bnλ

n−1 + . . .+ b1. The circuit
is invertible if and only if one of the following cases holds:

1) b1 = 1 and a1(b2c1+b3c2+. . .+bncn−1+cn)+a2c1+a3c2+. . .+ancn−1 =
0;

2) b1 = 0, a1 = 1 and b2c1 + b3c2 + . . .+ bncn−1 + cn = 1.

There exist 22n−1−3 ·2n−1 +1 suitable pairs (a, c) in the first case and 22n−2

in the second.

Proof. Let us apply Theorem 1. If b1 = 1 then the invertibility requires
that cB−1a = 0. The stated result follows from the fact that

B−1 =


b2 1 0 . . . 0
b3 0 1 . . . 0

. . . . . . .

bn 0 0 . . . 1
b1 0 0 . . . 0

 .

If b1 = 0 then the matrices (B a) and (Bc ) must have full rank n. For the
first matrix, it is true if and only if a1 = 1. The second matrix have full rank
if and only if c cannot be expressed linearly through the last n−1 rows of B.
It is equivalent to the inequality b2c1 + b3c2 + . . . + bncn−1 6= cn written in
the statement of the theorem in a slightly different form.

The second case of the last part of the theorem is obvious. To treat the
first case, we have to determine the number of pairs (a, c) which make the
quadratic form g(a, c) = cB−1a equal to 0. The form g is linearly equivalent
to a1cn + a2c1 + . . . + ancn−1 and the required number of pairs is 22n−1 +
2n−1 (see, for example, [12, Theorem 6.32]). From this number we have to
subtract 2n+1 − 1, the number of pairs (a, c) such that a = 0 or c = 0. �

Let P be a (0, 1)-normalizer of B, that is, an invertible matrix such
that P−1BP = B. Using P , we can bring (a,B, c) to the form (P−1a,B, cP )
in which, generally, the vectors a and c are changed but the matrix B is not.
In other words, we can refine the canonical form not only the matrix but also
the vectors of circuit’s description.

Let p1, p2, . . . , pn be consecutive rows of P . From the equality PB = BP
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it follows that

pnB = pn−1 + bnpn,

pn−1B = pn−2 + bn−1pn,

. . .

p2B = p1 + b2pn.

These equiations mean that all rows of P can be expressed through pn:

P = P (pn) =


pnM1

pnM2

. .
pnMn

 .

Here Mn = E and Mi = BMi+1 + bi+1E = Bn−i + bnB
n−i−1 + . . . + bi+1E,

i = n− 1, . . . , 2, 1, where E is the identity matrix.
Multiplying P (pn) on the left by an invertible matrix, we can bring it to

the form 
pnB

n−1

pnB
n−2

. . .

pnE

 .

With pn = c this is the matrix C of the definition of regularity. Thus, P (pn)
is invertible if and only if the first condition of regularity holds with c = pn.
Moreover, there exists a bijective correspondence between acceptable vec-
tors c of regular circuits (a,B, c) and normalizers P of the matrix B:
c↔ P (c).

The vector c = (0, 0, . . . , 0, 1) is acceptable because in the corresponding
matrix C the main diagonal contains only unities, all elements above the
diagonal are zero and, therefore, C is invertible. A normalizer P (c′) transfers
a regular circuit (a,B, c) to the similar circuit (a′, B, c′). Indeed, cP (c′) is
the last row of P (c′) which is c′. Moreover, only one P (c′) transfers c to c′

and a′ = P (c′)−1a is uniquely determined.
This reasoning can be inverted: We can bring a regular circuit (a′, B, c′)

to the form (a,B, c) in which c = (0, 0, . . . , 0, 1) and a is uniquely deter-
mined. Simultaneously, acting in same manner, we can bring (a′, B, c′) to
the form (a,B, c) in which a = (1, 0, . . . , 0, 0)T and c is uniquely deter-
mined. The chosen a is acceptable because the corresponding matrix A of
the definition of regularity equals E.

Gathering all, we obtain the following result.
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Theorem 8. A regular circuit is similar to each of the following circuits:

1) ((1, 0, 0, . . . , 0)T , B, c);

2) (a,B, (0, 0, . . . , 0, 1)).

Here B is a uniquely determined Frobenius cell. The vectors a and c are also
uniquely determined.

Theorem 8 provides two canonical forms of regular circuits. These forms
are represented schematically in Fugires 1 and 2.

Figure 1: The first canonical form

Figure 2: The second canonical form

Corollary 3. The lag of a regular circuit does not exceed its dimension.

Proof. Since similar circuits have the same lag, it is sufficient to consider a
circuit of the first canonical form. If its lag is greater than its dimension n
then the first coordinates of c, cB, . . . , cBn−1 are zero. Therefore, C is not
invertible which contradicts regularity. �

Let us refine the vectors a and c which can appear in Theorem 8. The
number of acceptable vectors a (vectors c) is the number of equivalence classes
of regular circuits with similar matrices B.
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Identify vectors (row and column) with polynomials: both a vector w =
(w1, w2, . . . , wn) and its transpose are associated with the polynomial w(λ) =
w1 + w2λ + . . . + wnλ

n−1. In particular, fB(λ) = λn + b(λ), where b is the
last column of B.

Theorem 9. Let (a,B, c) be an invertible circuit of dimension n in which B
is a Frobenius cell. The circuit is regular if and only if both the polynomi-
als a(λ) and (cP )(λ) are coprime with fB(λ). Here P = (pij), 1 ≤ i, j ≤ n,
where

pij =


bi+j, i+ j ≤ n,

1, i+ j = n+ 1,

0, i+ j > n+ 1.

Proof. Columns of A are described by the polynomials

(Bia)(λ) = λia(λ) mod fB(λ), i = 0, 1, . . . , n− 1.

The matrix A is invertible if and only if any nonzero linear combination of
its columns is nonzero. In other words, if and only if

g(λ)a(λ) 6≡ 0 (mod fB(λ))

for any nonzero g(λ) ∈ F2[λ], deg g ≤ n. It is equivalent to coprimeness
of a(λ) and fB(λ).

In [18] it was proved that B = PBTP−1. From this fact, taking into
account the symmetry of P , it follows that columns of PCT have the form

P (cBi)T = P (cP (BT )iP−1)T = Bi(cP )T .

Processing PCT in the same way as A, we conclude the proof. �

Example 5. Let n ≥ 2 and fB(λ) be irreducible. Then there are 2n−1 − 1
equivalence classes of regular circuits which matrices are similar to B. In-
deed, let such a circuit has the first canonical form. By Theorem 7, the circuit
is invertible if and only if cn = b2c1 + b3c2 + . . .+ bncn−1. There are 2n−1− 1
acceptable nonzero c and they all satisfy the conditions of Theorem 9.

It is interesting that if fB(λ) is irreducible then the set of normalizers
of B augmented with the zero matrix forms the field of order 2n. In particular,
the sum of distinct normalizers is again a normalizer.

Example 6. Let fB(λ) = λn + 1. This is the case of the Feistel, SMS4,
MARS3 and GFN1 circuits. Normalizers of B are all invertible circulants.
In the most interesting case n = 2k, acceptable a, c are those that contain an
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odd number of unities and both the number of normalizers and equivalence
classes is 2n−1.

The SMS4 circuit has the first canonical form, MARS3 has the second
one. These circuits are similar: MARS3 can be converted to SMS4 using the
normalizer

P =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Example 7. Let (a,B, c) be a circuit of type II. Bring it to the second
canonical form. For invertibility, it is sufficient and necessary that a(0) = 1.
For regularity, a(λ) must additionally be coprime to fB(λ). If fB(λ) = λn

(SkipjackA, SkipjackG) then the last condition holds for every (a2, . . . , an)
and consequently there are 2n−1 equivalence classes.

It is interesting that SkipjackB does not belong to the equivalence class
of SkipjackA because its polynomial fB(λ) = λ4 + λ 6= λ4.
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Abstract

A new type of distinguishing property, named the zero-sum property has been
recently presented by Aumasson and Meier [1]. It has been applied to the inner
permutation of the hash function Keccak and it has led to a distinguishing property
for the Keccak-f permutation up to 16 rounds (the number of rounds initially was
18). Later the number of rounds was increased to 24, due to the results of the
work [1]. In this paper, we presented a modified algorithm for finding zero-sums
for hash-functions having an XSL structure, with some restrictions on the linear
transformation. As an example, we apply the algorithm to a representative of a
family of Photon hash functions [2].

Keywords: zero-sum, algebraic degree, Photon, hash-function.

1 Zero-sum

In this section, we introduce the notion of zero-sums, demonstrate the
algorithm for finding it, and demonstrate the modification of this algorithm.
As an example, we apply it to the hash function Photon− 196.

1.1 Intoduction

Definition 1. [1] Let F be a function from F n
2 into Fm

2 . A zero-sum for F
of size (dimension) K is a subset {x1, . . . , xK} ⊂ F n

2 of elements which sum
to zero and for which the corresponding images by F also sum to zero, i.e.

K⊕
i=1

xi =
K⊕
i=1

F (xi) = 0.

where the sum is defined by the addition in F n
2 (and in Fm

2 ), i.e., the bitwise
exclusive-or. Since it is expected that a randomly chosen function does not
have many zero-sums, the existence of several such sets of inputs can be seen
as a distinguishing property of F .
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Definition 2. Let K ⊂ F n
2 be a subspace. Denote K = {K ⊕ a|a ∈ F n

2 .
That is K the set of all coset classes by K.

Statement 1. [1] Let F be a function from F n
2 into Fm

2 and V the subspace
of dimension (degF ) + 1. Then, for every V ′ ∈ V is true:⊕

v∈V ′
F (x⊕ v) = 0.

The fact that the permutation used in a hash function does not depend
on any secret parameter allows to exploit the previous property starting from
the middle, i.e., from an intermediate internal state. This property was used
by Aumasson and Meier [1] and also by Knudsen and Rijmen in the case of
a known-key property of a block cipher [3]. The only information needed for
finding such zero-sums on the iterated permutation is an upper bound on
the algebraic degrees of both the round transformation and its inverse. The
upper bound for the algebraic degree of nonlinearity of the iterative mapping
it is calculated, as a rule, as in [4]. More precisely, we suppose that F is a
function which operates on an n − bit state, and that F is composed of nr
transformations:

F = Rnr ◦ . . . ◦R1.

Let d1 < n be the degree of the function composed of the last r1 trans-
formations, i.e., Fr1

= Rnr ◦ . . .◦Rnr−r1+1 and let d2 < n be the degree of the
inverse of the first r2 = (nr− r1) transformations, i.e., Gr2

= R−1
1 ◦ . . .◦R−1

r2
.

Then, we can find many zero-sums of size 2d+1 where d = max(d1, d2) as
follows:

1. Choose a set of (n−d−1) bits in the intermediate state after r2 rounds,
and fix them to an arbitrary value;

2. For each of the 2d+1 possible intermediate states z obtained when the
other (d+ 1) bits take all possible values, compute r2 rounds backwards
in order to obtain the 2d+1 input states x = Gr2

(z).

The set of these input states is then the zero-sum of size 2d+1 of a function
of degree d2 and thus it vanishes. Now, the images of these input states under
F correspond to the images of the intermediate states z under Fr1

. Then,
by computing r1 rounds forwards, we obtain 2d+1 output states. The set of
these output states is the zero-sum of size 2d+1 of Fr1

, of degree less than d.
Thus, this sum vanishes, implying that the x forms a zero-sum. It is worth
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noticing that this technique provides several zero-sums having a particular
property. Actually, for a given choice of the (n − d − 1) fixed bits in the
intermediate state, taking all possible values for the corresponding constant
leads to 2n−d−1 zero-sums of sizes 2d+1 which form a partition of the input
space into zero-sums.

1.2 Modified algorithm

In this subsection we introduce new definitions and statement 1 which
allows us to modify the algorithm for finding zero-sum.

Definition 3. Let a = (a0, a1, . . . , an−1) ∈ F n
2 , and {n1, n2, . . . , nt}

(where
t∑
i=1

ni = n), be a fixed set of natural numbers which

splits the vector a into consecutive subvectors i.e. a =
(a0, a1, . . . , an1−1)||(an1

, . . . , an2−1)|| . . . ||(ant, . . . , an−1), we shall call a
partition of the form (n1, . . . , nt), and if all subvectors are of equal length d
we denote that partition by (d). If the partition refers to a particular vector,
then we write (an1

. . . , ant) or a(d) respectively.

Definition 4. Let V1 ∈ F n
2 and V2 ∈ F n

2 are subspaces. We say that H :
F n

2 → F n
2 keeps the structure of the subspace V1 if for any V ′1 ∈ V1 there is

a V ′2 ∈ V2 such that:

H(V
′

1) = V
′

2 and denote H(V1 → V2).

Definition 5. We say that a subspace V = V1 of block type i1, i2, . . . , it is
consistent with the partition (n1, . . . , nt), if V = {(an1

, an2
, . . . , ant)}, where

if ij = 1 then anj takes all possible values from F
nj
2 , and if ij = 0 then

anj = 0. Denote such subspaces as V (n1,...,nt)(i1, . . . , it) and if the partition
has the form (d), then V d(i1, . . . , it).

Definition 6. We say that a transformation G : F n
2 → F n

2 has a block
structure if there exists at least one l subspace of block type V consistent to
the partition (n1, . . . , nt) such that:

G(V → V
′
), where V ′ is a subspace of block type consistent to the partition

(m1, . . . ,ml).

Statement 2. Let G : F n
2 → F n

2 be an iterative transformation of the form:

G = G1 ◦G2 ◦ . . . ◦G2·t, where Gi = Xi ◦ S ◦ L, i = 1, 2 · t.
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Note that for calculation of the zero-sum, the values of the constant do
not matter. Therefore, let Xi = X, i = 1, 2 · t. Then if V ∈ F n

2 is a subspace
such that: S ◦ L ◦ X ◦ S(V → V

′
) then in order to find the zero-sum it is

necessary to construct a subspace of smaller dimension.

Let us show this. Denote by nl an algebraic degree of the function. Let:

h1 = nl(G1 ◦ . . . ◦Gt),
h2 = nl(Gt+1 ◦ . . . ◦G2·t),
h
′

1 = nl(G1 ◦ . . . ◦Gt−1),
h
′

2 = nl(Gt+2 ◦ . . . ◦G2·t),
d = max(h1, h2),
d
′
= max(h

′

1, h
′

2).

Using the algorithm for finding zero-sums from Section 1, it is easy to see,
that the complexity of constructing the zero-sum became 2d

′
, instead of 2d.

Remark 1. For several cryptoalgorithms one can easily show that
S ◦ L ◦ X ◦ S transformation is a block type. For example:
Photon, Streebog, Stribob, AES. Examples where it is not easy to show:
Kuznyechik, Present.

1.3 Sponge construction

Extended Sponge functions. Sponge functions have been introduced by
Bertoni et al. [5] as a new way for building hash functions from a fixed
permutation. The internal state S of t bits, composed of the c− bit capacity
and the r− bit bitrate (t = c+ r), is, first, initialized with some fixed value.
Then, after being appropriately padded and split the message into r − bit
chunks, one simply and iteratively processes all r − bit message chunks by
xoring them to the bitrate part of the internal state and then applying the
t − bit permutation P . Once all message chunks have been handled by this
absorbing phase, one successively outputs r bits of the final hash value by
extracting r bits from the bitrate part of the internal state and then applying
the permutation P on it (squeezing process).

1.4 Photon

Photon, a family of sponge-like hash function proposals that was recently
standardized by ISO. Authors define an AES-like function to be a fixed key
permutation P applied on an internal state of d2 elements of s bits each,
which can be represented as a (d × d) matrix. P is composed of 12 rounds,
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each containing four layers as depicted in Figure 1: AddConstants (Add),
SubCells (S), ShiftRows (Row), and MixColumnsSerial(Mix).

Figure 1.

Table 1 shows the main parameters of the Photon hash function family.
Table 2 shows the degree of nonlinearity, depending on the number of rounds.

Table 1.

Table 2.

Transformation P:

P = G1◦ . . .◦G5◦Add6◦S◦Row◦Mix◦Add7◦S◦Row◦Mix◦G8◦ . . .◦G12.

It is easy to show that substutition H = S ◦ Row ◦Mix ◦ Add7 ◦ S has
a block structure such that:

H(V1 → V2).
V1 = (V 4(i0, . . . , i48), where ij = 1, if (j = 0 mod (8)), ij = 0, if (j 6= 0 mod (8)) j = 0, 48.
V2 = (V 4(i0, . . . , i48), where ij = 1, if (j = 0 mod (7)), ij = 0, if (j 6= 0 mod (7)) j = 0, 48.

According to Table 2, the degree of nonlinearity nl(G1 ◦ . . . ◦ G6) =
nl(G7 ◦ . . . ◦G12) = 183, and nl(G1 ◦ . . . ◦G5) = nl(G8 ◦ . . . ◦G12) = 157.

It’s obvious to see that (Figure 2.):
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H(V1 → V2).
V1 = (V 4(i0, . . . , i48), where ij = 0, if (j = 0 mod (8)), ij = 1, if (j 6= 0 mod (8)) j = 0, 48.
V2 = (V 4(i0, . . . , i48), where ij = 0, if (j = 0 mod (7)), ij = 1, if (j 6= 0 mod (7)) j = 0, 48.

In Figure 2, white color indicates 4-bit words which take all possible
values, and black color 4-bit words whose values are fixed.

Figure 2.

Using statement 1 and the fact that the dimension of the subspace V1 is
196− 4 · 7 = 168, one can assert that we have found zero-sums of dimension
168 instead of the declared 183.

Also for the hash function Photon(256) using this algorithm, the com-
plexity of finding zero sums can be reduced from 2236 to 2224.

We note that similar results for hash functions were obtained in [6] and
[7]. The results of this paper were obtained independently of them.

2 Conclusions

A modified algorithm for constructing zero sums was proposed in this
paper. The algorithm is applicable to cryptographic algorithms of a certain
type. Note that these results can be applied to the synthesis of cryptographic
primitives.

Also note that these results can be applied to the analysis of block ciphers,
with the only difference being that the construction of zero sums can not be
started from the intermediate states of the algorithm.
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Abstract

This paper presents the complete description of the best differentials and linear
hulls in 2-round Kuznyechik. A comparison is made with similar results for the AES
cipher.

Keywords: Kuznyechik, LSX, MDS codes, differential cryptanalysis, linear cryptanalysis.

1 Introduction

This paper presents the results of the development of low-complexity
algorithms, that will allow to find the complete description of the best differ-
ential trails, differentials, linear characteristics, linear hulls and exact values
of maximum expected differential and linear probability (MEDP, MELP) for
2-round Kuznyechik.

We proved that 2-round MEDP = 2−86.66..., MELP = 2−76.936....
A comparison is made with similar cryptanalysis results for the AES

cipher [1].
The main focus will be on the differential method. The results of the

search for linear characteristics will be obtained in a similar way, due to the
existence well-known duality between differential cryptanalysis and linear
cryptanalysis [2].

2 Basic information

Kuznyechik block cipher [3] consists of a sequence of 9 rounds and a
post-whitening key addition. Each round contains three operations:

X – modulo 2 addition of an input block with an iterative key;
S – parallel application of a fixed bijective substitution to each byte of

the block;
L – linear transformation which is defined as a LFSR over GF (28). It can

be represented as multiplication by the matrix L over GF (28).
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The block size is 128 bits (n = 16 bytes).
A 2-round differential trail can be represented as the following scheme:

Figure 1: 2-round differential trail

∆x = (x1, ..., xn) – the difference of input blocks in byte representation,
∆1 = (α1, ..., αn) – the difference of blocks after the nonlinear transfor-

mation on the first round,
∆2 = (β1, ..., βn) = (α1, ..., αn)L – the difference of blocks after the linear

transformation (matrix multiplication in row-by-row representation),
∆y = (y1, ..., yn) – the difference of blocks after the nonlinear transfor-

mation on the second round.
Note that due to «linearity» and «invertibility» the linear transformation

on the second round can be omitted without loss of generality.
The nonlinear transformation of each S-box is characterized by a matrix

of transition probabilities (Differential Distribution Table). DDT is the set
of local difference characteristics:

P (α→ β) = Pr(S(χ⊕ α)⊕ S(χ) = β), α, β, χ ∈ {0, 1}8, (1)

where χ is a uniformly distributed random variable. S-box with nonzero input
difference α 6= 0 is called active.

2-round differential trail ∆x → ∆1 → ∆2 → ∆y is a random variable,
that has a probability (EDCP [1])

P (∆x→ ∆1 → ∆2 → ∆y) =

(
n∏
i=1

P (xi → αi)

)(
n∏
i=1

P (βi → yi)

)
. (2)

The best differential trail has probability

P trail
best = Pbest(∆x→ ∆1 → ∆2 → ∆y) =

= max
(∆x,∆1,∆2,∆y)\(0,0,0,0)

P (∆x→ ∆1 → ∆2 → ∆y).
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Differential is the set of all differential trails that have the same ∆x and
∆y.

Differential is characterized by the probability (EDP [1])

P (∆x→ ∆y) =
T∑
i=1

((
n∏
j=1

P (xj → α
(i)
j )

)(
n∏
j=1

P (β
(i)
j → yj)

))
, (3)

where T is the number of the differential trails in the differential.
The best differential has probability (MEDP [1]):

P diff
best = Pbest(∆x→ ∆y) = max

(∆x,∆y)\(0,0)
P (∆x→ ∆y)

Our first goal is to find the most probable differential trail – the best
differential trail.

Matrix L is part of the matrix G = E|L. G is the generator matrix of
the MDS-code (32, 16, 17) over GF (28). Thus, the minimum possible total
weight of vectors ∆1 and ∆2 is equal to the minimum code distance d = 17.
We will start searching for the most probable differential trail by finding all
minimum byte weight codewords in G.

3 Algorithm for finding codewords with the smallest byte weight

Let (t, r) such, that t+r = n+1, t > 0, r > 0. Fix k1, . . . , kt, m1, . . . ,mr

– locations of non-zero elements in the vectors ∆1 = (α1, ..., αn) and ∆2 =
(β1, ..., βn) accordingly. Let’s present the transformation ∆1L = ∆2 as a
system of equations. Select the subsystem Sn−r,t in the system ∆1L = ∆2:
(αk1

, . . . , αkt) · Sn−r,t = (0, . . . , 0︸ ︷︷ ︸
n−r

). Solve the subsystem Sn−r,t . The set of

solutions is (α
(i)
k1
, . . . , α

(i)
kt

), i = 1, 255. Hence we have the set of ∆
(i)
1 and the

set of ∆
(i)
2 = ∆

(i)
1 L , i = 1, 255.

Let’s denote these sets of solutions

M (n+1)(k1, . . . , kt,m1, . . . ,mr) = (α
(i)
k1
, . . . , α

(i)
kt
, β(i)

m1
, . . . , β(i)

mr
), i = 1, 255.

(4)
The union of such sets is the set

M (n+1) =
⋃

(k1,...,kt,m1,...,mr)

M (n+1)(k1, . . . , kt,m1, . . . ,mr)

of all code vectors of minimum weight n + 1. The cardinality of the set
M (n+1) is equal to 255 ·

∑
(t,r):t+r=n+1

(
n
t

)(
n
r

)
= 255 ·

(
2n
n+1

)
. Note, that the
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same expression for the number of codewords of minimal weight is obtained
in [5] without constructing an algorithm for their search.

Pseudocode of the algorithm is presented in Appendix E.

4 Algorithm for finding the best differential trail

In general, we consider differential trails for 2 rounds

∆x→ ∆1 → ∆2 → ∆y.

We start with differential trails containing the minimum number of active
S-boxes (minimal weight of ∆1 and ∆2).

To simplify the notation we denote (∆1,∆2) =
(αk1

, . . . , αkt, βm1
, . . . , βmr

), t + r ≥ d = 17. Coordinates equal to
zero are omitted in notation.

Pmax(∆1,∆2) =

(
t∏

j=1

max
x
P (x→ αkj)

)(
r∏
j=1

max
y
P (βmj

→ y)

)

is the maximum probability of differential trail with a fixed vector (∆1,∆2).
Then the most probable differential trail ∆x → ∆1 → ∆2 → ∆y has the
probability:

P trail
best = max

(∆1,∆2)\(0,0)
Pmax(∆1,∆2).

Let the vector (∆1,∆2) has a weight n+ 1:

P trail
best ≥ max

(∆1,∆2)∈M (n+1)
Pmax(∆1,∆2).

Two sets of differential trails were found in M (n+1). Each trail in both
sets has a maximum probability:

max
(∆1,∆2)∈M (n+1)

Pmax(∆1,∆2) =

(
8

256

)13(
6

256

)4

= 2−86.66....

The trails in the set have the same inner part (∆1,∆2). There are no other
trails that would have a maximum probability.

The found differential trails are presented in Appendix A.

Lemma 1. Let ∆x → ∆1 → ∆2 → ∆y be the differential trail in 2-round
Kuznyechik. Let P (∆x → ∆1 → ∆2 → ∆y) be maximal among all trails.
Then the weight (∆1,∆2) is equal to n+ 1 = 17.
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Proof. One can see that the estimate

P (∆x→ ∆1 → ∆2 → ∆y) ≤
(

max
(α,β)\(0,0)

P (α→ β)

)w
. (5)

is true for any differential trail ∆x→ ∆1 → ∆2 → ∆y, ‖∆1‖+‖∆2‖ = w =
t+ r.

In the case of Kuznyechik, max
(α,β)\(0,0)

P (α → β) =
(

8
256

)
. Then for any

w ≥ 18 it holds that:

P (∆x→ ∆1 → ∆2 → ∆y) ≤
(

8

256

)w
≤

≤
(

8

256

)18

< max
(∆1,∆2)∈M (n+1)

Pmax(∆1,∆2) = 2−86.66....

Hence P trail
best = 2−86.66.... Lemma 1 is proved. �

5 Algorithm for finding the best differential

Suppose that the best differential will also be achieved on a configuration
containing the minimum number w = n+ 1 = 17 of active S-boxes.

Each subsetM (n+1)(k1, . . . , kt,m1, . . . ,mr) contains exactly 255 code vec-
tors. The sets k1, . . . , kt and m1, . . . ,mr specify the positions of active S-
boxes. Hence the differential ∆x→ ∆y contains trails from only one subset
M (n+1)(k1, . . . , kt,m1, . . . ,mr). Consequently, in expression (3) T = 255.

Consider an algorithm that allows you to get rid of the exhaustive search.
It is based on the «pruning» of the branches of the search tree by using the
constructed upper bounds.

In the previous paragraph, the exact value of the best differential trail
is given P trail

best = 2−86.66.... This probability is the lower bound for the
probability of the best differential. It is always possible to construct a differ-
ential, consisting of one best trail P diff

best ≥ P trail
best . We will use the probability

P diff
est = P trail

best as a threshold value.

5.1 Algorithm for calculating the upper bound of the differential

Let a subset of codewords (4) is given. Calculate the upper bound of the
differential.

Fix u ≤ t, v ≤ r. Select t − u coordinates α and r − v coordinates β in
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the equation (4):

part(i) = (α
(i)
k1
, . . . , α

(i)
kt−u

, β(i)
m1
, . . . , β(i)

mr−v
), i = 1, 255.

For all i = 1, 255 we obtain an easily computable upper bound for the
«part» of the differential trail

P (∆x→ part(i) → ∆y) ≤

≤

(
t−u∏
j=1

max
x
P (x→ α

(i)
kj

)

)(
r−v∏
j=1

max
y
P (β(i)

mj
→ y)

)
.

Let’s order these estimates in descending order.
We will construct for each x (and y) the sequence of transition probabil-

ities. Let’s use the S-box transition probability matrix (DDT):

P (x→ α(1,x)) ≥ P (x→ α(2,x)) ≥ . . . ≥ P (x→ α(255,x)), x = 1, 255, (6)

P (β(1,y) → y) ≥ P (β(2,y) → y) ≥ . . . ≥ P (β(255,y) → y), y = 1, 255. (7)

X(q) = max
x
P (x→ α(q,x)), Y (q) = max

y
P (β(q,y) → y). (8)

Consider the differential (3). Let the summands be ordered in descending
order. Then

P (∆x→ ∆y) ≤ min
u,v

(
255∑
q=1

(
X(q)

)u (
Y (q)

)v (
P (∆x→ part(q) → ∆y)

))
.

(9)
If the resulting upper bound (9) is less than the threshold P diff

est , then the
subset is no longer considered.

In practice, the values u and v are selected experimentally depending
on the cipher substitution. For Kuznyechik u = v = 2 are close to optimal
parameters. For such values, approximately 9

10 subsets are excluded from
being considered.

5.2 Algorithm for constructing the differential

Suppose that for some subsetM (n+1)(k1, . . . , kt,m1, . . . ,mr) the estimate
is greater than the threshold value P diff

est . Then the following estimate also
holds

P (∆x→ ∆y) ≤
255∑
i=1

(
t∏

j=1

max
x
P (x→ α

(i)
kj

)
r∏
j=1

max
y
P (β(i)

mj
→ y)

)
. (10)
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We will sequentially search through possible non-zero values xk1
, . . . , xkt

and ym1
, . . . , ymr

. The maximum values max
x
P (x→ α

(i)
kj

) (and max
y
P (β

(i)
mj →

y)) will be replaced by the immediate values P (xkj → α
(i)
kj

) (P (β
(i)
mj → ymj

)
accordingly). We will also use the pruning of the branches of the search tree.

Denote

P (a1, a2, . . . as) = P (xk1
= a1, xk2

= a2, . . . , xks = as, xks+1
, . . . , xkt → ∆y),

P (a1, a2, . . . as) ≤

≤
255∑
i=1

(
s∏
j=1

P (aj → α
(i)
kj

)
t∏

j=s+1

max
x
P (x→ α

(i)
kj

)
r∏
j=1

max
y
P (β(i)

mj
→ y)

)
.

In the estimate (10), we fix the first factor with the number k1(the place
of the first nonzero element). Let xk1

= 1. Then we replace max
x
P (x →

α
(i)
k1

) by P (1 → α
(i)
k1

). After that we have the estimate P (a1 = 1). If the
estimate P (a1 = 1) is less than the threshold value P diff

est , then we perform a
search among the elements xk1

= 2, 3, ...255. We will search until the element
xk1

= a1, P (a1) ≥ P diff
est is found. If such xk1

is not found, then the subset
M (n+1)(k1, . . . , kt,m1, . . . ,mr) is excluded from being considered.

Let such xk1
= a1 is found. We perform similarly search of the second

factor. Consider the bytes xk2
= 1, 2, . . . , a2, . . . , 255. Substituting P (a2 →

α
(i)
k2

) instead of max
x
P (x → α

(i)
k2

) into the estimate P (a1). Do this until a2 :

P (a1, a2) ≥ P diff
est is found. If such an element is not found then return to the

previous step and try to accomplish this algorithm for the remaining bytes
xk1

> a1.
We continue the recursive search. We replace the «s+1»-th factor in

P (a1, a2, . . . as) with the value P (a → α
(i)
ks+1

), a = 1, 2, . . . , 255. Multipli-
ers max

y
P (β

(i)
mj → y) are replaced by values P (β

(i)
mj → b), b = 1, 2, . . . , 255.

If the algorithm substituted all the elements a1, . . . , at, b1, . . . , br and
did not reject the subset of codewords, then we obtained an exact estimate
P (a1, . . . , at → b1, . . . , br) and the differential

P (∆x→ ∆y) =
255∑
i=1

(
t∏

j=1

P (aj → α
(i)
j )

)(
r∏
j=1

P (β
(i)
j → bj)

)
≥ P diff

est .

(11)
In this case, the value P diff

est is updated. We return to the pre-
vious step of the algorithm and continue the search in the subset
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M (n+1)(k1, . . . , kt,m1, . . . ,mr).
The last step of the algorithm: P diff

best = P diff
est .

It was shown that if the number of active substitutions is n + 1 = 17,
then each best differential contains only one differential trail.

The best differential trails are presented in Appendix A. Pseudocodes of
algorithms are presented in Appendix E.

Lemma 2. Let ∆x → ∆y is the differential in 2-round Kuznyechik. Let
P (∆x→ ∆y) be maximal among all differentials. Then the number of active
S-boxes in ∆x→ ∆y is equal to n+ 1 = 17.

The main idea of the proof is to construct an upper bound for the differ-
ential ∆x → ∆y containing n + 2 = d + 1 = 18 active S-boxes. The upper
estimate is built by using: two majorants (8); the MDS code property (byte
weight of the sum of codewords is not less than n + 1); the rearrangement
inequality [6]. The proof of the Lemma is presented in Appendix D.

6 The comparison with AES

The comparison of the results given in this paper for Kuznyechik with
the results of the AES cipher analysis is of particular interest [1].

Note the following differences between 2-round versions of the ciphers
[3, 4].

Kuznyechik – one MDS-matrix 16× 16; pseudorandom, non-analytical
S-box; DDT and LAT do not have obvious patterns.

AES – byte permutation layer and four MDS-matrix 4× 4; all nontrivial
rows and columns in DDT (and LAT) have the same distribution of values.

Differences in linear and non-linear transformations lead to different ap-
proaches for calculating differential and linear characteristics.

In the case of AES the actual work is reduced to a single MDS-matrix
4×4. This allows you to construct the entire set of codewords. In the case of
Kuznyechik, due to the use of the algorithm (3), only low-weight codewords
are iterated over. After that, it is analytically shown that the differential on
codewords of greater weight will be worse than the constructed one.

The best differential in AES consists of 75 differential trails. The estimate
(6) is used in the construction of the differential. The estimate (10) will be
the same for any subset of code words and is therefore not used. MEDP =
2−28.272..., MELP = 2−27.287....

The best differential in Kuznyechik consists of a single differential trail,
but the best linear hull consists of 48 linear characteristics. Due to the algo-
rithm 5.1 it is shown that for the majority of considered subsets of codewords
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the best differential on them is not achieved. For the remaining subsets, an
attempt is made to construct the best differential (algorithm 5.2). This is
due to a sequence of transitions from the estimate (10) to the exact value
(11). We got: MEDP = 2−86.66..., MELP = 2−76.936....

7 Conclusion

The article presented: the algorithm for finding codewords with the small
byte weight; algorithms for finding the complete description of the best dif-
ferential trails (linear characteristics), differentials (linear hulls) in 2-round
Kuznyechik.

The best differentials (linear hulls) and their probabilities were found.
It was shown that the best differential contains one differential trail; the
best linear hull contains 48 linear characteristics (Appendix A and B). We
proved that 2-round MEDP = 2−86.66..., MELP = 2−76.936.... The estimate
(5) for a differential trail (linear characteristic) is not achieved for 2-round
Kuznyechik.

For any LSX cipher, the N -round MEDP (MELP) is the upper bound for
(N + 1)-round MEDP (MELP). Therefore, the 2-round MEDP (MELP) of
Kuznyechik is the upper bound for any larger number of rounds. Obtaining
a more precise upper bounds is the subject of further research.
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Appendix

A The best differentials

0 8 0 0 0 0 8 0 8 8 8 0 6 0 0 8 P (∆x→ ∆1) · 256
0019000000002d00b8b8950072000028 ∆1

2a00000d2337f74d0082a80000009d1b ∆2

8 0 0 8 8 8 8 6 0 8 6 0 0 0 6 8 P (∆2 → ∆y) · 256

Table 1: First optimal internal part(∆1 → ∆2). It generates one of the best differential.

0 8 8 6 0 8 8 8 0 8 8 0 0 8 0 8 P (∆x→ ∆1) · 256
00a5def70085853700ec0300009c005a ∆1

0068ea0d00f700dd006d000000000090 ∆2

0 6 6 8 0 8 0 6 0 8 0 0 0 0 0 8 P (∆2 → ∆y) · 256

Table 2: Second optimal internal part(∆1 → ∆2). It generates 24 best differentials.

B Application to Linear Cryptanalysis

There is a certain duality between differential and linear cryptanalysis
[2]. It allows us to apply the algorithms described above to calculate linear
characteristics.

We make the appropriate substitutions.
Differential probability (1), are replaced by linear probability. DDT is

replaced by Linear Approximation Table (LAT). Input/output differences α
and β are replaced by input/output masks α′ and β′ correspondingly.

P (α′ → β′) = (2Pr(α′ • χ = β′ • S(χ))− 1)2, α′, β′, χ ∈ {0, 1}8,

where • is the inner product over {0, 1}.
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By analogy with the differential trail a linear characteristic for 2 rounds
is introduced:

a→ µ1 → µ2 → b.

Its probability (by analogy with (2)) is equal to

P (a→ µ1 → µ2 → b) =

(
n∏
j=1

P (a[j]→ µ1[j])

)(
n∏
j=1

P (µ2[j]→ b[j])

)
,

where [j] is j-th coordinate of the corresponding vector.
The linear hull (similar to differential) is the set of all linear characteristics

having input mask a and output mask b.

(a→ b) = {a→ µ
(i)
1 → µ

(i)
2 → b, i = 1, T}.

The probability of the linear hull (a→ b) is equal to:

P (a→ b) =
T∑
i=1

((
n∏
j=1

P (a[j]→ µ
(i)
1 [j])

)(
n∏
j=1

P (µ
(i)
2 [j]→ b[j])

))
,

where T is the number of linear characteristics.
You need to replace all formulas in the sections (4) and (5) according to

the above analogies.
The maximum probability of the local linear characteristic of Kuznyechik

is

Pmax(α
′ → β′) = max

(α′,β′)\(0,0)
P (α′ → β′) =

=

(
2

(
128 + 28

256

)
− 1

)2

=

(
56

256

)2

.

The trivial estimate of the two-round linear characteristic is

max
(a,µ1,µ2,b)\(0,0,0,0)

P (a→ µ1 → µ2 → b) ≤
(

56

256

)2·17

= 2−74.549....

The following results are obtained by executing the algorithms.
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The best linear characteristic has a probability equal to

max
(a,µ1,µ2,b)\(0,0,0,0)

P (a→ µ1 → µ2 → b) =

=

(
56

256

)2·8(
52

256

)2·7(
48

256

)2·2
= 2−76.936....

The linear hull (a→ b) has a nontrivial form and (unlike the differential
method) contains 48 linear characteristics a → µ

(i)
1 → µ

(i)
2 → b, i = 1, 48.

The exact probability of the linear hull is

max
(a,b)\(0,0)

P (a→ b) = 2−76.936... ·
(
1 + 2−57.6654...

)
.

00 00 28 28 00 00 00 28 28 24 26 00 26 00 28 00 256 ·
√
P (a→µ1)

2

00 00 69 a7 00 00 00 55 67 8b e9 00 93 00 69 00 µ1

cc 00 f8 00 f6 3f 4c 31 e1 45 00 fb 00 00 00 00 µ2

26 00 26 00 28 26 28 26 24 26 00 28 00 00 00 00 256 ·
√
P (µ2→b)

2

Table 3: Optimal internal part(µ1 → µ2). It generates 4 best linear characteristics.

The optimal inner part (µ1 → µ2) generates the best linear hull.

00 00 b8 4c 00 00 00 48 66 d1 f7 00 cc 00 b8 00 a
93 00 e0 00 1c 91 a7 b8 62 e8 00 36 00 00 00 00 b

Table 4: The best linear hull (a,b)

The best linear hull (a,b) consist of 48 linear characteristics a→ µ
(i)
1 →

µ
(i)
2 → b, which are listed below (Table 5 and 6).
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i µ
(i)
1 µ

(i)
2 log2 P (a→ µ

(i)
1 →

µ
(i)
2 → b)

1 0000052d000000cd14902b003e000500 6e007d006cad40bcf0b8001800000000 -135.596...

2 00000e7e000000c238e2cb009a000e00 7a009e00a8c3bff5e392009100000000 -166.150...

3 0000109000000029400431001e001000 dd00530003abfcfb868400c100000000 -152.862...

4 000018d8000000dc6006c80011001800 52009b00e31f8267c5c6004000000000 -153.891...

5 00001aca0000007068e7670062001a00 0100a900db327c40a53700f100000000 -145.669...

6 00001df5000000117496e3002f001d00 3c00e6008fb2c2db357e005800000000 -145.247...

7 00001fe7000000bd7c774c005c001f00 6f00d400b79f3cfc558f00e900000000 -171.728...

8 000025ce0000009f9498490002002500 1700db006a387b893f73005900000000 -161.130...

9 00002ab90000000ba8eb340040002a00 a5005c00de0cbb8eec78007100000000 -155.482...

10 00002c8f0000003cb00b0600d5002c00 50000a00967b7ae74ca8006100000000 -149.107...

11 00002e9d00000090b8eaa900a6002e00 03003800ae5684c02c5900d000000000 -135.819...

12 000036450000004cd8ec6100b7003600 5100a3004d4906a7e99f009000000000 -153.365...

13 0000374c0000001adc7dd7006f003700 9900ba0051be7955d906002900000000 -139.528...

14 00003e0d000000b9f8ee9800b8003e00 de006b00adfd783baadd001100000000 -164.616...

15 0000431e0000005ecf60dd00d3004300 6900a4002833f7bf0d3d008a00000000 -153.084...

16 0000473a000000c5df61400035004700 cf00c0005869c8f1cd1c002b00000000 -145.714...

17 0000484d00000051e3123d0077004800 7d004700ec5d08f61e17000300000000 -152.101...

18 00004e7b00000066fbf20f00e2004e00 88001100a42ac99fbec7001300000000 -143.365...

19 000050950000008d8314f50066005000 2f00dc000f428a91dbd1004300000000 -146.685...

20 000057aa000000ec9f6571002b005700 120093005bc2340a4b9800ea00000000 -139.832...

21 000058dd00000078a3160c0069005800 a0001400eff6f40d989300c200000000 -156.920...

22 000059d40000002ea787ba00b1005900 68000d00f3018bffa80a007b00000000 -149.914...

23 000061ef000000a0478910009c006100 43003000168b32ada207007a00000000 -153.247...

24 000064c20000006d53193b00a2006400 2d004d007a26721152bf006200000000 -166.535...

Table 5: Linear characteristics included in the best linear hull. i = 1, 24
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i µ
(i)
1 µ

(i)
2 log2 P (a→ µ

(i)
1 →

µ
(i)
2 → b)

25 000069a700000055678be90093006900 cc00f800f63f4c31e14500fb00000000 -76.9363...

26 00006abc000000af6bfbf00038006a00 5700d300d2e5cde4b12d00f300000000 -148.417...

27 00006c8a00000098731bc200ad006c00 a20085009a920c8d11fd00e300000000 -153.506...

28 00006d83000000ce778a740075006d00 6a009c008665737f2164005a00000000 -152.558...

29 00006e98000000347bfa6d00de006e00 f100b700a2bff2aa710c005200000000 -153.506...

30 00007b25000000d02f6e7700fe007b00 42009900cdb94eed0730008b00000000 -168.150...

31 000088420000007e6522b200ff008800 a8001500f8a59248f9e8004600000000 -165.453...

32 00008a50000000d26dc31d008c008a00 fb002700c0886c6f991900f700000000 -149.061...

33 00008b59000000846952ab0054008b00 33003e00dc7f139da980004e00000000 -157.394...

34 00008f7d0000001f79533600b2008f00 95005a00ac252cd369a100ef00000000 -142.908...

35 0000a7d6000000b8d959ad008100a700 630034004a04697ae528002f00000000 -158.535...

36 0000ae970000001bfdcae2005600ae00 2400e500b647681496f3001700000000 -158.862...

37 0000b170000000a681bdae000a00b100 4b00310001d854e8c37c00fe00000000 -145.329...

38 0000c7300000004e9a410b00c500c700 e8001d004078242577b600ec00000000 -150.920...

39 0000d384000000fcca44a7003d00d300 93002a003389e7903113008c00000000 -162.943...

40 0000d6a900000031ded48c000300d600 fd0057005f24a72cc1ab009400000000 -149.247...

41 0000dee1000000c4fed675000c00de00 72009f00bf90d9b082e9001500000000 -146.676...

42 0000e8a400000088263a1400bb00e800 23003c00f2d9df176b76008500000000 -159.470...

43 0000e9ad000000de22aba2006300e900 eb002500ee2ea0e55bef003c00000000 -158.558...

44 0000f07c00000054463cdc00aa00f000 7100a70011c65d70aeb000c500000000 -153.587...

45 0000f458000000cf563d41004c00f400 d700c300619c623e6e91006400000000 -149.620...

46 0000f743000000355a4d5800e700f700 4c00e8004546e3eb3ef9006c00000000 -160.150...

47 0000f834000000a1663e2500a500f800 fe006f00f17223ecedf2004400000000 -152.195...

48 0000fe02000000967ede17003000fe00 0b003900b905e2854d22005400000000 -153.084...

Table 6: Linear characteristics included in the best linear hull. i = 25, 48

C Codewords with minimum binary weight

Let G = E|L is a linear binary code, codeword length – 256 bits, infoword
length – 128 bits.

L is 128× 128 binary matrix, which defines the linear transformation of
Kuznyechik.

It is shown (algorithm of the section (3)) that in a linear binary code G
there are no codewords of binary weight 17, 18, 19, 20.

Two codewords with binary weight equal to 29 are found.
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0 2 0 2 2 0 0 0 0 2 1 0 1 2 0 1 w
009000a0030000000009010001090004 x
15040009010001090000000003a00090 y = xL
3 1 0 2 1 0 1 2 0 0 0 0 2 2 0 2 w

Table 7: The codeword with a binary weight equal to 29

2 0 2 2 0 0 0 0 2 1 0 1 2 0 1 3 w
9000a003000000000901000109000415 x
040009010001090000000003a0009000 y = xL
1 0 2 1 0 1 2 0 0 0 0 2 2 0 2 0 w

Table 8: Another codeword with a binary weight equal to 29

D The proof of Lemma 2

Lemma 3. Let ∆x → ∆y is the differential in 2-round Kuznyechik. Let
P (∆x→ ∆y) is maximal among all differentials. Then the number of active
S-boxes in ∆x→ ∆y is equal to n+ 1 = 17.

Proof Denote P diffA
best the best differential with A active S-boxes.

It is shown that among differentials containing trails of weight n+1 = 17,
the best probability is

P diff17
best =

(
8

256

)13(
6

256

)4

= 2−86.660....

We will show that

P diff
best = P diff17

best < P diffA
best , n+ 2 ≤ A ≤ 2n.

Consider an arbitrary differential ∆x→ ∆y with 18 active S-boxes. The
differential consists of trails of the form ∆x → ∆1 → ∆2 → ∆y. The
difference ∆x and all the ∆1 differences have the same set of active S-boxes.
(k1, . . . , kt) is the set of their positions. Similarly for ∆y and ∆2, let’s
denote the positions of active S-boxes (m1, . . . ,mr), t+ r = 18.

Using the algorithm (3), you can find all pairs (∆1,∆2) corresponding to
this set of active S-boxes. All differential trails ∆x→ . . .→ ∆y can only pass
through these pairs. During the algorithm execution the system of equations
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with 18 − n = 2 free variables will be solved. The number of solutions, and
accordingly the number of pairs (∆1,∆2), will not exceed 25518−n = 2552.

Let’s present the set of pairs found as a table D. Table size is
equal to 2552 × 18. Each row corresponds to a pair (∆

(i)
1 ,∆

(i)
2 ) =

(α
(i)
k1
, . . . , α

(i)
kt
, β

(i)
m1, . . . , β

(i)
mr), i ≤ 2552, and each column corresponds to the

active S-box.
By definition, the probability of a differential with 18 active S-boxes is:

P (∆x→ ∆y) =
T∑
i=1

((
t∏

j=1

P (xkj → α
(i)
kj

)

)(
r∏
j=1

P (β(i)
mj
→ ymj

)

))
,

T ≤ 2552, t+ r = 18.

Let the ∆x and ∆y are fixed. Then each element of the table can be
matched with the probability P (xkj → α

(i)
kj

) (or P (β
(i)
mj → ymj

)). Let us
denote this probability Pi,j, then the probability of the differential is:

P (∆x→ ∆y) =
T∑
i=1

r+t∏
j=1

Pi,j. (12)

We give an upper bound of the (12).
Note that there are no more than 255 identical bytes in each column of

the table D. Otherwise, there are rows with a pair of identical bytes. This
corresponds to the existence of a codeword with a weight less than n+1 = 17.
It contradicts the MDS-code definition.

Let the input xkj or output ymj
bytes are fixed. Then the same bytes in

the table column match the same probabilities.
Denote p8 = 8

256 , p6 = 6
256 , p4 = 4

256 , p2 = 2
256 .

Let’s use the majorants (8). They take the following values:

X = p8, p6, . . . , p6︸ ︷︷ ︸
5

, p4, . . . , p4︸ ︷︷ ︸
21

, p2, . . . , p2︸ ︷︷ ︸
87

, 0, . . . , 0︸ ︷︷ ︸
141

; (13)

Y = p8, p8, p6, . . . , p6︸ ︷︷ ︸
7

, p4, . . . , p4︸ ︷︷ ︸
27

, p2, . . . , p2︸ ︷︷ ︸
92

, 0, . . . , 0︸ ︷︷ ︸
127

. (14)

You can see that Y is always greater than X. To get the highest estimate
we consider the case when 2 columns of the table are estimated using X (and
16 columns – Y ).

The number of nonzero elements in the majorant X is v = 114. This
allows us to refine the maximum number of differential trails in the differential
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T ≤ v2 = 12996. And also refine the values of majorants:

X = p8, p6, . . . , p6︸ ︷︷ ︸
5

, p4, . . . , p4︸ ︷︷ ︸
21

, p2, . . . , p2︸ ︷︷ ︸
87︸ ︷︷ ︸

v=114

; (15)

Y = p8, p8, p6, . . . , p6︸ ︷︷ ︸
7

, p4, . . . , p4︸ ︷︷ ︸
27

, p2, . . . , p2︸ ︷︷ ︸
78︸ ︷︷ ︸

v=114

. (16)

We divide the columns of the table into two groups:

T∑
i=1

r+t∏
j=1

Pi,j =
T∑
i=1

(Pi,1 · Pi,2)︸ ︷︷ ︸
I

·

(
18∏
j=3

Pi,j

)
︸ ︷︷ ︸

II

. (17)

We multiply the elements of the group I in pairs:

Pi,1 · Pi,2 = P
(I)
i , ∀i = 1, T .

Arrange in each row of II all factors in non-increasing order.
Arrange the elements of each sequence P (I)

1 , . . . , P
(I)
T , P1,j, . . . , PT,j, ∀j =

3, 18 (columns in D) in a non-increasing order. Denote the elements of the
resulting sequences P̂ (I)

1 , . . . , P̂
(I)
T , P̂1,j, . . . , P̂T,j, ∀j = 3, 18.

From the rearrangement inequality [6] it follows that

T∑
i=1

(Pi,1 · Pi,2)︸ ︷︷ ︸
I

·

(
18∏
j=3

Pi,j

)
︸ ︷︷ ︸

II

≤
T∑
i=1

P̂
(I)
i︸︷︷︸
I

·

(
18∏
j=3

P̂i,j

)
︸ ︷︷ ︸

II

. (18)

Let’s estimate P̂ (I)
1 , . . . , P̂

(I)
T using X (13). Knowing that all pairs in the

first and second columns are different, we replace the elements of the sequence
by the X ×X:

p2
8, p8p6, . . . , p8p6︸ ︷︷ ︸

10 lines

, p6, . . . , p6︸ ︷︷ ︸
25 lines

, p8p4, . . . , p8p4︸ ︷︷ ︸
42 lines

, . . . . (19)

Let’s estimate the group II.
We note that the following inequality holds:

P̂i = P̂
(I)
i ·

(
18∏
j=3

P̂i,j

)
≤ P̂i+1 = P̂

(I)
i+1 ·

(
18∏
j=3

P̂i+1,j

)
, ∀i = 1, T − 1. (20)
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Assume that the coordinates of all elements p8 in II are known (Fig.2.a).

Figure 2: Reordering elements in II.

We describe the procedure for reordering all elements p6, p4 and p2 in II.
1) Select the element in the first row P̂1,z 6= p8, z = 3, 18. Let z be the

smallest (left column). If in the first row all elements are equal to p8, we
consider the second row, etc.

2) Find the maximum of all elements in II, which have not been reordered
before:

P̂i′,j′ = max
i,j

P̂i,j, P̂i,j 6= p8, i, i
′ = 1, T , j, j′ = 3, 18.

3) We will exchange the values of the elements P̂1,z and P̂i′,j′. If i′ = 1,
then (18) does not change due to commutativity of multiplication. If i′ 6= 1,
then due to (20) then estimate (18) does not decrease. Note that after the
exchange of elements can be broken inequalities (20).

4) Arrange the elements in columns P̂ (I)
1 , . . . , P̂

(I)
T , P̂1,j, . . . , P̂T,j, ∀j =

3, 18 by non-increasing. As a consequence of rearrangement inequality, (20)
will be true. The value

∑T
i=1 P̂

(I)
i ·
(∏18

j=3 P̂i,j

)
will not decrease. The sequence

P̂
(I)
1 , . . . , P̂

(I)
T , the coordinates of the elements p8 and the value of the element

with coordinates (1, z) do not change.
The element with coordinates (1, z) has been reordered.
We choose in the first row the next element not equal to p8. We will

perform the above steps 1 – 4.
Perform steps 1 – 4 sequentially for each element of the table not equal

to p8 and which has not been reordered before.
The result of the procedure will be the table D̂. An exemplary view of

the table D̂ is shown in the figure 2.b. At each step of the procedure, the
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estimate (18) does not decrease. Suppose that there is a table D̃, which gives
a greater estimate. If D̃ coincide with D̂ within the accuracy of permutation
of the same elements, then estimates (18) are the same, too. If D̃ does not
coincide with D̂, then apply the reorder procedure to the table D̃. Due to
the steps that do not decrease the estimate (18), the table D̂, will be built.

Thus it is proved that for a given arrangement of all elements p8, the
reordering procedure allows us to obtain the greatest estimate (18).

Let us now consider the possible arrangement of elements p8 in the group
II.

The numbers of the elements p8 in the tables D and D̂ are the same. The
number of rows containing the same number of elements p8 also coincides.

Let wi be the number of elements p8 in the i-th row of the table D̂,
wi ≥ wi+1, i = 1, T − 1. Then

T∑
i=1

wi ≤ v · 16 · 2 = 3648, (21)

16 – the number of columns in the group II, 2 – the number of elements p8

in (16). Hence, ∣∣{i : wi > 0, i = 1, T}
∣∣ ≤ v · 16 · 2 = 3648. (22)

The number of rows containing exactly 2 elements p8 can be estimated
as a

(
16
2

)
· 22 – the number of pairs multiplied by the number of variants in

the pair. Assume that the number of such pairs is greater. There are two
different rows (two different codewords) that contain the same pair of bytes.
Therefore, the sum of such codewords will give a codeword with a weight of
16 or less. It contradicts the MDS-code definition.

Let us estimate the number of rows with a greater number of elements.
The maximum number of pairs is known –

(
16
2

)
· 22. On the other hand, let

i-th row contains wi elements p8, then this row contains
(
wi
2

)
different pairs

of elements p8. Then the number of rows containing exactly w elements p8 is
limited: ∣∣{i : wi = w, i = 1, T}

∣∣ ≤ (16

2

)
· 22/

(
w

2

)
, 2 ≤ w ≤ 16. (23)

And also:∣∣{i : wi ≥ w, i = 1, T}
∣∣ ≤ (16

2

)
· 22/

(
w

2

)
, 2 ≤ w ≤ 16. (24)
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In addition, there should be a limit for the total number of pairs of ele-
ments p8 in the table D̂:

T∑
i=1

(
wi
2

)
≤
(

16

2

)
· 22 = 480. (25)

It is possible to show that the number of rows containing exactly ω = 8
elements p8, no more than ρ ≤ 5. In each column of the table D̂, no more
than two different byte values correspond to the value of p8. Any row must
have at most one intersection (the same byte in the same column) with any
other row. Initially, the number of bytes that were not selected is equal to
ν = 2 · 16 = 32.

Choose the first row that contains exactly 8 elements p8. Subtract ω = 8
from ν.

Choose the second row that intersects the first row. Subtract ω − 1 = 7
from ν.

Select the third row that intersects the first row and the second row. The
minimum number that can be subtracted from ν is ω − 2 = 6.

And so on:

ν − (ω · ρ−
ρ−1∑
i=1

i) ≥ 0,

ν − ωρ+
ρ(ρ− 1)

2
≥ 0,

1

2
ρ2 − (ω +

1

2
) · ρ+ ν ≥ 0.

Then
1

2
ρ2 − (8 +

1

2
) · ρ+ 32 ≥ 0 (26)

Hence, ρ ∈ {0, 1, 2, 3, 4, 5}. If ρ = 6 then (26) less than zero.
Similarly, when ω = 9 that ρ ≤ 4. I.e. it is possible to show that the

number of rows containing exactly 9 elements p8, no more than 4. If ω = 10
or ω = 11 then ρ ≤ 3. If ω ∈ {12, 13, 14, 15, 16} then ρ ≤ 2.

Also, the following inequalities are true:∣∣{i : wi ≥ 8, i = 1, T}
∣∣ ≤ 5∣∣{i : wi ≥ 9, i = 1, T}
∣∣ ≤ 4 (27)∣∣{i : wi ≥ 10, i = 1, T}
∣∣ ≤ 3∣∣{i : wi ≥ 12, i = 1, T}
∣∣ ≤ 2
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wi ≤ min (2 · 16− w1 − (w2 − 1) + 2, wi−1) , i = 3, T (28)

Let wi > 2 ·16−w1− (w2−1) + 2. Then the i-th row must have at least two
identical bytes with the first row or second row. It contradicts the MDS-code
definition.

Let’s iterate all possible sets wi, i = 1, T . We will take into account the
restrictions (21), (23), (25), (27), (28).

We choose the maximum estimate among all sets wi, i = 1, T .

T∑
i=1

P̂
(I)
i ·

(
18∏
j=3

P̂i,j

)
≤ 2−87.469... < P diff17

best = 2−86.660.... (29)

Note that it is possible to obtain more rough estimate without any ad-
ditional search. We will not use restrictions (21), (25). Take the maximum
values of the inequalities (24) and (27). The inequality (27) shows that the
greatest w1, . . . , w5 = (16, 16, 11, 9, 8). Upper bounds in the inequality (24):
exactly 7 elements p8 – 17 rows, 6 elements – 10 rows, 5 elements – 16 rows,
4 elements – 32 rows, 3 elements – 80 rows, 2 elements – 320 rows, 1 element
– 3168 rows.

T∑
i=1

P̂
(I)
i ·

(
18∏
j=3

P̂i,j

)
≤ 2−87.012... < P diff17

best = 2−86.660.... (30)

The best estimate for a differential with 19 active S-boxes (P diff19
best ) cannot

be greater than the best estimate for a differential with 18 active S-boxes
(P diff18

best ).

P diff19
best ≤

255∑
i=1

P (xk1
→ α

(i)
k1

) · P diff18
best =

= P diff18
best ·

255∑
i=1

P (xk1
→ α

(i)
k1

) = P diff18
best · 1, ∀k1, xk1

, αk1
.

Similarly for cases of 20, . . . , 32 active S-boxes.
Hence, the original lemma is proved:

P diff
best = P diff17

best .

Lemma 4. Let (a→ b) is the linear hull in 2-round Kuznyechik. Let P (a→
b) be maximal among all linear hulls. Then the number of active S-boxes in
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(a→ b) is equal to n+ 1 = 17.

Proof The proof is analogous to the Lemma of the best differential.
p8 is replaced by p′28 =

(
2·28
256

)2.
p6, p4, p2 is replaced by p′26 =

(
2·26
256

)2, ... , p′2 =
(

2·2
256

)2.
Majorants (13) and (14) are replaced by

X ′ = p
′

28, p
′

26, p
′

24, p
′

24, p
′

22, p
′

20, p
′

20, p
′

20, p
′

18, p
′

18, p
′

18, p
′

18, . . . , p
′

2, . . . , p
′

2︸ ︷︷ ︸
40︸ ︷︷ ︸

242

, 0, . . . , 0︸ ︷︷ ︸
13

and

Y ′ = p
′

28, p
′

28, p
′

24, p
′

24, p
′

22, p
′

22, p
′

22, p
′

20, p
′

20, p
′

20, p
′

20, . . . , p
′

2, . . . , p
′

2︸ ︷︷ ︸
7︸ ︷︷ ︸

247

, 0, . . . , 0︸ ︷︷ ︸
8

correspondingly.
Estimate of P (a,b) similar to (29):

P (a,b) ≤ 2−77.310... < P lin
best = 2−76.936....
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E Pseudocode of algorithms

Algorithm for finding codewords with the smallest byte weight

Algorithm 1 Algorithm for finding codewords with the smallest byte weight
Input: k[1 . . . t] – nonzero x coordinates, m[1 . . . r] – nonzero y coordinates,

L[1 . . . n, 1 . . . n], t+ r = n+ 1 // Matrix L in row-by-row representation
Output: M (n+1)(k1, . . . , kt,m1, . . . ,mr)
1: function find_codewords(k[1 . . . t], m[1 . . . r], L[1 . . . n, 1 . . . n])
2: m′[1...n− r] := {i : i /∈ m, 1 ≤ i ≤ n} // zero y coordinates
3: S[1 . . . n− r, 1 . . . t]
4: for i := 1 to n− r do
5: for j := 1 to t do
6: S[i][j] := L[m′[i]][k[j]]
7: end for
8: end for
9: S := identity_form(S)// Gauss method over GF (28)

10: // S =

 1 · · · 0 c1
... . . . ...

...
0 · · · 1 cn−r


11: codewords := {}
12: α[1 . . . t] := [0 . . . 0]
13: for all e in GF (28)\0 do
14: α[t] := e
15: for i := 1 to t− 1 do
16: α[i] := e× S[i][t] // αi = αt × ci
17: end for
18: β[1 . . . r] := L(α) // zero coordinates are not specified
19: codewords.add((α, β))
20: end for
21: return codewords

The above algorithm could be easily generalized to finding small weight
w > n+ 1 codewords. In this case, the number of free variables in each sub-
system Sn−r,t increases. Accordingly, the number of codewords generated by
a single subsystem increases to 255w−n. These codewords can include words
that weigh less than w. This requires additional verification and increases
the complexity of the algorithm.

The algorithm can be applied to an arbitrary MDS-code (2n, n, n + 1)
over any finite field F.

We estimate the time complexity of the algorithm: Gaussian algorithm –
O(t3); substitution of values – O(ord(F)w−n); linear transformation – O(n2).
The total complexity of the algorithm is O(t3 + ord(F)w−n + n2) = O(n3 +
ord(F)w−n).
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One of the applications of this algorithm is the search in MDS-code code-
words with small binary weight. The results are presented in Appendix B.

Algorithm for finding the best differential trail

Algorithm 2 Algorithm for finding the best differential trail
Input: L[1 . . . n, 1 . . . n], DDT[1 . . . 255, 1 . . . 255]

// DDT[αi, βj] = P (αi → βj), i, j = 1, 255, αi, βj ∈ {0, 1}8\0
Output: best_diff_trails, P trail

best

1: function find_best_diff_trails(L[1 . . . n, 1 . . . n], DDT[1 . . . 255, 1 . . . 255] )
2: best_diff_trails := {}
3: P trail

best := 0
4: for t := 1 to n do
5: r := n+ 1− t
6: for all k[1 . . . t] in combinations(n, t) do
7: for all m[1 . . . r] in combinations(n, r) do
8: codewords := find_codewords(k[1 . . . t], m[1 . . . r], L)
9: // codewords[i] =(∆

(i)
1 ,∆

(i)
2 )= (α

(i)
k1
. . . α

(i)
kt
,β(i)
m1 . . . β

(i)
mr), i = 1, 255

10: for all α[1 . . . t], β[1 . . . r] in codewords do
11: Pmax(∆1,∆2) := get_P_max (α[1 . . . t], β[1 . . . r], DDT)
12: if Pmax(∆1,∆2) = P trail

best then
13: best_diff_trails.add((α[1 . . . t], β[1 . . . r]))
14: end if
15: if Pmax(∆1,∆2) > P trail

best then
16: P trail

best := Pmax(∆1,∆2)
17: best_diff_trails := {(α[1 . . . t], β[1 . . . r])}
18: end if
19: end for
20: end for
21: end for
22: end for
23: return best_diff_trails, P trail

best

Time complexity of the algorithm 2 is

O


n∑
t=1

(
n

t

)(
n

n+ 1− t

)
︸ ︷︷ ︸

all combinations

(
n3 + ord(F)

)︸ ︷︷ ︸
find_codewords

· (n+ 1)︸ ︷︷ ︸
get_P_max

 =

= O

((
2n

n+ 1

)
· n4

)
= O

(
22n

√
n
n4

)
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Algorithm 3 Algorithm for calculating Pmax(∆1,∆2)

1: function get_P_max (α[1 . . . t], β[1 . . . r], DDT[1 . . . 255, 1 . . . 255])
2: // (∆1,∆2)= (αk1 . . . αkt ,βm1 . . . βmr)
3: Pmax(∆1,∆2) := 1
4: for i := 1 to t do
5: Pmax(∆1,∆2) := Pmax(∆1,∆2)×max

x
(DDT[x][α[i]])

6: end for
7: for j := 1 to r do
8: Pmax(∆1,∆2) := Pmax(∆1,∆2)×max

y
(DDT[β[j]][y])

9: end for
10: // the values max

x
(DDT[x][y]), max

y
(DDT[x][y]) can easily be cached

11: return Pmax(∆1,∆2)

The complexity of the algorithm is trivial – O(t+ r) = O(n)

Algorithm for calculating the upper bound of the differential

Algorithm 4 Algorithm for calculating the upper bound of the differential
Input: M (n+1)(k1, . . . , kt,m1, . . . ,mr), DDT[1 . . . 255, 1 . . . 255]
Output: Pest ≥ P (∆x→ ∆y)
1: function get_upper_bound(codewords[1 . . . 255], DDT[1 . . . 255, 1 . . . 255])
2: P_parts[1 . . . 255] := {}
3: for i := 1 to 255 do
4: α[1 . . . t], β[1 . . . r] := codewords[i]
5: P_parts[i] := get_P_max (α[1 . . . t− u], β[1 . . . r − v], DDT)// Let u = v = 2
6: end for
7: P_parts[1 . . . 255] := non_increasing_sort(P_parts[1 . . . 255])
8: X[1 . . . 255] := get_majorant(DDT[1 . . . 255, 1 . . . 255], input)
9: Y [1 . . . 255] := get_majorant(DDT[1 . . . 255, 1 . . . 255], output)
10: Pest := 0
11: for i := 1 to 255 do
12: Pest := Pest +X[i]u × Y [i]v × P_parts[i]
13: end for
14: return Pest

The values returned by the function get_majorant can be cached. There-
fore, the complexity of the algorithm 4 is equal to O(ord(F) · n).

103



Algorithm 5 Algorithm for calculating X and Y
Input: DDT[1 . . . 255, 1 . . . 255], input (X) or output (Y )
Output: X[1 . . . 255] or Y [1 . . . 255], 8
1: function get_majorant(DDT[1 . . . 255, 1 . . . 255], input/output)
2: if output then
3: DDT := transpose(DDT)
4: end if
5: for i := 1 to 255 do
6: DDT[i][1 . . . 255] := non_increasing_sort(DDT[i][1 . . . 255]) // sort rows
7: end for
8: majorant[1 . . . 255] := [0, . . . , 0]
9: for i := 1 to 255 do
10: majorant[i] := max

j
(DDT[j][i]) // select the maximum in the column

11: end for
12: // zero values can be removed
13: return majorant

Time complexity of the algorithm 5 is O(ord(F)2).

Algorithm for constructing the differential

Algorithm 6 Algorithm for constructing the differential
Input: M (n+1)(k1, . . . , kt,m1, . . . ,mr), DDT[1 . . . 255, 1 . . . 255], P diff

est

Output: best_differentials, P diff
est

1: function construct_differentials(codewords[1 . . . 255], DDT[1 . . . 255, 1 . . . 255],
P diff
est )

2: row_index := {1, . . . , 255}
3: row_est[1 . . . 255] := [0, . . . , 0]
4: for i := 1 to 255 do
5: α[1 . . . t], β[1 . . . r] := codewords[i]
6: row_est[i] := get_P_max (α[1 . . . t], β[1 . . . r], DDT)
7: end for
8: best_differentials := {}
9: external_bytes[1 . . . t+ r] := [0, . . . , 0] // ∆x and ∆y
10: recursive_search(1, row_index, row_est)
11: return best_differentials, P diff

est

The complexity of the algorithm 6 is determined by the complexity of
algorithm 7.

Denote the complexity of the algorithm for constructing the differential as
Cdiff . In general case, algorithm 7 performs an exhaustive search of all inputs
∆x and outputs ∆y. In this case Cdiff = O(ord(F)n). But in our practice, the
average number of operations performed by the algorithm for constructing
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the differential is approximately equal to ord(F)2. A more accurate estimate
of the complexity is the subject of further research.

Algorithm 7 Recursive search of the differential
1: variables from Algorithm 6:
2: codewords[1 . . . 255] // codewords[i]=codeword[1 . . . t+ r], i = 1, 255
3: DDT[1 . . . 255, 1 . . . 255]
4: external_bytes[1 . . . t+ r]
5: P diff

est

6: best_differentials = {}
7: procedure recursive_search(column, row_index, row_est)
8: if column > t+ r then
9: ∆x := external_bytes[1 . . . t], ∆y := external_bytes[t+ 1 . . . t+ r]
10: P (∆x→ ∆y) := sum(row_est)
11: if P (∆x→ ∆y) = P diff

est then
12: best_differentials.add((∆x,∆y))
13: end if
14: if P (∆x→ ∆y) > P diff

est then
15: best_differentials = {(∆x,∆y)}
16: end if
17: return
18: end if
19: for a := 1 to 255 do
20: external_bytes[column] := a
21: new_row_index := {}, new_row_est[1 . . . 255] := [0, . . . , 0], Pest := 0
22: for all i in row_index do
23: codeword[1 . . . t+ r] := codewords[i]
24: Ptrail := row_est[i]
25: internal_byte := codeword[column]
26: if column ≤ t then
27: Ptrail := Ptrail ×DDT[a][internal_byte]/max

x
(DDT[x][internal_byte])

28: else
29: Ptrail := Ptrail ×DDT[internal_byte][a]/max

y
(DDT[internal_byte][y])

30: end if
31: if Ptrail > 0 then
32: Pest := Pest + Ptrail
33: new_row_index.add(i)
34: new_row_est[i] := Ptrail
35: end if
36: end for
37: if Pest ≥ P diff

est then
38: recursive_search(column+1, new_row_index, new_row_est)
39: end if
40: end for
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Algorithm for finding the best differential

Algorithm 8 Algorithm for finding the best differential
Input: L[1 . . . n, 1 . . . n], DDT[1 . . . 255, 1 . . . 255] , P trail

best

Output: best_differentials, P diff
best

1: function find_best_differentials(L[1 . . . n, 1 . . . n], DDT[1 . . . 255, 1 . . . 255] )
2: best_differentials := {}
3: best_diff_trails, P trail

best := find_best_diff_trails(L, DDT)
4: P diff

est := P trail
best

5: for t := 1 to n do
6: r := n+ 1− t
7: for all k[1 . . . t] in combinations(n, t) do
8: for all m[1 . . . r] in combinations(n, r) do
9: codewords := find_codewords(k[1 . . . t], m[1 . . . r], L)
10: Pest := get_upper_bound(codewords, DDT)
11: if Pest < P diff

est then
12: continue
13: end if
14: differentials, Pest := construct_differentials(codewords, DDT, P diff

est )
15: if Pest = P diff

est then
16: best_differentials := best_differentials ∪ differentials
17: end if
18: if Pest > P diff

est then
19: P diff

est := Pest
20: best_differentials := differentials
21: end if
22: end for
23: end for
24: end for
25: P diff

best := P diff
est

26: return best_differentials, P diff
best

Time complexity of the algorithm 8 is

O


n∑
t=1

(
n

t

)(
n

n+ 1− t

)
︸ ︷︷ ︸

all combinations

n3 + ord(F)︸ ︷︷ ︸
find_codewords

+ ord(F) · n︸ ︷︷ ︸
get_upper_bound

+ Cdiff︸ ︷︷ ︸
construct_differentials


 =

= O

((
2n

n+ 1

)
· Cdiff

)
= O

(
22n

√
n
· Cdiff

)
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Abstract

The increasing volumes of information processed in computer systems lead to
the actual problem related to synthesis of block ciphers. The urgent task is to im-
prove the encryption productivity. The paper is devoted to the development of the
approach for solving the designated task. This approach is to use shift registers with
several feedbacks as a round transformation of block cipher. We proposed a class of
nonlinear transformations generalizing the Feistel network and constructed on the
autonomous shift register of length n over a set of 32-dimensional binary vectors with
m feedbacks, 32 ≥ n > m ≥ 1. To assess the ultimate (maximum possible) produc-
tivity of the corresponding encryption algorithms, we investigated the dependence
of productivity on a number of characteristics, such as the size of data blocks, the
speed of the round confusion function, the exponent of the mixing digraph of the
round transformation. The proposed integral characteristic of the ultimate encryp-
tion productivity can be used by developers for choosing the parameters of specified
block encryption algorithms. The obtained results show that with increasing the
block size, the encryption productivity grows but slower than the block size. We de-
termined that the algorithm based on the shift register of length 15 with 5 feedbacks
over V32 is the most productive in the classes under research. The cryptographic
properties of the proposed algorithms, not related with increasing of productivity,
are not discussed in detail.

Keywords: block ciphers, encryption productivity, shift registers, full mixing, exponent of
digraph.

1 Introduction

Block ciphers are widely used for encryption of large volumes of data.
Therefore, a relevant direction in cryptology is connected with acceleration
of implementations of iterative block encryption algorithms and construction
of high-performance algorithms based on SP-networks, Feistel networks or
some of its generalizations. In accordance with the construction of iterative
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block ciphers [1, ch.15] the main factors determining the productivity of
algorithms are as follows: the size of data blocks, computational complexity
of software and/or hardware implementation for the round, the number of
encryption rounds.

Selection of the most appropriate high-performance encryption algorithm
in a particular cryptosystem is performed with a purpose of ensuring a suffi-
ciently high cryptographic strength. Generally, this condition is not met for
a small number of encryption rounds. Therefore, there must be a reasonable
compromise between cryptographic strength and encryption productivity.
Particularly, the compromise solution implies the determination of a suffi-
cient number of encryption rounds at the selected round transformation. In
this paper, we compared the potential of different classes of block algorithms
in terms of achieving a certain encryption productivity. We chose several
classes of algorithms and proved the choice of algorithms with acceptable
estimates of cryptographic strength and the highest encryption productivity.

The paper suggests a way to compare the potential of different classes of
block algorithms in terms of achieving a certain encryption productivity. Sev-
eral classes of similar algorithms in which the number of encryption rounds is
a parameter are considered. We justify the choice of algorithms with the high-
est ultimate performance from several classes of algorithms with acceptable
estimates of the cryptographic strength.

Denote by N the set of positive integers, n ∈ N , by Vn — the set of all
binary vectors of length n, n > 1, by Γ(g) — a mixing digraph of transfor-
mation g : Vn → Vn, by exp Γ — an exponent of digraph Γ.

2 Theoretical evaluation of block encryption algorithms produc-
tivity

For positive integers n, r and m, n > m ≥ 1 let R(n, r,m) be a class
of autonomous shift registers of length n over the Vr with m feedbacks. The
class R(2, r, 1) corresponds to original Feistel networks; classes R(n, r, 1),
R(n, r, n/2) and R(n, r, n− 1) are associated with type-1, type-2 and type-3
of Generalized Feistel Networks respectively [2],[3], [4].

Let us consider an h-round block encryption algorithm with a nonlinear
round transformation g based on the shift register from R(n, r,m). For sim-
plicity, we imply that the register feedbacks are the same and implemented
by function f(x1, ..., xr) form > 1. Denote by τ(f) the time (in sec) of calcu-
lating the value of function f(x1, ...., xr), assuming that time is the same for
all inputs; π(n, r,m, h) – the productivity of h-round block algorithm based
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on the shift register from R(n, r,m) (bits per second).

Proposition 1. If the implementation time of shift for coordinates of the
binary vector is substantially less than τ(f), then

π(n, r,m, h) ≈ nr/hmτ(f) (1)

Proof. Each round of the block encryption algorithm based on the shift reg-
ister from R(n, r,m) consists of n operations over the set of vectors from Vr:
m operations of calculation of the values of the function f(x1, . . . , xr) and
n−m operations of shifts. Therefore, under these conditions the runtime of
one round can be estimated by mτ(f) and the runtime of h rounds is esti-
mated by hmτ(f). The output of this encryption algorithm is nr-bit vector.
Hence, the productivity of h-round algorithm based on the shift register from
R(n, r,m) is estimated by the specified value. �

An important property of the block algorithm is the dependence of each
bit of the output block on all bits of the input block. Let us call this prop-
erty the complete mixing of the inputs. If the round keys are mixed with
the data using the XOR operation, then the mixing matrices of all rounds
of the algorithm coincide. An important characteristic of such algorithms
is the exponent of the mixing matrix of the round substitution (for any
fixed key). The calculation of the exponent makes it possible to substan-
tially narrow down the search for the least number of rounds after which
the algorithm can achieve a full mixing of inputs. Similar concepts are also
defined for the decryption algorithm. We can talk about full mixing of in-
puts by the decryption algorithm. For brevity, we assume that the h-round
block encryption (decryption) algorithm provides the full mixing of inputs if
exp Γ(g) ≤ h (or exp Γ(g−1) ≤ h), where g is the round transformation. In
fact, these inequalities are only necessary conditions for the full mixing. Let
h = s+ h− s, where s = 1, . . . , h− 1. The analysis shows that the h-round
block encryption algorithm is resistant to the meet-in-the-middle attack only
if the s-round encryption algorithm or (h − s)-round decryption algorithm
provides the full mixing of inputs. The resistance to any method is equivalent
to the statement: the computational complexity of this method is not less
than the computational complexity of a brute force attack. Hence, we get the
necessary condition (in the form of a lower bound) for the resistance of the
h-round block encryption algorithm to the meet-in-the-middle attack:

h ≥ exp Γ(g) + exp Γ(g−1)− 1. (2)

In this regard, let us assume that the h-round block encryption algorithm
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has the property of full two-way mixing if relation (2) holds. Let us denote
by v(g, n, r,m) the highest productivity of the block encryption algorithm
based on the shift register from R(n, r,m) with a round transformation g
provided the full two-way mixing.

Proposition 2. The following relation holds: v(n, r,m, g) ≈ nr/h0mτ(f),
where h0 = exp Γ(g) + exp Γ(g−1)− 1.

Proof. The higher the performance of the h-round block encryption algorithm
is the fewer rounds are implemented. The least number of rounds provided the
full two-way mixing is equal to h0. Hence, we obtain the required estimation
in accordance with Proposition 1. �

Note that in practice the lower bound (2) can not be achieved. So the
ultimate productivity specified in Proposition 2 can not be achieved too.
The mixing digraph Γ(g) of the round transformation g has nr vertices —
in practical cases, at least 64 and can reach the value of 1024 or more. For
large values of nr (for example n ≥ 8, r ≥ 32) it is convenient (in terms
of evaluation) to additionally consider the block mixing digraph ΓB(g) with
n vertices. The value of the exponent of block mixing digraph is easier to
calculate. In our case ( 8 ≤ n ≤ 32) the state of shift register is divided into
r-bit blocks B1, . . . , Bn and ΓB(g) has arc (i, j) if and only if the output of Bj

essentially depends on input of Bi, i, j ∈ {1, . . . , n}). In accordance with the
definition exp ΓB(g) ≤ exp Γ(g), these values are very close in many cases.
Hence, the upper bound for the maximum productivity of block encryption
algorithm with the round transformation g based on the shift register from
R(n, r,m) and provided the complete two-way mixing is

v(n, r,m, g) ≤ nr/hbmτ(f), (3)

where hb = exp ΓB(g) + exp ΓB(g−1)− 1.
The maximum productivity of encryption algorithms based on shift reg-

isters from R(n, r,m) is not the same, it depends on the characteristics of the
round transformation g. So the relevant problem is the description of shift
registers from R(n, r,m) with the marginal productivity close to the maxi-
mum. Important tasks are as follows: 1) choice of the feedback function with
the lowest value of τ(f); 2) determination of the ratio of n and m, such that
the value of h0m is the least (with increasing the number m of feedbacks,
the value of h0 has an obvious tendency to decrease).
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3 Algorithms based on Generalized Feistel Networks

We considered algorithms from the R(8, 32, 3), R(15, 32, 5), R(16, 32, 5),
R(30, 32, 9) and R(32, 32, 9) classes, established some properties of these
algorithms and evaluated the maximum encryption productivity.

3.1 Requirements for the round transformations from R(n, 32,m)
and the construction of the encryption algorithm

The round function must provide a number of properties such as: bijectiv-
ity, nonlinearity of all the coordinate functions, the best (or close to) mixing
properties. The list does not pretend to be complete.

Let us consider a register transformation over V32n with feedback func-
tions (f(S, qj)�Xk) , 1 ≤ j ≤ m, k ∈ {1, . . . , n}, where � — addition
modulo 232, S — the sum modulo 232 of the some subblocks of the input
block X, qj – the round key at round j. The confusion function is imple-
mented similarly to the functions in the GOST 28147-89 algorithm:

f(S, qj) = T 11(W8,4(S � qj)), (4)

where T 11 — 11-bit circular shift to most significant bits, W8,4 — the value
of eight 4-bit s-boxes of GOST 28147-89. Experimental evaluation showed
that the productivity of the encryption is close to the maximum when the
number m of feedback functions defined by the equation m = dn/4e+ 1.

As an example, we describe the 256-3 and 480-5 algorithms from the
R(8, 32, 3) and R(15, 32, 5) classes respectively. In the 256-3 algorithm, the
i-th round implements the transformation g(qi1, q

i
2, q

i
3) depending on the

round keys qi1, qi2, qi3 ∈ V32, 1 ≤ i ≤ h. Let X = (X0, X1, . . . , X7) and
Y = (Y0, Y1, . . . , Y7) be input and output blocks of the round respectively,
Xk, Yk ∈ V32, 0 ≤ k ≤ 7. In case of the qi1, qi2, qi3 round keys, the direct and
inverse round transformation based on the shift register of length 8 over V32

are described by formulas (see fig.3.1):

g(qi1, q
i
2, q

i
3)(X0, . . . , X7) =

(X1, f(S, q1)�X2, X3, X4, f(S, q2)�X5, X6, X7, f(S, q3)�X0), (5)

g−1(qi1, q
i
2, q

i
3)(Y0, . . . , Y7) =

= (f(S ′, q3)� Y7, Y0, f(S ′, q1)� Y1, Y2, Y3, f(S ′, q2)� Y4, Y5, Y6), (6)

where S = (X1 �X3 �X4 �X6 �X7), S
′ = (Y0, Y2, Y3, Y5, Y6).
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Figure 1: Round of the 256-3 algorithm

In case of the q1, . . . , q5 round keys, the direct and inverse round transfor-
mation based on the shift register of length 15 over the set V32 are described
by formulas (see fig.2):

g(q1, . . . , q5)(X0, . . . , X14) =

(X1, f(S, q1)�X2, X3, X4, f(S, q2)�X5, X6, X7, f(S, q3)�X8,

X9, X10, f(S, q4)�X11, X12, X13, f(S, q5)�X14, X0) (7)

g−1(q1, . . . , q5)(Y0, . . . , Y14) = (Y14, Y0, f(S ′, q1)� Y1, Y2, Y3, f(S ′, q2)�

Y4, Y5, Y6, f(S ′, q3)� Y7, Y8, Y9, f(S ′, q4)� Y10, Y11, Y12, f(S ′, q5)� Y13), (8)

where S = X0 � X1 � X3 � X4 � X6 � X7 � X9 � X10 � X12 � X13,
S ′ = Y0 � Y2 � Y3 � Y5 � Y6 � Y8 � Y9 � Y11 � Y12 � Y14.

Figure 2: Round of the 480-5 algorithm

To prove the bijectivity of the round transformation of both ciphers,
it is enough to show the injectivity. For example, it follows from (5) that
g(q1, q2, q3)(X0, . . . , X7) 6= g(q1, q2, q3)(X

′
0, . . . , X

′
7), if (X0, . . . , X7) 6=

6= (X ′0, . . . , X
′
7). Definitely, if (X1, X3, X4, X6, X7) 6= (X ′1, X

′
3, X

′
4, X

′
6, X

′
7),

then the inequality is achieved for the 0th, 2th, 3th, 5th, 6th components of
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values. Otherwise, if (X0, X2, X5) 6= (X ′0, X
′
2, X

′
5), inequality is true for the

1st, 4th, 7th components.
The bijectivity of the 480-5 cipher round transformation is proved simi-

larly. The nonlinearity of round transformations follows from the properties
of the feedback function.

3.2 Evaluation of mixing properties

Mixing properties of algorithms are evaluated by exponents of block mix-
ing digraphs ΓB(g(q1, . . . , qm)) and ΓB(g−1(q′1, . . . , q

′
m)) for round transfor-

mation g(q1, . . . , qm) and its inverse transformation. For an exponent of a
strongly connected digraph Γ with loops the value which directly follows
from the Theorem 2 in [5, p. 121-122] is true:

exp Γ ≤ max
i,j∈{1,...,n}

min
p∈Π

di,p,j, (9)

where Π — the set of vertices with a loop in the digraph Γ, di,p,j — the
length of the shortest path from i to j passing through the vertex p, where
i, j, p ∈ {1, . . . , n}. The exponents of mixing digraphs of direct and inverse
transformation of the 256-3 algorithm are measured using (9). For clarity of
representation of block mixing digraphs, we use: bold arrows (i, S) in figure
3 are not the arcs of the digraph and indicate that the subblock Xi is used to
calculate the sum S mod 232 in accordance with the formula (4); arcs (S, j)
indicate that the sum S mod 232 is used to calculate Xj using the formula
(4), 0 ≤ i, j ≤ 7. Thus, an arc in digraph is either a simple arrow (not bold),
or a concatenation of the bold arrow with a simple arrow. For example, the
shortest path from 0 to 0 is the path (0,7,1,0) of length 3 (the arc (7,1) is
the concatenation of the bold arrow (7, S) with the simple arrow (S, 1)).

Using (5) and (6) we built the digraphs ΓB(g) and ΓB(g−1) (Fig. 3)
and calculated the values min

p∈Π
di,p,j, 0 ≤ i, j ≤ 7 (table 1). It is obtained

that exp ΓB(g) = exp ΓB(g−1) = 4. In accordance with (3) the number of
encryption rounds must be not less than hb, where hb ≥ 7.
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Figure 3: Mixing block digraphs ΓB(g) and ΓB(g−1) of the 256-3 algorithm

Table 1: The length of the shortest path min
p∈Π

di,p,j of the 256-3 algorithm

Similar estimates are obtained for the 480-5 algorithm using (7) and (8).
The bold arrows (i, S) and simple arcs (S, j) in figure 4 are defined in the
same way as figure 3, 0 ≤ i, j ≤ 14.

Figure 4: Mixing digraphs ΓB(g) and ΓB(g−1) of the 480-5 algorithm
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Table 2: The length of the shortest path min
p∈Π

di,p,j of the 480-5 algorithm

Using (5) and (6) we built the digraphs ΓB(g) and ΓB(g−1) (Fig.4) and
calculated the values min

p∈Π
di,p,j, 0 ≤ i, j ≤ 14 (table 2). It is obtained that

exp ΓB(g) = exp ΓB(g−1) = 5. In accordance with (3) the number of encryp-
tion rounds must be not less than hb, where hb ≥ 9.

3.3 Evaluation of productivity characteristics of algorithms

Round transformations of block encryption algorithms from the
R(8, 32, 3), R(15, 32, 5), R(16, 32, 5), R(30, 32, 9) and R(32, 32, 9) classes are
investigated by the methods presented in subsection 3.2. A number of proper-
ties of the corresponding algorithms are defined, including the characteristics
of the maximum encryption productivity. Table 3 presents preliminary esti-
mation of the ratio of the time of software implementations. The number of
rounds is calculated by the formula hb = exp ΓB(g) + exp ΓB(g−1)− 1. The
evaluation is given in comparison with GOST 28147-89 and carried out in
two ways: by formulas (1) and (3) and as the ratio of times of the software
implementations. In the second case, we use ECB-mode for encryption of the
same plaintext of length T = 21120 bytes.

Let’s explain the number of rounds 17 for GOST 28147-89 in Table 3.
For all proposed algorithms, it is assumed that the key schedule provides the
dependence of each bit of each round key on all the bits of the encryption
key. This assumption does not correct for GOST 28147-89, because the bits
of encryption key are mixed only for the first 8 rounds. Therefore, for the
block algorithms considered, the model of mixing the inputs is adequate, for
the algorithm GOST 28147-89 it is necessary to use the mathematical model
of mixing the bits of the encryption key, not the inputs. According to this
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model, the full mixing is provided after 9 rounds, both for the encryption
and for the decryption, that means that hb = 17.

Algorithm
The number of
rounds for the full
mixing of inputs, hb

The gain in produc-
tivity when compar-
ing the estimates (3),
number of times

The gain in pro-
ductivity when com-
paring the time of
software implemen-
tation, number of
times

GOST
28147-89 17 1 1

256-3 7 3.238 3.635
480-5 7 3.643 4.008
512-5 9 3.022 3.444
960-9 9 3.148 3.522
1024-9 9 3.358 3.956

Table 3. Comparison of productivity characteristics for different algorithms

The estimates show that all algorithms have a higher marginal productiv-
ity than GOST 28147-89. This means that increasing the size of input blocks
increases productivity despite increasing the number of feedbacks. The 480-5
algorithm has the highest maximum productivity. One of the factors why
480-5 has the highest value is that the number of subblocks of length 32
(n = 15) in the input block of this algorithm is a multiple of the number of
feedbacks (m = dn/4e+ 1 = 5), which allows achieving the smallest value of
the exponent of the mixing matrix of the round transformation.

4 Conclusion

In this paper, we proposed a characteristic of the maximum productivity
of block encryption algorithms with the minimum number of rounds required
for the two-way mixing of the input data by the encryption algorithm. The
proposed characteristic depends on such parameters as the size of data blocks,
the speed of the round function and the exponent of the mixing digraph
of the round transformation. This productivity characteristic can be used
by developers to determine the parameters for block encryption algorithms.
The obtained evaluations show that with increasing the input block size up
to 1024 bits (the number of feedbacks of high-performance algorithms grows
more slowly, reaching 9), the maximum encryption productivity grows, but
slower than the block size.
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Abstract

In 2018 the СTR-ACPKM and OMAC-ACPKM-Master internally re-keyed block
cipher modes were adopted in Russian Standardization System and now they are
passing through the last formal standardization stages in IETF. The main distinctive
feature of these modes is that during each message processing, the key, used for data
blocks transformation, is periodically changed. In the current paper we obtain the
security bounds for these modes in the standard IND-CPNA and PRF security
models. Particular attention is paid to the interpretation of the obtained reductions
from the viewpoint of mode resistance to the cryptanalytic methods of various types.

Keywords: CTR, OMAC, re-keying, block cipher modes, provable security.

1 Introduction

The effectiveness of many cryptanalytic methods (see, e.g. [21, 13, 23])
depends heavily on amount of data processed under a single key, therefore
this amount of data should be limited. A certain maximal amount of data,
which can be safely encrypted under a single key, is called «key lifetime». The
trivial way to increasing the key lifetime (such as renegotiation) can reduce
the total performance due to termination of application data transmission,
the use of random number generators and many other resource-intensive
additional calculations.

For the protocols based on block ciphers an efficient way to increasing the
key lifetime is to use various re-keying mechanisms. Re-keying mechanisms
can be applied on the different protocol levels: on the block cipher level
(fresh re-keying [16]), on the block cipher mode of operation level (internal
re-keying [7]), and on the message processing level (external re-keying [7]).
From the viewpoint of cryptographic and operational properties each of these
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approaches has its own advantages and disadvantages (see [25] for details).
For instance, the external re-keying approach doesn’t require the development
of new block ciphers or modes of operation and allows to apply a quite
simple modular security analysis for resulting protocol [5], while the fresh re-
keying approach often changes the internal structure of the used block cipher,
that requires a nontrivial security analysis [16]. In the Russian protocols, the
internal re-keying approach is widely spread. For example, it is used in the
protocols TLS [3], IPsec [1], CMS [2]. This approach is associated with the
development of a special class of internally re-keyed block cipher modes of
operation. Their main feature is that during each message processing, the
key, used for data blocks transformation, is periodically changed.

The current paper contains the security analysis of the СTR-ACPKM and
OMAC-ACPKM-Master internally re-keyed modes, which were adopted
in Russian Standardization System and are currently being considered in
IETF. In addition, the СTR-ACPKM mode is also supposed to be used in
the Russian ciphersuites of the TLS 1.2 protocol [4]. The analysis of the
СTR-ACPKM and OMAC-ACPKM-Master modes was carried out in the
paradigm of provable security, in other words, lower security bounds were
obtained in security models relevant for encryption modes (the IND-CPNA
model [10, 24]) and message authentication modes (the PRF model [11]).
The obtained bounds show that, under security of the used block cipher, the
cryptographic properties of the СTR-ACPKM and OMAC-ACPKM-Master
modes are improved compared to the properties of the associated СTR and
OMAC modes without internal re-keying.

In addition to the concrete lower security bounds, this paper also contains
arguments about the meaning of these bounds from the viewpoint of attacks
applied to cryptographic constructions of these types. So, for each obtained
bound we show the relation between proof framework and resistance to the
attacks based on modes architectural features. These arguments show that
the heuristic (based on the concrete cryptanalytic methods) and theoretical-
complexity approaches to security analysis of cryptographic protocols are
not contradictory to each other and, according to M. Bellare [12], «emerge
as opposite sides of the same coin, and complement each other».

2 Preliminaries and Basic Security Notions

By {0, 1}u we denote the set of u-component bit strings and by {0, 1}∗ we
denote the set of all bit strings of finite length. Let 0u be the string, consisting
of u zeros. For bit strings U and V we denote by U‖V their concatenation.
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Let |U | be the bit length of the string U . We denote by |U |u = d|U |/ue the
length of the string U in u-bit blocks.

For a bit string U and a positive integer l 6 |U | let msbl(U) (lsbl(U))
be the string, consisting of the leftmost (rightmost) l bits of U . For nonneg-
ative integers l and i let strl(i) be l-bit representation of i with the least
significant bit on the right. For a nonnegative integer l and a bit string
U ∈ {0, 1}l let int(U) be an integer i such that strl(i) = U . Let Inc(U)
be the function, which takes the input U ∈ {0, 1}u and outputs the string
msbu/2(U)‖stru/2(int(lsbu/2(U)) + 1 mod 2u/2). For nonnegative integers u
let padu(U) be the function which takes U ∈ {0, 1}∗ and outputs the string
U , if u | |U |, and the string U‖10u|U |u−|U |−1, otherwise.

For any set S, define Perm(S) as the set of all bijective mappings on S
(permutations on S), and Func(S) as the set of all mappings from S to S.
A block cipher E (or just a cipher) with block size n and key size k is the
permutation family

(
EK ∈ Perm({0, 1}n) | K ∈ {0, 1}k

)
, where K is a key.

If the value s is chosen from a set S uniformly at random, then we denote
s
U←− S.
For a bit string U we denote by U [i] ∈ {0, 1}n, 1 6 i 6

d|U |/ne − 1, and U [d|U |/ne] ∈ {0, 1}h, h 6 n, such strings that U =
U [1]‖U [2]‖ . . . ‖U [d|U |/ne] and call them «blocks» of the string U .

We model an adversary using an interactive probabilistic algorithm that
has access to one or more oracles. The resources of A are measured in terms of
time and query complexities. For a fixed model of computation and a method
of encoding the time complexity includes the description size of A. The query
complexity usually includes the number of queries and the maximal length of
queries or the total length of queries. Denote by AdvMS (A) the measure of the
success of the adversary A in realizing a certain threat, defined by the model
M, for the cryptographic scheme S. The formal definition of this measure will
be given in each specific case.

A block cipher is usually regarded as a family of permutations, which
on its own does not provide such application-level security properties as in-
tegrity, confidentiality or authenticity (see, e.g. [9]). The cipher is usually
used as a base function for constructing other schemes or protocols that
solve the above-mentioned cryptographic challenges. The security of such
constructions is proven under assumption that the block cipher is secure. In
a paradigm of the practice-oriented provable security (see [12]) we should
quantify the security as a function of the used cipher security for appropriate
models.

Standard security model for block ciphers is PRP-CPA («Pseudo Ran-
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dom Permutation under Chosen Plaintext Attack») (see, e.g. [9]). The formal
definition can be found in Appendix A. In the case of the block cipher with no
attacks known, the advantage AdvPRP-CPAE (A) is estimated by the character-
istics of the general exhaustive key search attack, so AdvPRP-CPAE (A) 6 t/2k

for any adversary A with the time complexity at most t, making at least
dk/ne queries.

3 Internal Re-keying

Internal re-keying is an approach to increasing the key lifetime by using a
transformation of a data processing key (a section key) during each separate
message processing. Such key transformation mechanisms are built into the
particular base mode of operation and depend heavily on the internal features
of its structure, therefore they are called «internal» re-keying mechanisms.

Each message is processed starting with the same key (the first section
key) and each section key is updated using the certain key update technique
after processing certain amount of message blocks (a section). The mode
parameter, hereinafter called section size and denoted as N , is measured in
blocks and is fixed within a specific protocol depending on the requirements
of the system capacity and the key lifetime. In the current paper we consider
two internally re-keyed block cipher modes: the СTR-ACPKM encryption
mode and the OMAC-ACPKM-Master message authentication mode.

3.1 Internally Re-keyed СTR-ACPKM mode

In this section we define the СTR-ACPKM mode with section size N
(СTR-ACPKMN). The mode structure is shown in Figure 1. During the
processing of the input plaintext P of the block length m = |P |n under the
initial key K the message is divided into l = dm/Ne sections (denoted as
P = P 1‖P 2‖...‖P l, where P i ∈ {0, 1}nN for i ∈ {1, 2, ..., l−1}, P l ∈ {0, 1}r,
r 6 nN). The first section of each message is processed under the section
key K1 = K using the СTR subroutine. The (i+ 1)-th section of message is
continued to be processed using the СTR subroutine under the K i+1 section
key, which is calculated using ACPKM transformation as follows:

K i+1 = ACPKM(K i) = msbk(EKi(D1)‖ . . . ‖EKi(Ds)),

where s = dk/ne and D1, D2, . . . , Ds ∈ {0, 1}n are arbitrary pairwise dif-
ferent constants such that the (n/2)-th bit (counting from the right) side of
each Di is equal to 1. The plaintext length must be at most 2n/2−1 blocks.
Note that the internal state (counter) of the СTR-ACPKMN mode is not
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reset for each new section and the condition on the D1, D2, . . . , Ds constants
allows to prevent collisions of block cipher permutation inputs in cases of key
transformation and message processing (see [25, 6] for details).

K1 Kl−1K2

P2 Pl−1

K

ctr

Kl

P1

C1 Cl−1 Cl

CTR-ACPKMN:

C2

ACPKM ACPKM

CTR CTR CTRCTR
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Ci[1]

Pl

 . . .

 . . .

CTR:
EKi

ctr
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 . . .
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ctr=Inc(ctr)

msb|Pi[R]|

Figure 1: The СTR-ACPKMN encryption mode takes a key K ∈ {0, 1}k, a nonce IV ∈
{0, 1}n/2 (here ctr = IV ‖0n/2) and a plaintext P ∈ {0, 1}∗ as inputs and returns a
ciphertext C ∈ {0, 1}|P | as an output. The ACPKM subroutine generates next section
key Ki+1 using the previous section key Ki. The CTR subroutine processes sections
P 1, . . . , P l of the plaintext P under the corresponding section keys. Each section consists
of R blocks, where R = N for intermediate sections and R 6 N for a final section.

3.2 Internally Re-keyed OMAC-ACPKM-Master mode

In this section we define the OMAC-ACPKM-Master mode with section
size N and master-key change frequency T ∗ (OMAC-ACPKM-MasterN,T ∗).
The mode structure is shown in Figure 2. During the processing of the input
messageM of the block lengthm = |M |n under the initial keyK the message
M is divided into l = dm/Ne sections (denoted as M = M 1‖M 2‖ . . . ‖M l,
where M i ∈ {0, 1}nN for i ∈ {1, 2, ..., l − 1}, M l ∈ {0, 1}r, r 6 nN).
The j-th section of each message is processed with the key material Kj‖Kj

1 ,
j ∈ {1, ..., l}, Kj ∈ {0, 1}k, Kj

1 ∈ {0, 1}n, which is calculated with the
ACPKM-MasterT ∗ algorithm as follows:

K1‖K1
1‖ . . . ‖K l‖K l

1 =

= ACPKM-MasterT ∗(K, d, l) = СTR-ACPKMT ∗(K, 1
n/2, 0dln),

where d = dk/ne + 1. Note that the parameters d and l must satisfy the
inequality d · l 6 2n/2−1. All intermediate sections are processed using the
CBCMAC subroutine and the final section is processed using the TMAC
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subroutine. The message length must be at most N · 2n/2−1

d blocks.

 . . .CBCMACM1

ACPKM-MasterT*K

0n

OMAC-ACPKM-MasterN,T*:

CBCMAC:
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IV EKi EKi EKi

CBCMACM2

CBCMACMl−1

TMACMl T

K1 Kl−1K2 Kl K1
l

Mi[1] Mi[2] Mi[N]

Ki

 . . .
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 . . .

Kl K1
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Figure 2: The OMAC-ACPKM-MasterN,T ∗ authentication mode takes a key K ∈ {0, 1}k
and a message M ∈ {0, 1}∗ and outputs a tag T ∈ {0, 1}n. The ACPKM-MasterT ∗ sub-
routine generates section key material using the master key K. The CBCMAC subroutine
processes the intermediate sections M1, . . . ,M l−1 of the message M . The TMAC subrou-
tine processes the final sectionM l, size of which must be less than a section size nN (here
R = |M l|n). The key K ′ in TMAC are equal to K l

1, if the last block M l[R] is complete,
or to K l

1 · α, otherwise (the «·» operation corresponds to the multiplication operation
for the binary Galois field of 2n elements, the α element is a primitive element of the
corresponding field).

4 Security Analysis of Internally Re-keyed Modes

This section contains the security analysis results for the proposed inter-
nally re-keyed modes. This analysis was carried out in the «provable security»
paradigm. In contrast to the heuristic approach the provable security ap-
proach considers the resistance of cryptographic scheme not to certain crypt-
analytic methods, but to all methods covered by the used security model.
The security bounds, obtained as a result of such an analysis, allow to predict
worst-case methods and, basing on this prediction, to limit the data available
to the adversary for achieving necessary safety margin for real systems.

The formal proofs of the obtained security bounds are presented in Ap-
pendix D.1, D.2. In the main part of the current paper we present the argu-
ments about meaning of the proofs stages from the viewpoint of resistance to
possible methods. Inclusion of these arguments in the paper is due to a sig-
nificant number of issues related to this topic, which generate great interest
around the world (see, e.g. [22, 19, 17, 15]). The interpretation given below is
intended to deepen understanding of the so called «provable security» con-
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cept. However, this interpretation can not be considered as a new tool for
security analysis. Such an analysis should be carried only by constructing a
rigorous theoretic-complexity reduction.

The main idea behind the interpretations presented in paragraphs marked
«Practical meaning» is as follows. We consider the obtained rigorous reduc-
tion as a procedure of identifying several certain properties of the analyzed
cryptographic scheme, at least one of which any method, covered by the used
security model, has to exploit. This identifying is not unique and different
reductions can lead to the different security bounds. Therefore, the proof
framework should ideally be based on an optimal reduction which leads to
the tight security bounds (for such a bound there exists a certain method
which success probability and computational resources are exactly on the
boundary). Having defined these properties, we obtain the target bound by
summing the success probability bounds for methods exploiting one property
only.

We’ve paid a special attention to the proof sketch of the the
OMAC-ACPKM-Master mode due to its obscurity and multistage while
the proof for СTR-ACPKM is much more transparent and requires much
smaller additional explainations. Moreover, the arguments similar to the
OMAC-ACPKM-Master mode can be applied to СTR-ACPKM too.

4.1 Security Analysis of OMAC-ACPKM-Master mode

The security analysis of the OMAC-ACPKM-Master mode has been car-
ried out in the PRF («Pseudorandom Function») model, which is strictly
formalized in Appendix D.2. Informally, in this model the adversary has to
distinguish the target mode under a random unknown key from a «truly»
random function, having the capability to adaptively choose messages and
obtain their tags (in terms of model — «make queries»). The distinguisha-
bility threat, considered in the model, is «easier» to implement than the
other more intuitively understandable threats, such as key recovery or typ-
ical forgeries (universal, selective, existential). Therefore, the PRF model is
considered as the most relevant (known at the time) for the deterministic
authentication modes [11].

Theorem 1. Let N and T ∗ be the parameters of OMAC-ACPKM-Master
mode. Then for any adversary A with time complexity at most t that makes
queries, where the maximal message length is at most m blocks and the total
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message length is at most σ blocks, there exists an adversary B such that

AdvPRF
OMAC-ACPKM-MasterN,T∗(A) 6

(
l +

⌈
dl

T ∗

⌉)
·AdvPRP-CPA

E (B)+f(d, l, T ∗)+

+
4
(
σ2

1 + . . .+ σ2
l

)
2n

,

where

f(d, l, T ∗) =


⌈
dl

T ∗

⌉
(T ∗ + d− 1)2

2n
, if ddl/T ∗e > 1,

(dl)2

2n
, if ddl/T ∗e = 1.

d = dk/ne+ 1, l = dm/Ne, dl 6 2n/2−1, σj is the total block length of data
processed under the section key Kj and σj 6 2n−1, σ1 + . . . + σl = σ. The
adversary B makes at most max(σ1, T

∗ + d − 1) queries. Furthermore, the
time complexity of B is at most t+ cn(σ+ lT ∗d), where c is a constant that
depends only on the model of computation and the method of encoding.

The full proof can be found in Appendix D.2.

Proof. (sketch) The proof consists of three steps. On each step we idealize a
certain component of a target mode in order to obtain a structure which is
close to a truly random function at the end. The «cost» of each idealization
is estimated by the advantage of the worst-case adversary, distinguishing the
original component from the idealized one. This estimation is carried out by
extending capabilities of the adversary which granted to access to all inter-
nal mode states except for states related to the idealized component. The
idealization steps are presented in Figure 3a. The right arrows indicate the
idealization results and the left arrows indicate the «costs» of the correspond-
ing idealizations.
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Figure 3: a) Proof framework for the OMAC-ACPKM-Master mode. b) The properties
crucial for security of the OMAC-ACPKM-Master mode.

The first step. On the step (1) in Figure 3a (Lemma 10) we idealize the
ACPKM-Master section key generation subroutine, supposing that the re-
sulting changed mode (the abstract OMAC-RK mode) operates with «truly»
random section keys. This process corresponds to the reduction that shows,
that the existence of any method A, «PRF-breaking» the target mode
OMAC-ACPKM-Master, implies the existence of the following methods:

– method B, distinguishing the section keys, produced by
ACPKM-Master, from «truly» random ones (the PRG model).

– method C, distinguishing the abstract OMAC-RK mode from «truly»
random function (the PRF model).

The «cost» of this idealization is the advantage of the worst-case method B.
Practical meaning. The first idealization step can be interpreted as

identifying of the mode property which we denote by «Non-Randomness
of section keys» (NR). This property defines «how much» the target
OMAC-ACPKM-Master mode is distinguished from the abstract OMAC-RK
mode. The advantage of the worst-case method B can be thought as an up-
per bound of the advantage of the worst-case method which «PRF-breaks»
the target mode and is based only on the NR property.
The second step. On the step (2) in Figure 3a (Lemma 4), we idealize the sec-
tion processing functions (CBCMACs for intermediate sections and TMACs
for final sections), assuming that the outputs of each such function are inde-
pendent random values. This process corresponds to the reduction that shows
that the existence of any method A, «PRF-breaking» the target OMAC-RK
mode, implies the existence of the following methods:
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– method B, distinguishing values obtained after any section processing
by CBCMAC or TMAC, from random ones (the 3PRF model).

– method C, distinguishing the abstract OMAC-RSF mode, where all sec-
tions are processed by independent «truly» random functions, from one
«truly» random function (the PRF model). Note that the OMAC-RSF
mode is a combinatorial object, the PRF-insecurity of which can be
estimated from the theoretic-informational point of view.

The «cost» of this idealization is the advantage of the worst-case method B
which is estimated at the third step.

Practical meaning. The second idealization step result can be interpreted
as identifying of the mode property which we denote by «Correlation between
Sections» (CS). This property defines «how much» the OMAC-RSF mode
is distinguished from the «truly» random function. The advantage of the
worst-case method C can be thought as an upper bound of the advantage of
the worst-case method which PRF-breaks the target mode and is based only
on the CS property.
The third step. On the last step, (3) in Figure 3a (Lemma 7) for estimating
the «cost» of the second idealization, we idealize the used block cipher E
under a random key K i, considering it as a random permutation P . This
process corresponds to the reduction that shows, that the existence of any
method A, «3PRF-breaking» the CBCMAC and TMAC subroutines, implies
the existence of the following methods:

– method B, distinguishing the block cipher permutation under random
key from «truly» random permutation (the PRP-CPA model).

– method C, distinguishing section processing functions CBCMAC-RPs
and TMAC-RPs under a single random permutation from independent
truly random functions (the 3PRF model). Note that the considered
task is combinatorial and its 3PRF-insecurity can be estimated from
the theoretic-informational point of view.

The «cost» of this idealization is the advantage of the worst-case method B.
This advantage is estimated using known methods of cryptanalysis (linear,
differential, integral) where the adversary’s capabilities are covered by the
PRP-CPA model.

Practical meaning. Consider the mode properties which defines «how
much» the OMAC-RK mode is distinguished from the abstract OMAC-RSF
mode. By the third idealization (changing the used block cipher by the ran-
dom permutations family) we identify the last two properties: «Block Cipher
design» (BC) and «Mode design Combinatorics» (MC). Thus, the advan-
tage of the worst-case method B can be used to upper bound the advantage
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of the worst-case method which PRF-breaks the target mode and is based
only on the BC property. Similarly, the advantage of the worst-case method
C can be used to upper bound the advantage of the worst-case method based
only on the MC property.

Thus, the obtained reductions show that any method covered by the PRF
model should

be based on at least one of the following four mode properties: NR, CS,
BC or MC. In order to obtain the total bound for advantage of the worst-
case methods, «PRF-breaking» the target mode, we sum up (following the
reduction) the success probabilities of the worst-case methods, which exploit
only one of the properties mentioned above (see Figure 3b).

Thus, the obtained bound can be interpreted as follows:

AdvPRFOMAC-ACPKM-MasterN,T∗(A) 6 f(d, l, T ∗) +

⌈
dl

T ∗

⌉
· AdvPRP-CPAE (B)︸ ︷︷ ︸

NR property

+

+ l · AdvPRP-CPAE (B)︸ ︷︷ ︸
BC property

+
4
(
σ2

1 + . . .+ σ2
l

)
2n︸ ︷︷ ︸

MC and CS properties

.

�

4.2 Security Analysis of the СTR-ACPKM mode

The security analysis of the СTR-ACPKM mode has been carried out
in the IND-CPNA («Indistinguishability under Chosen Plaintext and Nonce
Attack») model, which is strictly formalized in Appendix D.1. This model is
similar to the standard IND-CPA security model [10] but considers nonce-
respecting adversaries [24]. Informally, in this model the adversary has to
distinguish the obtained ciphertexts from the «garbage», having the capa-
bility to adaptively choose plaintexts and nonces (in a unique manner). The
IND-CPNA is the strongest standard security model (known at the time)
which allows to analyze the cryptographic properties of the mode from the
viewpoint of computational «closeness» to the ideal one-time pad encryp-
tion [24].

Theorem 2. Let N be the parameter of СTR-ACPKM mode. Then for any
adversary A with time complexity at most t that makes queries, where the
maximal message length is at most m (m 6 2n/2−1) blocks and the total
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message length is at most σ blocks, there exists an adversary B such that

AdvIND-CPNA
СTR-ACPKMN

(A) 6

6 l · AdvPRP-CPA
E (B) +

(σ1 + s)2 + . . .+ (σl−1 + s)2 + (σl)
2

2n+1

where s = dk/ne, l = dm/Ne, σj is the total data block length processed
under the section key Kj and σj 6 2n−1, σ1 + . . . + σl = σ. The adversary
B makes at most σ1 + s queries. Furthermore, the time complexity of B is
at most t+ cn(σ+ ls), where c is a constant that depends only on the model
of computation and the method of encoding.

The full proof can be found in Appendix D.1.

4.3 Comparative bounds analysis

In the current section we consider the obtained bounds for the internally
re-keyed CTR-ACPKM and OMAC-ACPKM-Master modes in more detail
and compare them with the security bounds for the CTR (see [10]) and
OMAC (see [18]) modes without re-keying. The bounds are presented in Ta-
ble 1. The bounds for the internally re-keyed modes show that the insecurity
of the modes reaches minimum if σ1 = . . . = σl, i.e. if all messages are of the
same length.

Mode AdvPRFMode(A)

OMAC ≈ 4σ2 + 1

2n+1

OMAC-ACPKM-MasterN,∞ ≈ 4 (σ2
1 + . . .+ σ2

l )

2n+1
+

(dl)2

2n

Mode AdvIND-CPNA
Mode (A)

СTR ≈ σ2

2n+1

СTR-ACPKMN ≈ (σ1 + s)2 + . . .+ σ2
l

2n+1

Table 1: Security bounds for the OMAC, СTR modes and the internally re-keyed
СTR-ACPKMN , OMAC-ACPKM-MasterN,∞ modes with the section size N (under se-
cure block cipher). Here s = dk/ne, d = dk/ne+ 1, σ is the total plaintexts block length,
m is the maximal plaintext block length and σj is the total block length of data, processed
under the section key Kj (σ1 + . . .+ σl = σ, where l = dm/Ne).
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Consider the case l = 1 (no re-keying during message processing). Note,
that for the СTR and СTR-ACPKMN modes the bounds are equal that is
explained by total equivalence of the considered modes, while the bound for
OMAC-ACPKM-MasterN,∞ is worse than the bound for OMAC by term d2

2n

that is explained by additional key generation with the used block cipher.
Using the property σ1 > σ2 > . . . > σl−1 > N , we obtain the following

restrictions on the parameters s and N (see Table 2) for which the bounds
for internally re-keyed modes are not worse than the bound for the modes
without re-keying for any parameter σ and structure of processed messages
(their number or lengths). The calculations for both modes are presented in
Appendix E. Note that these restrictions cover all practical cases.

Number of sections СTR-ACPKMN � СTR OMAC-ACPKM-MasterN,∞ � OMAC

l = 2 s 6 min(
√

2N, σ2) d 6 min(N, 2σ2)

l = 3 s 6 min(
√

2N,N/2) d 6 min(N, 16)

l > 4 s 6 min(
√

2N) d 6 N

Table 2: Restrictions on the parameters of the internally re-keyed modes. Here N is the
section size, s = dk/ne, d = dk/ne + 1. A � B denotes that the bound for mode A is
better than the bound for mode B.

5 Conclusion

Results obtained in this paper show that, under security of the used block
cipher, the cryptographic properties of the standardized СTR-ACPKM and
OMAC-ACPKM-Master modes are improved compared to the properties of
the associated СTR and OMAC modes without internal re-keying for all
practical cases.

One of the most interesting open problems is the analysis of the re-keying
influence on a multi-key, or multi-user, security [8, 20] of the proposed modes.
This notion challenges cryptographic algorithms to maintain high levels of
security when used with many different keys, by many different users.
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Appendix

A Additional notations

Introduce additional notions which are used in further proofs. For an
algorithm A by A⇒ s we denote an event, that occurs if the algorithm A re-
turns value s as its execution result. Denote by AO1,O2,... an adversary A that
interacts with oracles O1,O2, . . . by making queries. Notation b $←− AO1,O2,...

means that the algorithm A, after interacting with oracles O1,O2, . . ., out-
puts bit b ∈ {0, 1}. For the deterministic algorithm A by A −→ x or by x←− A
is denoted that A returns the value x. For a set S ⊆ {0, 1}∗ by Sn we denote
the set of all strings s ∈ S such as |s| is multiple of n and |s| > 0. Let
{0, 1}6n be the set of all bit strings with legth less or equal to n.

For any set S and distribution D on S by s D←− S we denote that value s
is chosen in set S by random according to the distribution D.
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B Security Models

For a cipher E with parameters n and k define

AdvPRP-CPAE (A) = Pr
[
ExpPRP-CPA−1

E (A) = 1
]
−Pr

[
ExpPRP-CPA−0

E (A) = 1
]
,

where the experiments ExpPRP-CPA−1
E (A) and ExpPRP-CPA−0

E (A) are defined
in the following way:

ExpPRP-CPA−b
E (A)

if b = 0 then
P
U←− Perm({0, 1}n)

else
K

U←− {0, 1}k
end if
b′

$←− APb

return b′

OraclePb(M), M ∈ {0, 1}n

if b = 0 then
return P (M)

else
return EK(M)

end if

The PRF notion is defined in the same way as PRP-CPA except for the
random permutation P U←− Perm({0, 1}n), which is replaced by the random
function F U←− Func({0, 1}n):

AdvPRFE (A) = Pr
[
ExpPRF−1

E (A) = 1
]
− Pr

[
ExpPRF−0

E (A) = 1
]
.

Definition 1. A symmetric encryption scheme SE for a set of keys K, a set
of plaintexts P, a set of ciphertexts C, and a set of nonces N consists of
three algorithms {SE.K, SE.E , SE.D}, as follows:
– SE.K()

$−→ K: The randomized key generation algorithm that returns a
key K ∈ K. This algorithm is often defined by taking security parameter
as input. But in this work it will be omitted.

– SE.E(K,P, IV ) −→ C: The deterministic encryption algorithm, takes a
key K ∈ K, a plaintext P ∈ P, and a nonce IV ∈ N to return a
ciphertext C ∈ C.

– SE.D(K,C, IV ) −→ P : The deterministic decryption algorithm, takes a
key K ∈ K, a ciphertext C ∈ C, and a nonce IV ∈ N to return a
plaintext P ∈ P.

Definition 2. Let SE = {SE.K, SE.E , SE.D} be a symmetric encryption
scheme and let A be an adversary. The advantage of A for the scheme SE
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in the IND-CPNA model (IND-CPNA-advantage) is defined as

AdvIND-CPNA
SE (A) =

= Pr
[
ExpIND-CPNA−1

SE (A)⇒ 1
]
− Pr

[
ExpIND-CPNA−0

SE (A)⇒ 1
]
,

where the experiment ExpIND-CPNA−b
SE (A), b ∈ {0, 1} is defined as follows

ExpIND-CPNA−b
SE (A)

K
$←− SE.K()

b′
$←− AEncryptb

return b′

Oracle Encryptb(P, IV )

C
$←− SE.E(K,P, IV )

if b = 0 then
R
U←− {0, 1}|C|

return R
end if
return C

Definition 3. A deterministic message-authentication scheme MA for a set
of keys K, a set of messages M, and a set of tags T consists of two algorithms
{MA.K, MA.T }, as follows
– MA.K()

$−→ K: The randomized key generation algorithm that returns a
key K ∈ K.

– MA.T (K,M)
$−→ T : The randomized MAC algorithm, takes a key K ∈

K and message M ∈M to return a tag T ∈ T.

Definition 4. Let MA = {MA.K, MA.T } be a message-authentication
scheme and let A be an adversary. The advantage of A for the scheme MA
in the PRF model (PRF-advantage) is defined as

AdvPRF
MA (A) = Pr

[
ExpPRF−1

MA (A)⇒ 1
]
− Pr

[
ExpPRF−0

MA (A)⇒ 1
]
,

where the experiment ExpPRF−b
MA (A), b ∈ {0, 1} is defined as follows
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ExpPRF−1
MA (A)

K
$←− MA.K()

b′
$←− AF1

return b′

Oracle F1(M)

return MA.T (K,M)

ExpPRF−0
MA (A)

Rnd←− ∅
b′

$←− AF0

return b′

Oracle F0(M)

if @ T ′ ∈ T : (M,T ′) ∈ Rnd
then
T
U←− T

Rnd←− Rnd ∪ {(M,T )}
else
T ←− T ′

end if
return T

C Internally Re-keyed Modes

СTR-ACPKMN (K, IV,X)

1: CTR←− IV ‖strn/2(0)
2: b←− |X|n
3: K1 ←− K
4: for j ←− 2 to db/Ne do
5: Kj ←− ACPKM(Kj−1)
6: for i←− 1 to b do
7: j ←− di/Ne
8: CTRi ←− π(CTR, i− 1)
9: Gi ←− EKj (CTRi)
10: Y ←− X ⊕msb|X| (G1‖ . . . ‖Gb)
11: return Y

СTR-ACPKMN .K()

1: Key generation:
2: K

U←− {0, 1}k
3: return K

СTR-ACPKMN .E(K, IV,M)

1: Ciphertext computation:
2: C ←− СTR-ACPKMN (K, IV,M)
3: return C

СTR-ACPKMN .D(K, IV,C)

1: Plaintext computation:
2: M ←− СTR-ACPKMN (K, IV,C)
3: return M

Pseudocode 4: The СTR-ACPKM Mode.
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Gen_Subkey(K, r)

1: if r = n then
2: return K
3: if r < n then
4: return K · α

OMAC-ACPKM-MasterN,T∗ .K()

1: Key generation:
2: K

U←− {0, 1}k
3: return K

OMAC-ACPKM-MasterN,T∗ .T (K,M)

1: Tag computation:
2: b = |M |n
3: C0 ←− 0n

4: l←− db/Ne
5: K1‖K1

1‖...‖Kl‖Kl
1 ←−

6: ACPKM-MasterT∗(K, k/n+ 1, l)
7: for i←− 1 to b− 1 do
8: j ←− di/Ne,
9: C[i]←− EKj (M [i]⊕ C[i− 1]),
10: SK ←− Gen_Subkey(Kl

1, |M [b]|)
11: if |M [b]| = n then
12: M ′[b]←−M [b]
13: else
14: M ′[b]←−M [b]‖1‖0n−1−|M [b]|

15: T ←− EKl(M ′[b]⊕ C[b− 1]⊕ SK)
16: return T

Pseudocode 5: The OMAC-ACPKM-Master Mode.

D Security Analysis

D.1 Security Analysis of the СTR-ACPKM mode

Proof. Define hybrid experiments Hybridj(A), j = 0, 1, . . . , dm/Ne. In the
experiment Hybridj(A) the oracle in the IND-CPNA notion is replaced by
the oracle, which operates in the following way:
– The oracle chooses key Kj+1 U←− {0, 1}k;
– In response to a query (P, IV ) the oracle returns C, where

C = M ⊕msb|P |(C
′‖Cj+1‖ . . . ‖Cdm/Ne),

here C ′ U←− {0, 1}nNj and C i, i = (j + 1), . . . , dm/Ne, is the result
of the i-th section processing under the K i section key. Note that the
(j + 1)-th section is processed under the «truly» random Kj+1 key and
each next key is produced according to ACPKM.

The result of any experiment described above is what the adversary A
returns as a result.

Note that the Hybrid0(A) experiment totally coincides with the
ExpIND-CPNA−1

СTR-ACPKMN
(A) experiment, and the experiment Hybriddm/Ne(A) co-

incides with ExpIND-CPNA−0
СTR-ACPKMN

(A) experiment, i.e. the following inequalities
hold:

Pr [Hybrid0(A)⇒ 1] = Pr
[
ExpIND-CPNA−1

СTR-ACPKMN
(A)⇒ 1

]
,

Pr
[
Hybriddm/Ne(A)⇒ 1

]
= Pr

[
ExpIND-CPNA−0

СTR-ACPKMN
(A)⇒ 1

]
.
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Construct a set of adversaries Bj, j = 1, . . . , dm/Ne, for the block cipher
in the PRF model, which uses A as a black box.

After receiving a query (P, IV ) from A the adversary Bj processes this
query as in the Hybridj(A) experiment but the encrypted blocks for masking
the j-th section and blocks of the (j + 1)-th section key are obtained by
making queries to the oracle provided by the PRF experiment. Note that Bj,
j = 1, . . . , dm/Ne − 1, makes at most σj + s queries and Bdm/Ne makes at
most σdm/Ne queries. The adversary Bj returns 1, if the adversary A returns
1, and returns 0, otherwise.

Note that

Pr
[
ExpPRF−1

E (Bj)⇒ 1
]

= Pr [Hybridj−1(A)⇒ 1] ,

Pr
[
ExpPRF−0

E (Bj)⇒ 1
]

= Pr [Hybridj(A)⇒ 1] .

The last equality is proceeded from that the input blocks for producing
the Kj+1 section key and the input blocks for masking the j-th section are
different for the random function. Therefore, the Kj+1 variable distribution
is statistically indistinguishable from the «truly» random one.

Then for the advantages of the adversaries Bj

dm/Ne∑
j=1

AdvPRFE (Bj) =

=

dm/Ne∑
j=1

Pr [Hybridj−1(A)⇒ 1]−
dm/Ne∑
j=1

Pr [Hybridj(A)⇒ 1] =

= Pr [Hybrid0(A)⇒ 1]− Pr
[
Hybriddm/Ne(A)⇒ 1

]
=

= AdvIND-CPNA
СTR-ACPKMN

(A).

From the PRP/PRF switching lemma [14] for any block cipher E and
any adversary B′ making at most q queries we have

AdvPRFE (B′) 6 AdvPRP-CPAE (B′) +
q(q − 1)

2n+1
6 AdvPRP-CPAE (B′) +

q2

2n+1
.
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Thus,

AdvIND-CPNA
СTR-ACPKMN

(A) =

=

dm/Ne∑
j=1

AdvPRFE (Bj) 6
dm/Ne−1∑

j=1

(
AdvPRP-CPAE (Bj) +

(σi + s)2

2n+1

)
+

+AdvPRP-CPAE (Bdm/Ne) +
(σdm/Ne)

2

2n+1
6

6
⌈m
N

⌉
AdvPRP-CPAE (B) +

(σ1 + s)2 + . . .+ (σdm/Ne−1 + s)2 + (σdm/Ne)
2

2n+1
,

where B is an adversary which makes at most σ1+s queries. The last relation
is due to σ1 > . . . > σdm/Ne and AdvPRP-CPAE (B′) 6 AdvPRP-CPAE (B′′) for such
adversariesB′ andB′′ with the same computational resources that the queries
number made by B′ is less than the queries number made by B′′. �

D.2 Security Analysis of the OMAC-ACPKM-Master mode

Definition 5. A pseudorandom generator G for a set of states K consists
of two algorithms (G.K,G.N ). The randomized algorithm G.K generates the
generator state K∗ ∈ K. The deterministic algorithm G.N takes the state
K∗ ∈ K and the number h ∈ N returns the string of block length h.

Definition 6. Let G = (G.K,G.N ) be the pseudorandom generator and let
A be the adversary. The advantage of A for the generator G in the PRG
model (PRG-advantage) is defined as

AdvPRG
G (A) = Pr

[
ExpPRG−1

G (A)⇒ 1
]
− Pr

[
ExpPRG−0

G (A)⇒ 1
]
,

where experiments ExpPRG−1
G (A) and ExpPRG−0

G (A) are defined as follows

ExpPRG−1
G (A)

h
$←− A, h ∈ N

K∗
$←− G.K()

s← G.N (K∗, h)

b′
$←− A(s)

return b′

ExpPRG−0
G (A)

h
$←− A, h ∈ N

s
$←− {0, 1}nh

b′
$←− A(s)

return b′

The key generation algorithm ACPKM-MasterT ∗ with the master key
change frequency T ∗ can be considered as the pseudorandom generator. Here
algorithms ACPKM-MasterT ∗.K and ACPKM-MasterT ∗.N are defined as
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– ACPKM-MasterT ∗ .K()
$−→ K∗ : K∗

U←− {0, 1}k;
– ACPKM-MasterT ∗ .N (K∗, h) −→ s : s = СTR-ACPKMT ∗(K

∗, 1n/2, 0nh).

Theorem 3. Let A be an adversary in the PRG model for the generator
ACPKM-MasterT ∗, that makes query up to h blocks. Then there exists ad-
versary B in the IND-CPNA model for the СTR-ACPKMT ∗ encryption mode
that makes at most one query length up to h blocks. For all T ∗ ∈ N : n | T ∗
the following inequation holds

AdvIND-CPNA
СTR-ACPKMT∗

(B) > AdvPRG
ACPKM-MasterT∗(A).

Proof. Construct the adversary B in the IND-CPNA model for the
СTR-ACPKMT ∗ encryption mode which uses A as a black box. Adversary B
has access to oracle Encryptb and simulates the experimentExpPRG−b

ACPKM-MasterT∗
for the adversary A as follows

BEncryptb(A)

h
$←− A

P ← 0nh, IV ← 1n/2

s← Encryptb(IV, P )

b′
$←− A(s)

return b′

Note that if b = 0 thenB simulates the experimentExpPRG−0
ACPKM-MasterT∗(A)

and if b = 1 then it simulates the experiment ExpPRG−1
ACPKM-MasterT∗(A).

Hence,
AdvPRGACPKM-MasterT∗(A) = AdvIND-CPNA

СTR-ACPKMT∗
(B).

�

Definition 7. For a permutation P ∈ Perm ({0, 1}n) by CBCMACP we
define the function that takes message M = M [1]|| . . . ||M [r], r ∈ N,
M [1], . . . ,M [r] ∈ {0, 1}n and returns value

CBCMACP (M) = P (P (. . . (P (M [1])⊕M [2]) . . .)⊕M [r]).

Definition 8. For a permutation P ∈ Perm ({0, 1}n) by CBC-EP we define
the function that takes message M ∈ {0, 1}∗n and returns value

CBC-EP (M) = P−1(CBCMACP (M)).

Definition 9. For a permutation P ∈ Perm ({0, 1}n) and block K1 ∈
{0, 1}n by MACP,K1

we define the function that takes message M ∈ {0, 1}∗n
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and returns value

MACP,K1
(M) = P (CBC-EP (M)⊕K1).

Definition 10. For permutations P1, P2 ∈ Perm ({0, 1}n) by MACP1,P2
we

define the function that takes message M ∈ {0, 1}∗n and returns value

MACP1,P2
(M) = P2(CBC-EP1

(M)).

Definition 11. For the blockcipher

E =
{
EK ∈ Perm ({0, 1}n) | K ∈ {0, 1}k

}
define the family FE as follows

FE =

=

(CBCMACEK ,MACEK ,K1
,MACEK ,K1·α)︸ ︷︷ ︸

(F1,F2,F3)

| K ∈ {0, 1}k, K1 ∈ {0, 1}n

 ,

where α is a primitive element of field GF (2n), · is multiplication in field
GF (2n).

The uniform distribution U on FE is defined as follows

Pr
(F1,F2,F3)

U←−FE [(F1, F2, F3)] =

= Pr
K
U←−{0,1}k [K] · Pr

K1

U←−{0,1}n [K1] , ∀ (F1, F2, F3) ∈ FE.

Definition 12. For the family of all permutations Perm ({0, 1}n) define the
family FPerm as follows

FPerm =

=

(CBCMACP ,MACP,K1
,MACP,K1·α)︸ ︷︷ ︸

(F1,F2,F3)

| P ∈ Perm ({0, 1}n) , K1 ∈ {0, 1}n

 ,

where α is a prime element of field GF (2n), · is multiplication in field
GF (2n).
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The uniform distribution U on FPerm is defined as follows

Pr
(F1,F2,F3)

U←−FPerm [(F1, F2, F3)] =

= Pr
P
U←−Perm({0,1}n)

[P ] · Pr
K1

U←−{0,1}n [K1] , ∀ (F1, F2, F3) ∈ FPerm.

Definition 13. For the family of all permutations Perm ({0, 1}n) define the
family F3Perm as follows

F3Perm =

(CBCMACP1
,MACP1,P2

,MACP1,P3
)︸ ︷︷ ︸

(F1,F2,F3)

| P1, P2, P3 ∈ Perm(n)

 .

The uniform distribution U on F3Perm is defined as follows

Pr
(F1,F2,F3)

U←−F3Perm

[(F1, F2, F3)] =

= Pr
P1,P2,P3

U←−Perm({0,1}n)
[P1, P2, P3] , ∀ (F1, F2, F3) ∈ FPerm

Definition 14. For the section block size N define the message-
authentication scheme OMAC-RKN (OMAC with Random Keys). This
scheme processes messages M, |M | 6 m as it is described in section 3.2.
The keys K1, . . . , K l U←− {0, 1}k, K1

1 , . . . , K
l
1
U←− {0, 1}n, where l = dm/Ne,

are generated at random independently and uniformly.

Consider the additional adversary model 3PRFN .

Definition 15. Let A be an adversary. The advantage of A in the 3PRFN
model for the finite family

F =
{

(F1, F2, F3), F1 ∈ Func
(
{0, 1}nN , {0, 1}n

)
, F2, F3 ∈ Func

(
{0, 1}6nNn , {0, 1}n

)}
,

with the certain distribution D on it is defined as

Adv3PRFN
F (A) = Pr

[
Exp3PRFN−1

F (A)⇒ 1
]
− Pr

[
Exp3PRFN−0

F (A)⇒ 1
]
,

where experiments Exp3PRFN−1
F (A) and Exp3PRFN−0

F (A) are defined as fol-
lows
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Exp3PRFN−b
F (A)

if b = 0 then
F1

U←− Func
(
{0, 1}nN , {0, 1}n

)
F2, F3

U←− Func
(
{0, 1}6nNn , {0, 1}n

)
else

(F1, F2, F3)
D←− F

end if
b′

$←− AFb
1, Fb

2, Fb
3

return b′

Oracle Fb1, M ∈ {0, 1}nN

return F1(M)

Oracle Fb2, M ∈ {0, 1}6nNn

return F2(M)

Oracle Fb3, M ∈ {0, 1}6nNn

return F3(M)

Lemma 1. Let A be an adversary in the 3PRFN model for the FE family
and the total length of his queries is at most σ blocks. Then exists adversary
B in the PRP-CPA model for the E blockcipher and exists adversary C in
model 3PRFN for the FPerm family such as

AdvPRP-CPA
E (B) > Adv3PRFN

FE (A)− Adv3PRFN
FPerm (C),

where B makes at most σ queries to his oracle, C queries are of the total
block length at most σ.

Proof. Construct the adversary C in the 3PRFN model for the FPerm family
which uses A as a black box.

C has access to the oracles Fb1, Fb2, Fb3 and simulates the experiment
Exp3PRFN−b

FE for the adversaryA by simply translating all queries of adversary
A to his oracles. At the end of simulation it returns the same bit as A

Note that if b = 0 then C simulates exactly the Exp3PRFN−0
FE experiment.

Hence,

Pr
[
Exp3PRFN−0

FPerm (C)⇒ 1
]

= Pr
[
Exp3PRFN−0

FE (A)⇒ 1
]
,

Pr
[
Exp3PRFN−1

FPerm (C)⇒ 1
]

= Pr
[
Exp3PRFN−1

FPerm (A)⇒ 1
]

Now construct the adversary B in the PRP-CPA model for the E block-
cipher which uses the same adversary A as a black box.

B has access to the oracle Pb and simulates the Exp3PRFN−b
FE experiment

for the adversary A as follows.
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BPb(A)

K1
U←− {0, 1}n

b′
$←− ASimFb1, SimFb2, SimFb3

return b′

Subfunc SimFb1
return CBCMACPb(M)

Subfunc SimFb2
return MACPb,K1

(M)

Subfunc SimFb3
return MACPb,K1·α(M)

Note that if b = 1 then B simulates exactly the Exp3PRFN−1
FE experiment

for A and if b = 0 the adversary B simulates Exp3PRFN−1
FPerm . Thus,

Pr
[
ExpPRP-CPA−1

E (B)⇒ 1
]

= Pr
[
Exp3PRFN−1

FE (A)⇒ 1
]

Pr
[
ExpPRP-CPA−0

E (B)⇒ 1
]

= Pr
[
Exp3PRFN−1

FPerm (A)⇒ 1
]

By definition,

AdvPRP-CPAE (B) =

= Pr
[
ExpPRP-CPA−1

E (B)⇒ 1
]
− Pr

[
ExpPRP-CPA−0

E (B)⇒ 1
]

=

= Pr
[
Exp3PRFN−1

FE (A)⇒ 1
]
− Pr

[
Exp3PRFN−1

FPerm (A)⇒ 1
]

=

= Pr
[
Exp3PRFN−1

FE (A)⇒ 1
]
− Pr

[
Exp3PRFN−0

FE (A)⇒ 1
]
−

−

Pr
[
Exp3PRFN−1

FPerm (A)⇒ 1
]

︸ ︷︷ ︸
=Pr

[
Exp

3PRFN−1

FPerm
(C)⇒1

]
−Pr

[
Exp3PRFN−0

FE (A)⇒ 1
]

︸ ︷︷ ︸
=Pr

[
Exp

3PRFN−0

FPerm
(C)⇒1

]

 =

= Adv3PRFNFE (A)− Adv3PRFNFPerm (C).

�

Definition 16. Let A be an adversary. The advantage of A in the model
3PRP-CPA for the family of all permutations Perm ({0, 1}n) is defined as

Adv3PRP-CPA
Perm({0,1}n)(A) =

= Pr
[
Exp3PRP-CPA−1

Perm({0,1}n)(A)⇒ 1
]
− Pr

[
Exp3PRP-CPA−0

Perm({0,1}n)(A)⇒ 1
]
,

where the experiments Exp3PRP-CPA−1
Perm({0,1}n)(A) and Exp3PRP-CPA−0

Perm({0,1}n)(A) are de-
fined as follows:
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Exp3PRP-CPA−b
Perm({0,1}n)(A)

if b = 0 then
P1, P2, P3

U←− Perm ({0, 1}n)
else
P

U←− Perm ({0, 1}n) , K1
U←− {0, 1}n

end if
b′

$←− APb
1,P

b
2,P

b
3

return b′

Oracle P1
b(M),M ∈ {0, 1}n

if b = 0 then
return P1(M)

else
return P (M)

end if
Oracle P2

b(M),M ∈ {0, 1}n

if b = 0 then
return P2(M)

else
return P (M ⊕K1)

end if
Oracle P2

b(M),M ∈ {0, 1}n

if b = 0 then
return P3(M)

else
return P (M ⊕K1 · α)

end if

Lemma 2. [18] For any A in the 3PRP-CPA model that makes at most q
queries to his oracle

Adv3PRP-CPA
Perm({0,1}n)(A) 6

q2

2n
.

Lemma 3. Let A be an adversary in the 3PRFN model for the FPerm family
and the total length of his queries is at most σ blocks. Then exists adversary
B in the 3PRP-CPA model and exists adversary C in model 3PRFN for the
F3Perm family such as

AdvPRP-CPA
E (B) > Adv3PRFN

FE (A)− Adv3PRFN
FPerm (C),

where B makes at most σ queries to his oracle, C queries are of the total
block length at most σ.

Proof. Construct the adversary C in 3PRFN model for the F3Perm family
which uses A as a black box.

C has access to the oracles Fb1, Fb2, Fb3 and simulates the experiment
Exp3PRFN−b

FPerm for the adversaryA by simply translating all queries of adversary
A to his oracles. At the end of simulation it returns the same bit as A

Note that if b = 0 then C simulates exactly the Exp3PRFN−0
FPerm experiment.

Hence,

Pr
[
Exp3PRFN−0

F3Perm
(C)⇒ 1

]
= Pr

[
Exp3PRFN−0

FPerm (A)⇒ 1
]
,

145



Pr
[
Exp3PRFN−1

F3Perm
(C)⇒ 1

]
= Pr

[
Exp3PRFN−1

F3Perm
(A)⇒ 1

]
.

Now construct the adversary B in the 3PRP-CPA model which uses the
same adversary A as a black box.

B has access to the oracle Pb and simulates the Exp3PRFN−b
FPerm experiment

for the adversary A as follows.

BPb(A)

b′
$←− ASimFb1, SimFb2, SimFb3

return b′

Subfunc SimFb1
return CBCMACPb1

(M)

Subfunc SimFb2
return MACPb1,P

b
2
(M)

Subfunc SimFb3
return MACPb1,P

b
3
(M)

Note that if b = 1 then B simulates exactly the experiment Exp3PRFN−1
FPerm

for A and if b = 0 adversary B simulates Exp3PRFN−1
F3Perm

. Thus,

Pr
[
Exp3PRP-CPA−1

Perm({0,1}n)(B)⇒ 1
]

= Pr
[
Exp3PRFN−1

FPerm (A)⇒ 1
]
,

Pr
[
Exp3PRP-CPA−0

Perm({0,1}n)
(B)⇒ 1

]
= Pr

[
Exp3PRFN−1

F3Perm
(A)⇒ 1

]
.

By definition,

Adv3PRP-CPAPerm({0,1}n)(B) =

= Pr
[
Exp3PRP-CPA−1

Perm({0,1}n)(B)⇒ 1
]
− Pr

[
Exp3PRP-CPA−0

Perm({0,1}n)(B)⇒ 1
]

=

= Pr
[
Exp3PRFN−1

FPerm (A)⇒ 1
]
− Pr

[
Exp3PRFN−1

F3Perm
(A)⇒ 1

]
=

= Pr
[
Exp3PRFN−1

FPerm (A)⇒ 1
]
− Pr

[
Exp3PRFN−0

FPerm (A)⇒ 1
]
−

−

Pr
[
Exp3PRFN−1

F3Perm
(A)⇒ 1

]
︸ ︷︷ ︸

=Pr
[
Exp

3PRFN−1

F3Perm
(C)⇒1

]
−Pr

[
Exp3PRFN−0

FPerm (A)⇒ 1
]

︸ ︷︷ ︸
=Pr

[
Exp

3PRFN−0

F3Perm
(C)⇒1

]

 =

= Adv3PRFNFPerm (A)− Adv3PRFNF3Perm
(C).

�
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Lemma 4. Let n,N, q1, q2,m1, . . . ,mq2
be positive integers such as mj 6 N

and q1N +m1 + . . .+mq2
6 2n−1. Let also T1, . . . , Tq1

∈ {0, 1}n be different
and for two sets of strings M (1)

1 , . . . ,M
(1)
q1 and M (2)

1 , . . . ,M
(2)
q2

– Let M (1)
1 , . . . ,M

(1)
q1 ∈ {0, 1}n·N be different;

– Let M (2)
1 , . . . ,M

(2)
q2 be different and M (2)

j ∈ {0, 1}n·mj , j = 1, . . . , q2.
Let us consider the event Event according to uniformly random choice of P
from the set Perm({0, 1}n) if both following conditions hold
– CBCMACP (M

(1)
j ) = Tj, j = 1, . . . , q1;

– CBC-EP (M
(2)
1 ), . . . ,CBC-EP (M

(2)
q2 ) are different.

Thus
Pr [Event] >

1

2q1n

(
1− 2(q1N +m1 + . . .+mq2

)2

2n

)
.

Proof. We start the proof by describing the randomized algorithm that con-
structs permutation P from Perm({0, 1}n) such that Event occurs for P .
Then we lower estimate the cardinality of set of all such permutations. Then
the ratio of this estimate to the cardinality of set Perm({0, 1}n) can be used
as the estimation for the desired probability Pr [Event].

Describe the randomized algorithm that constructs P ∈ Perm({0, 1}n)
such that for P the Event conditions hold. This algorithm constructs P by
defining the images P (x) of strings x ∈ {0, 1}n. We assume that no one
image P (x) is defined at the start of the algorithm. By Domain(P ) denote
the set of strings x such that P (x) is just defined and by Free(P ) denote
the set of strings from {0, 1}n those are not images for any strings x. Thus,
Domain(P ) = ∅ and Free(P ) = {0, 1}n at the start of the algorithm. By
T we denote the set {T1, . . . , Tq1

}. For the sets A,B ⊆ {0, 1}n by A⊕B we
denote the set {a ⊕ b|a ∈ A, b ∈ B}. Note that the inequation |A ⊕ B| 6
|A| · |B| holds for all A and B.

Recall that on values calculating by CBCMACP or CBC-EP the input
sequence blocks are used consequently. By X(k)

i [j] in algorithm specification
we denote the string that P takes as input after xoring the j-th message block
M

(k)
i and the current internal state. In this notation the Event conditions can

be rewritten as P (X
(1)
i [N ]) = Ti, i = 1, . . . , q1, and X

(2)
1 [m1], . . . , X

(2)
q2 [mq2

]

are different. AllX(k)
i [j] except the first ones depend on permutation P . In the

main part of the algorithm the images P (X
(k)
i [j]) are defined consequently

for all j except the last ones (the N -th if k = 1 and mi-th if k = 2). This is
made so as the next conditios hold:
1. strings X(k)

i [j] for different tuples i, k, j are equal only if there is no
such permutation P that these blocks are different (this is true when all
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previous blocks of message were equal);
2. the images P (X

(k)
i [j]) are chosen not equal to the strings

T1, . . . , Tq1
because that strings are used to define the images

P (X
(1)
1 [N ]), . . . , P (X

(1)
q1 [N ]) and those images match the function

CBCMACP outputs when taking the first set strings.
It is easy to see that permutation P defined in such way satisfies the Event
conditions.

The algorithm formal description
1. X(1)

1 [1]←M
(1)
1 [1], . . . , X

(1)
q1 [1]←M

(1)
q1 [1]

2. X(2)
1 [1]←M

(2)
1 [1], . . . , X

(2)
q2 [1]←M

(2)
q2 [1]

3. Defined← {X(1)
1 [1], . . . , X

(1)
q1 [1], X

(2)
1 [1], . . . , X

(2)
q2 [1]}

4. for j ← 1 to N − 1 do
5. for k ← 1 to 2 do
6. for i← 1 to qk do
7. if ((k = 1) or (k = 2 and j 6 mi − 1)) and (X(k)

i [j] 6∈
Domain(P )) then

8. Equal ← {(k′, i′) | X(k)
i [j] = X

(k′)
i′ [j], k′ = 1, 2, i′ =

1, . . . , qk′};
9. Bad← Defined⊕ {M (k′)

i′ [j + 1] | (k′, i′) ∈ Equal};
10. P (X

(k)
i [j])

U← Free(P ) \ (Bad ∪ T );
11. for all (k′, i′) ∈ Equal do
12. X

(k′)
i′ [j + 1]← P (X

(k)
i [j])⊕M (k′)

i′ [j + 1];
13. Add← {X(k′)

i′ [j + 1] | (k′, i′) ∈ Equal};
14. Defined← Defined ∪ Add;
15. for i← 1 to q1 do P (X1

(i)[N ])← Ti;
16. Complete the definition of P images by random strings from Free(P ).

Note that at steps 8 to 14 we define images for equal stringsX(k)
i [j] (it can

be only if the prefixes ofM (k)
i are equal). Note also that the image P (X

(k)
i [j])

on the step 10 is defined such that P (X
(k)
i [j]) when xoring with any possible

next block M (k′)
i′ [j + 1] was not in the set Defined. The set Bad is used

for this purpose. The second Event condition fulfills because of taking new
values from set Free(P ). The first condition is fulfilled due to the step 15.

Introduce some additional notation. By l0 denote the Defined set cardi-
nality after fulfilling the step 3 and by lt, t = 1, 2, . . . denote the cardinalities
of sets Add at the step 13 after defining the t-th image in P . Note that
Add ∩Defined = ∅, thus, after defining the t-th image in P cardinality of
Defined is equal to l0 + l1 + . . . + lt. Note also that the cardinality of the
set {M (k′)

i′ [j+ 1] | (k′, i′) ∈ Equal} used in the set Bad definition is equal to
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the cardinality of the set Add, that is obtained on this iteration on step 13
because of its construction (Add is defined as xoring all elements of the set
{M (k′)

i′ [j + 1] | (k′, i′) ∈ Equal} with the single string).
Now we can estimate the cardinality of the algorithm possible results

set. The desired cardinality is a multiple of cardinalities of sets from those
the image P (X

(k)
i [j]) is chosen at step 10 and the cardinality of the set

Free(P ) at step 16. When defining the t-th image the cardinality of set
Free(P ) \ (Bad ∪ T ) is at most

2n − (t− 1)− q1 − ((l0 + . . .+ lt−1) · lt).
Actually,

|Bad| = |Defined⊕ {M (k′)
i′ [j + 1] | (k′, i′) ∈ Equal}| 6 (l0 + . . .+ lt−1) · lt,

and |Free(P )| = 2n − (t− 1), |T | = q1.
By s denote the number of images in the permutation P that are defined

before fulfilling the step 15. Note that s 6 q1(N−1)+(m1−1)+. . .+(mq2
−1).

Thus for the probability of Event holds the following relation

Pr [Event] >
(2n − s− q1)! ·

∏s
t=1(2n − (t− 1)− (q1 + (l0 + . . .+ lt−1)lt))

(2n)!
=

=
1

(2n − s) · . . . · (2n − s− q1 + 1)
·

s∏
t=1

2n − (t− 1)− (q1 + (l0 + . . .+ lt−1)lt)

2n − (t− 1)
>

>
1

2nq1
·

s∏
t=1

(
1− q1 + (l0 + . . .+ lt−1)lt

2n − (t− 1)

)
>

>
1

2nq1
·

(
1−

s∑
t=1

q1 + (l0 + . . .+ lt−1)lt
2n − (t− 1)

)
.

Note that theDefined set cardinality can not be greater than the number
of blocks in the strings of the first and the second groups together. Thus
l0 + . . . + ls 6 q1N + m1 + . . . + mq2

. By the conditions of lemma we get
s 6 q1(N − 1) + (m1− 1) + . . .+ (mq2

− 1) 6 2n−1. The following estimation
ends the proof.
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s∑
t=1

q1 + (l0 + . . .+ lt−1)lt
2n − (t− 1)

6
1

2n−1

s∑
t=1

(q1 + (l0 + . . .+ lt−1)lt) =

=
1

2n−1

s∑
t=1

q1 +
1

2n−1

s∑
t=1

(l0 + . . .+ lt−1)lt =
2q1 · s

2n
+

(l0 + . . .+ ls)
2 − l20 − . . .− l2s
2n

6

6
2q1(q1(N − 1) + (m1 − 1) + . . .+ (mq2 − 1))

2n
+

(q1N +m1 + . . .+mq2)
2

2n
6

6
2(q1N +m1 + . . .+mq2)

2

2n
.

�

Lemma 5. Let n,N, q1, q2, q3,m1, . . . ,mq2
,m1, . . . ,mq3

be positive integers
such that σ = q1N+m1+. . .+mq2

+m1+. . .+mq3
6 2n−1. Fix q = q1+q2+q3

bit strings M (i)
1 , . . . ,M

(i)
qi , 1 6 i 6 3 such as

– M
(1)
1 , . . . ,M

(1)
q1 ∈ {0, 1}n·N are different;

– M
(2)
1 , . . . ,M

(2)
q2 are different and M (2)

j ∈ {0, 1}n·mj , j = 1, . . . , q2;
– M

(3)
1 , . . . ,M

(3)
q3 are different and M (3)

j ∈ {0, 1}n·mj , j = 1, . . . , q3

and q different bit strings T (i)
1 , . . . , T

(i)
qi ∈ {0, 1}n, 1 6 i 6 3 such as

{T (i)
1 , . . . , T

(i)
qi } are different. Then the number of permutations P1, P2, P3 ∈

Perm({0, 1}n) that satisfy conditions *
– CBCMACP1

(M
(1)
j ) = T

(1)
j , j = 1, . . . , q1;

– MACP1,P2
(M

(2)
j ) = T

(2)
j , j = 1, . . . , q2;

– MACP1,P3
(M

(3)
j ) = T

(3)
j , j = 1, . . . , q3;

is at least ((2n)!)3
(

1− 2σ2

2n

)
1

2nq .

Proof. The proof follows from Lemma 4 and it is similar to the proof of
Lemma 5.3 from [18].

From Lemma 4 the number of permutations P1 that fulfill the conditions
– CBCMACP1

(M
(1)
j ) = T

(1)
j , j = 1, . . . , q1;

– CBC-EP1
(M

(2)
j ) 6= CBC-EP1

(M
(2)
k ), j 6= k, j, k = 1, . . . , q2.

– CBC-EP1
(M

(3)
j ) 6= CBC-EP1

(M
(3)
k ), j 6= k, j, k = 1, . . . , q3.

is at least (2n)! · 1
2q1n

(
1− 2σ2

2n

)
.

Note that after fixing such permutation P1 the arguments for both per-
mutations those are defined while processing messages M (2)

j and M
(3)
j are

different. Thus for P2 and P3 it is sufficient to fix q2 and q3 images with
values from the sets {T (2)

1 , . . . , T
(2)
q2 } and {T

(3)
1 , . . . , T

(3)
q3 }.
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Hence the number of tuples P1, P2, P3 ∈ Perm({0, 1}n) such that condi-
tions
– CBCMACP1

(M
(1)
j ) = T

(1)
j , j = 1, . . . , q1;

– MACP1,P2
(M

(2)
j ) = T

(2)
j , j = 1, . . . , q2;

– MACP1,P3
(M

(3)
j ) = T

(3)
j , j = 1, . . . , q3;

hold is at least

(2n)! · 1

2q1n

(
1− 2σ2

2n

)
· (2n − q2)! · (2n − q3)! >

> (2n)! · 1

2q1n

(
1− 2σ2

2n

)
· (2

n)!

2q2n
· (2

n)!

2q3n
= ((2n)!)3

(
1− 2σ2

2n

)
1

2qn
.

�

Lemma 6. Let A be an adversary in the 3PRFN model for three permuta-
tions. Let the total block length of his queries be σ where σ 6 2n−1. Thus,

Adv3PRFN
F3Perm

(A) 6
2.5σ2

2n
.

Proof. The proof follows from Lemma 5 and it is similar to the proof of
Lemma 5.1 from [18].

We can assume without loss of generality that all adversaries are deter-
ministic due to the fact that the adversary advantage does not depend on his
time complexity (only on queries complexity).

Assume that the adversary A made q = q1 + q2 + q3 queries
– q1 queries M (1)

j ∈ {0, 1}nN , j = 1, . . . , q1, to the oracle Fb1 and received
values
T

(1)
j ∈ {0, 1}n, j = 1, . . . , q1 as an answer;

– q2 queries M (2)
j ∈ {0, 1}6nNn , j = 1, . . . , q2, to the oracle Fb2 and received

values
T

(2)
j ∈ {0, 1}n, j = 1, . . . , q2 as an answer;

– q3 queries M (3)
j ∈ {0, 1}6nNn , j = 1, . . . , q3, to the oracle Fb3 and received

values
T

(3)
j ∈ {0, 1}n, j = 1, . . . , q3 as an answer.

Since the adversary is deterministic the number of queries, the values of
the queries, and the adversary’s execution result are uniquely defined by the
returning values T (1)

j , T
(2)
j , T

(3)
j

By Tone we denote the set of tuples T those consist of q elements from
{0, 1}n
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T = {T (1)
1 , . . . , T (1)

q1
, T

(2)
1 , . . . , T (2)

q2
, T

(3)
1 , . . . , T (3)

q3
},

such that the adversary returns 1 as result of his execution. By Tgood we
denote the set of tuples T such that all elements in tuple are different. Note
that the cardinality of the complement set is at most

(
q
2

)
2qn

2n . Thus,

|{T : T ∈ Tgood ∩ Tone}| > |Tone| −
(
q

2

)
2qn

2n
.

By definition,

Adv3PRFNF3Perm
(A) = Pr

[
Exp3PRFN−1

F3Perm
(A)⇒ 1

]
− Pr

[
Exp3PRFN−0

F3Perm
(A)⇒ 1

]
.

Obviously,

Pr
[
Exp3PRFN−0

F3Perm
(A)⇒ 1

]
= PrF1,F2,F3

[
1← AF0

1,F
0
2,F

0
3

]
=
∑
T∈Tone

1

2qn
=
|Tone|
2qn

.

Now lower estimate Pr
[
Exp3PRFN−1

F3Perm
(A)⇒ 1

]
.

Pr
[
Exp3PRFN−1

F3Perm
(A)⇒ 1

]
=

= PrP1,P2,P3

[
1← AF1

1,F
1
2,F

1
3

]
=
|{(P1, P2, P3) : 1← AF1

1,F
1
2,F

1
3}|

((2n)!)3
>

>
∑

T∈Tgood∩Tone

|{(P1, P2, P3) satisfying ∗ 5}|
((2n)!)3

>

(
|Tone| −

(
q

2

)
2qn

2n

)
·
(

1− 2σ2

2n

)
1

2nq
=

=

(
|Tone|
2qn

−
(
q

2

)
1

2n

)
·
(

1− 2σ2

2n

)
>
|Tone|
2qn

−
(
q

2

)
1

2n
− 2σ2

2n
>
|Tone|
2qn

− 2.5σ2

2n
.

Therefore,

Pr
[
Exp3PRFN−0

F3Perm
(A)⇒ 1

]
− Pr

[
Exp3PRFN−1

F3Perm
(A)⇒ 1

]
6

2.5σ2

2n
.

Applying similar arguments to Pr
[
Exp3PRFN−0

F3Perm
(A) = 0

]
and

Pr
[
Exp3PRFN−1

F3Perm
(A) = 0

]
lead to the final estimation

Pr
[
Exp3PRFN−1

F3Perm
(A)⇒ 1

]
− Pr

[
Exp3PRFN−0

F3Perm
(A)⇒ 1

]
6

2.5σ2

2n
.

�
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Lemma 7. Let A be an adversary in the 3PRFN model for the FE family.
Let the total block length of his queries be σ where σ 6 2n−1. Then exists the
adversary B in the PRP-CPA model for the blockcipher E making at most
σ queries to his oracle such that

AdvPRP-CPA
E (B) > Adv3PRFN

FE (A)− 3.5σ2

2n
.

Proof. The proof directly follows from Lemmas 1, 2, 3, 6. �

Definition 17. Let us define the family of random functions

OMAC-RSF ⊆ Func({0, 1}∗n, {0, 1}n).

Each element F of this family matches functions G1, G2, G3 where
1. G1 ∈ Func({0, 1}nN , {0, 1}n);
2. G2 ∈ Func({0, 1}∗n, {0, 1}n);
3. G3 ∈ Func({0, 1}6nNn , {0, 1}n).
For any message M ∈ {0, 1}∗n, M = M 1|| . . . ||M l, l ∈ N where

M 1, . . . ,M l−1 ∈ {0, 1}nN , M l ∈ {0, 1}nR, R 6 N , each element F of the
family is defined by the following way
1. If |M | 6 nN , then F (M) = G3(M);
2. if |M | > nN , then

F (M) = G2

(
(G1(M

1)⊕M 2[1])‖M 2[2]‖ . . . ‖M 2[N ]‖M 3‖ . . . ‖M l
)

;

We define the uniform distribution U on OMAC-RSF as follows:

Pr
F
U←−OMAC-RSF

[F ] =

= Pr
G3

U←−Func({0,1}∗n,{0,1}n)
[G3] · Pr

G1

U←−Func({0,1}nN ,{0,1}n)
[G1] ·

· Pr
G2

U←−Func({0,1}6nNn ,{0,1}n)
[G2] , ∀ F ∈ OMAC-RSF

Let us prove that OMAC-RSF is indistinguishable from the family
Func({0, 1}∗n, {0, 1}n) with uniform distribution defined on it.

Lemma 8. For any adversary A making at most q queries

AdvPRF
OMAC-RSF(A) 6

q2

2n+1
;

Proof. Suppose the adversary making q different queries M1, . . . ,Mq. Con-
sider the following cases:
1. |Mi| 6 nN for all i ∈ {1, . . . , q};
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2. M 1
i = M 1

j for all i, j ∈ {1, . . . , q}, such that |Mi| > nN , |Mj| > nN ;
3. ∃ i, j ∈ {1, . . . , q}, such that |Mi| > nN , |Mj| > nN , whereM 1

i 6= M 1
j ;

Let the oracle return a value Ti ∈ {0, 1}n on receiving query Mi, 1 6 i 6
q. Denote by T ∈ {0, 1}n×q the string T1‖ . . . ‖Tq.

By definition, for any M1, . . . ,Mq

− AdvPRFOMAC-RSF(A) =

=
∑

T∈{0,1}n×q
Pr [A⇒ 1|T ] · (Pr

F
U←−Func({0,1}∗,{0,1}n)

[T ]− Pr
F
U←−G [T ]) 6

6
∑

T∈{0,1}n×q:Pr
F
U←−OMAC-RSF

[T ]< 1
2qn

(
1

2qn
− Pr

F
U←−OMAC-RSF

[T ]

)
.

Obviously, AdvPRFOMAC-RSF(A) = 0 for the first two cases.
Consider the third case.
Denote by Coll the following event: ∃ i, j ∈ {1, . . . , q}, such that |Mi| >

nN , |Mj| > nN , where F3(M
1
i )⊕M 2

i [1] = F3(M
1
j )⊕M 2

j [1].
Let us consider the value Pr

F
U←−OMAC-RSF

[T ] in more detail.

Pr
F
U←−OMAC-RSF

[T ] = Pr
F
U←−OMAC-RSF

[T | Coll] · Pr
F
U←−OMAC-RSF

[Coll] +

+ Pr
F
U←−OMAC-RSF

[
T | Coll

]
· Pr

F
U←−OMAC-RSF

[
Coll

]
>

> Pr
F
U←−OMAC-RSF

[
T | Coll

]
· Pr

F
U←−OMAC-RSF

[
Coll

]
=

1

2qn
· Pr

F
U←−OMAC-RSF

[
Coll

]
.

The probability of Coll is at most
(
q

2

)
1

2n
. Thus,

Pr
F
U←−OMAC-RSF

[T ] >
1

2qn

(
1−

(
q

2

)
1

2n

)
>

1

2qn

(
1− q2

2n+1

)
.

Thus, for any A

− AdvPRFOMAC-RSF(A) 6
∑

T∈{0,1}n×q :Pr
F
U←−OMAC-RSF

[T ]< 1
2qn

(
1

2qn
− Pr

F
U←−OMAC-RSF

[T ]

)
6

6 2nq · q2

2n+1
· 1

2qn
6

q2

2n+1
.
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Using the same arguments it can be shown that

AdvPRFOMAC-RSF(A) = Pr
[
ExpPRF−1

OMAC-RSF(A)⇒ 1
]
− Pr

[
ExpPRF−0

OMAC-RSF(A)⇒ 1
]

=

= (1− Pr
[
ExpPRF−0

OMAC-RSF(A)⇒ 1
]
)− (1− Pr

[
ExpPRF−1

OMAC-RSF(A)⇒ 1
]
) =

= Pr
[
ExpPRF−0

OMAC-RSF(A)⇒ 0
]
− Pr

[
ExpPRF−1

OMAC-RSF(A)⇒ 0
]

=

= −AdvPRFOMAC-RSF(A′) 6
q2

2n+1
.

�

Theorem 4. Let N be the parameter of the OMAC-RK mode. Then for any
adversary A which makes queries, where the maximal message length is at
most m blocks and the total message length is at most σ blocks, there exists
a set of adversaries Bj, j = 1, . . . , dm/Ne, such that

dm/Ne∑
j=1

Adv3PRFN
FE (Bj) > AdvPRF

OMAC-RKN
(A)−

(
σ2

1 + . . .+ σ2
dm/Ne

)
2n+1

.

where Bj makes queries where the total message length is at most σj blocks,
σj is the total block length of data processed under the Kj section key, σj 6
2n−1, σ1 + . . .+ σdm/Ne = σ.

Proof. Define a set of hybrid experiment Hybridj(A), j ∈
{0, 1, . . . , dm/Ne}. In the Hybridj(A) experiment the F oracle is replaced
by the Fj oracle that processes input queries as follows
– The F oracle chooses j keys K1, . . . , Kj U←− {0, 1}k and j blocks
K1

1 , . . . , K
j
1
U←− {0, 1}n. Also the oracle chooses the functions F1, F2

U←−
Func({0, 1}∗n, {0, 1}n) at random.

– On the query M , |M |n 6 m, he returns a value T ∈ {0, 1}n, which is
formed as follows. The first j sections are processed under the first j
keys and j blocks. If |M |n > jN , i.e. M = M 1|| . . . ||M j||M ′, |M ′|n 6
(dm/Ne − j)N , then the oracle computes a value F1(M

′′), if n | |M ′|,
or F2(M

′′), otherwise, where the message M ′′ is formed as follows. The
first block M ′′[1] of the message M ′′ is computed by xoring to the first
block of the message M ′ = padn(M

′) the result of the first j section
processing:

M ′′[1] = M ′[1]⊕ CBCMACEK1 ,... EKj
(M 1|| . . . ||M j).

The blocks M ′′[i], i > 2, are equal to the blocks M ′[i].
The result of the any hybrid experiment is what the adversary A returns.
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Note that the Hybriddm/Ne(A) experiment totally coincidences
with the ExpPRF−1

OMAC-RKN (A) experiment, and Hybrid0(A) — with the
ExpPRF−0

OMAC-RKN (A) experiment. Thus,

Pr
[
Hybriddm/Ne(A)⇒ 1

]
= Pr

[
ExpPRF−1

OMAC-RKN (A)⇒ 1
]
,

Pr [Hybrid0(A)⇒ 1] = Pr
[
ExpPRF−0

OMAC-RKN (A)⇒ 1
]
.

The last equality holds due to that the family of random functions,
each of which is realized using a couple of random functions F1, F2

U←−
Func({0, 1}∗n, {0, 1}n), where F1 processes message of complete length and
F2 processes incomplete messages modified by the function padn, is sta-
tistically indistinguishable from the standard family of random functions
F
U←− Func({0, 1}∗, {0, 1}n).
Construct a set of adversaries Bj in the 3PRFN model for the used block

cipher E, using A as a black box.
The adversary Bj chooses the following random values:

1. j − 1 keys K1, K2, . . . , Kj−1 U←− {0, 1}k;
2. j − 1 blocks K1

1 , K
2
1 , . . . , K

j−1
1

U←− {0, 1}n;
3. random functions F1, F2

U←− Func({0, 1}∗n, {0, 1}n).
The adversary Bj model the experiment Hybridj(A) except for the j-

th section process. While processing the j-th section the adversary makes
queries to the oracles Fb1, Fb2, Fb3:
– query (M ′)j to the Fb1 oracle if the j-th section is intermediate;
– query (M ′)j to the Fb2 oracle if the j-th section is final and complete;
– query (M ′)j to the Fb3 oracle if the j-th section is final and incomplete;

where (M ′)j is formed as follows. The first block (M ′)j[1] of the mes-
sage (M ′)j is computed by xoring to the first block of the message M j =
padn(M

j))the result of the first j section processing:

(M ′)j[1] = M j[1]⊕ CBCMACK1,...Kj−1(M1|| . . . ||Mj−1).

The next blocks (M ′)j[i], i > 2, are equal to blocks M j[i]. The adversary Bj

returns as a result what A returns.
The following equalities hold

Pr
[
Exp3PRFN−1

FE (Bj)⇒ 1
]

= Pr [Hybridj(A)⇒ 1] ,

Pr
[
Exp3PRFN−0

FE (Bj)⇒ 1
]

= Pr
[
Hybrid′j−1(A)⇒ 1

]
,
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where Hybrid′j(A) is a modification of the Hybridj(A) experiment: the j+1-
th section is processed using independent random functions G1, G2, G3:
– using G1

U←− Func({0, 1}nN , {0, 1}n) if the j + 1-th section is interme-
diate;

– using G2
U←− Func({0, 1}6nNn , {0, 1}n) if the j+ 1-th section is final and

complete;
– using G3

U←− Func({0, 1}6nNn , {0, 1}n) if the j+ 1-th section is final and
incomplete;

Then, for advantages of Bj the following estimations hold

dm/Ne∑
j=1

Adv3PRFN
FE

(Bj) =

dm/Ne∑
j=1

Pr [Hybridj(A)⇒ 1]−
dm/Ne∑
j=1

Pr
[
Hybrid′j−1(A)⇒ 1

]
=

= Pr
[
Hybriddm/Ne(A)⇒ 1

]
− Pr [Hybrid0(A)⇒ 1] +

+

dm/Ne−1∑
j=0

(
Pr [Hybridj(A)⇒ 1]− Pr

[
Hybrid′j(A)⇒ 1

])
=

= AdvPRFOMAC-RKN
(A) +

dm/Ne−1∑
j=0

(
Pr [Hybridj(A)⇒ 1]− Pr

[
Hybrid′j(A)⇒ 1

])
.

Using Lemma 8 for all j = 0, . . . , dm/Ne − 1, we obtain

Pr [Hybridj(A)⇒ 1]− Pr
[
Hybrid′j(A)⇒ 1

]
= −AdvPRFOMAC-RSF(A′j)−

− AdvPRFOMAC-RSF(A′′j ) > −
(q′j+1)

2

2n+1
−

(q′′j+1)
2

2n+1
> −

σ2
j+1

2n+1
,

where A′j and A′′j are the adversaries for OMAC-RSF in the PRF model,
those simulate the Hybridj(A) experiment except for functions F1 and F2

using way: the adversary A′j makes q′j+1 queries in order to process complete
pieces M ′ of messages and the adversary A′′j makes q′′j+1 queries in order to
process incomplete pieces M ′ of messages.

Thus,

dm/Ne∑
j=1

Adv3PRFNFE (Bj) > AdvPRFOMAC-RKN (A)−

(
σ2

1 + . . .+ σ2
dm/Ne

)
2n+1

.

�

Lemma 9. Let N be the parameter of the OMAC-RK mode. Then for any
adversary A which makes queries, where the maximal message length is at
most m blocks and the total message length is at most σ blocks, there exists
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adversary B such that

AdvPRF
OMAC-RKN

(A) 6
4
(
σ2

1 + . . .+ σ2
dm/Ne

)
2n

+
⌈m
N

⌉
· AdvPRP-CPA

E (B)

where B makes at most σ1 queries, s = dk/ne, σj is the total block length of
data processed under the Kj section key, σj 6 2n−1, σ1 + . . .+ σdm/Ne = σ.

Proof. The proof follows from Lemma 7, 4. �

Lemma 10. Let N and T ∗ be the parameters of the OMAC-ACPKM-Master
mode. Then for any adversary A which makes queries, where the maximal
message length is at most m blocks and the total message length is at most
σ blocks, there exists adversaries B and C such that

AdvPRG
ACPKM-MasterT∗(B) + AdvPRF

OMAC-RKN
(C) > AdvPRF

OMAC-ACPKM-MasterN,T∗(A).

where B makes query of length at most dm/Ne · d blocks, d = dk/ne + 1,
and C makes queries, where the maximal message length is at most m blocks
and the total message length is at most σ blocks.

Proof. Construct the adversary C in the PRF model for the OMAC-RKN

mode, using A as a black box. The adversary C having access to the Fb

oracle simulates the ExpPRF−b′
FPerm experiment for A by transmitting queries of

A to its own oracle and vice versa. The adversary C returns as a result what
A returns.

Note that in the case b = 0, C simulates exactly the experiment
ExpPRF−0

OMAC-ACPKM-MasterN,T∗ . Thus,

Pr
[
ExpPRF−0

OMAC-RKN (C)⇒ 1
]

= Pr
[
ExpPRF−0

OMAC-ACPKM-MasterN,T∗(A)⇒ 1
]
,

Pr
[
ExpPRF−1

OMAC-RKN (C)⇒ 1
]

= Pr
[
ExpPRF−1

OMAC-RKN (A)⇒ 1
]
.

Now construct the adversary B in the PRG model for ACPKM-MasterT ∗
mechanism, using the same adversary A as a black box.

The adversary B simulates the experiment ExpPRF−b′
OMAC-ACPKM-MasterN,T∗

for A in the following way. Obtaining keys K1, . . . , K l ∈ {0, 1}k and
K1

1 , . . . , K
l
1 ∈ {0, 1}n, the adversary B in the case b = 1 simulates ex-

actly the experiment ExpPRF−1
OMAC-ACPKM-MasterN,T∗(A), and in the case b = 0 it

simulates the experiment ExpPRF−1
OMAC-RKN (A). Thus,

Pr
[
ExpPRG−1

ACPKM-MasterT∗(B)⇒ 1
]

= Pr
[
ExpPRF−1

OMAC-ACPKM-MasterN,T∗(A)⇒ 1
]
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Pr
[
ExpPRG−0

ACPKM-MasterT∗(B)⇒ 1
]

= Pr
[
ExpPRF−1

OMAC-RKN (A)⇒ 1
]

Using similar to Lemma 7 arguments, we obtain

AdvPRGACPKM-MasterT∗(B) = AdvPRFOMAC-ACPKM-MasterN,T∗(A)− AdvPRFOMAC-RKN (C).

�

The proof of Theorem 1 follows from Lemma 3, Lemma 9, Lemma 10.

E Bounds comparison

E.1 СTR and СTR-ACPKM

In all cases we analyze the parameters for which the following inequality
holds: ∑

16i,j6l

σiσj > 2s(σ1 + . . .+ σl−1) + s2(l − 1).

The case l = 2. Using the restriction s 6 min(
√

2N, σ2) we obtain

2σ1(σ2 − s) > 2N(σ2 − s) >︸︷︷︸
σ2>s

2N >︸︷︷︸√
2N>s

s2.

Thus, 2σ1(σ2 − s) > s2 ⇒ 2σ1σ2 > 2sσ1 + s2.

The case l = 3. Using the restriction s 6 min(
√

2N,N/2) we obtain

2σ1σ3 + 2σ2σ3 >︸︷︷︸
σ3>1

2σ1 + 2σ2 > 4N >︸︷︷︸√
2N>s

2s2;

σ1σ2

σ1 + σ2
>︸︷︷︸

σ26σ3

σ1σ2

2σ1
>
σ2

2
>︸︷︷︸

σ2>N

N

2
> s.

Thus, σ1σ2

σ1+σ2
> s ⇒ σ1σ2 > 2s(σ1 + σ2). Summing up the inequalities we

obtain
2σ1σ2 + 2σ1σ3 + 2σ2σ3 > 2s(σ1 + σ2) + 2s2.

The case l > 4. Using the restriction s 6
√

2N we obtain∑
16i,j6l

σiσj >︸︷︷︸
σ>1

2σ1σ2 + 2σ2σ3 + . . .+ 2σl−1σ1 + (2σ1 + . . .+ 2σl−1) >︸︷︷︸
σi>N

> 2N(σ1 + . . .+ σl−1) + 2N(l − 1) >︸︷︷︸
2N>s2

2s(σ1 + . . .+ σl−1) + s2(l − 1).
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E.2 OMAC and OMAC-ACPKM-Master

In all cases we analyze the parameters for which the following inequality
holds:

4 ·
∑

16i,j6l

σiσj > (dl)2.

The case l = 2. Using the restriction d 6 min(N, 2σ2) we obtain

8σ1σ2 >︸︷︷︸
σ1>N

8Nσ2 > 4d2.

The case l = 3. Using the restriction d 6 min(N, 16) we obtain

8σ1σ2 + 8σ1σ3 + 8σ3σ2 >︸︷︷︸
σ3>1

8σ1σ2 + 8σ1 + 8σ2 >︸︷︷︸
σ1,σ2>N

8N 2 + 16N > 9d2;

The case l > 4. Using the restriction d 6 N we obtain

4 ·
∑

16i,j6l

σiσj > 4 ·
∑

16i,j6l−1

σiσj >︸︷︷︸
σi>N

4(l − 1)(l − 2)N 2 >︸︷︷︸
N>d, l>4

(dl)2
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Abstract

Block cipher cryptanalysis in the related-key adversary model is usually under-
estimated, since the conditions of this model could be hardly obtained in practice.
Nevertheless, the existence of a block cipher, which is investigated and proved to be
secure in the related-key model, allows to create more efficient cryptographic proto-
cols without significant performance loss. In this article we propose a key recovery
attack on a reduced Kuznyechik block cipher in the related-key model, and discuss
why it could be hard to extend such approach to the full cipher. We also propose
a new internally re-keyed block cipher mode of operation called CTRR («CounTer
with Related-key Re-keying»), and prove its security under the assumption of the
underlying cipher (e.g. Kuznyechik) security in the related-key adversary model.

Keywords: related-key attack, provable security, internal re-keying, block cipher.

1 Introduction

The notion of a related-key attack (RKA) was formally introduced in [27]
but similar ideas can be found in [28, 26]. This model assumes that the
cryptosystem uses several keys, and the adversary knows a certain simple
relationship between them (for example, a bitwise sum). Such conditions
are less likely to be achievable in practice than the conditions of classical
models suggesting the existence of only one unknown key. Actually there
are a number of protocols and schemes, in which such conditions can arise
(e.g. [29]). However, researchers pay less attention to cryptographic analysis
in the related-key adversary model than in the classical models. In doing so,
the presence of block cipher which is in-depth investigated and reasonably se-
cure in a related-key model can help to solve a lot of problems of synthesis of
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cryptographic protocols. Thus, it will allow creating more efficient cryptosys-
tems due to the possibility of safe use of several keys connected by a simple
fixed ratio. In a number of cases, this would allow not to use diversification
functions for obtaining a sufficient number of keys. Problems of that nature
are relevant and arise, for example, in the work of Russian Technical com-
mittee for standardization (TC26): the use of related keys would simplify the
construction of some internally re-keyed block cipher modes of operation [15]
and authenticated encryption modes.

In this paper, we present an effective method for recovering the key of
a truncated version of the Kuznyechik block cipher [18] in a model with a
known bitwise sum of key pairs. Also we give arguments in favour of the
inability to improve this method for recovering the key of the full version of
the cipher. To the best of our knowledge, the Kuznyechik was not investigated
in this model before.

Also we propose internally re-keyed block cipher mode of operation called
CTRR («CounTer with Related-key Re-keying») that use several keys with
fixed bitwise or modulo 2k sum. We obtain a lower security bound for this
mode which depends on the security of the used cipher in the adversary model
with two related keys. The use of related keys allows to solve certain prob-
lems inherent to classic single-key modes (for more details see Section 5.1).
However, the degree of investigation of Kuznyechik in related-key model is
currently too small to say confidently that the cipher is secure in this context
and, as a consequence, to use CTRR in practice. The authors hope that this
example will serve as a convincing illustration of the importance of carrying
out further large-scale investigations of the Kuznyechik cipher in related-key
model.

2 Basic notations and security notions

By Vu we denote the set of u-component bit strings. Let 0u be the string,
consisting of u zeros. For bit strings U and V we denote by U‖V their
concatenation. Let |U | be the bit length of the string U .

For a bit string U and a positive integer l 6 |U | let msbl(U) (lsbl(U)) be
the string, consisting of the leftmost (rightmost) l bits of U . For nonnegative
integers l and i let strl(i) be l-bit representation of i with the least significant
bit on the right. For a nonnegative integer l and a bit string U ∈ Vl let int(U)
be an integer i such that strl(i) = U . Let Inc(U) be the function, which takes
the input U ∈ Vu and outputs the string msbu/2(U)‖stru/2(int(lsbu/2(U)) +
1 mod 2u/2).
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For any finite set S, define Perm(S) as the set of all bijective mappings
on S (permutations on S). A block cipher E (or just a cipher) with block size
n and key size k is a family of permutations EK ∈ Perm(Vn), where K ∈ Vk
is a key. We let Perm(Vk, Vn) denote the set of all blockciphers with domain
Vn and key-space Vk. If the value s is chosen in a set S uniformly at random,
then we denote s ∈U S. The notation G ∈U Perm(Vk, Vn) corresponds to
selecting a random blockcipher. In more detail, it comes down to defining G
via ∀K ∈ Vk : GK(·) ∈U Perm(Vn).

For a bit string U , |U | = l, we denote by U [i] ∈ Vn, 1 6 i 6 dl/ne − 1,
and U [dl/ne] ∈ Vh, h 6 n, such strings that U = U [1]‖U [2]‖ . . . ‖U [dl/ne]
and call them «blocks» of the string U . We denote by the block-length |U |n =
d|U |/ne the length of the string U in blocks.

We model an adversary using an interactive probabilistic algorithm that
has access to one or more oracles. Denote by AO1,O2,... an adversary A that
interacts with oracles O1,O2, . . . by making queries. Notation AO1,O2,... → b

means that the algorithm A, after interacting with oracles O1,O2, . . ., out-
puts bit b ∈ {0, 1}. The resources of A are measured in terms of time and
query complexities. For a fixed model of computation and a method of en-
coding the time complexity includes the description size of A. The query
complexity usually includes the number of queries and the maximal length of
queries. By AdvMP (A) we denote the measure of the adversary A success in re-
alizing a certain threat, defined by the model M, for the cryptographic scheme
P. The formal definition of this measure will be given in each specific case.
By InSecMP (t, a, b, . . .) we denote max

A∈A(t,a,b,...)
AdvMP (A), where A(t, a, b, . . .) is

the set of the adversaries, satisfying the limitations, which are defined by the
values t, a, b, . . .. Usually t denotes the computational resources limitations
of A, and a, b, . . . denote its oracles queries limitations.

3 Related-key security model and provably secure protocols

In a related-key model an adversary has an opportunity to obtain the
results of encryption not with one secret key used in the scheme or the pro-
tocol, but with several keys that satisfy some known relation. Note that the
adversary does not know any of the used keys. In practice, these relations
can be different, but the modulo 2k addition or bit-wise addition with some
constant value are the most often considered. The cases when the adversary
is passive, that is, he only knows the relation between the keys on which
the data was processed, or active, that is, he is able to choose this relation
on his own, are also considered. Such conditions may seem unrealistic, but,
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nevertheless, they can arise, for example, in the following cases:
– the adversary can mount a «man in the middle» attack on the key

transfer protocol that does not provide integrity (e.g. [8, 9]);
– in some systems keys can be produced not equiprobable or be selected

from a small set; thus, with a sufficient amount of data, the adversary
can find the ciphertexts processed with the related keys (for example,
such conditions have been implemented for the protocol WEP [22]);

– if the hash function is an iterative construction built upon the block-
cipher then the opponent also has a possibility of manipulating the
encryption keys (e.g. Davies-Meyer scheme [7]);

– some protocols may use the related keys by design.
A detailed discussion of how reasonably consider the capabilities de-

scribed above for the adversary can be found in [29].
At the moment the results on the security in a related-key model have

been obtained for a number of block ciphers. For example, in [20], a method
with complexity of 299.5 for recovering AES-256 secret key was proposed with
requirement on the existence of 4 related keys. Also the results of analysis
are known for such ciphers as SIMON [12], PICARO [23], MISTY1 [24],
HAS-160 [25], A5/3 [6] and RC4 [22]. As for Russian block ciphers, the
work [21] proposes a method for recovering of a secret key of Magma cipher,
using 12 related keys, which works «in a number of cases for an acceptable
time». At the same time, as far as the authors of this work are aware, the
no results for Kuznyechik cipher in the related-key model are available at
the moment. Note also that the related-keys model is mostly used in order
to increase the efficiency of the differential method [10]. Also related-key
attack can be enhanced into more complex techniques, such as boomerang
method [11] or boomerang switching techinque used in [20].

The security of a block cipher in the related-key model does not follow
from its security in the standard model PRP-CPA [4] (a simple example con-
firming this is given in Appendix C) and is evaluated heuristically (based
on the results of large-scale researches). Opportunities of the adversary in
the related-key model are wider than in standard models, therefore, usually
creation of the secure (in this model) cipher and its analysis requires signifi-
cantly more effort from cryptographers. So, there are additional requirements
on key schedule. However, the effort to develop and analyze the cipher in the
related-key model is compensated by the fact that more efficient cryptosys-
tems can be built upon those ciphers. The efficiency is achieved due to the
ability to work not only with independently generated keys, but with keys,
related by a simple relationship. Thus, we can omit the additional operations
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of the keys diversification. The use of such a cipher can also solve some issues
of the purely cryptographic nature (for example, see Section 5.1).

Also the modern security approach, so-called provable security [13] must
be taken into account while incorporating the cipher into the high level cryp-
tosystems. One of the main advantages of cryptosystems constructed accord-
ing to this approach is that their security is based on the minimum number of
unproven, but only heuristically verified, assumptions. The security of such
cryptosystems is often based on the security of block ciphers in a model with
a threat of distinguishing from some ideal object. An analogue of the stan-
dard model PRP-CPA for the case when the adversary can use the relation
between keys has been proposed in [17]. This model is usually referred to as
PRP-RKA.

4 Security of Kuznyechik in Related-key model

In this section we propose a related-key attack on a reduced variant
of block cipher Kuznyechik. The reduction assume a 4-round variant of
Kuznyechik with a simplified key schedule. The proposed approach exploits
the ability of attacker to manipulate keys, and the similarity of the functions
in encryption and the key schedule procedures. The attack is divided into two
sequential parts: K1 and K2 recovery, where K1 and K2 are parts of secret
key (K = K1||K2).

4.1 Reduced block cipher

We will use basic notations according to [18]. The description of
Kuznyechik block cipher could also be found in [18].

The reduced version of Kuznyechik block cipher has only 4 rounds of the
basic cipher, and each round of the key schedule has only 2 rounds of basic
cipher’s Feistel rounds.

The key schedule of the reduced cipher uses round constants Ci ∈
V128, i = 1, 2, . . . , 32, which a defined as follows:

Ci = L(i), i = 1, 2.

Round keys Ki ∈ V128, i = 1, 2, 3, 4, are derived from

K = k255|| . . . ||k0 ∈ V256,
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ki ∈ V1, i = 0, 1, . . . , 255, and evaluated according to the following equations:

K1 = k255|| . . . ||K128;

K2 = k127|| . . . ||k0;

(K3, K4) = F [C2]F [C1](K1, K2).

Ciphertext obtained as a result of the following transformation.

EK1,K2
(m) = X[K4]LSX[K3]LSX[K2]LSX[K1](m)

4.1.1 Attack description

Here we describe the proposed attack in brief. The formal description
could be found in the Appendix A.

Key recovery consists of two phases: at the first phase we recover K1 by
8-bit words, and at the second simply evaluate K2, using obtained K1.

Let Li(δ) be a vector L(δ≪ 8i), where δ ∈ V8. Since L is linear ∀x ∈
V128 : L(x⊕ (0 . . . 0, δ︸︷︷︸

i

, 0 . . . 0)) = L(x)⊕Li(δ). Let also Ai be a i-th 8-bit

word of A ∈ V128. So, A = (A15, . . . , A0).
Assume, for example, that C0

1 ⊕ K0
1 = α, and π(α) ⊕ π(α ⊕ 1) = β.

Consider encryption procedure for plaintext C1 with initial and related keys,
when the latter is obtained by the following transformation: K ′1 = K1 ⊕
00000001, K ′2 = K2 ⊕ L0(β).

Since we have the same plain text m for both cases, initial internal states
are the same and the corresponding difference is equal to zero (∆ = 0).
After bitwise XOR with the first round key we will have ∆ = K1 ⊕ K ′1 =
(0, . . . , 0, 1), because of the relation between the keys. After the consequent
S-box would change the difference only in one active S-box. For this S-box
input difference is 1. Then, the output difference is equal to β, and as a
result ∆ = (0, . . . , β). The application of the linear transform affects the
whole internal state: ∆ = L0(β).

Since K2 ⊕ K ′2 = L0(β), bitwise XOR with the second round key
makes internal states identical again (∆ = 0). The consequent nonlin-
ear and linear transforms do not affect this zero difference. Since K2 ⊕
LSX[C1](K1) = K ′2 ⊕ LSX[C1](K

′
1), LSX[C2](K2 ⊕ LSX[C1](K1)) =

LSX[C2](K
′
2 ⊕ LSX[C1](K

′
1)), after the next XOR with the round key we

have ∆ = K1 ⊕ K ′1 = (0, . . . , 1). As a result after the next steps we again
have only one active S-box (which is actually used as a distinguisher), and
∆ became an unknown difference (0, . . . , γ). After the linear transform we
have ∆ = L0(γ). Since K2 ⊕ LSX[C1](K1) = K ′2 ⊕ LSX[C1](K

′
1), after the
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final step the difference between the ciphertexts ∆ is still equal to L0(γ).
So, the distinguisher used for correct key selection is based on the fact

that before the last application of linear transform and XOR with the round
key internal state has only 256 different values.

The distinguisher for K1 works due to the following reasons. For the
considered keys the difference between ciphertexts is equal to L0(γ). Despite
the fact that the value of γ is unknown, the attacker knows that all 8-bit
subwords of L−1(L0(γ)) are equal to zero except the first one. This is used
as a distinguishing criterion. Note, that if the attacker uses only one related
keys pair at step 2.a0 (see Appendix A), the distinguishing step would have
been passed by all x, such that π(x) ⊕ π(x ⊕ 1) = β. There are at least 2
such pairs: C l

1 ⊕ K l
1 and C l

1 ⊕ K l
1 ⊕ 1. As result the attacker is unable to

learn the right value k.
In order to override this problem the attacker should use two differences

for the l-th subword of K1: K l
1⊕K ′1,l = 1 and K l

1⊕K ′6,l = 6. By total search
it could be shown the the pair π(x)⊕π(x⊕ 1), π(x)⊕π(x⊕ 6) is unique for
all x = 0, 1, . . . , 255, that means that there are no 0 ≤ x < y ≤ 255, such
that π(x)⊕π(x⊕1) = π(y)⊕π(y⊕1) and π(x)⊕π(x⊕6) = π(y)⊕π(y⊕6).

For other related keys pairs, in order to determine the probability of type 1
error, we consider the block cipher as a random substitution of V128 . For such
assumption the probability, that for some other related keys pair the result
of encryption would satisfy the distinguishing criterion, is upper bounded by
2−128 · 28 = 2−120. The same estimates are true for l = 1, 15. The expected
number of additional candidates for K1 is equal to (1 + 2−120)16− 1 ≈ 2−116,
so we could consider that the unique key K1 is found.

4.1.2 Attack parameters

In order to find the right K l
1 the attacker needs one plaintext, up to 512

related keys and the same number of encryptions. In order to determine K2

the attacker needs one encryption under the obtained key. As a result, the
overall time complexity of the attack is 212 encryptions and 212 related keys.

If the attacker would evaluate the difference for the second key pair forK l
1,

relatively to the correct difference for the first pair, the expected complexity
will reduce by a factor of 2.

Our non-optimized implementation of the proposed attack in Python 2.7
on a standard PC required approximately 10 minutes to recover the correct
key. We didn’t observe multiple candidates for K1.

The feasibility of the proposed attack is based mainly on the extremely
simplified key schedule of a reduced version of the Kuznyechik, which allows
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the attacker to trace the desired differences in round keys. The main problem
of using related-key approach for the basic cipher is high diffusion properties
of Kuznyechik round function.

5 CTRR encryption mode

In this Section we introduce a new internally re-keyed encryption mode
CTRR which based on using two related keys. Also we present security bound
for this mode in LOR-CPA notion.

5.1 Description

One of the important task of cryptographic protocol is to enforce the keys
usage limitations. Such key usage limitation called «key lifetime». Informally
but in some detail this issue is covered in [2, 3]. In [1] the main approaches
of increasing the key lifetime were classified. One of those approaches, called
«internal re-keying» was introduced in [19] and firstly investigated in [15, 14].
The main feature of this approach is that the key is transformed during the
processing of each message according to some encryption mode.

The CPKM internal re-keying method introduced in [19] has the following
disadvantage which became one of the reasons for developing a new method
ACPKM within the framework of the work of Russian Technical committee
for standardization (TC26): there may be a collision of block cipher permu-
tation inputs in cases of key transformation and message processing. This
issue solved by ACPKM by dividing the cipher permutation table into two
parts — for data processing and for key updating. But such trick is possible
only for modes for which we can predict inputs of encryption transformation,
for example, for CTR mode. Other classic modes such as CBC or CFB don’t
have this predictability property. So this is not a universal solution to this
problem. One of the universal solutions is to use so-called re-keying with mas-
ter key described in [1], but using this leads to a noticeable complication of
the scheme and need additional operations before data processing. Another
universal solution is to use two related keys for processing blocks of different
types (data or key).

Next, we describe new internally re-keyed encryption mode called CTRR
which uses two related keys. Let 2|n, n|k and C1, . . . , Ck/n ∈ Vn are pairwise
different constant bit strings. Parameters of the mode is section size N such
that n|N and transformation φ : Vk → Vk. The processing of the plaintext
P by means of the initialization vector IV ∈ Vn/2 and key K ∈ Vk is carried
out as follows:
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1. ctr1 = IV ||0n/2, ctrj = Inc(ctrj−1), j = 2, . . . , |P |n;
2. K1 = K, Kj = Eφ(Kj−1)(C1)|| . . . ||Eφ(Kj−1)(Ck/n), j = 2, . . . , d|P |/Ne;
3. Gj = EKi

(ctrj), j = 1, . . . , |P |n, i = dj · n/Ne;
4. Ciphertext C is equal to P ⊕msb|P |(G1||...||G|P |n).

Briefly stated, the plaintext is processed in the same way as in the stan-
dard CTR mode but the key that is used to generate the encryption blocks
Gj is not constant and is updated after generating N/n blocks Gj. The φ
transformation can be any of the following:
– φ(X) = X ⊕ c, for some constant c ∈ Vk, c 6= ok;
– φ(X) = strk(int(X)+c mod 2k), for some constant c ∈ {1, . . . , 2k−1}.
For the rest of the paper we will denote this set of possible variants for φ

as Φ.

5.2 Security estimation

Standard «single-key» security notion for block cipher is PRP-CPA
(«Pseudo Random Permutation in Chosen Plaintext Attack»). Adversary
A has access to oracle OPRP . It takes blocks M ∈ Vn as queries. When the
first request is received it chooses b ∈U {0, 1} and if b = 0 oracle OPRP

chooses permutation P ∈U Perm(Vn), otherwise it chooses K ∈U Vk. As a
response to a query M oracle returns a string P (M), if b = 0, and a string
EK(M), if b = 1. Adversary’s advantage is calculated as

AdvPRP-CPAE (A) = P(A → 1 | b = 1)− P(A → 1 | b = 0).

If effective specific attacks for a cipher E are not known the value
InSecPRP-CPAE (t, q) is estimated according to general attacks (i.e. attacks that
do not use the cipher structure properties). For PRP-CPA it is assumed that
the most effective general attack is a key recovery by exhaustive search over
the keyspace, so InSecPRP-CPAE (t, q) ≈ t/2k.

An analogue of PRP-CPA notion for several related keys is PRP-RKA
(«Pseudo Random Permutation in Related-Key Attack»). This model has
an additional parameter, which is the set Φ of key-derivation functions φ :
Vk → Vk. Adversary A has access to oracle ORKA which takes pairs (φ,M),
φ ∈ Φ and M ∈ Vn, as queries. When the first request is received it chooses
b ∈U {0, 1} and, if b = 0, it chooses G ∈U Perm(Vk, Vn) and a key K ∈U Vk,
and, if b = 1, the oracle chooses only a key K ∈U Vk. Oracle answers query
(φ,M) with a string Gφ(K)(M), if b = 0, and a string Eφ(K)(M), if b = 1.
Adversary’s advantage is calculated as

AdvPRP-RKA
Φ,E (A) = P(A → 1 | b = 1)− P(A → 1 | b = 0).
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In Section 4 attack on 4-round version of Kuznyechik with key schedule
restricted to 2 rounds using 210 related key pairs was presented. Growth of
encryption round number or Feistel net round number during key schedule
(i.e, making modification closer to real cipher) makes this attack inapplicable.
Due to lack of successful attacks on the full (10-round) version of the cipher,
we assume Kuznyechik to be resistant to related-key attacks.

In [17] the advantage of the adversary attacking an ideal cipher was
bounded with properties of key-derivative function set, number of ORKA

calls and number NE of encryptions/decryptions on a key selected by adver-
sary. Properties of key-derivative function set used in CTRR make advantage

to be bounded by
NE · |Φ|

2k
. In considered case |Φ| = 2 and NE 6 t, so

InSecPRP-RKA
{id,φ},E (t, q) 6

t

2k−1
.

For Magma cipher InSecPRP-RKA
E may eventually become high, since at-

tack that recovers full key using 12 related keys is known [21]. Thereby using
related keys in high-level protocols with this cipher should be considered
insecure, and Magma should not be used in CTRR mode.

We stress out that PRP-RKA is a standalone task and cipher’s insecurity
in this model is in general independent of PRP-CPA. An example of a cipher
which is PRP-CPA-secure and PRP-RKA-insecure is presented in Appendix
C. Thereby, related-key cryptanalysis is necessary for complete security esti-
mation and can not be replaced with analysis in «single-key» models.

The security analysis of the CTRR mode has been carried out in the
IND-CPNA («Indistinguishability under Chosen Plaintext and Nonce At-
tack») model. This model is similar to the standard IND-CPA security
model [4] but considers nonce-respecting adversaries [5]. Informally, in this
model the adversary has to distinguish the obtained ciphertexts from the
«garbage», having the capability to adaptively choose plaintexts and nonces
(in a unique manner). The IND-CPNA is the strongest standard security
model (known at the time) which allows to analyze the cryptographic prop-
erties of the mode from the viewpoint of computational «closeness» to the
ideal one-time pad encryption [5].

Theorem 1. Let N ∈ N, φ ∈ Φ be parameters of CTRR mode. Then for
any adversary A with time complexity at most t that makes q queries, where
the maximal message length is at most m (m 6 2n/2−1) blocks and the total
message length is at most σ blocks, there exists an adversary B solving PRP-
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RKA task such that

AdvIND-CPNA
CTRRN,φ (A) 6 l ·AdvPRP-RKA

{id,φ}, E (B) +
(σ1 + 2)2 + . . .+ (σl−1 + 2)2 + (σl)

2

2n

where l = dm/Ne, σj is the total data block length processed under the section
key Kj and σj 6 2n−1, σ1 + . . . + σl = σ. The adversary B makes at most
σ1+2 queries. Furthermore, the time complexity of B is at most t+cn(σ+2l),
where c is a constant that depends only on the model of computation and the
method of encoding.

The proof can be found in Appendix B.

6 Conclusion

This paper proposes a new internally re-keyed block cipher mode of oper-
ation called CTRR that use several keys with fixed bitwise sum. This mode
could be used with a cipher, which is proven to be secure in the related-key
model. We obtain security bounds for the mode under the assumption of
underlying cipher security in the related-key model.

We provide a preliminary related-key cryptanalysis of reduced
Kuznyechik block cipher, which provides ground for use of full version of
the cipher with CTRR.
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Appendix

A Description of the proposed key recovery attack

A.1 Key recovery algorithm for K l
1, l = 0, 15:

1. Choose plaintext m = C1

2. For each k = 0, 255:
(a) Choose 2 pairs of related keys:

(K1, K2), (K
′
1,l, K

′′
j,l) = (K1 ⊕ 1≪ 8l,K2 ⊕ Ll(j)),

where j such, that π(k ⊕ C l
1)⊕ π(k ⊕ C l

1 ⊕ 1) = j and

(K1, K2), (K
′
6,l, K

′′
ĵ,l

= (K1 ⊕ 6≪ 8l,K2 ⊕ Ll(ĵ))),

where ĵ such, that π(k ⊕ C l
1)⊕ π(k ⊕ C l

1 ⊕ 6) = ĵ
(b) If L−1(ÊK1,K2

(m)⊕ ÊK ′1,l,K
′′
j,l

(m)) = (0, . . . , 0, a︸︷︷︸
l

, 0, . . . , 0) and

L−1(ÊK1,K2
(m)⊕ ÊK ′6,l,K

′′
ĵ,l

(m)) = (0, . . . , 0, b︸︷︷︸
l

, 0, . . . , 0) for some

a, b ∈ V8, than store in memory k. If we have several k, which are
satisfied the conditions, store them all in a possible values array.

3. Set K l
1 to k (if we have several possible values – make separate copies

of the key).
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After 16 applications of this algorithm (for all l = 0, . . . , 15), we could have
all K1 (or an array of possible K1, with the correct key among them).

Figure 1: The propagation of difference ∆ through the encryption rounds for the first
attack phase.

We could evaluate K2 with the help of K1 by the following equation:

A.2 Recovery for K2 when K1: is known

1. Select plaintext m = (C15
1 , C

14
1 , . . . , C

2
1 , C

1
1 , π

−1(π(C0
1 ⊕K0

1)⊕ 2)⊕K0
1)

2. K2 = ÊK1,K2
(m)⊕ LSX[C1](K1)⊕ LS(K1)

Figure 2 shows the encryption of the message m =
(C15

1 , C
14
1 , . . . , C

2
1 , C

1
1 , π

−1(π(C0
1 ⊕K0

1)⊕ 2)⊕K0
1):
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Figure 2:

B Security bound for CTRR

Here we prove the theorem 1:

Theorem 2. Let N ∈ N, φ ∈ Φ be parameters of CTRR mode. Then for
any adversary A with time complexity at most t that makes q queries, where
the maximal message length is at most m (m 6 2n/2−1) blocks and the total
message length is at most σ blocks, there exists an adversary B solving PRP-
RKA task such that

AdvIND-CPNA
CTRRN,φ (A) 6 l ·AdvPRP-RKA

{id,φ}, E (B) +
(σ1 + 2)2 + . . .+ (σl−1 + 2)2 + (σl)

2

2n+1

where l = dm/Ne, σj is the total data block length processed under the section
key Kj and σj 6 2n−1, σ1 + . . . + σl = σ. The adversary B makes at most
σ1+2 queries. Furthermore, the time complexity of B is at most t+cn(σ+2l),
where c is a constant that depends only on the model of computation and the
method of encoding.

Proof. Define hybrid experiments Hybridj(A), j = 0, 1, . . . , dm/Ne. In the
experiment Hybridj(A) the oracle in the IND-CPNA notion is replaced by
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the oracle, which operates in the following way:
– The oracle chooses key Kj+1 ∈U Vk;
– In response to a query (P, IV ) the oracle returns C, where

C = M ⊕msb|P |(C
′‖Cj+1‖ . . . ‖Cdm/Ne),

here C ′ ∈U VnNj and C i, i = (j + 1), . . . , dm/Ne, is the result of the
i-th section processing under theK i section key. Note that the (j+1)-th
section is processed under the «truly» random Kj+1 key and each next
key is produced according to RKR key derivation algorithm.

The result of any experiment described above is what the adversary A
returns as a result.

Note that the Hybrid0(A) experiment totally coincides with the
ExpIND-CPNA−1

CTRRN (A) experiment, and the experiment Hybriddm/Ne(A) coin-
cides with ExpIND-CPNA−0

CTRRN (A) experiment, i.e. the following equalities hold:

P (Hybrid0(A)→ 1) = P
(
ExpIND-CPNA

CTRRN (A)→ 1 | b = 1
)
,

P
(
Hybriddm/Ne(A)→ 1

)
= P

(
ExpIND-CPNA

CTRRN (A)→ 1 | b = 0
)
.

Construct a set of adversaries Bj, j = 1, . . . , dm/Ne, for the block cipher
in the PRF-RKA model, which uses A as a black box.

After receiving a query (P, IV ) from A the adversary Bj processes this
query as in theHybridj(A) experiment but the encrypted blocks for masking
the j-th section and blocks of the (j + 1)-th section key are obtained by
making queries to the oracle provided by the PRF experiment. Note that Bj,
j = 1, . . . , dm/Ne − 1, makes at most σj + s queries and Bdm/Ne makes at
most σdm/Ne queries. The adversary Bj returns 1, if the adversary A returns
1, and returns 0, otherwise.

Note that

P
(
ExpPRF-RKA

{id,φ}, E (Bj)→ 1 | b = 1
)

= P (Hybridj−1(A)→ 1) ,

P
(
ExpPRF-RKA

{id,φ}, E (Bj)→ 1 | b = 0
)

= P (Hybridj(A)→ 1) .

The last equality is proceeded from the fact that for the random function
input blocks for producing the Kj+1 section key and the input blocks for
masking the j-th section are processed with different keys combined with
the fact that inside these groups blocks are also different. Therefore, the
Kj+1 variable distribution is statistically indistinguishable from the «truly»
random one.
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Then for the advantages of the adversaries Bj it holds that

dm/Ne∑
j=1

AdvPRF-RKA
{id,φ}, E (Bj) =

=

dm/Ne∑
j=1

P (Hybridj−1(A)→ 1)−
dm/Ne∑
j=1

P (Hybridj(A)→ 1) =

= P (Hybrid0(A)→ 1)− P
(
Hybriddm/Ne(A)→ 1

)
= AdvIND-CPNA

CTRRN,φ (A).

From the PRP/PRF switching lemma [17] we have that for φ ∈ Φ for
any block cipher E and any adversary B′ making at most q queries

AdvPRF-RKA
{id,φ}, E (B′) 6 AdvPRP-RKA

{id,φ}, E (B′) +
2q(q − 1)

2n+1
6 AdvPRP-RKA

{id,φ}, E (B′) +
q2

2n
.

Thus,

AdvIND-CPNA
CTRRN (A) =

dm/Ne∑
j=1

AdvPRF-RKA
{id,φ}, E (Bj) 6

6
dm/Ne−1∑

j=1

(
AdvPRP-RKA

{id,φ}, E (Bj) +
(σi + s)2

2n

)
+

+ AdvPRP-RKA
{id,φ}, E (Bdm/Ne) +

(σdm/Ne)
2

2n
6

6
⌈m
N

⌉
AdvPRP-RKA

{id,φ}, E (B) +
(σ1 + s)2 + . . .+ (σdm/Ne−1 + s)2 + (σdm/Ne)

2

2n
,

where B is an adversary which makes at most σ1 +s queries. The last relation
is due to σ1 > . . . > σdm/Ne and AdvPRP-RKA

{id,φ}, E (B′) 6 AdvPRP-RKA
{id,φ}, E (B′′) for such

adversaries B′ and B′′ with the same computational resources that the queries
number made by B′ is less than the queries number made by B′′. �

C Irreducibility of PRP-RKA to PRP-CCA

We stress out that PRP-RKA can not be effectively reduced to PRP-CPA.
The following example proves it:
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Theorem 3. There exists such cipher E that

InSecPRP-CPA
E (t, q1, q2) ≈

t

2k
;

InSecPRP-RKA
{id,x⊕1||0k},E(t, 0, 2) ≈ 1.

Proof. Let E ′ : Vk × Vn → Vn be an ideal cipher (for ideal cipher the first
estimate considered to be true). Now we construct a new cipher E : Vk+1 ×
Vn → Vn, E1||K(m) = E0||K(m) = EK(m)∀K ∈ Vk. Let A be adversary
attacking E in PRP-CPA model. Let’s construct an adversary B, attacking
E ′ in PRP-CPA model using A as a black box: all A′s queries B redirects
to his own oracle and redirects oracle’s answers to A and in the end of
experiment B puts the same value as A does. Note that due to the structure
of cipher E, situation when B chooses key K = K0||K1|| . . . ||Kk and when
B chooses key K ′ = K1|| . . . ||Kk are observed absolutely equally from A′s
perspective, so output distribution in both experiments will be the same.
Thus,

AdvPRP-CPAE (B) =

= P(K ∈U Vk+1 : B → 1 | b = 1)− P(K ∈U Vk+1 : B → 1 | b = 0) =

=
1

2
· P(K ∈U Vk+1 : B → 1 | b = 1, K0 = 0)+

+
1

2
· P(K ∈U Vk+1 : B → 1 | b = 1, K0 = 1)−

−1

2
· P(K ∈U Vk+1 : B → 1 | b = 0, K0 = 0)−

−1

2
· P(K ∈U Vk+1 : B → 1 | b = 0, K0 = 1) =

=
1

2
· P(K ∈U Vk+1, K

′ = K1|| . . . ||Kk : A→ 1 | b = 1, K0 = 0)+

+
1

2
· P(K ∈U Vk+1, K

′ = K1|| . . . ||Kk : A→ 1 | b = 1, K0 = 1)−

−1

2
· P(K ∈U Vk+1, K

′ = K1|| . . . ||Kk : A→ 1 | b = 0, K0 = 0)−

−1

2
· P(K ∈U Vk+1, K

′ = K1|| . . . ||Kk : A→ 1 | b = 0, K0 = 1) =

=
1

2
· P(K ′ ∈U Vk : A→ 1 | b = 1) +

1

2
· P(K ′ ∈U Vk : A→ 1 | b = 1)−

−1

2
· P(K ′ ∈U Vk : A→ 1 | b = 0)− 1

2
· P(K ′ ∈U Vk : A→ 1 | b = 0) =

= AdvPRP-CPAE’ (A)
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Note that there exists adversary C, that successfully attacks E in
PRP-RKA model using set of related-key derivating functions Φ = {id, x⊕
1||0k} (id is identical function) with only 2 oracle queries:
1. Choose m ∈U Vn;
2. Send query (id,m) to ORKA and store answer as R1;
3. Send query (x⊕ 1||0k,m) to ORKA and store answer as R2;
4. If R1 = R2 return 1, otherwise return 0.
Note that

AdvPRP-RKA
Φ,E (A) = P(A→ 1 | b = 1)− P(A→ 1 | b = 0) =

= P(R1 = R2 | b = 1)− P(R1 = R2 | b = 0) = 1− 1

2n
.

Thereby E preserves PRP-CCA-robustness of E ′, but InSecPRP-RKA
{id,x⊕1||0k},E ≈

1, i.e. E is completely PRP-RKA-insecure. �
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Some Properties of Modular Addition
Victoria Vysotskaya
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Abstract

In this paper we study a problem which emerged during an attempt to apply
a differential cryptanalysis method to the «Magma» algorithm. We evaluate the
number of distinct distributions in the difference distribution table and give an
asymptotically accurate estimation of it. Moreover, we provide an algorithm for
generation of all the distinct distributions in 2O(

√
n) operations and counting them

in polynomial time instead of 2Ω(n) in the brute-force method.

Keywords: modular addition, partitions, differential cryptanalysis.

1 Introduction

The problem studied in the paper emerged during an attempt to estimate
the applicability of differential cryptanalysis to the Russian government stan-
dard symmetric key block cipher (GOST 28147-89) rounds [1]. It is vital since
the algorithm (called «Magma») is still present in the modern Russian GOST
R 34.12-2015 describing symmetric key block ciphers [2].

During the research on the topic the following equation emerged:

∆f =
[
(x⊕∆x)�n y

]
⊕ (x�n y). (1)

It is a special case of the difference of addition modulo 2n studied in [3].
Let us introduce the function Pn(∆x,∆f):

Pn(∆x,∆f) =
∣∣∣ {(x, y) : ∆f =

[
(x⊕∆x)�n y

]
⊕ (x�n y); ∆x,∆f ∈ {0, . . . , 2n − 1}

} ∣∣∣,
and let us consider the table of values of this function (Pn)∆x,∆f . In this
table rows are indexed by ∆x and columns by ∆f . Such a table is usually
called difference distribution table (DDT).

Let us introduce an equivalence relation on the rows of matrix Pn as
follows: two rows are called equivalent if they coincide up to permutations
of elements. Next, we study the set of equivalence classes into which matrix
rows are divided. Let us call such equivalence classes as distributions.

182



Note. Let us consider the calculation of number of different distributions or
enumerating them, as an algorithmic tasks. Then trivial (brute force) algo-
rithm requires 2Ω(n) operations as one needs to calculate the value of ∆f for
all x, y, ∆x ∈ {0, . . . , 2n− 1}. At the same time the algorithm based on the
results presented in our article requires a polynomial number of operations
for the first task and 2O(

√
n) operations for the second.

2 Parametrization of distributions

Lemma 1. Let matrix Pn has the form

Pn =

[
A B
C D

]
.

Then matrix Pn+1 has the form

Pn+1 = 2


2A B 0 B

C D C D

0 B 2A B

C D C D

 .
The proof of Lemma 1 is given in the Appendix A, since it is quite cumber-
some.

This Lemma can be reworded: if

Pn = 2n+1

[
An Bn

Bn An

]
,

then
An =

[
2An−1 Bn−1

Bn−1 An−1

]
, Bn =

[
0 Bn−1

Bn−1 An−1

]
.

Let us denote by (αn−1, αn−2, . . . , α1, α0) the binary representation of
number i. Then let us match each distribution located in some row of ma-
trix Pn with a polynomial in the following way. A row pi corresponds to
polynomial

∑n+2
j=0 cjx

j, where ci is the amount of numbers 2i in pi. Hence
multiplication by 2 corresponds to multiplication by x and concatenation to
addition of polynomials. For ain(x) and bin(x) corresponding to i-th rows of
An and Bn respectively we have:

ain(x) =

{
xain−1(x) + bin−1(x), if αn−2 = 0,

ain−1(x) + bin−1(x), if αn−2 = 1;
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bin(x) =

{
bin−1(x), if αn−2 = 0,

ain−1(x) + bin−1(x), if αn−2 = 1.

Thus, [
ain(x)
bin(x)

]
= Wαn−2

[
ain−1(x)
bin−1(x)

]
,

where
W0 =

[
x 1
0 1

]
, W1 =

[
1 1
1 1

]
.

Moreover,
A1 =

[
1
]
, B1 =

[
0
]
, a1 = 1 b1 = 0.

Repeating the same argument n− 2 more times we finally get

ain(x) + bin(x) =
[

1 1
] [ ain(x)

bin(x)

]
=

=
[

1 1
]
Wαn−2

Wαn−3
. . . Wα0

[
1
0

]
. (2)

Let us denote by i′ the number with binary representation
(αn−2, αn−3, . . . , α0). This choice is based on the knowledge that the most
significant bit does not affect the distribution. Let us separate groups of 0’s
and 1’s in i′. We assume that the first one is a group of 1’s, and the last one is
a group of 0’s (both can be empty). The number of 1’s isK = k1+k2+· · ·+ks,
the number of 0’s is L = `1 + · · ·+ `s and L+K = n− 1. Then

i′ = 11 . . . 1︸ ︷︷ ︸
k1

0 . . . 0︸ ︷︷ ︸
`1

1 . . . 1︸ ︷︷ ︸
k2

0 . . . 0︸ ︷︷ ︸
`2

. . . 1 . . . 1︸ ︷︷ ︸
ks

0 . . . 0︸ ︷︷ ︸
`s

and expression (2) becomes

ain(x) + bin(x) =
[

1 1
]
W k1

1 W
`1
0 . . .W ks

1 W
`s
0

[
1
0

]
. (3)

We will use the following statements, easily provable by induction:

W k
1 =

[
1 1
1 1

] [
1 1
1 1

]
. . .

[
1 1
1 1

]
= 2k−1

[
1 1
1 1

]
,

W `
0 =

[
x 1
0 1

] [
x 1
0 1

]
. . .

[
x 1
0 1

]
=

[
x` x`−1 + x`−2 + · · ·+ 1
0 1

]
.
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Then (3) may be represented as:

ain(x) + bin(x) =

=
[

1 1
] [ 1

1

]
2k1−1

[
1 1

] [ x`1 x`1−1 + · · ·+ 1
0 1

] [
1
1

]
. . .

. . .
[

1 1
] [ x`s x`s−1 + · · ·+ 1

0 1

] [
1
0

]
.

Note that[
1 1

] [ x` x`−1 + · · ·+ 1
0 1

] [
1
1

]
= x` + x`−1 + x`−2 + · · ·+ 2.

Then

ain(x) + bin(x) = 2 · 2K−s(x`1 + x`1−1 + · · ·+ 2) . . . (x`s + x`s−1 + · · ·+ 2)x`s.

Hence

pin(x) = 2K−s+1
s−1∏
j=1

(x`j + x`j−1 + · · ·+ 2)x`s. (4)

Let us denote byQn the set of tuples (s, L, `s, ˜̀), where s ∈ {1, . . . , n−1},
`s ∈ {0, . . . , n− 1}, L ∈ {0, . . . , n− s} and ˜̀ is a multiset of s− 1 positive
integers summing up to L − `s. We now want to prove that there is a one-
to-one correspondence between the set of polynomials pin(x) and the set Qn.
It is obvious that there is a corresponding set qi ∈ Qn to each polynomial
pin(x) and vice versa. So it is enough to show that if two polynomials are
equal then corresponding sets of parameters coincide.

Let us fix numbers d1 and d2 and then compare two expressions

pd1
n (x) = 2K

′−s′+1
s′−1∏
j=1

(x`
′
j + x`

′
j−1 + · · ·+ 2)x`

′
s′ ,

pd2
n (x) = 2K

′′−s′′+1
s′′−1∏
j=1

(x`
′′
j + x`

′′
j−1 + · · ·+ 2)x`

′′
s′′ .

If polynomials are equal, then 2K
′−s′+1xL

′
= 2K

′′−s′′+1xL
′′, hence L′ = L′′ and

K ′ − s′ + 1 = = K ′′ − s′′ + 1. Since the counts of 0’s are equal, the counts
of 1’s are equal too, so s′ = s′′. Besides, the lower powers of the polynomials
must coincide, hence `′s′ = `′′s′′. Now it remains to prove that under stated
assumptions the equality of polynomials also mean the equality of parameters
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`′1, . . . , `
′
s′ and `′′1, . . . , `′′s′′ up to a permutation.

Let us denote
G`′j(x) = x`

′
j + x`

′
j−1 + · · ·+ 2,

G`′′j (x) = x`
′′
j + x`

′′
j−1 + · · ·+ 2.

We now show that if
s′−1∏
j′=1

G`′
j′
(x) =

s′′−1∏
j′′=1

G`′′
j′′

(x), (5)

then the multiset {G`′
j′
(x)}s′−1

j′=1 equals to the multiset {G`′′
j′′

(x)}s′′−1
j′′=1, or in

other words the decomposition of such polynomials into factors of form Gj(x)
is unique. For this purpose we prove that polynomials Gj(x) are pairwise co-
prime. Let us compute the greatest common divisor of Gu(x) and Gv(x) for
u > v:

(Gu(x),Gv(x)) =

= (xu + xu−1 + · · ·+ 2, xv + xv−1 + · · ·+ 2) =

= (xu−v−1 + · · ·+ 1, xv + xv−1 + · · ·+ 2) =

=

(
xu−v − 1

x− 1
,
xv+1 − 1

x− 1
+ 1

)
=

=
1

x− 1

(
xu−v − 1, xv + x− 2

)
.

The roots of the polynomial f(x) = xu−v − 1 are all roots of unity of the
degree (u − v). Let us check which of these roots can be the roots of the
polynomial h(x) = xv + x− 2.

Let ε = cos 2π
u−v + i · sin 2π

u−v be a primitive root of unity of the degree
(u− v), then {ε`}u−v−1

`=0 is a set of all roots of unity of the degree (u− v). So

ε`v + ε` − 2 = 0.

Therefore ε`v = ε` = 1, as |εk| 6 1 for all k. Hence

1

x− 1

(
xu−v − 1, xv + x− 2

)
=

1

x− 1
(x− 1) = 1.

Now let us return to the case (5). We decompose polynomials of the left
and right sides into irreducible ones. Then we consider the first irreducible
polynomial f(x) on the left-hand side. In order for equality to hold, f(x) also
has to be present on the right-hand side. So there are some Gu on the left-
hand side and Gv on the right-hand side divisible by f(x). Hence, u must be

186



equal to v. Divide both sides by Gu and continue in the same fashion, arriving
at the conclusion that the decomposition is unique up to a permutation.

Thus, we proved the following

Theorem 1. There is a one-to-one correspondence between the set of dis-
tributions of the rows of matrix Pn and the parameters set Qn.

Using Theorem 1 one can enumerate the distributions in time propor-
tional to their number. More precisely, one can iterate over all distinct distri-
bution and list them in time O (|Qn| · poly(n)) , where poly(n) is a polyno-
mial of n. The only tricky part is to enumerate all the multisets with given
sum, but it can be done using one of various recursive algorithms in O(1)
amortised time per iteration (e. g. see [4]).

3 The number of distributions

Let p(n, k) be the number of partitions of n into exactly k parts. More-
over, let p(n, k) = 0, if k 6 0 or n 6 0, but p(0, 0) = 1. If we fix
s, L and `s then the number of tuples from the set Qn with these param-
eters is equal to p(L − `s, s − 1). Obviously there are only n tuples with
s = 1: (1, 1, . . . , 1, 1), (1, 1, . . . , 1, 0), . . . , (1, 0, . . . , 0, 0), (0, 0, . . . , 0, 0). We
will consider this case separately and we will assume that s > 2. Finally,

note that
n−s∑
L=`s

p(L− `s, s− 1) =

n−s−`s∑
L=0

p(L, s− 1). Then

|Qn| =

[
n−1∑
s=2

n−1∑
`s=0

n−s−`s∑
L=0

p(L, s− 1)

]
+ n. (6)

We make one more note to be used later.

Lemma 2. p(n, k) = p(n− 1, k − 1) + p(n− k, k).

Proof. Note that the partition of number n into k parts can either include
some number of 1’s or not include any. In the first case, there is a one-to-
one correspondence between such partitions and (unconstrained) partitions
of n − 1 into k − 1 parts (just put additional 1 to a partition) — there are
p(n−1, k−1) of them. In the second case, there is a correspondence between
such partitions and (unconstrained) partitions of n−k into k parts (just add
1 to each number in partition) — there are p(n− k, k) of them. �

We now show that the expression (6) can be simplified.
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Theorem 2. |Qn| =
n−1∑
j=1

p(j) + 1, where p(j) =

j∑
s=1

p(j, s), n > 3.

Proof (by induction). For n = 4 formula (6) gives |Q4| = 7. At the same
time p(3) + p(2) + p(1) + 1 = 3 + 2 + 1 + 1 = 7.

Let us show the induction step. In other words, let us prove that the
following holds

n∑
s=2

n∑
`s=0

n−s+1−`s∑
L=0

p(L, s− 1)−
n−1∑
s=2

n−1∑
`s=0

n−s−`s∑
L=0

p(L, s− 1) = p(n)− 1.

n∑
s=2

n∑
`s=0

n−s+1−`s∑
L=0

p(L, s− 1)−
n−1∑
s=2

n−1∑
`s=0

n−s−`s∑
L=0

p(L, s− 1) =

=
n−1∑
s=2

[
n∑

`s=0

n−s+1−`s∑
L=0

p(L, s− 1)−
n−1∑
`s=0

n−s−`s∑
L=0

p(L, s− 1)

]
+

+
n∑

`s=0

n−n+1−`s∑
L=0

p(L, n− 1)︸ ︷︷ ︸
=0

=

=
n−1∑
s=2

[
n−1∑
`s=0

[ n−1−s+2−`s∑
L=0

p(L, s− 1)−
n−1−s+1−`s∑

L=0

p(L, s− 1)

]
+

+
n+1−s−n∑
L=0

p(L, s− 1)︸ ︷︷ ︸
=0

]
=

=
n−1∑
s=2

n−1∑
`s=0

p(n+ 1− s− `s, s− 1).

Now we will prove by induction that the latter is equal to p(n)− 1. For
n = 4 both of them are equal to 4.
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Induction step: let us check the validity of equation

p(n+ 1)− 1 =
n∑
s=2

n∑
`s=0

p(n+ 2− s− `s, s− 1) =

=
n∑
s=2

n−1∑
`s=−1

p(n+ 1− s− `s, s− 1) =

=
n−1∑
s=2

n−1∑
`s=0

p(n+ 1− s− `s, s− 1) +
n−1∑
`s=−1

p(n+ 1− n− `s, n− 1)︸ ︷︷ ︸
=p(1−`s,n−1)=0

+

+
n∑
s=2

p(n+ 1− s− (−1), s− 1) = p(n)− 1 +
n∑
s=2

p(n+ 2− s, s− 1).

Since

p(n) =
n∑
s=1

p(n, s), p(n+ 1) =
n+1∑
s=1

p(n+ 1, s),

the equation becomes

n+1∑
s=1

p(n+ 1, s) =
n+1∑
s=1

p(n, s) +
n−1∑
s=1

p(n+ 1− s, s). (7)

Let us continue transforming the expression (7):

n∑
s=1

p(n+ 1, s) + p(n+ 1, n+ 1)︸ ︷︷ ︸
=1

=
n+1∑
s=2

p(n, s− 1) +
n∑
s=1

p(n+ 1− s, s)−

− p(n+ 1− n, n)︸ ︷︷ ︸
=p(1,n)=0

=
n∑
s=1

p(n, s− 1) + p(n, n)︸ ︷︷ ︸
=1

−

− p(n, 0)︸ ︷︷ ︸
=0

+
n∑
s=1

p(n+ 1− s, s).

Eventually,

n∑
s=1

p(n+ 1, s) =
n∑
s=1

p(n, s− 1) +
n−1∑
s=1

p(n+ 1− s, s).

Lemma 2 ends the proof.
�
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Theorem 2 makes it possible to solve the task of counting all the distribu-
tions. We just have to calculate values of p(j, s) for j ∈ {1, . . . , n− 1}, s ∈
{1, . . . , j}, then all the p(j) and finally |Qn|. The complexity of computing
p(j, s) dominates the other steps and according to Lemma 2 may be done
in O(n2) additions of n-bit numbers. Thus we need O(n3) bit operations for
the counting problem.

4 Asymptotical approximation

In [5] the following asymptotic formula for the number of partitions p(n)
was obtained:

p(n) ∼ 1

4
√

3n
eπ
√

2n
3 .

Hence

|Qn| ∼
n−1∑
j=1

1

4
√

3j
eπ
√

2j
3 + 1 as n→∞. (8)

The following Lemma allows us to claim it.

Lemma 3. Let f(n) ∼ g(n) as n → ∞, f(n) > 0, g(n) > 0, f(n) and

g(n) monotonically increase and are unbounded, F (n) =
n∑
k=1

f(k), G(n) =

n∑
k=1

g(k), then F (n) ∼ G(n), n → ∞.

You can find the proof of Lemma 3 in Appendix B.
Now we will prove an auxiliary Lemma.

Lemma 4.

n−2
√
n lnn∑

j=1

1

4
√

3j
eπ
√

2j
3 = o

(
1

4
√

3n
eπ
√

2n
3

)
as n→∞.

Proof. Let us show that

lim
n→∞

n−2
√
n lnn∑

j=1

n

j
eπ
√

2
3(
√
j−
√
n) = 0.

Since
n

j
< n, j < n− 2

√
n lnn
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and
n− 2

√
n lnn < n,

it is sufficient to prove that

lim
n→∞

n2e
π
√

2
3

(√
n−2
√
n lnn−

√
n
)

= 0.

From√
n− 2

√
n lnn =

√
n

√
1− 2 lnn√

n
=
√
n

(
1− 2 lnn

2
√
n

+ o

(
lnn√
n

))
=

=
√
n− lnn+ o(lnn)

it follows that

lim
n→∞

n2e
π
√

2
3

(√
n−2
√
n lnn−

√
n
)

= lim
n→∞

n2eπ
√

2
3 (− lnn+o(lnn)) =

lim
n→∞

n2−π
√

2
3+o(1).

Whereas the exponent is negative, Lemma is proved. �

Theorem 3.
n∑
j=1

p(j) ∼ e
√

2n
3

2
√

2π
√
n

as n→∞.

Proof. It can be proved that there exists a number N0 such that the function
on the right-hand side monotonically increases on [N0; +∞). We will esti-
mate the sum from N0 to n as first N0 − 1 summands do not influence the
asymptotic.

The following holds ∫ n

N0

e
√

2x
3 πdx

4
√

3x
=

=

∫ n

N0

1

2
√

2π
√
x
de
√

2x
3 π =

e
√

2x
3 π

2
√

2π
√
x

∣∣∣∣n
N0

+

∫ n

N0

e
√

2x
3 π

2
√

2πx3/2
dx =

=
e
√

2n
3 π

2
√

2π
√
n
− e

√
2N0

3

2
√

2π
√
N0

+

∫ n

N0

e
√

2x
3 π

2
√

2πx3/2
dx.

Now we will show that the last two summands here are o(e
√
nn−

1
2 ). For

the first of them it is obvious, so let us focus on the second. For this purpose
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we note that
n−1∑
j=N0

f(x) 6
∫ n

N0

f(x)dx 6
n∑

j=N0+1

f(x)

for non-decreasing function f . So by Lemma 4

∫ n

N0

e
√

2x
3 π

2
√

2πx3/2
6

n∑
N0+1

e
√

2x
3 π

2
√

2πx3/2
∼

n∑
j=n−2

√
n lnn

e
√

2x
3

2
√

2πx3/2
∼

n∑
j=n−2

√
n lnn

e
√
x

x3/2

6
e
√
n

(n− 2
√
n lnn)

3
2

· 2
√
n lnn ∼ e

√
n

n
3
2

√
n lnn =

lnn

n
e
√
n.

Finally for n→∞ (
lnn

n
e
√
n

)(
e
√
n

√
n

)−1

=
lnn√
n
→ 0.

In addition,

n∑
j=N0+1

f(x)−
n−1∑
j=N0

f(x) = f(n)− f(N0) =
e
√

2n
3

4
√

3n
− e
√

2N0
3

4
√

3N0

= o

(
e
√
n

√
n

)

the following equality holds

n∑
j=N0

e
√

2j
3

4
√

3j
∼
∫ n

N0

e
√

2x
3

4
√

3x
dx,

and it concludes the proof of the Theorem. �

According to the above Theorem and the note after Theorem 1 we can
enumerate all the distributions in time 2O(

√
n) that is obviously substantially

better than brute force algorithm with complexity 2Ω(n).

5 Conclusion

We obtained a general form of distributions in DDT. Moreover, we pro-
vided an efficient method for computing the distribution in a row with given
index. The obtained results imply a possibility to substantially accelerate
the construction of all possible distributions. We showed that all the distri-
butions now can be generated in time proportional to the amount of them.
We have proved that the number of distinct distributions is 2O(

√
n), so the
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whole generating algorithm would take 2O(
√
n) operations. At the same time

the brute force algorithm requires 2Ω(n) operations.
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Appendix

A The proof of Lemma 1

Let us find a rule by which, knowing the form of matrix Pn for some n,
we can construct such a matrix for Pn+1. Write down all variables, setting
two most significant bits apart:

x = xn · 2n + xn−1 · 2n−1 + x̂,

y = yn · 2n + yn−1 · 2n−1 + ŷ,

∆x = ∆xn · 2n + ∆xn−1 · 2n−1 + ∆x̂,

∆f = ∆fn · 2n + ∆fn−1 · 2n−1 + ∆f̂ ,

where
x, y, ∆x, ∆f ∈ {0, . . . , 2n+1 − 1},
xn, ∆yn, ∆xn, ∆fn ∈ {0, 1},

xn−1, ∆yn−1, ∆xn−1, ∆fn−1 ∈ {0, 1},
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x̂, ŷ, ∆x̂, ∆f̂ ∈ {0, . . . , 2n−1 − 1}.
Besides, denote

mk(a, b, c) =

{
0, if a+ b+ c < 2k,
1, if a+ b+ c > 2k,

the function that returns a carry bit of addition a+ b+ c modulo 2k. We also
denote mk(a, b) = mk(a, b, 0). In addition let us note that m1(a, b) = a& b
and m1(a, b, c) = a& b ∨ a& c ∨ b& c (the last is called the «majority»
function).

Let us denote:
c = mn−1(x̂, ŷ),

c∆ = mn−1(x̂⊕∆x̂, ŷ).

So let us rewrite the first part of expression (1) in more detail:

(x+ ∆x)�n+1 y =
[
(x̂⊕∆x̂)�n−1 ŷ

]
+

+
[
(xn−1 ⊕∆xn−1) + yn−1

]
· 2n−1 +

[
(xn ⊕∆xn) + yn

]
· 2n =

=
[
(x̂⊕∆x̂)�n−1 ŷ

]
+
[
c∆ ⊕

(
(xn−1 ⊕∆xn−1)⊕ yn−1

)]
· 2n−1+

+
[
m1(c∆, xn−1 ⊕∆xn−1, yn−1)⊕

(
(xn ⊕∆xn)⊕ yn

)]
· 2n.

Similarly, we get

x�n+1 y =

= (x̂�n−1 ŷ) + (c⊕ xn−1 ⊕ yn−1) · 2n−1+

+
[
m1(c, xn−1, yn−1)⊕ (xn ⊕ yn)

]
· 2n.

Then the equation (1) can be rewritten as

∆f =
[
(x̂�n−1 ŷ)⊕

(
(x̂⊕∆x̂)�n−1 ŷ

)]
+ (∆xn−1 ⊕ c⊕ c∆) · 2n−1+

+
[
∆xn ⊕m1(c∆, xn−1 ⊕∆xn−1, yn−1)⊕m1(c, xn−1, yn−1)

]
· 2n.

Let us denote

ϕ(x̂, ŷ,∆x̂) =
[
(x̂�n−1 ŷ)⊕

(
(x̂⊕∆x̂)�n−1 ŷ

)]
.
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Hence, the equation (1) is equivalent to the following system:

c = mn−1(x̂, ŷ), (9)
c∆ = mn−1(x̂⊕∆x̂, ŷ), (10)
ϕ(x̂, ŷ,∆x̂) = ∆f̂ , (11)
c⊕ c∆ = ∆fn−1 ⊕∆xn−1︸ ︷︷ ︸

zn−1

, (12)

m1(c∆, xn−1 ⊕∆xn−1, yn−1)⊕m1(c, xn−1, yn−1) = ∆fn ⊕∆xn︸ ︷︷ ︸
zn

. (13)

Let us fix ∆x and ∆f modulo 2n+1. We denote the set of solutions (x, y) of
the equation (1) modulo 2k, where x, y ∈ {0, . . . , 2k − 1} by Mk. Obviously,
Mn−1 is a set of solutions of equations (9)–(11), Mn — solutions of equations
(9)–(12) and Mn+1 — of equations (9)–(13). Additionally, we introduce two
additional sets: Ûn−1 is the set of solutions (x̂, ŷ) of the system (9)–(12) and
Û

(c)
n−1 for c ∈ {0, 1} is a subset of Ûn−1 where mn−1(x̂, ŷ) = c.
We will try to find sets (xn−1, yn−1, c, c∆) satisfying conditions (12), (13).

But noting that c∆ = c⊕ zn−1 we will search for solutions (xn−1, yn−1, c) of
equation

m1(c⊕ zn−1, xn−1 ⊕∆xn−1, yn−1)⊕m1(c, xn−1, yn−1) = zn. (14)

Depending on values of xn−1 and yn−1 this equation may be rewritten as

xn−1 yn−1 (14)

0 0 m1((c⊕ zn−1),∆xn−1, 0)⊕m1(0, 0, c) = zn,
0 1 m1((c⊕ zn−1),∆xn−1, 1)⊕m1(0, 1, c) = zn,
1 0 m1((c⊕ zn−1), 1⊕∆xn−1, 0)⊕m1(1, 0, c) = zn,

1 1 m1((c⊕ zn−1), 1⊕∆xn−1, 0)⊕m1(1, 1, c) = zn.

Or, equivalently,

xn−1 yn−1 (14)
0 0 (c⊕ zn−1) ·∆xn−1 = zn,
0 1

[
(c⊕ zn−1) ·∆xn−1 ∨ (c⊕ zn−1) ∨∆xn−1

]
⊕ c = zn,

1 0 (c⊕ zn−1) · (1⊕∆xn−1)⊕ c = zn,
1 1

[
(c⊕ zn−1) · (1⊕∆xn−1) ∨ (c⊕ zn−1) ∨ (1⊕∆xn−1)

]
⊕ 1 = zn.
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Finally, simplifying, we obtain

xn−1 yn−1 (14)

0 0 (c⊕ zn−1) ·∆xn−1 = zn,
0 1 (c⊕ zn−1) ∨∆xn−1 = zn ⊕ c,
1 0 (c⊕ zn−1) ·∆xn−1 = zn ⊕ c,
1 1 (c⊕ zn−1) ∨∆xn−1 = zn.

Let us consider two cases, ∆xn−1 = 0 and ∆xn−1 = 1, separately. In the
first case we see:

xn−1 yn−1 (14)

0 0 0 = zn,
0 1 c⊕ zn−1 = zn ⊕ c,
1 0 c⊕ zn−1 = zn ⊕ c,
1 1 1 = zn.

That is, in fact we have only two conditions:

zn = 0, zn−1 = zn.

Thus, depending on the values zn−1 and zn (that is, on the values of ∆x and
∆f) the equation (14) may have a varying number of solutions σ(zn−1, zn):
1. if zn−1 = zn = 0, then σ(zn−1, zn) = 4.
2. if zn−1 = 1, zn = 0, then σ(zn−1, zn) = 2.
3. if zn−1 = zn = 1, then σ(zn−1, zn) = 2.
4. if zn−1 = 0, zn = 1, then σ(zn−1, zn) = 0.

that is, the solution set is ε × {0, 1}, where ε is a set of zero, two or four
pairs (xn−1, yn−1).

In the case of ∆xn−1 = 1 the equation (14) has more complex form:

xn−1 yn−1 (14)

0 0 c⊕ zn−1 = zn,

0 1 1 = zn ⊕ c,
1 0 0 = zn ⊕ c,
1 1 1 = c⊕ zn−1 = zn,

which is equivalent to:

c = zn−1 ⊕ zn, c = zn ⊕ 1, c = zn, c = zn−1 ⊕ zn ⊕ 1.

It is obvious that at any values zn−1, zn ∈ {0, 1} exactly two of these con-
ditions will be fulfilled, since up to the permutation they are equivalent to
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conditions
c = 0, c = 0, c = 1, c = 1.

So the solution set in this case is (ε′×{0})∪ (ε′′×{1}), where ε′, ε′′ are sets
of pairs (xn−1, yn−1), |ε′| = |ε′′| = 2.

Let us introduce the function Sk(T, α, β) = {(x+α·2k, y+β ·2k) | (x, y) ∈
T}, where T is a set of pairs (x, y) for some x, y ∈ {0, . . . , 2k− 1}. It is easy
to see that for each T holds |Sk(T, α, β)| = |T |. Denote

Ψ =
{

(xn−1, yn−1, c)
∣∣∣ xn−1, yn−1, c ∈ {0, 1}, (xn−1, yn−1, c)

are solutions of the equation (14)
}
.

We note that in the above notation

Mn =
⊔

xn−1,yn−1∈{0,1}

Sn−1(Ûn−1, xn−1, yn−1),

Mn+1 =
⊔

xn,yn∈{0,1}

⊔
(xn−1,yn−1,c)∈Ψ

Sn(Sn−1(Û
(c)
n−1, xn−1, yn−1), xn, yn).

Furthermore,
|Mn| = 4|Ûn−1|,

|Mn+1| = 4
∑

(xn−1,yn−1,c)∈Ψ

|Û (c)
n−1|,

Ûn−1 = Û
(0)
n−1

⊔
Û

(1)
n−1.

That is,

|Mn+1|
|Mn|

=

∑
(xn−1,yn−1,c)∈Ψ |Û

(c)
n−1|

|Ûn−1|
=


∑

Ψ |Ûn−1|
|Ûn−1|

, if ∆xn−1 = 0,

2|Û (0)
n−1|+2|Û (1)

n−1|
|Ûn−1|

, if ∆xn−1 = 1,

=

{
|Ψ|, ∆xn−1 = 0,
2|Ûn−1|
|Ûn−1|

, ∆xn−1 = 1,
=

{
σ(zn−1, zn), ∆xn−1 = 0,

2, ∆xn−1 = 1,

Lemma 1 is proved.

B The proof of Lemma 3

We will show that for any ε > 0 and n > N for some number N , holds
F (n)
G(n) 6 1 + ε. By the assumption of Lemma, f(k)

g(k) 6 1 + ε
2 for all k > N1
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for some number N1. Equivalently, for all k > N1 holds f(k) 6 (1 + ε
2)g(k).

Then

F (n) =
n∑
k=1

f(k) =

=

N1−1∑
k=1

f(k) +
n∑

k=N1

f(k) 6
N1−1∑
k=1

f(k) +
(

1 +
ε

2

) n∑
k=N1

g(k) =

N1−1∑
k=1

f(k)−
(

1 +
ε

2

)N1−1∑
k=1

g(k) +
(

1 +
ε

2

) n∑
k=1

g(k) =

=

N1−1∑
k=1

(
f(k)−

(
1 +

ε

2

)
g(k)

)
+
(

1 +
ε

2

)
G(n).

That is, for all n > N1 for some number N1

F (n) 6
(

1 +
ε

2

)
G(n) + c.

Since g(k) is a monotonically increasing unbounded function, then for all
n > N2 for some number N2 holds

g(n) > c · 2
ε
.

Then
G(n) > c · 2

ε
,

hence
c 6

ε

2
G(n).

And for all n > max{N1, N2}

F (n) 6
(

1 +
ε

2

)
G(n) + c 6

(
1 +

ε

2

)
G(n) +

ε

2
G(n) = (1 + ε)G(n).

Similarly, for any ε > 0 starting with some n, F (n)
G(n) > 1− ε holds. So

lim
n→∞

F (n)

G(n)
= 1⇔ F (n) ∼ G(n).
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Abstract
This work introduces new classes of 8-bit permutation based on a butterfly struc-

ture. These classes set up a new way for generating 2n-bit permutation from n-bit
ones. We introduce some classes that contain permutations with good cryptographic
properties and could be efficiently implemented for hardware and software applica-
tions.

Keywords: boolean function, S-box, butterfly structure, bent function.

1 Introduction

Permutations are essential part of huge classes of cryptographic functions.
These functions are used to build symmetric encryption functions such as
stream ciphers, block ciphers and hash functions. According to Shannon’s
criteria [1] every strong cryptographic function should consist of ones that
provide confusion and diffusion. One of the well studied way to hide the
relationship between the key and plaintext (or provide confusion) is using a
substitutional-box – S-Box. Today, after decades of cryptoanalysis of modern
cryptographic functions there are well studied properties of S-Box to be a part
of secure cryptographic function.

There are a lot of reasons to build S-Boxes from smaller ones: good soft-
ware implementation with precomputed tables, better bit-sliced implemen-
tation, implementation for lightweight cryptography with smaller tables or
lower gate count, efficient masking in hardware [2, 3]. Permutations which
are build from smaller ones are more secure against cache timing attacks
than those relying on general 8-bit S-boxes, which require table lookups in
memory [4]. There are known a lot of ways to build large S-Box from smaller
one: constructions based on Feistel network [5, 6, 7], Misty network [8, 5, 9],
SPN network [10, 11, 12] or other constructions [13].

In this work we will study how to build 8-bit S-box using a butterfly
structure that was suggested in [4]. In [4] this structure was obtained while
studying decomposition of the Dillon APN permutation [14].
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2 Definitions and Notations

We will use the following notations and definitions. Let F2n be a finite
field of size 2n. Every a ∈ F2n could be presented as a n-bit vector a =
(a0, a1, . . . , an−1), ai ∈ F2, i ∈ 0, n− 1. For any a, b ∈ F2n operation 〈a, b〉 is
a dot product:

∑n−1
i=0 ai · bi.

S-Box S is any nonlinear function S : Fn2 7→ Fm2 . In this work we will
build a nonlinear bijective S-Box. These S-Boxes could be parts of a huge
class of cryptographic functions based on block ciphers like SPN-network,
Feistel network and etc. For every nonlinear function we can evaluate a set
of measures of resistance against known methods of cryptanalysis. They are
called properties of nonlinear function. Some of them are defined as follows.

Definition 1. The Walsh-Hadamard Transform (WHT) of an S-Box S
WS(a, b) and fixed values a ∈ F2n, b ∈ F2m is defined as:

WS(a, b) =
∑
x∈F2n

(−1)〈a,x〉+〈b,S(x)〉.

This function is known to be used in correlation evaluation between the
following Boolean 〈b, S(x)〉 and linear 〈a, x〉 functions.

Definition 2. The nonlinearity NS of an S-Box S is a measure that is
defined as follows:

NS = 2n−1 − 1

2
max
a,b6=0
|WS(a, b)| .

S-Box with larger nonlinearity has better resistance against linear crypt-
analysis. As an example, for F28 the permutation that has the largest non-
linearity is the finite field inversion x−1 with Nx−1 = 112.

Definition 3. A nonlinear function S : Fn2 7→ Fm2 is called a bent function
when its nonlinearity is equal to 2n−1 − 2n/2−1.

Let n = 2m, x, y ∈ F2m. The Maiorana–McFarland construction [15] is
the way to construct 2n bit bent-function from n bit functions and finite field
multiplication: every function f : Vm×Vm 7→ Vn that has the following form
is a bent function:

f(x, y) = π(x) · l(y) + f(x),

where π : F2m 7→ F2m is a permutation, l : F2m 7→ F2m is a linear permutation
and f : F2m 7→ F2m is a function.
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Definition 4. The algebraic degree of the S-Box S deg(S) is the minimum
among all maximum numbers of variables of the terms in the algebraic nor-
mal form (ANF) of 〈a, S(x)〉 for all possible values x and a 6= 0:

deg(S) = min
a∈F2m/0

deg (〈a, S(x)〉) .

For any permutation on F2n the maximum value of the algebraic degree
is n− 1.

Definition 5. For a given a ∈ F2m/0, b ∈ F2m we consider

δS(a, b) = # {x ∈ F2n|S(x+ a) + S(x) = b} .

The differential uniformity of an S-Box S is

δS = max
a∈F2m/0,b

δS(a, b).

The S-Box with smaller differential uniformity has the better resistance
against differential cryptanalysis. For F28, permutation with the smallest
known differential uniformity is the finite field inversion x−1 with δx−1 = 4.

We will say that two permutation S1 and S2 are linear equivalent if there
exist two linear permutations L1 and L2: S1 = L1 ◦ S2 ◦L2. We will also say
that two permutation are affine equivalent if there exist two affine permuta-
tions A1 and A2: S1 = A1 ◦ S2 ◦ A2.

3 Possible constructions

In this work we will study the butterfly structure that has been introduced
in [4].

Definition 6. Let n = 2m. We will call function F : F2n 7→ F2n with input
xi‖yi and output xo‖yo xi, yi, xo, yo ∈ F2m a generalized butterfly structure if
there are exist two functions F1, F2 : F2m × F2m 7→ F2m:
1. yo depends on xi, yi according to the equation: yo = F1 (xi, yi) ,
2. yi depends on xo, yo according to the equation: yi = F2 (xo, yo) .

When F1 = F2 function F is a butterfly structure presented in [4].

Proposition 1. A generalized butterfly structure F is a permutation if and
only if for every fixed value y ∈ F2m functions F1(x, y) and F2(x, y) are
permutations.

Proof. Let F be a permutation and y ∈ F2m. Without loss of generality we’ll
prove it for function F1. F1(x, y) denotes the least significant bits of the
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output. If F1 is not a permutation for a fixed value y then there exist x1 and
x2 : F1(x1, y) = F1(x2, y) and

# {yo |yo = F1(x, y), x ∈ F2m } 6 2m − 1

and this is a contradiction with the statement that F is a permutation.
If Fi i ∈ 1, 2 are permutations in terms on the proposition, there exists

only one pair xo, yo for every xi and yi. �

In [4] there was revealed that only one known 6-bit APN permutation is
CCZ equivalent to the so-called non bijective butterfly structure and that in
our terms F1, F2 are bent functions. We want to construct a permutation
with good cryptographic properties that were enumerated in section 2. In
contrast with [5] we will focus on the nonlinearity because we can choose F1

and F2 separately and independently.
In this work we will consider that m = 4. The core idea of this work is

in the following:
1. Choose functions F1, F2 that correspond to Proposition 1
2. These functions can be based on Maiorana–McFarland construction and

[16]:

F ′i (x, y) =

{
πi(x) · li(y) + fi(x), li(y) 6= 0;

π̂i(x), li(y) = 0;
(1)

F ′′i (x, y) =

{
πi(y) · li(x) + fi(y), πi(y) 6= 0;

π̂i(x), πi(y) = 0;
(2)

where πi, π̂i are m-bit permutations, li is an m-bit linear permutation
and fi is an m-bit function.

3. Make a generalized butterfly structure F based on F1 and F2 and eval-
uate it’s cryptographic properties.

3.1 Construction based on F ′ function

Proposition 2. The function F ′i (x, y) from equation 1 is a bijective function
for any fixed value y if and only if f(x) is a constant function.

Proof. If li(y) is equal to 0 then the proposition is obvious. Let li(y) be not
equal to 0.

Let us consider the function πi(x) · li(y) + fi(x). This function is not a
permutation for a fixed value y if there are no x1, x2 ∈ F2m :

πi(x1) · li(y) + fi(x1) = πi(x2) · li(y) + fi(x2).
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Let us consider the following equations:

πi(x1) · li(y) + fi(x1) 6= πi(x2) · li(y) + fi(x2)⇔
⇔ (πi(x1) + πi(x2)) li(y) 6= (fi(x1) + fi(x2)) (3)

Only a constant function fi(x) could satisfy equation (3) for every pair
x1, x2 ∈ F2m because the set {(πi(x1) + πi(x2)) li(y) |y ∈ F2m } is equal to the
set of all invertible elements of finite field F2m. �

There is another possible construction:

F̂ ′i (x, y) =

{
πi(x) · li(y) + a · π(x), (li(y) + a) 6= 0;

π̂i(x), (li(y) + a) = 0.
, (4)

where a ∈ F2m. It’s obvious that constructions in equations 1 and 4 provide
affine equivalent constructions. Moreover they provide constructions affine
equivalent to the following one:

F ′i (x, y) =

{
πi(x) · y, y 6= 0;

π̂i(x), y = 0.
. (5)

Let us denote

x⊗i y =

{
πi(x) · y, y 6= 0;

π̂′i(x), y = 0.
(6)

We will use new ⊗i operation(1) to represent the construction on the Figure 1.
We will call this construction “A”.

(1)The permutation π̂′i(x) in the equation 6 is different from π̂i(x) in the equation 5 only for construction
“A” . For this construction π̂′i(x) = π̂i

(
π−1(x)

)
. For other constructions π̂′i(x) = π̂i(x).
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xi yi

yo
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Figure 1: Construction “A”

xi yi

xo yo

��

��

��

��

Figure 2: Permutation based on two “A”
constructions

The following proposition tells us that at least a part of all WHT of S-Box
based on selected construction will have a good nonlinearity.

Proposition 3. ∣∣WF ′i (x,y)

∣∣ 6 2m+1.

Proof. ∣∣WF ′i (x,y)(α‖β, γ)
∣∣ =

∣∣∣∣∣ ∑
x,y∈F2m

(−1)〈α,x〉+〈β,y〉+〈γ,F
′
i (x,y)〉

∣∣∣∣∣ =

=

∣∣∣∣∣∣∣∣
∑

x,y∈F2m ,
y 6=0

(−1)〈α,x〉+〈β,y〉+〈γ,πi(x)·y〉 +
∑
x∈F2m

(−1)〈α,x〉+〈γ,π̂i(x)〉

∣∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣∣
∑

x,y∈F2m ,
y 6=0

(−1)〈α,x〉+〈β,y〉+〈γ,πi(x)·y〉 ±
∑
x∈F2m

(−1)〈α,x〉 +
∑
x∈F2m

(−1)〈α,x〉+〈γ,π̂i(x)〉

∣∣∣∣∣∣∣∣ 6
6
∣∣Wπi(x)·y

∣∣+

∣∣∣∣∣− ∑
x∈F2m

(−1)〈α,x〉 +
∑
x∈F2m

(−1)〈α,x〉+〈γ,π̂i(x)〉

∣∣∣∣∣ .
If α 6= 0 the last summand is equal to 2m. If α = 0∣∣∣∣∣− ∑

x∈F2m

(−1)〈α,x〉 +
∑
x∈F2m

(−1)〈γ,π̂i(x)〉

∣∣∣∣∣ = |−2m + 0| ,
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because # {x |〈γ, π̂i(x)〉 = 0} = 2m−1. And πi(x) · y is a bent function so∣∣Wπi(x)·y
∣∣ = 2m. �

Let us make a butterfly permutation based on the following construction
(see Figure 2):

yo =

{
π1(xi) · yi, yi 6= 0;

π̂1(xi), yi = 0.
, (7)

xo =

{
π2(yi · yo), yo 6= 0;

π̂2(yi), yo = 0.
, (8)

To make evaluations easily we supposed π1, π2 to be monomial permuta-
tions of F2m among: z1, z2, z4, z7, z8, z11, z13, z14. We have implemented this
construction (presented in Figure 2) and have used a simple version of an
evolutionary algorithm [17] to execute a search among all permutations π̂1,
π̂2 for all possible fixed monomial permutations π1, π2. There are some results
that we have obtained:
1. We’ve found 32 constructions that provide us the way to construct per-

mutations with semi-optimal cryptographic properties:
– the nonlinearity is equal to 108,
– the differential uniformity is equal to 6,
– the algebraic degree is equal to 7.

2. There are all these constructions: π1(x) is any monomial function,
π2(x) = xα, α ∈ {7, 11, 13, 14}.

3. For other pairs π1(x) and π2(x) permutations have the differential uni-
formity larger than 12.

4. These properties could be obtained with equal permutations π̂1(x),
π̂2(x) and, for the note, that semi-optimal cryptographic properties are
obtained for all proposed constructions with: π̂1(x) = π̂2(x) = x−1.

5. These properties could be obtained for π̂1(x) 6= π̂2(x) .
6. Semi-optimal cryptographic properties could be obtained even for non

monomial permutation π1(x) and π2(x). Let F22m = F2(x)/ (x4 +x+1).
An example of such a permutation is:

π̂1 = π̂2 =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 9 10 15 3 11 13 4 2 6 14 12 1 7 8 5

)
,

π1 =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 8 9 1 13 5 4 12 7 15 14 6 10 2 3 11

)
,
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π2 =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 11 4 2 3 15 1 10 8 12 7 13 9 6 5

)
.

3.2 Construction based on F ′′ function

Let us consider F ′′i (x, y) function. Three constructions could be imple-
mented with such function (see Figure 3, 4, 5 ). These constructions have
absolutely the same output function yo = F ′′1 (xi, yi), but constructions “C”
and “D” change yi correspondingly by permutation π1 and composition of
permutations π1 and πf1. Actually, constructions “C” and “D” are not even
possible functions for generalized butterfly construction because in term of
our definition yi is an output of F ′′2 (x, y) and it can’t be changed by F ′′1 (x, y).

xi yi

yo

����

�� f�

Figure 3: Construction “B”

xi yi

yo

����

�� f�

Figure 4: Construction “C”

xi yi

yo

����

�� �f1

Figure 5: Construction “D”

At the same time all these constructions are bijective for any fixed value
y and for any function fi. And output functions have the same nonlinearity
as construction “A”.

In this work we will study permutation based on two “B” constructions
with fi = 0 (see Figure 6). In this construction yo = xi ⊗1 π1(yi), and
xo = yi ⊗2 π2 (xi ⊗1 π1(yi)). If both π1(yi) and π2(y0) are not equal to 0,
xo = yi · π2 (xi · π1(yi)). We suppose that π2(x) is linear equivalent to xα

and π1(x) is linear equivalent to xβ, then xo is linear equivalent to xαi ·y
αβ+1
i .

We’ve implemented this construction and have used an evolutionary al-
gorithm to execute a search among all permutations π̂1, π̂2 for all fixed mono-
mial permutations π1, π2. We’ve found four possible constructions that obtain
semi-optimal cryptographic properties:
1. π1(x) = x, π2(x) = x13,
2. π1(x) = x2, π2(x) = x14,
3. π1(x) = x4, π2(x) = x7,
4. π1(x) = x8, π2(x) = x11.
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Constructions 2 and 4 are inverse permutations for corresponding 1 and 3
constructions.

4 Comparison with other constructions

xi yi

xo yo

��

��

��

��

Figure 6: Permutation based on two “B”
constructions

x-1

x-1

xi yi

xo yo

��

��

Figure 7: Permutation published in [18]

In [18] the following construction was presented (see Figure 7) (in terms
of our work):

xo =

{
(xi · yi)−1, yi 6= 0;

π̂1(xi), yi = 0.
,

yo =

{
xo · y−1

i , xo 6= 0;

π̂2(xi), xo = 0.
.

Permutations with following properties were also found in [18]:
– the nonlinearity is equal to 108,
– the differential uniformity is equal to 6,
– the algebraic degree is equal to 7.

Except these properties two additional one were considered in the work:
– absence of fixed points,
– maximum graph algebraic immunity.
Our construction based on two “A” constructions with π1(x) = π2(x) =

x−1 looks similar with construction presented in 7 (see Figure 2 and Fig-
ure 7) but was found independently. There were no theoretical foundation
and principles of choosing this particular construction in [18] and we have
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no chance to compare it with presented in this work. At the same time in
[18] there were found that the value of graph algebraic immunity of a con-
structed permutation depends on permutations π̂i and for π̂i(x) = x−1 the
permutation has almost optimal cryptographic properties except the value
of graph algebraic immunity. We evaluated this value for our constructions
and founded out that some construction with π̂i(x) = x−1 have the value of
graph algebraic immunity equal to 2. But if we chose π̂i(x) via our search
algorithm it doesn’t have simple algebraic structure and this permutation has
cryptographic properties like in [18]. In [18] it was also stressed that permu-
tations with such properties have almost optimal cryptographic properties.
Comparison with other results could also be found in [18].

We’ve generalized that construction on Figure 7 and replace x−1 by mono-
mial function π1 and π2. We have searched among permutations π̂1, π̂2 for
all fixed monomial permutations π1, π2 and found the following:
– for the following 12 constructions almost optimal cryptographic proper-

ties are obtained:

(π1, π2) ∈
{(
x7, x

)
,
(
x7, x4

)
,
(
x7, x7

)
,
(
x11, x2

)
,
(
x11, x8

)
,
(
x11, x11

)
,(

x13, x
)
,
(
x13, x4

)
,
(
x13, x13

)
,
(
x14, x2

)
,
(
x14, x8

)
,
(
x14, x14

)}
,

– for 4 constructions the differential uniformity is up to 8 and the nonlin-
earity is up to 104:

(π1, π2) ∈
{(
x7, x2

)
,
(
x11, x

)
,
(
x13, x8

)
,
(
x14, x4

)}
,

– for 8 constructions the differential uniformity is up to 8 and the nonlin-
earity is up to 100:

(π1, π2) ∈
{(
x7, x11

)
,
(
x7, x14

)
,
(
x11, x7

)
,
(
x11, x13

)
,
(
x13, x11

)
,(

x13, x14
)
,
(
x14, x7

)
,
(
x14, x13

)}
.

5 Future work

In this work we only presented several new classes of constructions that
can help to find a permutation with rather good cryptographic properties.
But at the same time there are too many questions that are necessary to be
solved. Among them:
– How many possibilities to choose F1 and F2 to construct a permutation

with good cryptographic properties?
– How many possibilities to choose πi and fi in all these constructions?
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– Can we choose permutations π̂i for our constructions to obtain good
cryptographic properties without a search algorithm?

– Can we find a construction that will be an involution?
– Can we use mixed construction for butterfly structure (as example per-

mutation based on “A” and “B” constructions ) to find a permutation
with rather good cryptographic properties?

– How to find permutations with good hardware, FPGA or bit-sliced im-
plementations?

6 Conclusion

This work has presented some new constructions to build permutation
F22m 7→ F22m, m = 4 based on butterfly structure. There are at least 36 new
constructions for permutations that have the nonlinearity 108, differential
uniformity 6, algebraic degree 7 and the value of graph algebraic immunity 3.
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Xavier Standaert. Block ciphers that are easier to mask: How far can we
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Abstract

We discuss a recent approach to the study of Boolean functions. The approach
is based on a notion of ∆-equivalence class, which is a set of Boolean functions all
having the same autocorrelation function. Such a classification has an apparently
profitable property: a substantial number of the Boolean functions’ cryptographic
characteristics remains unchanged within a ∆-equivalence class.

Keywords: Boolean function, Walsh-Hadamard transform, cross-correlation, autocorrelation,
nonlinearity, correlation immunity, propagation criterion, global avalanche characteristics.

1 Introduction

Boolean functions, as a natural representation of data transformations
in cryptographic primitives, has a crucial significance in cryptography. For
choosing a «cryptographically good» function one needs to examine a number
of specific properties arisen from Shannon’s confusion and diffusion concepts
or from the need to withstand a certain method of cryptanalysis, etc.

The notion of cross-correlation function provides a very useful tool for
investigation of cryptographic properties of Boolean functions. Autocorrela-
tion function (which is a special case of cross-correlation) admits to define an
equivalence relation on the Boolean functions as it is suggested in the forth-
coming paper by Logachev, Fedorov and Yashchenko. A ∆-equivalence class
consisting of all functions with the same autocorrelation function has the
following property that makes clear the importance of this notion for cryp-
tography. Namely, as it stated in Theorems 1, 2 and 3 below, many of the
basic cryptographic properties and parameters stay invariant within each ∆-
equivalence class. Among them there are nonlinearity, correlation immunity,
propagation and avalanche characteristics, etc.

Since any fixation of cryptographic parameters produces a partition of
Boolean functions into equivalence classes, we can also assert that the ∆-
equivalence refines upon many existing «cryptographic» equivalences at once
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so that the corresponding classification is more universal in the following
sense: a ∆-equivalence class contains Boolean functions which have not only
one common characteristic but a whole collection of common cryptographic
properties.

2 Necessary notation and concepts

First of all, let’s give some common notation.

Vn = Fn2 is the n-dimensional vector space over two-element field
F2 = {0, 1};

⊕ denotes addition operation in F2 and in Fn2 (component-
wise);

Fn is the set of all Boolean functions of n variables;
An ⊂ Fn is the set of affine functions;
〈u, v〉 is the scalar product of vectors u, v ∈ Vn, i. e., u1v1⊕ . . .⊕

unvn;
wt(·) is the Hamming weight of a Boolean vector or function;
wt(f ⊕ g) is the Hamming distance between functions f and g;
suppϕ is the support of a function ϕ : Vn → R, i. e., {u ∈ Vn |

ϕ(u) 6= 0};
| · | is the absolute value of a number or the cardinality of

a set.

2.1 Walsh transform and correlation

The Walsh (or Walsh-Hadamard) transform for arbitrary function f ∈ Fn
is defined by setting down so-called Walsh coefficients

Wf(u) =
∑
v∈Vn

(−1)f(v)⊕〈u,v〉, u ∈ Vn,

all of them together being said to be the Walsh spectrum of function f . Walsh
spectrum support is the support of the function Wf .

On the base of Walsh spectrum notion one marks out classes of plateaued
functions. A function f ∈ Fn is plateaued of order r iff Wf(u) ∈ {0,±2n−r}
for every u ∈ Vn. In this case |suppWf | = 22r. A special instance of plateaued
functions when r = n

2 is bent functions.
We will denote by ∆f,g the cross-correlation function of Boolean func-
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tions f, g ∈ Fn,

∆f,g(u) =
∑
v∈Vn

(−1)f(v)⊕g(v⊕u), u ∈ Vn.

In the case when f = g we get the notion of autocorrelation function for f :

∆f(u) =
∑
v∈Vn

(−1)f(v)⊕f(v⊕u), u ∈ Vn.

2.2 Cryptographic characteristics

Let’s rehearse cryptographic properties we will treat of when considering
∆-equivalent functions (one can find more detailed information, for example,
in [3]).

The balancedness property of a function is actively exploited in cryptog-
raphy. A balanced function can be viewed as one whose value is distributed
uniformly on {0, 1} (each value has probability 1

2) when its argument is dis-
tributed uniformly on Vn. Also, inessential variables of a function have obvi-
ously a certain significance for its cryptographic application. In some cases
the support of a function’s Walsh spectrum allows to determine cryptographic
qualities of the function as well.

The nonlinearity of a function f [6], which is the minimum Hamming
distance between f and an affine function, is denoted by

nl(f) = min
l∈An

wt(f ⊕ l).

When n is even, bent functions provide the example of the functions with
maximum nonlinearity.

In addition to this concept, one another characteristic of the difference
from the affine functions was treated in [2] and [4]. Namely, the curvature (1)

of a Boolean function f ∈ Fn is defined by the equality

curv(f) =
∑
u∈Vn

|Wf(u)|.

The bent functions have the maximum curvature 2
3
2n, whereas the affine

functions have the minimum one, i. e., 2n.
The space of linear structures for a Boolean function f is the following

set:
Lf = {u ∈ Vn | ∀v ∈ Vn f(v ⊕ u) = f(v)⊕ εu, εu ∈ F2}.

(1) In [2], this parameter has no special name and is denoted by σ(f).
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Each its nonzero element is called linear structure (or linear translator) of
function f . Thus, a vector u ∈ Vn is a linear structure for f ∈ Fn iff the
function f ′u(v) = f(v ⊕ u)⊕ f(v) is constant on Vn. Functions having linear
structures are considered as weak for cryptographic usage.

A function f ∈ Fn is said to satisfy the strict avalanche criterion (SAC)
if changing any one of the n argument components causes the changing of
exactly half of the values in the f ’s truth table, that is, the changing of
the function’s value with probability 1

2 . The notion was introduced in [9] to
capture the issues concerning the design of DES-like ciphers.

The global avalanche characteristics (GAC) of a function f from Fn are
specified by two numerical parameters that were introduced in [10] in the
following way:

σf =
∑
u∈Vn

∆2
f(u) and δf = max

06=u∈Vn
|∆f(u)|.

The less these parameters, the better the cryptographic quality of the func-
tion. We note that in fact δf first appeared in [6] where the authors consid-
ered the distance of a function f to the set of Boolean functions having linear
structures. Actually, this distance is

ls(f) = 2n−2 − 1

4
δf .

Another «distance to» characteristic of Boolean functions was carefully
investigated in the paper [1] devoted to the notion of algebraic degeneration.
A function f ∈ Fn is called algebraic degenerate if there are g ∈ Fk and
a binary (k × n)-matrix D, 0 6 k 6 n, such that f(u) = g(Du) for all
u ∈ Vn. The f ’s distance to the set of all algebraic degenerate Boolean
functions of n variables is denoted by ρ(f).

One says that a Boolean function f satisfies the propagation criterion with
respect to a vector a if the addition of a to any argument vector results in
changing exactly half of 2n function’s values. The set of all such vectors a will
be denoted by PCf . A Boolean function f is said to satisfy the propagation
criterion of degree k (PC(k)) if it satisfies the propagation criterion with
respect to all vectors a such that 1 6 wt(a) 6 k. Thus, a function f ∈ Fn
satisfies PC(k) iff changing values of any m variables (1 6 m 6 k) entails
the changing of exactly 2n−1 values of the function f . This notion introduced
in [7] generalizes the SAC, which is PC(1).

A Boolean function f is called correlation immune with respect to a vec-
tor a if the function f(u)⊕〈a, u〉 is balanced. We will denote by CIf the set of
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all vectors a such that f is correlation immune with respect to a. A Boolean
function f of n variables is correlation immune of order k, 1 6 k 6 n, if it
is correlation immune with respect to all vectors a such that 1 6 wt(a) 6 k.
This means that f ’s value is statistically independent of any subset of k vari-
ables. The notion of correlation immunity was introduced in [8]. It is aimed
at measuring resistance to the correlation cryptanalysis method. A Boolean
function with high-order correlation immunity is more preferable, for ex-
ample, in a stream cipher as a combining function for linear feedback shift
registers. We’ll denote the maximum value of k such that f is correlation
immune of order k by cor(f).

Finally, a Boolean function of n variables is called k-resilient [5] if its
value is uniformly distributed on {0, 1} when arbitrary set of k variables
get fixed values and other n − k variables are independent and uniformly
distributed.

2.3 ∆-equivalence

In [10] Zhang and Zheng proposed to assess cryptographic quality of
Boolean functions by the global avalanche characteristics. These are es-
sentially the two parameters of the autocorrelation function. GAC turned
out a very helpful tool. The forthcoming paper of Logachev, Fedorov and
Yashchenko introduces a new approach based also on the autocorrelation
function.

Definition 1. Two Boolean functions f and g are ∆-equivalent if their
autocorrelation functions are identical, i. e., ∆f = ∆g. This relation on Fn
will be denoted by the symbol ∆∼.

It is evident that this is indeed an equivalence relation, that partitions
the set Fn into the classes of function with the same autocorrelation. As it
will be seen below, the functions in any such class are unified by some other
cryptographic properties as well.

An example of ∆-equivalence class is provided by any set of plateaued
functions with fixed Walsh spectrum support.

Proposition 1. Let f, g ∈ Fn be two plateaued functions such that
suppWf = suppWg. Then f

∆∼ g.

Proof. According to the Proposition conditions and the plateaued functions
definition we have |Wf(u)| = |Wg(u)| for all u ∈ Vn.
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By a corollary of the well-known cross-correlation theorem (see, for ex-
ample, [3, Th. 2.3.1]) any function h satisfies∑

v∈Vn

∆h(v)(−1)〈u,v〉 = W 2
h (u). (F)

Applying the Fourier transform inversion formula we obtain

∆h(u) =
1

2n

∑
v∈Vn

W 2
h (v)(−1)〈u,v〉.

So, autocorrelation is determined by the absolute values of Walsh coeffi-
cients unambiguously. Hence, ∆f(u) = ∆g(u) for all u ∈ Vn. �

In particular, all bent functions form one ∆-equivalence class. However,
each class containing an affine function has the cardinality 2, that is, any
affine function f has no ∆-equivalent functions but f and f ⊕ 1.

3 Common properties of ∆-equivalent functions

As it could be seen from the above (see subsection 2.2), there is a number
of subsets in Vn which are associated with a given Boolean function and
characterizes its cryptographic properties. In the following Theorem 1 we list
some of such vector sets that are identical for all ∆-equivalent functions.

Theorem 1. For any f, g ∈ Fn being ∆-equivalent to each other, i. e., f ∆∼ g,
the following statements are true:
1. f ’s Walsh coefficient Wf(u) is equal to 0 if and only if corresponding

Walsh coefficient Wg(u) of g equals 0, so f and g have the same Walsh
spectrum support (suppWf = suppWg);

2. vector u is a linear structure for f if and only if u is linear structure
for g, so f and g have the same space of linear structures (Lf = Lg);

3. f is correlation immune w. r. t. a vector u if and only if g is correlation
immune w. r. t. u (CIf = CIg);

4. f satisfies the propagation criterion w. r. t. a vector u if and only if g
satisfies the propagation criterion w. r. t. u (PCf = PCg).

Proof. We’ll demonstrate the proof of the «only if» (necessity) implications,
as the backward implications can be proven in the «symmetric» way (by
substituting g for f).

(1) Since f and g have identical autocorrelation (∆f = ∆g), accordingly
to the equation (F) we obtain W 2

f (u) = W 2
g (u) for each u ∈ Vn. So if

Wf(u) = 0 then Wg(u) = 0.
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(2) By the condition, f(v ⊕ u) ⊕ f(v) is constant (as a function of v).
Therefore ∆f(u) =

∑
v∈Vn(−1)f(v⊕u)⊕f(v) = ±2n. So, ∆g(u) = ±2n, but it

is only possible when all the summands (−1)g(v⊕u)⊕g(v) have the same sign,
that is, if g′u(v) = g(v ⊕ u)⊕ g(v) is constant.

(3) We have Wf(u) =
∑

v∈Vn(−1)f(v)⊕〈u,v〉 = 0, as for the
given u the function f(v) ⊕ 〈u, v〉 is balanced. Hence, by the item (1),∑

v∈Vn(−1)g(v)⊕〈u,v〉 = Wg(u) = 0, that is, g(v)⊕〈u, v〉 is a balanced function.
(4) Since the propagation criterion property of an arbitrary function h

w. r. t. u is equivalent to the balancedness of the function h′u(v) = h(v) ⊕
h(u⊕ v), the value ∆f(u) =

∑
v∈Vn(−1)f

′
u(v) equals 0 for the given f and u.

So ∆g(u) = ∆f(u) = 0 and hence g′u(v) is balanced too. �

The following Theorem presents some of the cryptographic properties
which are common for the functions from any given ∆-equivalence class.

Theorem 2. Let for f, g ∈ Fn the relation f ∆∼ g holds. Then
1. f is balanced if and only if g is balanced;
2. f has inessential i-th variable if and only if g has inessential i-th vari-

able;
3. f satisfies the strict avalanche criterion (SAC) if and only if g satisfies

SAC;
4. f satisfies the propagation criterion of degree k if and only if g satisfies

the propagation criterion of degree k;
5. f is correlation immune of order k if and only if g is correlation immune

of order k;
6. f is k-resilient function if and only if g is k-resilient.

Proof. As above, we omit the proof of the backward (sufficiency) implications.
(1) If f is balanced thenWf(0

n) =
∑

v∈Vn(−1)f(v) = 0 where 0n is the all
zero component vector. According to the item (1) of Theorem 1, Wg(0

n) = 0
and so g is balanced.

(2) If i-th variable is inessential for f then for all v ∈ Vn we have f(v) =
f(v ⊕ ei) where the vector ei has no 1-s except on the i-th place. In other
words, f has the linear structure ei. By the item (2) of Theorem 1 this vector
is a linear structure for g as well. So i-th variable is inessential for g.

(3, 4) This is the direct consequence of the statement (4) of Theorem 1
(SAC being PC(1)).

(5) This is evident from the statement (3) of Theorem 1.
(6) Since a function is k-resilient iff it is at the same time balanced and

correlation immune of order k, we get the statement from (1) and (5). �
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The following Theorem 3 provides examples of Boolean function’s nu-
merical parameters remaining invariant for all functions in a ∆-equivalent
class.

Theorem 3. If f, g ∈ Fn and f ∆∼ g, then f and g have the same
1. cardinality of Walsh spectrum support, |suppWf | = |suppWg|;
2. nonlinearity, nl(f) = nl(g);
3. curvature, curv(f) = curv(g);
4. global avalanche characteristics, (σf , δf) = (σg, δg);
5. distance to functions with linear structure, ls(f) = ls(g);
6. distance to algebraic degenerate functions, ρ(f) = ρ(g);
7. maximum order of correlation immunity, cor(f) = cor(g).

Proof. (1) It follows trivially from the item (1) of Theorem 1.
(2) It is well known that nl(h) = 2n−1−1

2 maxu∈Vn |Wh(u)| for any h ∈ Fn.
From the equation (F) we know that |Wf(u)| = |Wg(u)| for any pair of ∆-
equivalent functions f and g and any u ∈ Vn. So nl(f) = nl(g).

(3) As above, |Wf(u)| = |Wg(u)| for ∆-equivalent functions f and g. By
the curvature definition, these functions have equal curvatures.

(4, 5) Since the GAC (and so, the distance to linear structure functions)
are defined solely by the values of autocorrelation function, any two functions
with identical autocorrelation have the same GAC.

(6) Accordingly to [1, Cor. 1], ρ(f) = 2n−2− 1
4 max0 6=u∈Vn ∆f(u). So, this

parameter is the same for all ∆-equivalent functions.
(7) It is a trivial consequence of the statement (4) of Theorem 2. �

4 Conclusion

The ∆-equivalence have an extremely simple definition in terms of just
one function. This concept meets most of known cryptographic properties of
Boolean functions, not only those based on the autocorrelation function, but
some others having different nature as well. Besides the necessary conditions
of ∆-equivalence given in Theorems 1, 2, 3, there is a sufficient condition
formulated in Proposition 1. And the fact that all the bent functions form
one ∆-equivalence class confirms in some sense the adequacy of such classi-
fication.

At the same time, too fine partition of the functions with low nonlin-
earity, especially affine functions, may look like a redundant differentiation.
Moreover, there are cryptographic properties of Boolean function that are
not invariant within ∆-equivalence classes. We don’t succeed in handling
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algebraic properties of Boolean functions like the algebraic immunity, for
example.
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Abstract

An algorithm for constructing of elliptic curves with special requirements is pre-
sented. The set of requirements follows from known attacks which may be applicable
to solve the elliptic curve discrete logarithm problem in special cases. The results of
practical experiments and parameters of concrete elliptic curves are given.

Keywords: cryptography, elliptic curve, discrete logarithm problem, complex multiplication.

1 Motivation

Let p > 3 is a prime. Consider an elliptic curve given in short Weierstrass
form by equation

Ea,b : y2 ≡ x3 + ax+ b (mod p), (1)

where 4a3 + 27b2 6≡ 0 (mod p). Let P = (x, y) is a fixed point on Ea,b and
q is an order of P , i.e

[q]P = P + · · ·+ P︸ ︷︷ ︸
q times

= O,

where O is a neutral element of group of elliptic curve points. We suppose
that q is a prime and q|m, wherem is a number of all points on elliptic curve.
From Hasse theorem, see [20, Ch. 5], we know, that

p+ 1− 2
√
p < m < p+ 1 + 2

√
p.

We can define an elliptic curve discrete logarithm problem (ECDLP) as
the problem of searching an integer k ∈ F∗q such that

Q = [k]P, and Q ∈ 〈P 〉.

For solving this problem, see [4, 23], we can use Pollard’s Rho and Lambda
methods [14] or parallel algorithm, introduced by van Oorschot and Wiener
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[11]. These algorithms have the running time O(
√
q) and can be applied to

any elliptic curve.
In special cases we can use the methods with lower running time. When

the condition m = p holds we have linear time to solve the ECDLP using
methods of Sato, Araki [17], Smart [21] or Semaev [19].

When the multiplicative order of p modulo q is small we can apply MOV-
attack, see [8], and solve ECDLP with lower running time using the calcula-
tions in multiplicative group of some finite extension of Fp.

In 2016 a new method for solving ECDLP was proposed by Petit, Kosters
and Messeng, see [12]. This method based on solving a system of non-linear
polinomials over Fp, generated by Semaev’s summation polinomials, and can
be applied in case when p− 1 is smooth, i.e. p− 1 has many small divisors.
Nowadays we don’t have any practical realizations of this method for some
value of p, but in the future this can be done.

At the same time Nesterenko presented a new method for solving ECDLP
wich running time depends on multiplicative order of secret value k modulo
q, see [10]. If r is a divisor of q − 1 then solving ECDLP has running time
O(
√
r log q), hence when q− 1 has many small divisors then [10] shows that

ECDLP can be efficiently solved for many «weaked» values of k. Note that
two last methods gives us a situation similar to RSA modulus N = pq, where
p, q needs to be a safe, see [16].

On this basis we can lay down conditions on parameters of elliptic curve
Ea,b which guarantee us inapplicability of methods reffered above.

Definition 1. Let 0 < α < β are natural numbers. We would say that elliptic
curve Ea,b defined by equation (1) is (α, β)-strong elliptic curve if exists a
point P ∈ Ea,b with |〈P 〉| = q and the following condition holds.
1. m 6= p;
2. p is safe prime, that means p−1

2 is also prime;
3. j(Ea,b) 6≡ 0, 1728 (mod p), where j(Ea,b) ≡ 1728 4a3

4a3+27b2 (mod p);
4. q is safe prime, that means q−1

2 is also prime;
5. 2α < q < 2β;
6. for fixed B the condition pt 6≡ 1 (mod q) holds for all t = 1, 2, . . . , B.

The constants α, β and B can be defined with different values. In [7] we
can find α = 254, β = 256 and B = 31 or α = 508, β = 512 and B = 131.
In [22] we can find another values α = 224, β > α and B = 104.

Also remark that for safe prime p condition j(Ea,b) 6≡ 0, 1728 gives us
inequality m 6= p+ 1, see [6, Ch.13].
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It’s clear that conditions of safety for p and q in definition 1 are supple-
ment to [7]. Furthermore staying on unproved assumptions we can lay down
more rigorous conditions given in therms of complex multiplication’s theory
for elliptic curves, see [6, 20].

Definition 2. Let h is a natural number. We would say that (α, β)-strong
elliptic curve Ea,b defined by equation (1) is very (α, β)-strong elliptic curve
if the following conditions holds.
1. The class number of the ring Z[

√
−∆] should be at least h, where

End(Ea,b) ⊆ Z[
√
−∆] is an endomorphisms ring of elliptic curve Ea,b.

2. The order of twist of elliptic curve Ea,b must have a safe prime divisor
r where 2α < r < 2β.

The first condition is based on ideas of technical guideline [22], where we
can find an appropriate bound h = 200. More impulsive condition present
in [3]. Bernstein and Lange says that the fundamental discriminant ∆ of
Z[
√
−∆] should satisfy inequality |∆| > 2100. This requirement makes a

theory of complex multiplication fully inapplicable for solving ECDLP from
practical reasons. From this point of view our condition is slightly weaker.

Our second condition based on well know fact that elliptic curve Ea,b

and its twist are isomorphic over small finite extension of Fp, see [6]. This
condition is similar to [2] when r is prime, but not safe.

In the next section we describe the results of our attempts to construct
the elliptic curves suitable for definition 1 or definition 2. We give a detailed
description of the constructing algorithm for the benefit of rigidity confirma-
tion.

2 An algorithm

The construction of elliptic curve can be performed in several ways. The
first one is based on SEA-algorithm of counting points on elliptic curve, see
[18], for which it is necessary to determine the prime p and random coefficients
a, b. The generation of random values a, b should continue until the order of
elliptic curve does not satisfy to conditions of definition 1 or definition 2.

When we use some pseudo-random function to generate the coefficients
a, b with predefined seed value we obtain a deterministic algorithm for con-
structing pseudo-random elliptic curve. From practical experiments we con-
clude that probability of successful ending of this algorithm is very small.
Therefore we need another deterministic algorithm that will step by step
reduce the distance to expected elliptic curve.
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Our algorithm is based on theory of complex multiplication when we can
define a coefficients of elliptic curve relatively simple, when we know prime
modulo p and prime order q. The ideas on which the algorithm is based can
be found in [4].

From practical reasons we would find a safe prime p near degree of 2.
We know many elliptic curves possessing this property, say «E-382» [1],
«Curve25519» [2] or «paramsetA» curve from [13]. Similar elliptic curve can
be efficiently used in cryptography applications. At the beginning we can
construct an elliptic curve in short Weierstrass form (1), where m = 2q and
safe prime q satisfying inequalities 2α < q < p < 2β. This form of elliptic
curve is applicable for evaluation of digital signatures. Later we can reduce
this elliptic curve to Montgomery form, see [9], which is more applicable for
key agreement protocols and public key encryption.

Also we would search safe prime p satisfying p ≡ 11 (mod 12). Since we
need to find odd prime p = 2p1 + 1, where p1 = 2p2 + 1 is also odd prime,
we immediately have p ≡ 3 (mod 4).

From the other hand if condition p ≡ 1 (mod 3) holds we have equality
p = 3s+1 = 2p1 +1 for some natural integer s or 3s = 2p1. The last equality
doesn’t hold since 3 and p1 is coprime, hence p ≡ 2 (mod 3).

The algorithm is follows.
1. We start from maximal odd integer p0 for which the conditions

p0 ≡ 11 (mod 12), p0 < 2β

holds.
2. For every number in a decreasing sequence pn = p0 − 12n, where index
n = 0, 1, . . ., we use twice the Miller-Rabin test, see [15], and check that
pn is a safe prime.

3. For safe prime pn we try to solve the Cornaccia’s equation

4pn = x2 + dy2 (2)

for every square free integer d = 5, 6, 7, 11, . . . , d0, where h0 is an ap-
propriate higher bound, say d0 = 106. If the equation (2) is solved then
the value of d gives the value of fundamental discriminant of Z[

√
−∆]

since
∆ =

{
d, if d ≡ 1 (mod 4),
4h, if d ≡ 2, 3 (mod 4).
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4. If we find suitable d satisfying (2), we immediately calculate

m1 = p+ 1− x, m2 = p+ 1 + x

the orders of some elliptic curve Ea,b and its twist.
5. Now we must check that the conditions of definitions 1 or 2 hold for given

values of m ∈ {m1,m2} and p. If it’s true then we try to construct the
coefficients a, b of elliptic curve Ea,b using a theory of complex multipli-
cation in the following way.
(a) Let ω ∈ C and {1, ω} is a basis of some order in Z[

√
−∆]. Find a

value of j(ω) where j is a modular function.
(b) Find a polynomial Hd(x) ∈ Z[x] for which the equality

Hd(j(ω)) = 0

holds and degree of polynomial Hd(x) is equal to h — class number
of Z[
√
−∆]. Since j(ω) is an algebraic integer of degree 2h we know

that every root of Hd(x) has the same degree and generate the
Hilbert class field K which is a maximal unramified extension of Q
of degree 2h.
When d satisfies the additional conditions it’s possible to construct
the field K by means of values of another functions called Weber
functions, see [4].

(c) Every root of Hd(x) modulo p gives a value of j(Ea,b) which means
as j-invariant of elliptic curve Ea,b defined over Fp. The coefficients
of this curve satisfy to equalities{

a ≡ 3kc2 (mod p),
b ≡ 2kc3 (mod p),

where
k ≡ j(Ea,b)

1728− j(Ea,b)
(mod p) (3)

and c is quadratic residue modulo p. The order of constructed el-
liptic curve Ea,b is m1 or m2. When c is non-residue modulo p the
coefficients a, b determine the twist of elliptic curve which order is
m2 or m1 respectively.
Since value a = −3 is useful for effective calculations on elliptic
curve we need to check the equality

(
−k
p

)
= 1, where

( ·
·
)
is a

Legandre symbol.
(d) At last we need to choose a random point P and check the order of
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the constructed elliptic curve.
6. After constructing the elliptic curve Ea,b we need to give a correct proof

that p, q is a safe primes.
The basic complexity of presented algorithm lies on solution of equation

(2) for 106 possible values of d. For decreasing the complexity and satisfying
the definition 2 we can try only values of d which give us large class number
of Z[

√
−∆].

3 Results of practical experiments

For α = 254 and β = 256 the first elliptic curve which satisfy the defini-
tion 1 was found for

p = 2256 − 1593437.

The value p1 = p−1
2 is equal to

p1 = 5789604461865809771178549250434395392663499233282

0282019728792003956564023249

and also prime. To prove that we can factor p1 − 1 to product

p− 1 = 24 × 7× 919× 16454377× 9489318407× 108549876105863×
× 296429175913041139× 111956320988599655568967

and check that inequality 3
p1−1
qi 6≡ 1 (mod p1) holds for every prime qi|p1−1.

Since 3p1−1 ≡ 1 (mod p1) we conclude, due to Lukas theorem, see [5, Ch. 4]
that p1 is a prime and 3 is a primitive root modulo p1.

In the same manner we easily prove that p = 2p1 + 1 is a prime and 2 is
a primitive root modulo p. Solving the equation (2) we find

d = 2362,
x = 499085356416802911683766801996063606058,
y = 9520292600215848112600803911811223594.

This give us m = p+ 1 + x = 2q where

q = 578960446186580977117854925043439539268845350110

28683475570675404954595826279.

Define q1 = q−1
2 . Since q1 is odd we find the factorization
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q1 − 1 = 2× 73× 2383× 310111× 4064012927811943×
× 66019122610212984465443141905015302611602361770967

and check that q1 is a prime and 2 is a primitive root modulo q1, and q is
a safe prime and 7 is a primitive root modulo q. Also we can check that
multiplicative order of p modulo q is equal to prime q1.

For given d = 2363 the fundamental discriminant ∆ = 9448, class number
of Z[

√
−∆] is equal to 26 and founded pair of safe primes p, q satisfy to

definition 1 and not satisfy to definition 2.
Continuing on, we find a polynomial H2363(x) ∈ Z[x] whose root modulo

p gives us an invariant of strong elliptic curve

Ea,b : y2 ≡ x3 + x+ b (mod p),

where a = 1,

b = 5760649366209914414636411673356131211771823373224

9793938442955956836916404394,

and point P = (4, y) with |〈P 〉| = q and

y = 2177319067904097528832379759144907275484050712387

4447898008453120896624694078.

Note that for this elliptic curve we cannot choose the coefficient a = −3.
For every root j(Ea,b) of H2363(x) modulo p we check that pair a = −3,
b = 2kc3, where c2 ≡ −k (mod p) and k defined by (3), gives a twist of
elliptic curve, whose order is not equal to 2q. We need to construct elliptic
curve for another safe prime p if the condition a = −3 exactly needs.

4 Conclusion

During numerical evaluations we found several strong elliptic curves for
fixed values α = 254 and β = 256. Some of this curves has very large
fundamental discriminant ∆ but neither one has safe prime divisor for twist
order. We hope that this white spot will be colored in the nearest future.
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Abstract

The basic SIGMA protocol is one of the authenticated Diffie-Hellman key ex-
change protocol based on the «sig-and-mac» mechanism and can be used in the
IPsec standards. This protocol was proved to be secure in a variant of the Canetti-
Krawczyk (pre-specified peer) model where peer identities are not necessarily known
or disclosed from the start of the protocol, namely the Canetti-Krawczyk «post-
specified peer» model. In this paper, we will consider two variants of the basic
SIGMA protocol in which the MAC tag is not sent separately but rather it is
computed under the signature operation. As a consequence, these variants are both
secure in the Canetti-Krawczyk «post-specified peer» model.

Keywords: SIGMA protocol, M-SIGMA protocol, M1-SIGMA protocol, the
Canetti-Krawczyk «post-specified peer» model.

1 Introduction

The Internet Key-Exchange (IKE) protocols are the core components
to ensure Internet security. Thus, there are many publications on design
and analyse of the (secure) IKE protocol (such as IKEv1 [1], IKEv2 [8],
OPTLS [9]). IKE provides several key exchange mechanisms that support
Diffie-Hellman exchanges but differ in the way authentication is provided. A
common mechanism for providing authentication in IKE protocols is to use
the signature, and SIGMA [4] is a family of IKE protocol that uses such a
mechanism.

Figure 1: The basic SIGMA protocol
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In [3], R. Canetti and H. Krawczyk presented a security proof for the
basic SIGMA protocol (1) in a variant of the Canetti-Krawczyk (pre-specified
peer) model [2] where peer identities are not necessarily known or disclosed
from the start of the protocol. This variant is known as the Canetti-Krawczyk
«post-specified peer» model, and is a common partial setting, which includes
the case of IKE and other protocols that provide confidentiality of identities
over the network. (Some other key exchange protocols that are also consid-
ered in the «post-specified peer» model are DIKE[7], GC-KKN[6],...)

Besides the basic SIGMA protocol, [3] also considered the security of
several variants of the basic SIGMA protocol. One of those variants is de-
signed with IKE signature-mode in which the MAC tag is not sent sep-
arately but rather it is computed under the signature operation. In more
detail, in the response message of this variant, the responder does not send
SIGr(”1”, s, gx, gy), MACkm(”1”, s, IDr) as in the basic SIGMA protocol,
but rather sends his signature SIGr(MACkm(s, gx, gy, IDr)). Similarly, the
final message is of the form SIGi(MACkm(s, gy, gx, IDi)).

Figure 2: The variant in [3] of the basic SIGMA protocol
that put the MAC under the signature

According to [3], the reason for this modification is twofold: to save the
extra space taken by the MAC tag and to provide a message format con-
sistent with other authentication modes of IKE. Also, [3] claimed that the
security of this variant is essentially analyzed in the same extent as for the
basic SIGMA protocol. However, there is no proof for the security of this
variant. Hence, we are interested in studying the security of this variant.

Unfortunately, we see that the analysis of this variant is quite complex,
and we then do not obtain a complete proof for its security, even though
R. Canetti and H. Krawczyk claimed that its security can be obtained by
applying the analysis and the following result (Lemma 17 in [3]).

«If SIG is a secure signature scheme and MAC a secure message au-
thentication function then it is infeasible for an attacker to find differ-

(1)The basic SIGMA protocol is illustrated in Figure 1 in which IDI and IDr are the initiator and
the responder; s is a session identifier. The values x and y are the ephemeral secrete keys of IDi and
IDr, respectively; gx and gy are the ephemeral public keys of IDi and IDr, respectively. SIGi and SIGr
denote the signature of IDi and IDr, respectively. The value MACkm is produced with km = PRFgxy (1)
where PRF is a pseudorandom function family. The session key ks is computed as ks = PRFgxy (0).
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ent messages M and M ′ such that for a randomly chosen secret MAC-
key km the attacker an compute SIG(MACkm(M ′)) even after seeing
SIG(MACkm(M)).»
They also said that all the arguments in the proof of Basic SIGMA that
use the unforgeability of signatures remain valid in this case by using the
above result. However, in our opinion, there are two issues when applying
the above result to analyze the first requirement(2) of security definition in
the Canetti-Krawczyk «post-specified peer» model for the protocol in Figure
2:

- By a «man-in-the-middle» attack, an attacker may send gx
′ to

IDr instead of gx from IDi. Therefore, the response of IDr is
SIGr(MACk1

m
(s, gx

′
, gy, IDr)) where k1

m is derived from (gx
′
)y. How-

ever, we have no (formal) arguments to guarantee that the attacker
can find y′ such that MACk1

m
(s, gx

′
, gy, IDr) = MACk2

m
(s, gx, gy

′
, IDr)

and MACk2
m

(s, gy
′
, gx, IDi) = MACk1

m
(s, gy, gx

′
, IDi) with only negli-

gible probability (where k2
m is derived from (gy

′
)x). This implies that

there are no (formal) arguments to guarantee that the attacker can vio-
late the first requirement of security definition in the Canetti-Krawczyk
«post-specified peer» model with only negligible probability. Moreover,
we note that Lemma 17 in [3] cannot be applied in this case, because
there is only one MAC-key in the statement of that lemma.

- The condition in Lemma 17 in [3] is that the MAC-key is a randomly
chosen secret key and the attacker cannot chose it(3). Howerver, in a
«man-in-the-middle» attack, the attacker knows the MAC-key of IDr

and therefore Lemma 17 in [3] cannot be applied in this case.
However, we found out two other variants of the basic SIGMA protocol

that the MAC tag is also put under the signature and realize that they can
be proved secure in the same way as the basic SIGMA protocol. These two
variants will be described in Session 2.

2 The description of variants

2.1 Variant 1

In this section, we consider a modification of the basic SIGMA
protocol in which the responder does not send SIGr(”1”, s, gx, gy),
MACkm(”1”, s, IDr) as in the basic SIGMA protocol, but rather sends his

(2)This requirement guarantee that two honest parties who complete matching sessions compute the
same session key (except with negligible probability).

(3)R. Canetti and H. Krawczyk have noted that if the attacker can chose the MAC-key, Lemma 17 in [3]
would not hold.
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signature SIGr(”1”, s, gx, gy,MACkm(s, IDr)). Similarly, the final message
is of the form SIGi(”0”, s, gx, gy,MACkm(s, IDi)). Also, the MAC key km
and the session key ks of this protocol are both computed in the same
way as the basic SIGMA protocol. In particular, km = PRFgxy(1) and
ks = PRFgxy(1), where PRF is a pseudo-random function. For convenience,
this variant will be called by M-SIGMA.

Figure 3: The M-SIGMA protocol

Essentially, M-SIGMA also provides two good properties as the protocol
in Figure 2, that is: to save the extra space taken by the MAC tag and to
provide a message format consistent with other authentication modes of IKE.
Besides, this protocol can be analyzed easier than the protocol in Figure 2.

2.2 Variant 2

The second variant we will discuss is identical with M-SIGMA, except
that the component s in the signed message will be eliminated. That is, the
responder will send SIGr(”1”, gx, gy, MACkm(s, IDr)) in the second message
flow, and the initiator will send SIGi(”0”, s, gy, gx, MACkm(s, IDi)) in the
finish message flow. We will denote this variant by M1-SIGMA.

Figure 4: The M1-SIGMA protocol

Although M1-SIGMA is a slight modification of M-SIGMA, the analysis
of M-SIGMA should be significantly changed to apply for M1-SIGMA. In
Section 4, we will present our analysis of these two protocols in more detail.

3 The security model

The overviews of the Canetti-Krawczyk pre- and post-specified peer mod-
els for key agreement and the associated security definitions are provided in
[5]. For full details and further explanations refer to [3] and [2].
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Pre-specified peer model. Communications take place in a multi-party
system, where the parties are identified by Â, B̂, Ĉ,... At any given point in
time, a party may be engaged in multiple instances of the protocol, each called
a session. A session is created at Â via a message containing at least three
parameters (Â, B̂, s), where Â is the session’s owner, B̂ is the intended peer,
and s is a number that is unique among all sessions owned by Â. (Â uses
s to direct incoming messages to the appropriate session within Â.) Once
created, a session is said to be active and maintains a session state where
session-specific short-lived data such as an ephemeral private key is stored.
The session processes incoming messages and produces outgoing messages.
A session may abort without producing a session key, or may complete by
accepting a session key and erasing its session state.

The attackerM, modeled as a probabilistic Turing machine, controls all
communications between parties as well as the activation of sessions. In order
to model the possible leakage of secret information, M is allowed to issue
the following queries to parties:
– SessionStateReveal:M learns the contents of the session state for a

(not yet completed) session of its choosing. The session can no longer
be activated and stops producing output.

– Expire:M directs a completed session to delete its session key.
– SessionKeyReveal: M learns the session key held by a (completed

but unexpired) session of its choosing.
– Corrupt: M learns all the secret information held by a party of its

choosing, including the party’s static private key, all session states, and
all session keys. The party can no longer be activated and stops produc-
ing output.

The attacker’s goal is to distinguish a session key from a random key.
Obviously, the attacker should not be allowed to learn the session key by
trivial means, for example by asking for the session key via a SessionKeyRe-
veal query. To this end, a session (Â, B̂, s) is said to be locally exposed ifM
issued a SessionStateReveal or SessionKeyReveal query to that session, or if
M issued a Corrupt query to Â before the session expired (this includes the
case in which Â is corrupted before the session is created). Moreover, the ses-
sion (B̂, Â, s) is defined to be matching to the session (Â, B̂, s), and (Â, B̂, s)
is said to be unexposed if neither this session nor its matching session are
locally exposed. Now,M selects a session that is completed, unexpired, and
unexposed, and issues a special Test query to that session. (M is not allowed
to issue the Test query more than once.) In response,M is given with equal
probability either the session key held by the test session or a random key.
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M can continue to issue queries, however must ensure that the test session
remains unexposed. Finally, M is said to win its distinguishing game (and
thereby break the protocol) if it guesses correctly whether the key is random
or not with success probability significantly greater than 1/2.

Definition 1. [2] A key agreement protocol is said to be secure (in the
Canetti-Krawczyk pre-specified peer model) if:
(i) Uncorrupted parties who complete matching sessions compute the same

session key (except with negligible probability).
(ii) There is no attackerM who wins the distinguishing game.

Post-specified peer model. The Canetti-Krawczyk post-specified peer
model and associated security definition [3] are essentially the same as in the
Canetti-Krawczyk pre-specified model, but there are two important differ-
ences.

First, a session at Â is created via a message containing (at least) three
parameters (Â, d̂, s), where d̂ is a destination address to which outgoing mes-
sages should be delivered. That is, party Â does not know the identifier of
its peer when it starts the session. During the course of the protocol run,
Â learns the (alleged) identifier B̂ of the communicating party; this party is
referred to as Â’s peer for that session.

Second, the definition of a matching session is different. The new match-
ing session definition is stated as follows.

Definition 2. [2] Let (Â, s) be a session that has completed with public
output (Â, B̂, s). Then a session (B̂, s) is said to be matching to (Â, s) if
either:
(i) (B̂, s) has not yet completed; or
(ii) (B̂, s) has completed and its peer is Â.

Condition (i) is necessary because the incomplete session (B̂, s) may
not yet have determined its peer and hence could have been communicating
with (Â, s), in which case exposure of (B̂, s) could possibly reveal non-trivial
information about the session key held by (Â, s).

Definition 3. [2] The security definition in the Canetti-Krawczyk post-
specified peer model is defined identically as in Definition 1 but with the
notion of matching sessions re-formulated via Definition 2.

4 The security of basic SIGMA

Theorem 1. [2] Assuming DDH and the security of the underlying crypto-
graphic functions SIG, MAC, PRF , the basic SIGMA protocol is secure in
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the Canetti-Krawczyk post-specified model.

Proving this theorem in [3] requires that the basic SIGMA protocol sat-
isfies the two properties in Definition 3:
P1. If two uncorrupted parties IDi and IDr complete matching sessions

((IDi, s, IDr) and (IDr, s, IDi), respectively) under the basic SIGMA
protocol then, except for a negligible probability, the session key output
in these sessions is the same.

P2. No efficient attacker on the basic SIGMA protocol can distinguish a
real response to the test-session query from a random response with
non-negligible advantage. More precisely, if for a given attackerM we
define:

- PREAL(M) =
= Pr(M outputs 1 when given the real test session key)

- PRAND(M) =
Pr(M outputs 1 when given the random test session key)

then we need to prove that for any attacker M: |PREAL(M) −
PRAND(M)| is negligible.

In [3], the property P1 of basic SIGMA protocol is based on the security
of SIG function; and the proof of property P2 for basic SIGMA protocol use
the following notions.
The simulators. A simulator S = S(M) is defined on parameters n (num-
ber of parties) and a given attacker M, simulates a run of (basic SIGMA)
protocol against attackerM. Simulator S starts by choosing the initializa-
tion information for each of the n parties (private signature keys and their
corresponding public verification keys) and execute the queries ofM.

We recall several variants of the above simulator S (in [3]), which is gen-
erally denoted by Ŝ and is similar to S except for the following differences.
1. Let l be an a-priori upper bound of the number of that M initiates

during its run with n parties. At the beginning, Ŝ chooses the following
values: a number t chosen uniformly in [1, l], an identity R0 randomly
chosen among the identities of n parties; two elements x, y ∈ Zq, and
two values km and ks (depended on the variants Ŝ) of the same length
as the output of the PRF functions.

2. Ŝ performs a usual simulation ofM like S does except that it takes two
types of special actions:
(a) the actions related to the t-th session initiated byM as described

in step 3 below; and
(b) stopping its run upon the occurrence of any of the «abort events»

that is listed below, in which case Ŝ stops with output 0.
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3. Let the t-th session is initiated byM be (I0, s0). The following actions
take place as long as an abort event does not happen. The start message
of session (I0, s0) is generated by Ŝ using the value x chosen in step 1
(i.e., the start message output by (I0, s0) is s0, g

x). In case that session
(R0, s0) is activated byM with R0 as responder then Ŝ outputs a re-
sponse message on behalf of R0 using the exponent gy (with y chosen
in step 1). Moreover, the MAC computation for this message uses the
key km chosen by Ŝ in step 1. If any of the sessions (I0, s0) or (R0, s0)
complete then the secret session key is set to ks as chosen by Ŝ in step
1.

4. IfM chooses (I0, s0) or (R0, s0) as its test session then the response to
the test query by Ŝ is ks.

5. IfM ends its run (without Ŝ having aborted) then Ŝ outputs the same
bit asM outputs.

The Ŝ variants. The five variants Ŝ listed below (which differ by the way
ks and km are defined) are described in [3].

ŜREAL: ks ← PRFgxy(0), km ← PRFgxy(1)

ŜRPPF : ks ← PRFk(0), km ← PRFk(1), k ← random()
ŜALLR: ks ← random(), km ← random()
ŜHY BR: ks ← random(), km ← PRFk(1), k ← random()
ŜRAND: ks ← random(), km ← PRFgxy(1)

Abort event. If any of the following events happen Ŝ stops its run and
outputs 0 (recall that we denote by (I0; s0) the t-th session initiated byM,
and by R0 the identity randomly chosen by Ŝ in step 1 of its run):
– M corrupts I0 or R0 before (I0, s0) is complete.
– M issues a state-reveal query against (I0, s0) or (R0, s0).
– Session (R0, s0) is initiated as responder before (I0, s0) sent its start

message; or (R0, s0) is initiated as responder with a start message con-
taining a DH exponent which is different than the DH exponent in the
start message output by (I0, s0).

– The response message received by (I0, s0) arrives before (R0, s0) was
activated as responder, or this response message has a different DH
exponent than the DH exponent appearing in the response message
output by session (R0, s0).

– Session (I0, s0) aborts.
– M chooses a test session other than (I0, s0) or (R0, s0), or it chooses

one of these but the session completes with a peer different than R0, I0,
respectively.

– M completes the game without having chosen a test session, orM stops
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before having initiated t sessionsM.
GUESS event. Let Ŝ be one of the simulators defined above andM be an
attacker. We say that a guess event happens in a run of Ŝ(M) if the following
conditions are satisfied:
– M initiates at least t sessions in this run where t is the parameter chosen

by Ŝ in step 1 of its run (we denote by I0 the initiator of this session
and by s0 the session id);

– if R0 denotes the random chosen party by in step 1 of its run Ŝ
– M chooses (I0, s0) as its test session and this session completes with

peer R0; or
– M chooses (R0, s0) as its test session and this session completes

with peer I0.

5 Our security analysis

In this section, we will analyze the security of two variants M-SIGMA and
M1-SIGMA that based on the security analysis of basic SIGMA protocol in
[3]. We note that the notions used in our analysis for two variants M-SIGMA
and M1-SIGMA is the same as in the analysis for basic SIGMA protocol in
[3].

5.1 The M-SIGMA protocol

In this section, we will show that M-SIGMA satisfies the two requirements
of Definition 3 under the DDH assumption and the security of the underlying
cryptographic functions SIG, MAC, PRF .
M-SIGMA satisfies the first security requirement. The idea of proving
this property is that if an attacker M can make two parties IDi and IDr

complete matching sessions ((IDi, IDr, s) and (IDr, IDi, s), respectively)
but they have different keys, thenMmust alter either gx (in the first message
sent from IDi to IDr) or gy (in the response message sent from IDr to IDi)
by gx′ or gy′. However, in order to IDi or IDr accept the message that he
receives is legitimate,M must be able to generate a signature on the message
containing gx′ or gy′, and the value s as the session id. This implies that the
security assumption of SIG function is violated. Hence, the basic SIGMA
protocol satisfies the first requirement of Definition 3. In a similar way, M-
SIGMA also achieves this property.
M-SIGMA satisfies the second security requirement. We prove that
the property P2 of the basic SIGMA protocol is still valid for M-SIGMA.
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Proposition 1. For all attackersM on M-SIGMA, the following holds ex-
cept for negligible probability.
(a) Consider a regular run by M in which M chooses a test session with

output (Â, B̂, s) where Â is the initiator. Then:
(1) Â and B̂ are never corrupted before expiration of the test session.
(2) Sessions (Â, s) and (B̂, s) are never revealed byM.
(3) (B̂, s) is initiated as responder with the start message sent by (Â, s).
(4) (Â, s) receives a response message after (B̂, s) was activated as re-

sponder, and this message carries the same DH exponent as in the
response message output by (B̂, s).

(5) Session (Â, s) does not abort.
(b) Consider a regular run by M in which M chooses a test session with

output (B̂, Â, s) where B̂ is the responder. Then:
(1) Â and B̂ are never corrupted before expiration of the test session.
(2) Sessions (Â, s) and (B̂, s) are never revealed byM.
(3) (B̂, s) is initiated as responder with the start message sent by (Â, s).
(4) (Â, s) receives a response message after (B̂, s) was activated as re-

sponder, and this message carries the same DH exponent as in the
response message output by (B̂, s).

(5) Session (Â, s) does not abort.

Proof. It is directly applied the proof of Lemma 7 in [3].
Now, we consider the indistinguishability of the above simulators. Here,

the proofs of Proposition 6, 7, and 8 are similar to that of Lemma 8, 9, 10 in
[3], respectively.

Proposition 2. For all attackers M on M-SIGMA, the outputs of
ŜRAND(M) and ŜHY BR(M) are indistinguishable.

Proposition 3. For any attacker M on M-SIGMA, the probability of a
guess event under a run of ŜRAND(M) is at least 1/(mn), where m is the
number of sessions initiated by M and n is the number of parties in the
M-SIGMA protocol.

Proposition 4. For any attacker M on M-SIGMA, the probability of a
guess event under a run of ŜHY BR(M) is, up to a negligible difference, the
same as the probability of a guess event under a run of ŜRAND(M).

The same as Lemma 11 in [3], the following result (Proposition 9) is
our central analysis. However, the proof of Proposition 9 is more complex
than that of Lemma 11 in [3] and based on the idea of Lemma 17 in [3].
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We note that the proof of this proposition is the only difference between the
security proofs for the M-SIGMA and basic SIGMA protocols.

Proposition 5. For all attackersM on M-SIGMA, if a guess event happens
under a run of ŜHY BR(M) then the following properties hold (except for
negligible probability):
(i) if (I0, s0) was chosen by M as the test session then (R0, s0) (either if

completed or not) is its matching session;
(ii) if (R0, s0) was chosen byM as the test session then (I0, s0) is its match-

ing session.

Proof. (i) According to [3] when GUESS event happens, then if (I0, s0)
was chosen by M as the test session then this session completes with peer
R0. By Definition 2, as long as (R0, s0) is incomplete it is matching to (I0, s0).
If (R0, s0) is complete and its outputs is (R0, ID, s0) then by Definition 2,
(R0, s0) matches (I0, s0) if and only if ID = I0. Therefore, we want to prove
that if (R0, s0) completes then ID = I0.

Assume that (R0, s0) completes with peer ID. This implies that (R0, s0)
receives the final message flow before it completes. Therefore, R0 receives
a signature in the form SIGID(”0”, ..., MACkm(s0, ID)), where km =
PRFk(1) and k is a random key chosen by ŜHY BR and never provided to the
attacker. However, there could have been two signatures of messages contain-
ing the MAC values (under the key km) computed in the protocol, namely,
MACkm(s0, R0) and MACkm(s0, I0). We consider two following cases:
– The party ID has been never corrupted. If based on two signatures
SIGR0

(”1”, ...,MACkm (s0, R0)) and SIGI0(”0”, ...,MACkm(s0, I0))
the attacker M has non-negligible probability of producing
SIGID(”0”, ...,MACkm(s0, ID)) for ID 6= I0 and R0, there are
two cases. The first, if MACkm(s0, ID) = MACkm(s0, R0) or
MACkm(s0, ID) = MACkm(s0, I0), then we can build, based on
ŜHY BR, a forger to MAC function under the key km = PRFk(1),
where k is a random independent key. This forger can then be turned
into a distinguisher to PRF , or into a forger against theMAC function
(with a random key). The second, ifMACkm(s0, ID) 6= MACkm(s0, R0)
and MACkm(s0, ID) 6= MACkm(s0, I0) then ID has never produced
the signature SIGID(”0”, ...,MACkm(s0, ID)) because the MAC
value MACkm(s0, ID) has never been computed by ŜHY BR, therefore
this signature is a forgery signature. Since we assume the SIG, MAC,
PRF function to be secure then the probability that (R0, s0) end with
peer ID 6= I0 is negligible. (We note that R0 has never generated
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the signature SIGR0
(”0”, ...,MACkm(s0, R0)) before, except negligible

probability).
– The party ID was corrupted (so ID 6= R0). In this case,M can gener-

ate ID’s signature on any message. However,M can compute the value
MACkm(s0, ID), because of the security assumption of MAC function
with only negligible probability. Therefore, M can generate a signa-
ture SIGID(”0”, ..., MACkm(s0, ID)) with only negligible probability.
It implies that in this case the probability that (R0, s0) end with peer
ID 6= I0 is negligible.

Hence, according to these above cases, we obtain (R0, s0) is the matching
session of (I0, s0).

(ii) It is similar to (i). �
The following propositions are versions (in M-SIGMA) corresponding to

Lemma 12, 13, 14, 15, 16 in [3]. In addition, their proofs are quite similar to
the proofs of the corresponding lemmas. Therefore, here we only state these
propositions without proving.

Proposition 6. Proposition 9 holds for ŜRAND as well.

Proposition 7. For all attackersM on M-SIGMA,

PRAND(M) = Pr(ŜRAND outputs 1: GUESS events).

Proposition 8. For all attackersM on M-SIGMA,

PREAL(M) = Pr(ŜREAL outputs 1: GUESS events).

Proposition 9. For all attackers M on M-SIGMA, the simulators
ŜREAL(M) and ŜRAND(M) are indistinguishable.

Proposition 10. The M-SIGMA protocol satisfies the second requirement of
Definition 3: for all attackerM on M-SIGMA, |PREAL(M)− PRAND(M)|
is negligible.

As a consequence, the M-SIGMA protocol is secure in the Canetti-
Krawczyk post-specified peer model.

Proposition 11. Assuming DDH and the security of the underlying cryp-
tographic functions SIG, MAC, PRF , the M-SIGMA protocol is secure in
the Canetti-Krawczyk post-specified model.

5.2 The M1-SIGMA protocol

In this section, we will show that M1-SIGMA also satisfies the two re-
quirements of Definition 3 under the DDH assumption and the security of
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the underlying cryptographic functions SIG, MAC, PRF .
M1-SIGMA satisfies the first security requirement. This property is
proved via the following result.

Proposition 12. The M1-SIGMA protocol satisfies the first requirement of
Definition 3.

Proof. Let M be an attacker on M1-SIGMA protocol, and let IDi and
IDr be identities of two (uncorrupted) parties that complete the matching
sessions (IDi, IDr, s) and (IDr, IDi, s), respectively. We need to prove that
regardless ofM’s operations both sessions output the same session key. That
is, if gx and gy are corresponding to the nonce values that IDi and IDr gen-
erate, then both IDi and IDr compute the same DH value gxy (from which
the session key ks is deterministically derived).

Let ui be the nonce value that IDi receives in the second message flow
and ur be the nonce value that IDr receives in the first message flow of
session s. Therefore, the signature produced by IDr during session s is
SIGr(”1”, ur, g

y,MACkm(s, IDr)) (where km is derived from the value uyr),
and it is is the only one that IDr ever produces in session s as the ses-
sion id. However, the signature that IDi receives in the response message
is SIGr(”1”, gx, ui,MACk′m(s′, IDr)) (here, this signature may be generated
by IDr in some session s′ 6= s and k′m is derived from the value uxi , since
M does not generate any signature by the unforgeability assumption of the
SIG function).

There are two ways thatM can obtain the signature of IDr in session s′

to send to (IDi, s):
– Replaying the signature that IDr was activated as a responder in some

session s′ (in which the parties are uncorrupted) and then send to
(IDi, s). However, since the parties are uncorrupted, so the probabil-
ity that the nonce value of the partner of (IDr, s

′) is equal to gx is
negligible.

– Upon (IDi, s) is activated and it generates the nonce value gx,
the attacker M initiates a (corrupted) party E to send the mes-
sage flow s′, gx, and then activates IDr as a responder to receive
this message (note that s′ 6= s). After that, IDr generates a
respone message flow s′, gy0, IDr, SIGr(”1”, gx, gy0,MACk′m(s′, IDr))
(in this way, k′m is derived from gxy0) and sends it to M.
Upon receiving this signature, the attacker M sends the mes-
sage flow s, gy0, IDr, SIGr(”1”, gx, gy0,MACk′m(s′, IDr)) to (IDi, s).
If (IDi, s) accept the validation of this response message flow, then
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MACk′m(s, IDr) = MACk′m(s′, IDr). (In the other case, we have
SIGr(”1”, gy0, gx,MACk′m(s′, IDr)) is a signature on the message
”1”, gy0, gx,MACk′m(s, IDr) on which IDr has never generated any sig-
nature. So, it contradicts the unforgeability of SIG function). However,
if MACk′m(s, IDr) = MACk′m(s′, IDr) with non-negligible probability
(where s′ 6= s), it will imply that one of the assumptions (the DDH
assumption, and the security assumption of MAC, PRF functions) is
violated.

Hence, the signature thatM sends to (IDi, s) is the signature produced
by IDr in the session s (so, ui = gy and ur = gx). This implies that, the DH
value computed by (IDi, s) is uxi = gxy, while the DH value computed by
(IDr, s) is uyr = gxy. And therefore both compute the same session key. �
Remark. The proof of this property for the basic SIGMA (and M-SIGMA)
protocol is only based on the unforgeability assumption of the SIG function.
The reason is that, when s is used as a component of the signed message, we
know that this signature is unique in session s. Hence, the signed message
checked by (IDi, s) and the signed message produced by IDr are identical.
As a consequence, IDr received the nonce value gx generated by IDi; and
IDi received the nonce value gy generated by IDr. However, it is a problem
when we omit the component s in the signature (and outside MAC) as in the
M1-SIGMA protocol. Therefore, the values s is only contained in the MAC

message. And then, in order to prove that the M1-SIGMA satisfies the first
requirement of Definition 3, we need to use some additional assumptions (that
are the DDH assumption and the security of MAC and PRF functions).
M1-SIGMA satisfies the second security requirement. we prove that
the property P2 of the basic SIGMA protocol are still valid for M1-SIGMA.

The following proposition is a version (corresponding to M1-SIGMA) of
Lemma 7 in [3] and Proposition 5 in the previous section. However, the
proof of this proposition is more complex than that of Lemma 7 in [3] and
Proposition 5. And, it is similar to Proposition 16, our proof is based on
the security assumption of MAC, PRF , and SIG functions, and the DDH
assumption. In particular, we will use the proof of Proposition 16 to prove
this proposition.

Proposition 13. For all attackers M on M1-SIGMA, the following holds
except for negligible probability.
(a) Consider a regular run by M in which M chooses a test session with

output (Â, B̂, s) where Â is the initiator. Then:
(1) Â and B̂ are never corrupted before expiration of the test session.
(2) Sessions (Â, s) and (B̂, s) are never revealed byM.
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(3) (B̂, s) is initiated as responder with the start message sent by (Â, s).
(4) (Â, s) receives a response message after (B̂, s) was activated as re-

sponder, and this message carries the same DH exponent as in the
response message output by (B̂, s).

(5) Session (Â, s) does not abort.
(b) Consider a regular run by M in which M chooses a test session with

output (B̂, Â, s) where B̂ is the responder. Then:
(1) Â and B̂ are never corrupted before expiration of the test session.
(2) Sessions (Â, s) and (B̂, s) are never revealed byM.
(3) (B̂, s) is initiated as responder with the start message sent by (Â, s).
(4) (Â, s) receives a response message after (B̂, s) was activated as re-

sponder, and this message carries the same DH exponent as in the
response message output by (B̂, s).

(5) Session (Â, s) does not abort.

Proof. Proof of (a):
(1) M is not allowed to corrupt the peers to the test session and we have

assumed (wlog) that it does not do that.
(2) (Â, s) cannot be revealed byM sinceM is not allowed to expose the

test session. As for (B̂, s), a state-reveal query can be done only against
incomplete session (since upon completion sessions erase their state).
However, while incomplete, (B̂, s) is the matching session to the test
session soM cannot issue state-reveal query against it.

(3) Since (Â, B̂, s) completes, it means that Â received a response mes-
sage with identity B̂ in it. In particular, it means that Â verified the
signature SIGB̂(”1”, gx, gy,MACkm(s, B̂)) under B̂’s public key and
where gx was the value included by (Â, s) in its start message, and
km = PRFgxy(1). It is similar to the proof of Proposition 16, we see
that the probability thatM can activate (B̂, s) as a responder with the
initiator message gx′, s (where, gx′ 6= gx) is negligible. (It is based on
the DDH assumption and the security assumptions ofMAC, PRF and
SIG functions). Therefore, the signature produced by B̂ thatM sends
to (Â, s) is under session s and B̂ is activated as a responder of session
s under the DH exponent gx as output in the start message by (Â, s).

(4) (Â, s) completes with an output (Â, B̂, s) so it must have received
a response message which included B̂ as the identity. Moreover,
Â verified the signature in the response message under B̂’s public
key, namely SIGB̂(”1”, gx, gy,MACkm(s, B̂)). If (B̂, s) was not acti-
vated as a responder then B̂ would have never generated a signature
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SIGB̂(”1”, ...,MACkm(s,Q)), then follow to the proof of Proposition
16, we have that at least one of the assumptions (the DDH assumption
and the security assumption of MAC, PRF and SIG functions) is vi-
olated. If B̂ generated such a signature then we have that gy included
under that signature was the DH exponent in the response message
generated by (B̂, s), and since Â verified it using the DH exponent it
received in the response message then we have that either this is the
same exponent generated and sent by B̂ or at least one of the assump-
tions (the DDH assumption and the security assumption ofMAC, PRF
and SIG functions) is violated (by using the argument in the proof of
Proposition 16).

(5) Clearly, session (Â, s) does not abort since it completes.
Proof of (b): It is similar to (a). �

The following propositions are versions (in M1-SIGMA) corresponding to
Proposition 6, 7,..., 15. In addition, their proofs are quite similar to the proofs
of the corresponding lemmas. Therefore, here we only state these propositions
without proving.

Proposition 14. For all attackers M on M1-SIGMA, the outputs of
ŜRAND(M) and ŜHY BR(M) are indistinguishable.

Proposition 15. For any attacker M on M1-SIGMA, the probability of a
guess event under a run of ŜRAND(M) is at least 1/(mn), where m is the
number of sessions initiated by M and n is the number of parties in the
M1-SIGMA protocol.

Proposition 16. For any attacker M on M1-SIGMA, the probability of a
guess event under a run of ŜHY BR(M) is, up to a negligible difference, the
same as the probability of a guess event under a run of ŜRAND(M).

Proposition 17. Proposition 20 holds for ŜRAND as well.

Proposition 18. For all attackersM on M1-SIGMA,

PRAND(M) = Pr(ŜRAND outputs 1: GUESS events).

Proposition 19. For all attackersM on M1-SIGMA,

PREAL(M) = Pr(ŜREAL outputs 1: GUESS events).

Proposition 20. For all attackers M on M1-SIGMA, the simulators
ŜREAL(M) and ŜRAND(M) are indistinguishable.
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Proposition 21. The M1-SIGMA protocol satisfies the second require-
ment of Definition 3: for all attacker M on M1-SIGMA, |PREAL(M) −
PRAND(M)| is negligible.

As a consequence, the M1-SIGMA protocol is secure in the post-
specified peer model.

Proposition 22. Assuming DDH and the security of the underlying crypto-
graphic functions SIG, MAC, PRF , the M1-SIGMA protocol is secure in
the Canetti-Krawczyk post-specified model.

6 Conclusion

In this paper, we considered and analyzed two variant of the basic SIGMA
protocol, namely M-SIGMA and M1-SIGMA, in which the MAC tag is not
sent separately but rather it is computed under the signature operation. We
obtained that these two variants are secure in the post-specified model. Our
analysis is essentially based on the analysis of the basic SIG protocol in [3].
However, there are some differences between our analysis and the analysis in
[3], that is the proofs of Proposition 9, 16, 17 and 21.

Besides, there are some significant differences between the proofs of M-
SIGMA and M1-SIGMA. Hence we can see that, a slight modification can
make our analysis is more complex than its origin. This is one of our reasons
that we consider the security of M-SIGMA and M1-SIGMA instead of the
protocol in Figure 2, and then we hope that we can provide a security proof
for that protocol.
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Abstract

In this paper we propose a verifiable threshold secret sharing scheme based on
learning with errors (LWE) problem. In secret sharing schemes shares are sent
through a secure channel. For the sake of consistency between share generation
process and share distribution platform, we propose a lattice based secret sharing
scheme. To the best of our knowledge, this scheme is the first LWE-based verifiable
threshold secret sharing scheme. In this paper, we use Micciancio and Peikert's algo-
rithm to produce a trapdoor. Shares are distributed using an LWE-based public-key
cryptosystem. It is shown that the computational security is based on the hardness
of LWE problem and one-wayness of Ajtai's function.

Keywords: lattice based cryptography, learning with errors (LWE) problem, threshold secret
sharing, trapdoor function.

1 Introduction

By the appearance of quantum computers, some quantum algorithms
have been developed by Shor [1] which threatens the security of the num-
ber theoretic cryptosystems. Since then, researchers considered post-quantum
cryptographic algorithms because of their resistance against quantum at-
tacks. Lattice based cryptographic schemes are among post-quantum can-
didates. For compatibility of the share generation process with the crypto-
graphic platform, we introduce a lattice based secret sharing scheme. Also
to provide verifiability of the shares and the secret, we exploit the worst-
case hardness of shortest vector problem (SVP) as one of the hard lattice
problems.

Secret sharing schemes are used in several applications in cryptography
such as secure attribute based encryption [2], key management [3] and thresh-
old cryptography [4]. Moreover, secret sharing schemes make it possible to
share a secret among a set P of participants in a way that only certain subsets
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of them can recover the secret. The set of all authorized subsets of partici-
pants is called the access structure denoted by Γ. Each participant is given
a value as his/her share. The secret sharing scheme should be designed in a
way that any authorized subset in Γ be able to recover the secret and any
unauthorized subset cannot get any information about the secret.

In a (t, n) threshold secret sharing scheme, the access structure Γ is
the collection of all t-subsets of P. In other words, any t participants form an
authorized set and are able to recover the secret. Most secret sharing schemes
consist of two stages. First, using the algorithm, the so-called dealer computes
the shares and sends them securely to the participants. At the second stage, at
least t participants put their shares into the combiner in order to recover the
secret. This notion was first introduced by Shamir and Blakley independently
in 1979 [5], [6] which are based on Lagrange interpolator polynomial and
linear projective geometry, respectively.

Later, some other secret sharing schemes with extra features such as
threshold changeability [7],[8], shares verification [9] and sharing more than
a secret at the same time [10],[11] have been proposed.

Notably, Shamir's secret sharing is information theoretically secure but in
practice for secure share distribution among participants, a public key cryp-
tography is normally used. But security of classical public key cryptosystems
are usually based on hardness of factorization and discrete logarithm prob-
lems which are solved by Shor's quantum algorithm. Therefore, Shamir's
secret sharing cannot be practically handled securely. In addition to secu-
rity issues, consistency of the secret sharing algorithm with the lattice based
public key infrastructure is also a concern, Therefore, Shamir's secret sharing
could be replaced by a lattice based secret sharing scheme.

So far, there has been neither quantum nor classic algorithm for solving
hard lattice problems [12]. Consequently, it is supposed that they are secure
against cryptographic attacks. Moreover, it is applicable due to its efficient
linear computations. Also the security of such schemes can be proven based
on worst-case hardness of lattice problems such as shortest vector problem
(SVP) and closest vector problem (CVP). In 1996 Ajtai introduced the first
lattice based constructions [13]. He proposed a family of one-way collision
resistant functions [13], [14].

In [7], Stienfeld has proposed a lattice based construction to change the
threshold of any Shamir based secret sharing scheme without need to dis-
tribute new shares to the participants. A lattice based (n, n) secret sharing
scheme was introduced in 2011 by Georgescu [15] whose security relies on
the hardness of LWE problem. In 2012 Bansarkhani [16] proposed another
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lattice based (n, n) threshold verifiable secret sharing scheme whose security
is based on the approximate SVP. In these schemes, all participants are re-
quired to involve in the process of secret reconstruction. Amini et al. [17] in
2014, proposed a lattice based (t, n) threshold secret sharing scheme with
asymptotic security which works only in some special cases and does not en-
joy verifiablity. The security of the other schemes is based on the one-wayness
of Ajtai's function.

In [11] Pilaram et al. have proposed a lattice based multi-stage (t, n)
threshold secret sharing scheme in which all computations are linear. The
scheme shares a number of secrets among participants. The secrets can be
recovered independently in any order. Also each participant uses one pseudo-
secret share, therefore, by recovering one secret the shares are still unknown
for recovering the remaining secrets. The security is based on one-wayness of
Ajtai's function [13].

In this paper, to the best of our knowledge, we propose the first lattice
based verifiable (t, n) threshold secret sharing scheme whose security is based
on LWE problem. In this scheme each share has four components. Firstly, an
algorithm is used to produce a matrix A and its corresponding trapdoor R.
Then, the first component of shares is produced using matrix A. The second
component is a noise value added to the inner product of the secret with
the first component. The third and fourth components are computed from
the trapdoor. For recovering the secret the trapdoor is shared among the
participants in such a way that any t of them can recover the secret.

The paper is organized as follows: Section 2 provides a brief review of lat-
tices and some hard lattice problems. Section 3 is dedicated to the proposed
LWE-based scheme. The security and correctness of the proposed scheme are
discussed in Section 4. Section 5 concludes the paper.

2 Preliminaries

In this section, some basic concepts of lattices, lattice based cryptography,
and secret sharing schemes are introduced.

2.1 Notations

In this paper, lower case letters represent column vectors and upper case
letters denote matrices. The transpose of a matrix is denoted by (.)T . The
finite field of integers modulo q is represented by Zq. The set of all m × n
matrices with entries in a ring R is denoted by Rm×n. The sign ‖.‖ denotes
any arbitrary norm. The notation < a.b > stands for the inner product of
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vectors a and b. The notation O(.) is used to show the growth of functions.

2.2 Lattices

In this paper, by lattice we mean a regular array of points in an m-
dimensional real vector space.

Definition 1. (18) let b1, b2, ..., bn be n linearly independent vectors in
vector space Rm. The lattice Λ is defined as the set of all integer linear
combinations of b1, b2, ..., bn as follows:

Λ = L(b1, b2, ..., bn) = {
n∑
i=1

xibi;xi ∈ Z}

The set of vectors {b1, b2, ..., bn} is called a basis for the lattice and n is called
the rank of the lattice.

The security of any lattice based cryptosystem is usually based on NP-
Hard problems in lattices such as SVP, CVP and LWE. Shortest vector prob-
lem (SVP) is the problem of finding the shortest nonzero vector in a given
lattice and Closest vector problem (CVP) is the problem of finding the clos-
est vector of the lattice to the given target point. The learning with errors
(LWE) problem [19] is a set of linear equations with random noise values
added to each equation is considered.

2.3 Lattice based Secret Sharing Scheme

In [11] Pilaram and Eghlidos proposed a lattice based threshold multi-
stage secret sharing scheme, which we call PE from now on, for sharing the
secrets s1, ..., sm ∈ Zt

q. First, the dealer announces a public random vector
v ∈ Zt

q whose last entry is 1 for which there exist different lattice bases
Bi ∈ Zt×t

q such that si = Biv for i = 1, ...,m. Then the dealer chooses
n random public vectorsλj ∈ Zt

q forj = 1, ..., n such that every t of these
vectors are linearly independent. The share of participant Pi is a random
vector ci ∈ {0, 1}r which is sent by the dealer toPi through a secure channel.
Then the dealer computes the public matrices Ai such that Aicj = Biλj
for i = 1, ...,m and j = 1, ..., n and makes them public. Second, a set of
authorized participants {j1, ..., jt} ⊆ {1, ..., n} can recover the matrix Bi

corresponding to the secret si by computing pseudo-shares dijk = Aicjk by
Pjk for k = 1, ..., t and then computing Bi = [dij1, ..., d

i
jt

][λj1, ..., λjt]
−1. Then,

using the public vector v, they recover the secret si = Biv.
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2.3.1 Ajtai's hash function

Ajtai in [13] introduced a family of one-way functions called Ajtai's func-
tion, which are hard to convert. Ajtai showed that converting the function
fA(x) = Ax (mod q) for n,m, q, d ∈ N,m > n log q

log d , q = O(nc), random
x ∈ {0, 1, ..., d−1}m and uniformly randomA ∈ Zn×m

q is equivalent to solving
any instance of approximate SVP which is still hard as there is no any clas-
sic/quantum algorithm to solve it. Note that the Ajtai's hash function is colli-
sion resistant based on the q-ary lattice λ⊥q (A) = {x ∈ Zm : Ax = 0(modq)}.
In this lattice the matrix A is called as key by Ajtai.

3 The Proposed Scheme

In lattice problems, a trapdoor is an intermediator to facilitate the access
to a good basis. Micciancio and Peikert have introduced two algorithms in [20]
for generating trapdoor and inverting LWE problem with the corresponding
trapdoor which we use in our scheme. These algorithms are as follows:

Algorithm (1): An efficient randomized algorithm which on inputs t >
1, q > 2 and m = t([log q] + 2), outputs a matrix A ∈ Zt×m

q and a trapdoor
R ∈ Z2t×tdlog qe such that A is computationally pseudorandom matrix (PR)
under LWE assumption.

Algorithm (2): An efficient algorithm, with overwhelming probability
over all random choices, for s ∈ Zm

q and ‖a‖ < q
o(
√
t log q)

or e ← DZt,αq for
1
α >

√
t log q.ωt, on inputs a PR matrix A, a trapdoor R and a vector b in

the form of b = As+ e, outputs s.
In this section we propose a new verifiable LWE-based threshold secret

sharing scheme(See pseudocode in Appendix). Using Algorithm (1), the trap-
door R is chosen randomly to produce a matrix A. If A is singular, we run
Algorithm(1) again. Note that A must be nonsingular to be used in our
scheme. The secret s is shared using the corresponding shares that are dis-
tributed beforehand. Algorithm (2) is used to reconstruct the secret with the
trapdoor R as its input.

Let n and t be the number of participants and the threshold, respectively,
such that n < 2t. For sharing the secret s ∈ Zm×1

q , the dealer runs Algorithm
(1) to obtain the matrix A and the trapdoor matrix R. Let the vector aTi
denote the ith row of A, for i = 1, ..., t. The dealer chooses the random
coefficients αij ∈ Zq for i = t + 1, ..., n and j = 1, ..., t. The share given
to the ith participant is a four tuple (ãi, b̃i, ri, r̃i) for i = 1, ..., n . The first
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component ãi, for i = t+ 1, ..., n is constructed as follows.

ãi =
t∑

j=1

αijaj, i = t+ 1, ..., n (1)

Also for i = 1, ..., t we have ãi = ai. For the second part of each share
we have b̃i =< ãi.s > +ei in which s is the secret and the noise value ei
comes from a random distribution that satisfies the conditions of Algorithm
(1). Also, A is pseudorandom since it is obtained from Algorithm (1). The
vector b̃ is produced based on LWE problem.

For constructing the third and fourth share components, the dealer uses
a modification of PE secret sharing scheme for one secret. Assume the first
t × t submatrix of R as R̃1 and the second t × t submatrix of R started
from the (t + 1)th row as R̃2. The dealer publishes the remaining entries
of R as R̄. Since by Algorithm(1), R is a random matrix, the public values
corresponding to R do not leak any information about the secret. The dealer
then chooses n public vectors λi ∈ Zt

q for i = 1, ..., n, each t of which are
linearly independent. The vectors λ̃i ∈ Zt

q for i = 1, ..., n are chosen in
the same way. The third and the fourth parts ri and r̃i are constructed by
computing ri = R̃1λi and r̃i = R̃2λi. The dealer also publishes two random
matrices F ∈ Zp×m

q and C ∈ Zp×t
q where p log q < t < m and q = O(pc)

for some constant c. Besides, he publishes the hash values fs = Fs, f̃i1 =
F ãi, f̃i2 = Fbi where bi is the binary form of b̃i in m bits, f̃i3 = Cri and
f̃i4 = Cr̃i for i = 1, ..., n. Since the vectors s, ãi, ri, r̃i and bi are chosen
randomly, the hash values do not leak any information about the hidden
values.

In the next step, the dealer sends the corresponding shares to the partic-
ipants through a secure channel. By receiving the share, the participant Pi
uses the public values to verify his/her share. If the share is verified, he/she
continues the process, if not, the participant asks the dealer to send his/her
share again.

For recovering the secret, the participants Pi1, Pi2, ..., Pit for {i1, ..., it} ⊂
{1, ..., n}, make their shares available to the combiner. Using the public values
f̃i1, f̃i2, f̃i3 and f̃i4 the combiner verifies the correctness of shares. If the shares
of the participants Pi1, Pi2, ..., Pit were correct, the combiner forms the matrix
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Ã and the vector b̃ as follows:

Ã =

ãi1T...
ãit

T

 , b̃ =

b̃i1...
b̃it

 (2)

Also by using the vectors ri1, ..., rit and the public vectors λi1, ..., λit the
matrix R̃1 is recovered by computing R̃1 = [ri1, ..., rit][λi1, ..., λit]

−1. With
the same computations we obtain R̃2 = [r̃i1, ..., r̃it][λ̃i1, ..., λ̃it]

−1. Then the
matrix R̃ is reconstructed as R̃ =

(
R̃1

R̃2

)
. Using R̃ and the public matrix R̄,

we obtain R = [R̃|R̄]. Furthermore, the combiner runs Algorithm (2) on
the equation b̃ = Ãs + ẽ to find s as the output. Finally, by comparing Fs
with the public value fs, everyone can check whether s is correct or not. The
complexity of the scheme is of O(t3).

4 Analysis of Security and Correctness

4.1 Correctness

The proof of correctness is threefold. First we show that the recovered
trapdoor R is a trapdoor for Ã. The correctness of our scheme inherits from
PE secret sharing scheme, because we have used PE scheme to generate the
corresponding share of R.

Secondly, we have to show the recovered Ã is a key of the q-ary lattice
λ⊥q (A). Since the rows of Ã, i.e. ãiT ’s, are either rows of A or random linear
combinations of them, any t of them are linearly independent, due to the
non-singularity of A. Both A and Ã construct the same q-ary lattice that is
λ⊥q (A) = λ⊥q (Ã). Hence, they form the same key matrix for it. Third, using
Algorithm (2) for b̃, Ã and R we can extract s from b̃ = Ãs + ẽ. This is
guaranteed by correctness of Algorithm (2) which is proved in [20].

4.2 Security

The security proof of the proposed scheme consists of two parts based on
the two following theorems.

Theorem 1. In the proposed scheme, any subset of participants of size less
than t cannot recover the undisclosed trapdoor R.

Proof. The trapdoor R is shared between n participants by the modified PE
algorithm for one secret which is a (t, n) threshold secret sharing scheme,
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where the union of at least t participants is necessary for recovering R. There-
fore, the proposed scheme owe its security to PE secret sharing scheme. Since
by Algorithm(1), R is a random matrix, so the public values corresponding
to R do not leak any information about secret and shares. �

By theorem 1, at least t participants are required for recovering R and
using it to obtain s from Algorithm (2). Now we prove that with less than t
participants, it is computationally impossible to recover s.

Theorem 2. In the proposed scheme, any subset of participants of size less
than t cannot recover the undisclosed secret s.

Proof. First, since Ã obtained from Algorithm (1) is pseudorandom, then b̃
has the LWE construction. Here, we reduce the LWE problem into the prob-
lem used in our scheme. When less than t shares are given to the combiner,
the matrix Ã and the vector b̃ are not completely constructed. If the secret s
could be recovered by pulling less than t shares together, then equivalently
the LWE problem would be solved. �

Since the secret s is random, the public value f̃s does not leak any infor-
mation about the secret based on one-wayness of Ajtai's hash function.

5 Conclusions

In this paper, we have proposed a new verifiable threshold LWE-based se-
cret sharing scheme. The previously proposed schemes do not satisfy whether
the threshold condition or verifiability. In the new scheme, each share is a four
tuple whose first two entries hide the secret, based on the hardness of LWE
problem, and the other entries share the trapdoor among the participants.
Therefore, this scheme enjoys a double layer security, meaning even if the
trapdoor is disclosed, the secret is still secure. The secret can be recovered
only when an authorized subset of participants put their shares together.
Verifiability is satisfied comparing share components with the corresponding
public values. We have proved the computational security of the LWE-based
scheme is subject to the worst-case hardness of lattice problems which have
so far been secure against quantum algorithms.

For the sake of security, the suggested parameters of LWE public key
algorithm are larger than those used in classical cryptographic algorithms.
Therefore, in the proposed scheme, the share size should be compatible with
the size of the parameters used in the LWE public key algorithm. There is
always a tradeoff between efficiency and security. That is the main reason
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why LWE-based post-quantum algorithms are not applicable compared to
number theoretical algorithms, even though they enjoy provable security.
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Appendix

A Pseudocode

The dealer computes the shares as follows:
Set parameters:
n: the number of participants;
t: the threshold such that n < 2t;
1. Run Algorithm (1) on inputs t > 1, q > 2,m = tdlog qe output A,R.

A =

aT1...
aTt

 , R =

[
R̃1 R̄

R̃2

]
and make R̄ public;

2. Choose integers αij ∈ Zq for t + 1 6 i 6 n, 1 6 j 6 t, uniformly at
random;
3. Set ãi = ai for 1 6 i 6 t;
4. Set ãi =

∑t
j=1 α

i
jαj for t+ 1 6 i 6 n;

5. Choose ei from a random distribution that satisfies the conditions of
Algorithm (1);
6. Set b̃i =< ãi.s > +ei for 1 6 i 6 n;
7. Choose λi, λ̃i ∈ Zt

q randomly with uniform distribution and make them
public;
8. Set ri = R̃1λi, r̃i = R̃2λ̃i for 1 6 i 6 n;
9. Choose F ∈ Zp×m

q , C ∈ Zp×t
q randomly and make them public;

10. Set fs = Fs, f̃i1 = F ãi, f̃i2 = Fbi where bi is the binary form of
b̃i, f̃i3 = Cri, f̃i4 = Cr̃i for 1 6 i 6 n and make them public;
11. Send the share (ãi, b̃i, ri, r̃i) to the participant Pi for 1 6 i 6 n.

Share Verification:
1. Each participant verifies his share by comparing F ã1 with f̃i1, Fbi with
f̃i2, Cri with f̃i3 and Cr̃i with f̃i4.
2. If shares are correctly verified, continue.
3. Else, ask the dealer to resend the shares.

Secret Recovery:
When the participants {Pi1, Pi2, ..., Pit} get together and put their shares
into the combiner, it runs the algorithm as follows:
1. Set R̃1 = [ri1, ..., rit][λi1, ..., λit]

−1;
2. Set R̃2 = [r̃i1, ..., r̃it][λ̃i1, ..., λ̃it]

−1;
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3. Set R =

[
R̃1 R̄

R̃2

]
;

4. Set Ã =

ãi1
T

...
ãit

T

 , b̃ =

b̃i1...
b̃it


5. Run Algorithm (2) on input (Ã, R, b̃) to obtain the secret s.
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Abstract

The scheme for protection of neural network biometric containers using crypto-
graphic algorithms is studied. The method of recovering information defining the
neural network is proposed. The inconsistency of combining password and neural
network biometric protection systems is shown.

Keywords: neural network, password, biometric authentication system, protection of neural
network container.

1 Introduction

Biometry is a very attractive tool for user authentication in information
systems. The classic way to implement biometric authentication schemes is
comparing the vector of biometric parameters with the existing template
and granting access rights to a user according to a given criterion. However,
this method has a significant disadvantage because it requires the need to
keep biometric template secretly, which makes it difficult to implement such
schemes in portable devices [5].

In [8] a concept of fuzzy extractors was introduced. Fuzzy extractors do
not require the storage of confidential data on devices. At the registration
phase fuzzy extractors generate a secret vector and a public vector (a so called
helper) from a person’s biometric parameters. When a user authenticates a
helper together with uploaded biometric parameters could be transformed
into a secret vector, which could be used for user authentication.

In [8] it was proved in some formal model that the secret information does
not leak through the helper. Nevertheless, it was disproved in [9] by showing
that in some scenarios such information could leak. That is way, obtaining
secure fuzzy extractors is an open problem. In [10] a good overview of the
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discussed area could be found. In [6] a neural network-based approach to
construction of similar schemes is described.

However, further researches have shown that a neural network transfor-
mation compromise can cause the effectively recovering of a secret key in-
formation [5]. As a result, in order to eliminate this weakness the scheme
of a neural network container protection [1] using cryptographic algorithms
was proposed in 2017 [7]. However, the results of this work show that the
proposed scheme [7] does not provide the stated protection.

2 A neural network-based biometric scheme

Consider a neural network converting biometric data (fingerprint, retina,
handwritten signature, etc.) into some binary sequence used for data access,
or information encryption.

Definition 1. A neuron is a weighted summation of input parameters
x0, . . . , xn−1, where n ∈ N. An output value of the neuron is calculated by the

formula yi = Z

(
n∑
i=1

wixi

)
, where wi – a weight coefficient of the neuron, Z

– Heaviside step function.

Let’s introduce the following notations:

N a number of input biometric parameters, N ∈ N;
x̄ a vector of input biometric parameters, x̄ =

(x0, . . . , xN−1);
m a number of neurons in the neural network, m ∈ N;
n a number of inputs of each neuron, n ∈ N;
xi∼j a vector consisting of the i-th, ..., the j-th bits of a

binary representation of x, j > i;
Vl a set of all binary vectors of a length l ∈ N

⋃
{0};

V ∗ a set of all binary vectors of a finite length, V ∗ =⋃
l>0

Vl;

h : V ∗ → Vl a hash function converting vectors of arbitrary finite
length to vectors of a length l;

c̄ a key sequence corresponding to a legitimate user, c̄ =
(c0, . . . , cm−1) , ci ∈ {0, 1};

ū a corresponding table consisting of the neuron inputs
defined by external inputs of the network;

ui the i-th row of the table ū, i ∈ 0,m− 1;
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w̄ a weight table in which the i-th row indicates what
weights of the biometric parameters xui the i-th neu-
ron has;

wi the i-th row of the table w̄, i ∈ 0,m− 1;
s a fixed parameter “salt”, s ∈ Vt, t ∈ N;
p a password, p ∈ Vr, r ∈ N;
]v[ ]v[ = min{n ∈ Z : n > v} for v ∈ R;
a‖b a concatenation of vectors a, b ∈ V ∗.

Let’s assume the neural network consists of m neurons, each of them
has n inputs. Suppose also the biometric data is encoded by parameters
x0, . . . , xN−1.

Note 1. The process of transformation of the corresponding and the weight
tables (see Fig. 1) at the stage of a neural network training [2] is organized
in such way that for a legitimate biometric sample at the output of the i-th
neuron the i-th bit of the key sequence is calculated by the formula ci = yi =

Z

(
n∑
i=1

wixui

)
and for any other biometric samples the corresponding bit is

equiprobable.

The general scheme of a key sequence generation based on the input
parameters x̄ is shown in Fig. 1. 
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Figure 1: The generation of the key sequence c̄

Let’s describe a purpose of some functional elements of the neural net-
work [7]:
1. The binary vector of a length ]log2 (N)[ is used to encode rows of ū. If

log2 (N) /∈ N, a calculation of a number of used biometric parameter is
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determined by the relation α′ = α ( modN), where α – an element of a
row of ū and α′ – a number of a biometric parameter.

2. The set of integer values of the range [−2d−1, 2d−1−1] is used to encode
wi, i ∈ 1, n, where d > 8.

3. The binary sequence {γi}mi=0 is used to encrypt the corresponding and
the weight tables. Components of this sequence are formed for each
neuron separately by the hash function h, defined in [3]:

γi =
(
h

(1)
i ||h

(
h

(1)
i

)
|| . . . ||hk−1

(
h

(1)
i

))
0∼n(b+d)−1

, (1)

where k =
]
n(b+d)

l

[
and the components γi are defined as follows:

h
(1)
0 = h (s‖p‖0) , (2)

h
(1)
i = h (s‖p‖i‖c0, . . . , ci−1) , i > 0. (3)

The network encryption is based on a summation of γi and a concate-
nation of the corresponding rows of the tables ū and w̄:

Ei = (ui‖wi)⊕ γi.

Note 2. According to the scheme [7] we store the values Ei, i = 0,m− 1 in
a neural network biometric container instead of the tables ū and w̄.

The rows of the corresponding and the weight tables are successively
decrypted according to the following rule:
1. For i = 0 we calculate the rows

u0 = (E0 ⊕ γ0)0∼bn−1, (4)

w0 = (E0 ⊕ γ0)bn∼n(b+d)−1,

and form the bit c0, where γ0 is determined from the relations (1)
and (2).

2. For i ∈ 1,m− 1 we calculate the next rows using the bit sequence
(c0, . . . , ci−1) formed on the previous steps:

ui = (Ei ⊕ γi)0∼bn−1, (5)

wi = (Ei ⊕ γi)bn∼n(b+d)−1,

where γi is determined from the relations (1) and (3).
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3 A recovering of the key bits

In this section we propose a method of a recovering of the password, the
key sequence c̄ and the encrypted tables ū and w̄ without using any input
biometric data.

Note 3. According to the standard [2] a neural network training satisfies the
following conditions:
1. Any four successive rows of the table ū consist of 4n different elements;
2. ∀i, j ∈ 0, N − 1 a number of usages of xi differs from a number of

usages of xj by no more than 2 in the table ū.

3.1 A recovery algorithm

For rows of the table ū let’s define the following event

Ai∼j =
{
{ui, . . . , ujn−1}

⋂{
ujn, . . . , u(j+1)n−1

}
= ∅

}
,

where 0 6 i < j 6 m− 1. Then the next proposition is true.

Proposition 1. Let c̄ ∈ Vm is a sequence formed by the neural network [7]
with 4n < N . Let c̄′ ∈ Vj, j ∈ 1,m− 1 is such sequence that c′i = ci,
i = 0, j − 2 for j > 1. Then

P
{
Amax(0,j−3)∼j

}
=

{
1, c′j−1 = cj−1,

(N−min(3,j)n)
[n]

2nb
, c′j−1 6= cj−1.

Proof. According to item 2 of note 3 the result is obvious in the case
c′j−1 = cj−1. Let c′j−1 = cj−1⊕1. Then the value h

(
s‖p‖j + 1‖c0, . . . , cj−1, c

′
j

)
for j > 1 and the value h (s‖p‖1‖c′0) for j = 1 are distributed equiprobable
on the set of images of the hash function h and therefore u′j also has an
equiprobable distribution on the set of rows. Thus, according to [2] a number
of possible variants of values for the rows u′j is

(
2b
)n. Then for 4n < N we

obtain

P{A0∼1} =
AnN−n
(2b)

n = (N−n)
[n]

2nb
, P{A0∼2} =

AnN−2n

(2b)
n = (N−2n)

[n]

2nb
,

P{Aj−3∼j} =
AnN−3n

(2b)
n = (N−3n)

[n]

2nb
, j > 3. �

Example 1. For the biometric autentification scheme [4] with the parame-
ters N = 416, n = 16

P{A0∼1} ≈ 1.4 · 10−2, P{A0∼2} ≈ 7.3 · 10−3, P{Aj−3∼j} ≈ 3.6 · 10−3,
j > 3.
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For the scheme [7] with the parameters N = 416, n = 32

P{A0∼1} ≈ 2.7 · 10−5, P{A0∼2} ≈ 1.5 · 10−6, P{Aj−3∼j} ≈ 5, 9 · 10−8,
j > 3.

Let’s formulate an algorithm of password and key sequence recovering
based on the proposition 1.

Input: an empty set.

Output: p, (c0, c1, . . . , cm−2).
1. Set C0 = · · · = Cm−2 = ∅.
2. Randomly select p ∈ Vr and calculate the row u0 according to the rule (4).
3. Guess the pair of values c0 ∈ {0, 1} and calculate the rows u1 according to the

rule (5). If
1⋂
j=0

uj = ∅, supplement C0 by the corresponding bit c0. If C0 = ∅, go to

step 2, otherwise – to step 4.

4. Guess the pair of values c1 ∈ {0, 1} and calculate the row u2. If
2⋂
j=0

uj = ∅, supple-

ment C1 by the corresponding bit c1. If C1 = ∅, go to step 2, otherwise – to step
5.

5. Set i = 3.
6. If i > m, the algorithm finishes its work, otherwise we guess the pair of values

ci−1 ∈ {0, 1} and calculate the row ui. If
i⋂

j=i−3

uj = ∅, supplement Ci−1 by the

corresponding bit ci−1.
If Ci−1 = ∅, go to step 2, otherwise set i = i+ 1 and go to step 6.

Note 4. Additionally we can organize a rejection of the bits ci using the
features of the coding of the input parameters and item 2 of note 3.

The algorithm 1 forms the set of possible key sequences:

C =
{

(c0, c1, . . . , cm−1) |ci ∈ Ci, i = 0,m− 2, cm−1 ∈ {0, 1}
}
.

Note 5. The results of [5] allow to define the last bit cm−1 and the vector of
input biometric parameters x0, . . . , xN−1.

3.2 Characteristics of the recovery algorithm

We can consider the tree for the algorithm 1 vertices of which correspond
to constructed sequences. A root u0 of the tree is formed as a result of pass-
word p search. Other vertices are formed successively from layer to layer. The
set C contains only sequences corresponding to branches of a length m− 1.

Let qi = P
{
Amax(0,i−3)∼i

}
, i ∈ 1,m− 1. It should be noted that qi = q3

for i > 3.

268



Further we consider subtrees corresponding to cases of true (Fig. 2) and
false (Fig. 3) values p. The subtree vertices correspond to the values of the
testing bits c0, c1, . . . , cm−2. At the same time, the vertices of the i-th layer are
formed with probabilities qi at the i-th step of the algorithm 1, respectively.
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Figure 2: The scheme of the algorithm 1 for a true p
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Figure 3: The scheme of the algorithm 1 for a false p

Let’s assume the success of the algorithm 1 consists of the forming of
single desired values of the password p and the sequence c0, c1, . . . , cm−2.

Let P1 is the probability of the success of the algorithm 1. Then by the
law of total probability we obtain

P1 = 1
2rP {success|p is true}+

(
1− 1

2r

)
P {success|p is false} .

For a true p the desired sequence is in the set C with probability 1. In
this case the success of the algorithm 1 consists of a rejection of all other
variants of the sequence c0, c1, . . . , cm−2. It means the (m− 1)-th layer of
this subtree doesn’t have any vertices corresponding to the false sequences
c0, c1, . . . , cm−2.

Let Bi, i ∈ 1,m− 1 is the event that for the true p the i-th layer of the
tree has some vertices. Then P {success|p is true} = 1−P {Bm−1} .
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Further let P (i) is the probability of the binary tree of a height i (Fig. 4),
vertices which are formed with a probability q3.
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Figure 4: The binary tree of a height i with a probability q3

In this case the following relations are true:
P (0) = 1,

P (1) = 2q3 − q2
3,

P (i) =
(

2
(
q3 − q2

3

)
+ q2

3P
(i−1)

)
P (i−1), i > 2.

Therefore,

P {B1} = q1;

P {B2} = q2 + q1

(
2q2 − q2

2

)
; (6)

P {Bi} = q3

i−2∑
j=0

P (j) +
(
q2 + 2q1

(
q2 − q2

2

)
+ q1q

2
2P

(i−1)
)
P (i−1), i > 2.

For a false p the success of the algorithm 1 consists of a rejection of all
generated sequences c0, c1, . . . , cm−1.

Let Di, i ∈ 1,m− 1 is the event that for a false p the i-th layer of the cor-
responding subtree has some vertices. In this case P {success|p is false} =
1−P {Dm−1}, where

P {D1} = 2q1 − q2
1;

P {D2} = 2
(
q1 − q2

1

) (
2q2 − q2

2

)
+ q2

1

(
2q2 − q2

2

)2
; (7)

P {Di} = 2
(
q1 − q2

1

)(
2
(
q2 − q2

2

)
P (i−1) + q2

2

(
P (i−1)

)2
)

+

+q2
1

(
2
(
q2 − q2

2

)
P (i−1) + q2

2

(
P (i−1)

)2
)2

, i > 2.

270



Therefore, we obtain the equality for the probability of the success:

P1 = 1
2r (1−P {Dm−1}) +

(
1− 1

2r

)
(1−P {Bm−1}) ,

where P {Bm−1}, P {Dm−1} are determined from the relations (6) and (7),
respectively.

Note 6. The algorithm 1 doesn’t require an additional rejection of false vari-
ants of the sequences c0, c1, . . . , cm−2 with probability P1.

The approximate values of P1 for the schemes [4], [7] for some password
length values in the case m = 256 are presented in table 2.

r 4 6 8 10 12
P1 for [4] 1− 2.3 · 10−4 1− 5.7 · 10−5 1− 1.4 · 10−5 1− 3.5 · 10−6 1− 8.9 · 10−7

P1 for [7] 1− 3.7 · 10−9 1− 9.2 · 10−10 1− 2.3 · 10−10 1− 5.8 · 10−11 1− 1.4 · 10−11

Table 2: The values of P1 for the schemes [4], [7].

Let T1 is the complexity of the algorithm 1. Then the following statements
are true:
– In the case of a true p the minimum of T1 is 2 (m− 1) hash function

evaluation with the probability

P {T1 = 2 (m− 1)} = (1− p1) (1− p2) (1− p3)
m−3.

– In the case of a false p the value P {T1 = 2k} is inversely proportional
to k. Herewith,

P {T1 6 6} = P {T1 = 2}+ P {T1 = 4}+ P {T1 = 6} =

= (1− q1)
2 + 2

(
q1 − q2

1

) (
(1− q2)

2 + 2
(
q2 − q2

2

)
(1− q3)

2
)

+

+ q2
1(1− q2)

4.

For example, for the scheme [4] P {T1 6 6} ≈ 0.999985, and for the
scheme [7] P {T1 6 6} ≈ 1− 7.9 · 10−14.

In the worst case a number of checks of p in the algorithm 1 is 2r. Thus,
using the independence of checks of bits c0, c1, . . . , cm−2 for different values
of p we obtain

P
{
T1 6 2m+ 3

(
2r+1 − 1

)}
> (1− p1) (1− p2) (1− p3)m−3×

×
[
(1− q1)2 + 2

(
q1 − q1

2
) (

(1− q2)2 + 2
(
q2 − q2

2
)

(1− q3)2)+ q2
1(1− q2)4]2r−1

.
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The approximate values of the probability pmin (m, r) =
P
{
T1 6 2m+ 3

(
2r+1 − 1

)}
for the schemes [4], [7] in the case of the

maximum number of steps of the algorithm 1 are presented in table 3.

r 4 6 8 10 12 14 16
pmin (m, r) for [4] 0.3901 0.3898 0.3887 0.3842 0.3669 0.3047 0.1451

pmin (m, r) for [7] 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Table 3: The probability pmin (m, r) for the schemes [4], [7]

Conclusions

The proposed method of the key information recovering does not require
a knowledge of the biometric data and allows to restore all parameters deter-
mining the neural network, including the biometric template. The obtained
results showed the key sequence recovering is equivalent to the password
recovering.

It should be noted the protection scheme of a neural network container [7]
regardless of the used encryption rules (5) does not provide any protection
to the proposed method. Therefore, protection schemes like [7] are unsafe.
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Abstract

We discuss the results of experiments with the well-known NIST Statistical Test
Suite designed for testing the hypothesis on the uniformity and independence of
binary sequence elements. In particular, we investigate conditions on the parameters
of piecewise merging of two linear recurrent sequences under which such combined
sequences successfully pass all tests of the NIST package.

Keywords: Bernoulli sequence, random equiprobable sequence, statistical tests,
pseudo-random number sequence generators.

1 Introduction

Generators of random and pseudo-random sequences are used in many
fields of science and technology, including the cryptography. The most strict
conditions on the quality of generated sequences are used in cryptography: to
ensure the information security it is necessary for the generated sequences to
be indistinguishable (or to be difficult to distinguish) from the equiprobable
Bernoulli sequences. So the development and investigation of methods to
test the closeness of the binary sequence properties to the properties of the
equiprobable Bernoulli sequence is an actual problem.

There are two basic types of generators used to generate random se-
quences: random number sequence generators (RNG) and pseudo-random
number sequence generators (PRNG).

The random number generators of the first type (see, for example, [7]) use
some nondeterministic sources of randomness (see, for example, [9]) to gener-
ate the intermediate nondeterministic sequence that serves as the input of a
deterministic device transforming it into resulting irreproducible sequence (if
there is no such device and the intermediate sequence is used as the output,
then the generator is classified as nondeterministic).
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One of cryptographic properties that an output sequence of the RNG
should have is unpredictability. But physical sources of randomness may gen-
erate sequences which are not equiprobable and are predictable to some ex-
tent.This deficiency of physical sources may be reduced by combining outputs
from sources of various types. Nevertheless RNG combining several sources
of randomness may produce output sequences having properties that dif-
fer from that of a sequence with independent equiprobable elements. From
the other hand, physical RNG which generates random sequences with high
cryptographic properties may be quite slow.

The PRNGs use the randomness sources only during the initialization
phase to generate the initial state of the PRNG. The output sequence of
the PRNG is a deterministic function of its initial state and parameters
chosen by user, so its randomness is limited by the randomness of the initial
state. It’s curious that some statistical properties of the output sequence
of a cryptographically secure PRNG may be higher than that of a random
sequence generated by physical source of randomness.

2 Statistical test packages

In practice the testing of statistical properties of random sequences (the
property is the higher the closer the characteristics of the tested sequence are
to the characteristics of random equiprobable sequence) begins with the appli-
cation of some statistical test packages. There are several popular packages of
statistical tests which are distributed with open source codes (e. g. TESTU01
see [8], DIEHARD see [3, 4], NIST see [6], SPRNG see [5]), or with closed
source codes (e. g. Crypt-X http://www.isrc.qut.edu.au/resource/cryptx/).
These packages allow to perform the analysis and testing of random sequences
and have significant intersections in the sets of tests.

3 Main results

From the statistical test packages listed above, the NIST statistical tests
package was selected as one of the most popular, fully documented and ac-
tively used for generator certifications.

The NIST Statistical Test Suite consists of 15 tests «developed for the
randomness testing of the binary sequences» (word-for-word from the man-
ual). These 15 tests are listed in Table 1.
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Number Test Name
1 Frequency
2 Block Frequency
3 Runs
4 Longest Run
5 Binary Matrix Rank
6 Discrete Fourier Transform
7 Non-overlapping Template Matching
8 Overlapping Template Matching
9 Universal
10 Linear Complexity
11 Serial
12 Approximate Entropy
13 Cumulative Sums
14 Random Excursions
15 Random Excursions Variant

Table 1: List of NIST Statistical Tests

For testing the sequence it is divided into several sufficiently long blocks
and for each statistical test a set of P-values corresponding to these blocks
are produced. The sequence is considered as accepted by the test if the corre-
sponding P-values look like independent random variables with the uniform
distribution on [0, 1], in particular, exceed the fixed significance level α, and
is considered as rejected by the test otherwise.

The test parameters we have used are listed in Table 2.

Test Name Block Length
Block Frequency 128
Longest Run 10000

Binary Matrix Rank 1024
Non-overlapping Template Matching 9
Overlapping Template Matching 9
Universal (Initialization Steps) 11 (20480)

Linear Complexity 500
Serial 16

Approximate Entropy 10

Table 2: Parameters used for NIST Statistical Test Suite

The critical values of statistics in the NIST Statistical Test Suite were
computed by means of limit theorems, and it was recommended that analysed
sequences should have sufficiently large lengths. All segments sequences that
we have tested were of 225 − 1 bit length.
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4 Description of our experiments

In this section we describe types of pseudo-random sequences tested by
the NIST Test Suite and results of tests. The significance level α = 0.01
determining the rule of acceptance/rejection of the hypothesis was selected
by default.

4.1 Testing pseudo-random sequences generated by linear shift
registers of the maximal period

Pseudo-random sequences of the maximal period were generated by the
linear shift registers with feedbacks given by the following primitive polyno-
mials of degrees 25 and 27 over GF(2):

f(x) =x25 + x3 + 1,

g(x) =x27 + x5 + x2 + x+ 1,

h(x) =x27 + x19 + x18 + x17 + x11 + x6 + 1,

m(x) =x27 + x26 + x25 + x24 + x23 + x22 + x21 + x20 + x19 + x17

+ x15 + x13 + x11 + x9 + x7 + x5 + x3 + x+ 1.

Initial states of all linear shift registers were chosen to have only one
nonzero bit, namely the most significant one. The value 33, 554, 431 = 225−1
was selected as the length of the segments of tested sequences, thus each of
the registers with the polynomials g(x), h(x) and m(x) was used to perform
four tests on disjoint segments of an output sequence of length 227−1. These
sequences were chosen to simplify the problem of detecting their nonrandom-
ness.

The segments of the pseudorandom sequences obtained by the linear shift
registers with the g(x), h(x) and m(x) polynomials have successfully passed
all the tests from the NIST Test Suite except for The Binary Matrix Rank
Test (ranks of binary matrices of the size 32 × 32), The Discrete Fourier
Transform (Spectral) Test and The Linear Complexity Test, where the P -
values were less than 10−6, with the significance level α = 0.01. The full-
period sequence corresponding to the polynomial f(x), in addition to the
listed tests, did not pass the Tests for the Longest Run-of-Ones in a Block (P -
value 6·10−6) and Maurer’s «Universal Statistical» Test (P -value 1.91·10−4).
(Results of testing are collected in Table 3 below.)
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Figures of the f8 and f9 Algorithms 
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Figure 1: f8 Keystream Generator 

Note: BLKCNT is specified as a 64-bit counter so there is no ambiguity in the expression 
A ⊕⊕⊕⊕  BLKCNT ⊕⊕⊕⊕  KSBn-1 where all operands are of the same size.  In a practical implementation where 
the key stream generator is required to produce no more than 5114 bits (80 keystream blocks) only the 
least significant 7 bits of the counter need to be realised. 

Figure 1: The generator of the key stream A8

4.2 Testing pseudo-random sequences generated by the linear
shift registers with additive noise

The additive noise applied to the output sequences of linear shift registers
given by the primitive polynomials f(x), g(x), h(x) and m(x) over GF(2)
was produced by means of KASUMI block cipher used in the A8 algorithm.
The detailed description of A8 algorithm may be found in [10].

The values of noise added to bits of the original sequence were determined
by the corresponding 64-bit output KS values of the KASUMI block cipher
(see Fig. 1). KASUMI has 128-bit key CK which is used in the 8-round Feistel
scheme. For example, to obtain the i-th noise bit taking value 1 with proba-
bility 1

4 we compare the output 64-bit KS value of the KASUMI encryption
algorithm corresponding to the value BLKCNT = i with 262.

The only test from the NIST Test Suite that detects nonrandomness in
the disjoint 225 − 1 bit segments of output sequences of linear shift registers
with polynomials f(x), g(x), h(x), m(x) perturbed by the Bernoulli noise
sequence with parameter 1

4 , turned out to be The Discrete Fourier Transform
(Spectral) Test; the corresponding P -values were smaller 10−6.

The increasing of the noise parameter of the Bernoulli sequence from 1
4 to

3
8 results in sequences which pass all tests from the NIST Test Suite (with
the exception of some sequences corresponding to the polynomial f(x)).

278



4.3 Testing of filtered output sequences of linear shift registers of
the maximal period

To filter output sequences of linear shift registers given by primitive
polynomials f(x), g(x), h(x) and m(x) over GF(2) we use the balanced
Boolean function corresponding to the most significant bit of the nonlinear
substitution SubBytes S = (s1, s2, . . . , s8) : GF(2)8 → GF(2)8 of the AES
symmetric block cipher algorithm. The values of the first six arguments of
s1 were determined by bits 1, 3, 9, 13, 17, 21 for all registers, the remaining
2 arguments were determined by bits 23, 25 of the register with polynomial
f(x), and by bits 25, 27 of for other registers.

Filtered sequences failed to pass a number of tests of NIST Test Suite
(see Table 3), and corresponding P -values in many cases were smaller than
10−6.

Changing the set of arguments of the filter function s1 from the
mentioned above to {1, 2, 3, 5, 8, 12, 17, 23}, {1, 3, 9, 14, 17, 21, 22, 24} and
{1, 3, 9, 14, 17, 21, 24, 26} had no significant impact on the experimental re-
sults, see Table 3.

4.4 Testing of pseudo-random sequences obtained by merging of
outputs of two linear shift registers of maximal periods

We have considered two types of pseudo-random sequences consisted of
segments of two binary recurrent sequences generated by linear shift registers
with feedbacks defined by two primitive polynomials.
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A) The output sequence of the first register {x1, x2, . . .} corresponding
to the polynomial f(x) was divided into adjacent segments of L1 = 25 bits,
the output sequence of the second register {y1, y2, . . .} corresponding to the
polynomial g(x) was similarly divided into segments of L2 = 27 bits. Further,
the tested sequence {z1, z2, . . .} of the first type was constructed by merging
of obtained segments of two sequences:

{zk}
2L1−1+

[
2L1−1
L1

]
L2

k=0

= {x1, . . . , xL1
, y1, . . . , yL2

, xL1+1, . . . , x2L1
, yL2+1, . . .}.

B) The output register sequences were divided into adjacent segments of
a variable lengths according to the following rule:
− the first segment of the first register output sequence consists of L1 =
L∗1 = 25 sequential output bits,

− the first segment of the second register output sequence consists of

L∗2 = 16 + 23xL∗1−3 + 22xL∗1−2 + 2xL∗1−1 + xL∗1

bits (a fixed value 16 was increased by the integer formed by the last 4
bits of the already constructed sequence),

− the second segment of the first register consists of

L∗1 = 16 + 23yL∗2−3 + 22yL∗2−2 + 2yL∗2−1 + yL∗2

bits (a fixed value 16 was increased by the integer formed by the last 4
bits of the already constructed sequence),

− and so on.
Consequently the tested sequence {w1, w2, . . .} of the second type had

the form

{x1, . . . , xL1
, y1, . . . , yL∗2, xL1+1, . . . , xL1+L∗1, yL∗2+1, . . .}.

The testing of these sequences shows that the first type sequences
{z1, z2, . . .} had passed all tests with the exception of Discrete Fourier Trans-
form (Spectral) Test: for this test P -values were smaller than 10−6, while the
second type sequence had passed all the tests with P -values being as a rule
essentially larger than α = 0.01. The second type sequences with

L∗2 = 32 + 25xL∗1−5 + 24xL∗1−4 + 23xL∗1−3 + 22xL∗1−2 + 2xL∗1−1 + xL∗1
L∗1 = 32 + 25yL∗2−5 + 24yL∗2−4 + 23yL∗2−3 + 22yL∗2−2 + 2yL∗2−1 + yL∗2
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did not pass only the Overlapping Template Matching test.
The second type sequences with polynomial f(x) of the first register

{x1, x2, . . .} replaced by the polynomial

F (x) = 1 + x2 + x5 + x6 + x8 + x10 + x13 + x14 + x16 + x18 + x21

+ x22 + x24 + x26 + x29 + x30 + x32

successfully passed all the tests. Increasing the mean values of L∗1 and L∗2
up to 128 didn’t change the result, but after additional replacement of the
feedback polynomial f(x) of the first register by the polynomial h(x) some
sequences had failed to pass the Overlapping Template Matching test, while
all other tests as before were passed.

4.5 Testing of the pseudo-random sequence generated by AES

The tested pseudorandom sequence was obtained by iterative application
of the AES block cipher algorithm to the zero plain text with a 128-bit key
in the cipher block chaining mode with initialization 128-bit vector all bits
of which are nonzero except for the 7 lower bits; the key bits were fixed by
zero and did not change during the iterative calculations. Each byte of the
encrypted sequence was replaced by the corresponding bit depending on the
byte value.

Four non-overlapping segments of the length 225 − 1 bits of the initial
sequence of the length 227 − 4 bits passed all the tests from the NIST Test
Suite in the aggregate, except for The Serial Test for the second segment
only, where the P -value of one of two statistics turned out to be slightly less
than the significance level α = 0.01, namely 0.008415.
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Table 3: Experimental results

282



4.6 Testing the output sequence of shrinking generators com-
posed of two linear shift registers

Two tested sequences were obtained by extracting from the output se-
quence of the first linear shift register (with feedback polynomial g(x)) all
bits corresponding to the nonzero bits in the output sequence of the second
linear shift register (with feedback polynomial f(x) for the first type test se-
quence and the polynomial h(x) for the second). In initial states of all linear
shift registers all bits were zero except the higher-order bit.

The first type sequence passed all the tests from the NIST Test Suite
with the significance level α = 0.01. The second type sequence passed all
the tests except for the Serial Test: for this test P -values turned out to be
smaller than 10−6. Maybe this is the consequence of coincidence of orders of
the source and control sequences.

Table 3 shows the results of almost all performed experiments.

5 Conclusions

The set of experiments with different non-random pseudo-random se-
quences showed that the NIST Test Suite may detect some deviations of
properties of analyzed sequences from that of ideal Bernoulli sequences, but
may fail to detect non-randomness of deterministic sequences with not very
complex artificial irregularities (see subsection 4.4).
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