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Abstract

We would like to attract you attention to the annual international event in theo-
retical cryptography that was invented and organized in Russia. Non-Stop University
CRYPTO is the International Olympiad in Cryptography that was held for the eight
times in 2021. Its aim is to involve young researchers in solving curious and tough
scientific problems of modern cryptography. In this paper, particular problems and
their solutions of the Olympiad’2021 are discussed. They are relevant to ciphers,
quantum circuits, historical ciphers, electronic voting, masking, implementation on
a chip, etc. We consider open problems stated during the Olympiad history and dis-
cuss new results obtained. The 2021 year open problems concerned quantum error
correction and s-Boolean sharing of a function are discussed in details.

Keywords: cryptography, ciphers, masking, quantum error correction, electronic voting,
s-Boolean sharing, orthogonal arrays, Olympiad, NSUCRYPTO.

1 Introduction

Non-Stop University CRYPTO (NSUCRYPTO) is the unique interna-
tional cryptographic Olympiad in the world [18]. It contains scientific math-
ematical problems for professionals, school and university students. Its aim
is to involve young researchers in solving curious and tough scientific prob-
lems of modern cryptography. From the very beginning, the concept of the
Olympiad was not to focus on solving olympic tasks but on including unsolved
research problems at the intersection of mathematics and cryptography. Ev-
erybody can participate the Olympiad as far as it holds via the Internet.

The history of Non-Stop University CRYPTO started in 2014. We were
inspired by an experience of the Russian Olympiad in Mathematics and Cryp-
tography for school-students and decided to organize an International event
with real scientific content for students and professionals. Since then eight
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Olympiads were held and more than 3000 students and specialists from 68
countries took part in it. Program committee consists of 31 members from
cryptographic groups all over the world. Between them are creators of several
modern technologies and ciphers, like AES, Chaskey, etc. Main organizers
are Cryptographic centre (Novosibirsk), Mathematical Center in Akadem-
gorodok, Novosibirsk State University, Sobolev Institute of Mathematics,
KU Leuven, Belarusian State University, Tomsk State University and Ko-
valevskaya North-West Centre of Mathematical Research.

The popularity of the Olympiad is growing. Thus, in the beginning of
2022 there is a significant number of publications about it. For instance,
the Press Service of Saudi Arabia publishes the results of the NSUCRYPTO
Olympiad on its website, and the well-known Al Jazeera media congratulates
the bronze medalists from its pages. The official websites of the universities
of London, Bombay, the Boyai Institute, the Vietnam Center for Scientific
Research and other organizations introduce the winners from their countries.
NSUCRYPTO is included into the list of International Olympiads, the num-
ber of prize-winning students at which affects the university’s entry into the
RAEX-100 rating of the best universities in Russia.

In 2021, the Olympiad was dedicated to the 100th anniversary of the
Cryptographic Service of Russian Federation. There were 746 participants
from 33 countries. 19 problems were proposed to participants and 4 of them
included open problems. The list of open problems for all the years is available
on the web-cite of the Olympiad and it is still possible to solve them and
receive special prizes from the Program committee.

According to the results of each Olympiad, scientific articles are published
with an analysis of the solutions proposed to the participants, including un-
solved ones, see [1, 2, 11, 12, 13, 14, 17].

In this work we would like to share several problems of the Olympiad
2021 and invite you to cooperate.

2 An overview of open problems

A specialty of the Olympiad is that unsolved problems at the intersection
of mathematics and cryptography are formulated to the participants along
with problems with known solutions. All the open problems stated during
the Olympiad history as well as their current status can be found at the
Olympiad website [19]. There are 26 open problems in this list.

We would like to say that the variety and difficulty of the problems are
wide. In fact, we suggest problems that are of great interest to cryptography
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over which many mathematicians are struggling in search of a solution. For
example, these problems include “APN permutation” (2014), “Big Fermat
numbers” (2016), “Boolean hidden shift and quantum computings” (2017),
“Disjunct Matrices” (2018), and others. For instance, the problem “8-bit S-
box” (2019) were inspired by [8].

Despite the fact that really hard problems can be found in the list of the
Olympiad problems, participants are not afraid to take on such tasks. Indeed,
some of the problems we suggested can be solved or partially solved even
during the Olympiad. For example, three problems were solved completely:
“Algebraic immunity” (2015), “Sylvester matrices” (2018), “Miller — Rabin
revisited” (2020). Also, during the Olympiad partial solutions for four prob-
lems were suggested. These problems are “Curl27” (2019), “Bases” (2020),
“Quantum error correction” (2021) and “s-Boolean sharing” (2021). The last
two problems we discuss in details in sections 3.5 and 3.6.

Furthermore, what is important for us that some researchers are working
on finding solutions after the Olympiad was over. In [16], a complete solution
was found for the problem “Orthogonal arrays” (2018). The authors have
shown that no orthogonal arrays OA(16λ, 11, 2, 4) exist with λ = 6 and 7.
Another problem, “A secret sharing” (2014) was partially solved in [9, 10],
where particular cases were considered and was recursively solved in [3].

3 Particular problems of NSUCRYPTO’2021

We give here some problems from the Olympiad 2021 with solutions.

3.1 Problem “Have a look and read!”

Formulation.
Read a secrete message.

Solution. This is a classical permuta-
tion cipher. The circles above the text
are hints how to read a message.

The rest letters can be read the same
way. The whole message is

Vladimir Kotelnikov, Soviet scientist, invented

the unique secret equipment SOBOL-P. It was

not decrypted during the Second World War.
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3.2 Problem “A present for you!”

Formulation. Alice wants to implement the lightweight block cipher
present on a chip. She starts with the bit permutation that is illustrated
in Fig. 1 (we refer to [5] for the exact bit movement). Clearly, many lines
are intersecting, and this would cause a short circuit if the lines were metal
wires. Is it possible to avoid this problem by using several “layers,” i.e., par-
allel planes? That is to draw the lines without intersections on each layer.
We assume that

– the work area is a rectangle bounded by the lines where input and output bits are
placed and the lines of the outermost connections P (0) = 0 and P (63) = 63;

– input and output bits are ordered; connections are represented by arbitrary curves;
– color of a line indicates the number of its layer, a line can change color several times;
– the point where a line changes color indicates a connection from one layer to another.

Q1 What is the minimun number of layers required for implementing in this
way the present bit permutation?

Q2 Find a systematic approach how to draw a valid solution for the mini-
mum number of layers found in Q1 and present the drawing!

Figure 1: Illustration of the bit permutation used in present.

Solution. A first attempt to solve this problem, would be to try and connect
some inputs and outputs. However, it will not take long to get stuck without
a systematic approach.

An observation is that lines with several different angles create a problem,
as it becomes difficult to predict where they might intersect with other lines.
A way to overcome this is to work with only horizontal and vertical lines. The
vertical lines can be in one color, and the horizontal lines in another color.
This approach gives us an idea to use two layers. Let us show how to draw
a scheme. All lines of the same color are parallel, however some lines might
overlap. To see how to address this, consider the simple case of swapping two
inputs, as shown in Fig. 2 (a). As the drawing shows, overlapping lines can
be avoided by moving the second input slightly to the right. This is just done
to make the drawing a bit easier; note that it does not affect the validity of
the solution as the order of the inputs is preserved.
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This method can be extended to an arbitrary number of inputs. A full
solution for the present bit permutation given in Fig. 2 (b).

(a) Swapping two lines. (b) Illustration of the present permutation using two layers.
Figure 2: Illustrations to the solution of the problem “A present for you!”

3.3 Problem “Nonlinear hiding”

Formulation. Nicole is learning about secret sharing. She created a binary
vector y ∈ F6560

2 and splitted it into 20 shares xi ∈ F6560
2 (here ⊕ denotes the

bit-wise XOR):
y = x1 ⊕ x2 ⊕ ...⊕ x20.

Then, she created 20 more random vectors x21, ..., x40 and shuffled them
together with the shares x1, ..., x20. Formally, she chose a secret permutation
σ of {1, ..., 40} and computed

z1 = xσ(1), z2 = xσ(2), ... z40 = xσ(40),

where each vector zi ∈ F6560
2 . Finally, she splitted each zi into 5-bit blocks,

and applied a secret bijective mapping ρ : F5
2 → S, where

S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, y}

(this strange alphabet has y instead of v).
Formally, she computed Zi ∈ S1312, 1 6 i 6 40 such that

Zi = (ρ(zi,1...5), ρ(zi,6...10), ..., ρ(zi,6556...6560)).

After Nicole came back from school, she forgot all the details! She only
has written all the Zi and she also remembers the first 6432 bits of y (128
more are missing). The attachment [20] contains the 6432-bit prefix of y on
the first line and Z1, ..., Z40 ∈ S1312 on the following lines, one per line.

Help Nicole to recover full y!

Solution. This problem is inspired by the setting of generic white-box at-
tacks [4]. Consider an obfuscated program, where a secret function is pro-
tected by a linear masking scheme (secret sharing), and the shares are scat-
tered among fully random values. In addition, each value is protected by a
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fixed random S-box (so called encoding). The goal of an adversary is to re-
cover the full secret function from a partial knowledge of it on a few inputs,
just by observing all the described values.

In the Olympiad’s problem, each row Zi corresponds to a chosen share or
a random value, and each column corresponds to a distinct “execution” (i.e.,
a recording of values on a distinct input of the program).

This problem can be solved by formulating the problem as a quadratic
system of equations over F2 and solving it through linearization. More pre-
cisely, introduce 40 variables ti ∈ F2, one per each row i, 1 6 i 6 40, de-
scribing whether the i-th row is a secret share. In addition, introduce 32
variables mc ∈ F2, one per each c ∈ S, describing the first bit of ρ−1(c).
Then, each known 5-bit chunk y5j+1...5j+5 of y (more precisely, its first bit)
gives a quadratic equation

equation j, 1 6 j 6 1286 :
⊕

16i640

ti ·mZi,j
= y5j+1.

This system can be linearized. More precisely, introduce a new variable wi,j =
ti ·mZi,j

∈ F2 per each monomial ti ·mZi,j
. There are 40×32 = 1280 variables

and 6432/5 > 1286 equations. After solving this linear system, we can see
which rows Zi correspond to the shares of y and a mapping defining first
coordinate of ρ−1 (up to a constant), allowing to recover every 5-th bit of the
missing part. Repeating this procedure for 4 other positions allows to fully
recover the value (note that the values of ti would already be recovered).

Also, there was a hidden text in the random beginning prefix of y dedi-
cated to the 100th anniversary of the Cryptographic Service of Russian Fed-
eration:

2021 marks the centenary of the cryptographic service in Russia!
On May 5, 1921, the 8th special department was created. Its tasks
included the study of theoretical problems of cryptography and the
development of new ciphers, the organization of cipher communi-
cation, cryptanalysis, radio monitoring and radio interception, etc.

3.4 Problem “Shuffle ballots”

Formulation. In electronic voting, n voters take part. Each of them is as-
signed a unique identifier that is a number from the set {0, 1, ..., n − 1}.
Shuffling of ballots during elections is implemented through the encryption
of identifiers. When encrypting, the following conditions must hold:

1. The encryption result is again an integer from {0, 1, ..., n− 1}.
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2. The encryption process must involve the block cipher AES with a fixed key K.
3. The number of requests to AESK must be the same for each identifier.
4. In order to manage security assurances, it should be possible to customize the num-

ber of requests to AESK .

Suggest a way how to organize the required encryption process of identi-
fiers for n = 5818342 and n = 5818343. In other words, propose a method
for organizing a bijective mapping from {0, 1, ..., n−1} to itself that satisfies
conditions described above.

Solution. Case 1. The number n = 5818342 is composite. It is factored as
a product of numbers close to each other, namely n1 = 2594 and n2 = 2243.
Hence, an identifier x ∈ {0, 1, . . . , n − 1} can be uniquely represented as
x = x1n2 + x2, where x1 ∈ {0, 1, . . . , n1 − 1} and x2 ∈ {0, 1, . . . , n2 − 1}.

We can encrypt identifiers by applying several rounds of the form:

(x1, x2)←
(
y1, (x2 + AESK(y1 + β)) mod n2

)
, y1 = (x1 + AESK(x2 + α)) mod n1.

Here α, β are round constants. We process numbers with AESK encoding
them in 128-bit blocks before encrypton and decoding back after.

The proposed construction follows the UNF (Unbalanced Number Feistel)
scheme [15]. When n1 ≈ n2 (that is our case), at least 3 rounds should be used
to ensure security. Generally speaking, security guarantees are strengthened
with increasing the number of rounds.

Case 2. The number n = 5818343 is prime. So, the UNF scheme cannot
be directly applied. Nevertheless, we can reduce the problem to the UNF
encryption for a composite modulus n′ = n−1 that was considered in Case 1
above. We act as follows:

1. A number a is chosen at random from the set {0, 1, . . . , n− 1}.
2. Suppose we need to encrypt x ∈ {0, 1, . . . , n − 1}. If x 6= a, then we

determine

x′ =

{
x, x < a;

x− 1, x > a.

The number x′ belongs to the set {0, 1, . . . , n′−1}. We encrypt x′ using
the UNF scheme with d rounds.

3. If x = a, then we assign to x the ciphertext n′ = n − 1. Additionally,
to satisfy Requirement 3 for a constant number of requests to AES,
we perform d dummy AES encryptions. Note that Requirement 3 is a
countermeasure against timing attacks.
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We would like to briefly present ideas proposed by the participants.

The first idea. The prime n is incremented rather than decremented. Using
UNF, we construct a bijection EK on {0, 1, . . . , n}. Then we encrypt x 6= n
with EK and get y 6= n. What should we do if EK(x) = n? There are 3
possiblities:

1. Precalculate x0 = E−1K (n). If x = x0, then return EK(n). If x 6= x0,
then return EK(x).

2. Precalculate y0 = EK(n). If y = EK(x) is equal to n, then return y0.
Otherwise, return y.

3. Without precalculations. Calculate y = EK(x) and z = EK(y). If y = n,
then return z. Otherwise, return y.

The second idea. The encryption can be given by a permutation polynomial
over the integer ring modulo n. For example,

fK(x) = (. . . ((x+ k1)
e + k2)

e + . . .+ kr−1)
e + kr) mod n.

Here k1, k2, . . . , kr are round keys which are built using AESK (for instance,
ki = AESK(i) mod n) and e is coprime with ϕ(n). We are dealing with the
composition of permutations x 7→ xe mod n and x 7→ (x + 1) mod n which
is itself a permutation.

3.5 Problem “Quantum error correction”

Formulation. The procedure of error correction is required for quantum
computing due to intrinsic errors in quantum gates. One of approaches to
quantum error correction is to encode quantum information in three-qubit
states, i. e. α0 |0〉+ α1 |1〉 → α0 |000〉+ α1 |111〉.

Below are problems for a special prize!

Q1 Design a circuit which implements such encoding.
Q2 Design a circuit which restores the initial state of the three-qubit system,

if a single bit-flip error |0〉 ↔ |1〉 occurs in one of three qubits. Hint: use
two additional qubits and three-qubit Toffoli gates.

Q3 What will happen, if the quantum gates used for error correction are
imperfect? What will be the threshold for gate fidelity, when the error
correction will stop working?

Solution. Q1. The encoding can be described by the following circuit:
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α |0〉+ β |1〉
α |000〉+ β |111〉|0〉

|0〉

Q2. Let us firstly describe the authors’ solution. To find the bit-flip in
each qubit, we introduce two ancillary qubits and entangle them with our
three data qubits via CNOT gates:

α |000〉+ β |111〉 bit-flip

|0〉
|0〉

Without bit-flips in the data qubits, both ancillary qubits will stay in
the state |00〉, because the states of data qubits are identical. It means that,
depending on the initial state of the first qubit, the Pauli-X gate will be
either never applied to the ancillary qubits, or applied twice.

If there is a bit-flip in any of data qubits, the Pauli-X gate will be applied
once or three times to one of the ancillary qubits. This will indicate the error
in the particular data qubit:
• state |00〉 means “no error”;
• state |11〉 means “error in the 1st qubit”;
• state |10〉 means “error in the 2nd qubit”;
• state |01〉 means “error in the 3d qubit”.
Now it is possible to restore the initial state by applying Toffoli gates. For

example, a Toffoli gate with two ancillary qubits used as control ones and
first data qubit used as target ones will flip its state if the ancillary qubits
are in state and leave it unchanged in any other case (no error in the first
qubit). Similarly, the flips in other qubits can be restored. The final circuit is

α |000〉+ β |111〉 bit-flip

|0〉
|0〉
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During the Olympiad, twelve teams made progress in solving the problem
and suggested good and correct schemes. We would like to mention the best
one proposed by the team of Viet-Sang Nguyen, Nhat Linh Le Tan, Nhat
Huyen Tran Ngoc (France, Paris). Taking into account discussions on Q3 in
the solution of this team, we mark this problem as “partially solved”. In their
circuit, only one Toffoli gate is used:

Error-correction stage

α |000〉+ β |111〉 bit-flip

|0〉
|0〉

Q3. Several participants proposed interesting ideas on this problem. In
some of them, the minimum fidelities for a success probability were considered
independently for every type of gates, i. e. Pauli-X, CNOT and Toffoli gate,
and corresponding diagrams were shown. In another, it was assumed that
the probability of imperfect operation of each gate is the same, then the
threshold when error correction stops working was estimated.

There was an approach under assumption that the error-box makes a
single bit-flip error and the error-correction box makes a mistake, both with
some fixed probabilities, and the probability that the error-box makes mul-
tiple bit-flip errors is neglectable. It was obtained that the error-correction
stops working when the probability of its proper is larger than 1/2.

3.6 Problem “s-Boolean sharing”

Formulation. In cryptography, a field known as side-channel analysis uses
extra information such as the power consumption of an implementation to
break a cryptographic primitive. In order to defend against these attacks,
one does not need to change the primitive but only the way the primitive is
implemented. A popular countermeasure is called “sharing” where the com-
putation of the primitive is split in multiple parts (this notion was firstly
suggested in [6, 7]). Each part seemingly operates on random data such that
an adversary has to observe all parts of the computation in order to gain
sense of the secret information that was processed.

An s-Boolean sharing of a variable x ∈ F2 is a vector (x1, x2, ..., xs) ∈ Fs2
such that x =

⊕s
i=1 xi. A vectorial Boolean function G : Fsn2 → Fsm2 is
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an s-Boolean sharing of a function F : Fn2 → Fm2 if for all x ∈ Fn2 and
(x1, ..., xs) ∈ Fsn2 , xi ∈ Fn2 , such that

⊕s
i=1 xi = x,

s⊕

i=1

Gi(x1, ..., xs) = F (x) .

Here, G = (G1, ..., Gs), Gi : Fsn2 → Fm2 and “⊕” denotes the bit-wise XOR.

Q1 Write an algorithm which takes in a vectorial Boolean function and an
integer s and returns true/false on whether the function is a s-Boolean
sharing of another function. In case the result is true, the algorithm also
returns the function whose sharing is the algorithm’s input.

Q2 Problem for a special prize! Propose a theoretical solution to the
problem of checking whether the function is a s-Boolean sharing of an-
other function.

Example. If you give the Boolean function G : F6
2 → F3

2 such that

G1(a, b, c, d, e, f) = ad⊕ ae⊕ bd
G2(a, b, c, d, e, f) = be⊕ bf ⊕ ce
G3(a, b, c, d, e, f) = cf ⊕ cd⊕ af

the algorithm should return true when s = 3 together with the function
F : F2

2 → F2 such that F (x, y) = xy, where x = a⊕ b⊕ c and y = d⊕ e⊕ f .

Solution to Q1. We will give a general approach. Consider a function G :
Fsn2 → Fsm2 of variables x1, ..., xsn, we check whether it is an s-Bo olean
sharing of some function F : Fn2 → Fm2 . Take an arbitrary permutation of the
sn input bits π, there are a total of sn! of such permutations (we note that
one can reduce this number as some permutations would lead to the same
sharing). Denote π(x1, ..., xsn) = (y1, ..., ysn) and zi = (y(i−1)∗n+1, ..., yi∗n) for
i ∈ {1, ..., s}. We want to verify whether

s⊕

i=1

Gi(z1, ..., zs) = F (
s⊕

i=1

zi) ,

for all (z1, ..., zs) ∈ Fsn2 . This is easily done via a brute force approach of going
through all (z1, ..., zs) ∈ Fsn2 (this requires 2sn evaluations) and verifying
the above equation. In case the equation does not hold, we go to the next
permutation π. Otherwise, we stop searching and return true. The algorithm
would require around sn! · 2sn steps.
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Ideas on Q2. The most interesting idea found by the participants con-
siders the algebraic normal form of the shared function. Let us consider an
ordered case where it is known which inputs would form the shares of the
function. Let F be an arbitrary Boolean function. In case F is the unshared
function of some G, then

s⊕

i=1

Gi(x1, ..., xs) = F (
s⊕

i=1

xi) ,

Notice that for each monomial x1 · ... · x` in F , we get the shared monomial
(
⊕

i x
1
i )·...·(

⊕
i x

`
i). We then verify for each monomial inG whether the other

shares of that monomial are also present. If so, we remove (
⊕

i x
1
i )·...·(

⊕
i x

`
i)

and repeat until no more monomial are present in G.
The best solution found was given by the team of university students

Gongyu Shi, Ruoyi Kong, Haoxiang Jin (China, Shanghai) and awarded a
special prize for “partially solving” the problem.

Acknowledgments. The work was carried out within the framework of the
state contract of the Sobolev Institute of Mathematics (project no. FWNF-
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Abstract

We would like to present our Cryptographic Center created in 2011 in Novosibirsk
on the base of Sobolev Institute of Mathematics and Novosibirsk State University.
We have a various scientific activity in discrete mathematics and cryptography. We
study cryptographic Boolean functions (bent, APN, algebraic immune functions,
etc.), cipher design, distinct aspects of cryptanalysis, blockchain technologies, post-
quantum cryptosystems, SAT-solvers for cryptography. Important part of our activ-
ity is related to education: crypto courses in Novosibirsk State University, master
programms "Cryptography" and "Quantum technologies and cryptography". We are
main organizers of the International Olympiad in Cryptography Non-Stop University
CRYPTO (since 2014), Summer school in Cryptography and Information security
(since 2019), International conference on cryptography SIBECRYPT together with
Tomsk State University (since 2021). Perspectives and details of group organization
are also in focus of our attention.

Keywords: Cryptographic Center, scientific activity.

CTCrypt 2022 18



11th Workshop on Current Trends in Cryptology

On the preliminary national standard
"Information technology. Cryptographic data

security. Terms and definitions"

Alexander Cheryomushkin, Alexander Gorin, and Andrey Zubkov

Academy of Cryptography of the Russian Federation, Moscow, Russia
avc238@mail.ru

Abstract

The purpose of the report is a general description of the development and con-
tent of the draft terminology standard in the field of cryptographic protection of
information. The general design and structure of the standard will be characterized,
its central concepts will be highlighted, and the features of the wording of the def-
initions of some terms will be noted. The emergence of the standard is caused by
the need for widespread, uniform, proper and correct use of cryptographic concepts.
The terms given in it are harmonized with international standards. The existing
differences in the construction of English-language and Russian-language thermal
systems in the field of cryptographic information protection are also emphasized.

Keywords: terminology standard, cryptographic terms and definitions.
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Analysis

Related-key attacks on the compression function of Streebog 122
Vitaly Kiryukhin

On differential characteristics modulo 2n of the composition of
bitwise exclusive-or and a bit rotation 142

Nikolay Kolomeec, Ivan Sutormin, Denis Bykov, Matvey Panferov,
and Tatiana Bonich

Probabilistic Aspects

Entropically secure cipher for messages generated by Markov
chains with unknown statistics 159

Boris Ryabko

CTCrypt 2022 20



11th Workshop on Current Trends in Cryptology

Two Lempel-Ziv goodness-of-fit criterions for nonequiprobable
random binary sequences 169

Vasiliy Kruglov

Experimental study of NIST Statistical Test Suite ability to
detect long repetitions in binary sequences 184

Andrei Zubkov and Aleksandr Serov

Algebraic Aspects

On the question of nonlinearity of vectorial functions over finite
fields 193

Vladimir Ryabov

On subfunctions of self-dual bent functions 210
Aleksandr Kutsenko

Proper families of functions and their applications 240
Alexei Galatenko, Valentin Nosov, Anton Pankratiev, and Kirill
Tsaregorodtsev

Public-key Cryptography

On the (im)possibility of ElGamal blind signatures 256
Liliya Akhmetzyanova, Evgeny Alekseev, Alexandra Babueva, and
Stanislav Smyshlyaev

Solving some cryptanalytic problems for lattice-based cryp-
tosystems with quantum annealing method 272

Ivan Lysakov

CTCrypt 2022 21



Symmetric Cryptography
Design



11th Workshop on Current Trends in Cryptology

sMGM: parameterizable AEAD-mode
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Abstract

The paper introduces a new AEAD-mode called sMGM (strong Multilinear Ga-
lois Mode). The proposed construction can be treated as an extension of the Rus-
sian standardized MGM mode and its modification MGM2 mode presented at the
CTCrypt’21 conference. The distinctive feature of the new mode is that it provides
an interface allowing to choose specific security properties required for a certain
application case. Namely, the mode has additional parameters allowing to switch
on/off misuse-resistance or re-keying mechanisms.

The sMGM mode consists of two main «building blocks» that are a CTR-style
gamma generation function with incorporated re-keying and a multilinear function
that lies in the core of the original MGM mode. Different ways of using these func-
tions leads to achieving different sets of security properties. Such an approach to
constructing parameterizable AEAD-mode allows to reduce the code size that can
be crucial for constrained devices.

We provide security bounds for the proposed mode. We focus on proving misuse-
resistance of the sMGM mode, since the standard security properties were already
analyzed during development of the original MGM and MGM2 modes.

Keywords: MGM, MGM2, AEAD mode, security notion, security bounds, nonce-misuse,
misuse-resistant, SIV, re-keying

1 Introduction

In this paper we study nonce-based Authenticated Encryption with Asso-
ciated Data (AEAD) schemes, which aim to provide both integrity and confi-
dentiality of data. The widespread use of AEAD schemes motivates the study
of its non-standard security properties, such as misuse-resistance [14], leakage
resilience [4] and others [3, 8]. In our work we focus on misuse-resistance and
“defence in depth”.

Commonly nonce-based AEAD schemes are analyzed in a setting where
each new message is encrypted with a previously unused nonce (actually,
nonce is a “number used only once”), and corresponding ciphertext has to
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be indistinguishable from a random string. However, in some high-level ap-
plications nonce uniqueness requirement is hard to fulfill. For example, a
nonce can be reused in FDE (Full Disk Encryption) schemes [9], in case of
processes parallelization [5], or as a result of tamper attacks [14]. Hence, the
need for misuse-resistant schemes arises. Misuse-resistance is formalized with
the MRAE security notion [14], where ciphertext of each unique message
(encrypted with even non-unique nonce) has to be indistinguishable from a
random string.

There are several ways to construct a misuse-resistant mode. The first one
is wide-PRP constructions with an AEZ mode [13] as an example. Another
approach is a SIV (synthetic IV) construction combining arbitrary encryption
and tag generation mechanisms in a certain way. The most vivid example of
a SIV-based mode is GCM-SIV mode [12]. Both these approaches do not
provide high efficiency and have a lack of exploitation properties that can be
a deal for constrained devices. As a result, the crypto libraries should support
various modes and its consumers should be competent enough to select the
most efficient mode providing desired security properties. From that our aim
is to construct a single mode that provides a user-friendly interface allowing
consumers just to select the desired security properties, and then the mode
would be automatically configured to the optimal way of data processing.

Additionally we are focusing on increasing the key lifetime which is a
critical issue for most applications. This can be achieved by incorporating
an internal re-keying technique from [2]. The internal re-keying approach
modifies the base mode of operation in such a way that each message is
processed starting from the same key, which is changed using the certain
key update technique during processing of the current message. The string
consisting of all input cipher blocks processed under the same key is called
a section and the key is called a section key. We notice that the internal
re-keying also allows to achive better security against side channels attacks.

Inspired by ideas used to design the MGM [11, 15] and MGM2 modes
[1] and following the aim outlined in the previous paragraphs, we develop
a new AEAD mode sMGM (strong MGM). By adjusting certain parameters
this mode allows to 1) switch on/off misuse-resistance, which is achieved by
applying the SIV construction, and 2) increase the key lifetime using internal
re-keying. We design sMGM in such a way that it can be implemented as a
single mode and its code size is almost the same as for the conventional
modes.

Moreover, sMGM is built with a provable security in mind and we provide
strict proofs for our security claims in Sections 5.2 and 5.3. In Section 2
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we analyze the obtained bounds for several use cases and discuss sMGM
design. We notice, that the presented proofs contain a new hybrid PRP/PRF
switching technique for schemes with re-keying and a new security proof for
СTR scheme with re-keying and a random IV in IND-CPA$ [6] model.

2 Our contribution

In this section we discuss a new AEAD mode sMGM. The encryption
and decryption algorithms of sMGM as well as their domain and range sets
are formally defined in Section 4. The sMGM mode is parameterized by the
following values:

sMGM

[
E, r, l0, l, siv

a block cipher a nonce length re-keying sections lengths misuse-resistance on/off

]

The first and foremost property of sMGM is an optional resistance to
nonce misuse, which is achieved by applying SIV-like design [14]. Nonce mis-
use resistance can be switch on by setting a flag siv to 1. Further for sim-
plicity, we will write sMGMs, when we need to address sMGM with siv = 1.
In order to support both options and reduce the code size we define two
“building blocks”, which are СTR-KM and MultTag functions. First one is a
CTR-style gamma generation function with incorporated re-keying as in [2].
The second one is a multilinear function used for tag generation, which lies
in the core of the original MGM mode [11]. These blocks are used in the
Encrypt-then-Mac way, if siv = 0, and in Mac-then-Encrypt way (where tag
is used as IV during encryption) if siv = 1 . The approach is schematically
depicted on Figure 1.

Figure 1: SIV approach

Moreover, sMGM is incorporated with a parameterizable internal re-
keying. The major difference between the re-keying in sMGM and other re-
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keying instantiations lies in a presence of a separate parameter l0 > 0 for
the size of the initial section. The size of subsequent sections is defined by a
parameter l > 0. The l0 parameter was introduced to control the main key
lifetime, since in the sMGM mode the main key is used for processing data
more frequently than the subsequent keys. For example, it can be set to 0
and the main key will be used only for generation of subsequent section keys.
We notice, that by setting l0 to maximum data length, the re-keying can be
switch off completely.

As a result, sMGMs, especially when combined with re-keying, provides
a high security level in MRAE model (see Theorem 3) even if a single nonce
is used in all queries. Moreover, sMGMs with re-keying has beyond birthday
bounds in MRAE-int model (see Theorem 2). In this paper we focus on
the security of the misuse resistant version of sMGM, since misuse resistance
wasn’t previously provided by MGM-like schemes. Security of another sMGM
instance (with siv flag equal to 0) is somewhat similar to those ofMGM2 with
re-keying and can be obtained by combining MGM2 security proof from [1]
and hybrid technique form GCM-ACPKM proof [2]. We also notice, that the
integrity of non-SIV version of sMGM still holds in a nonce misuse setting.

Now we consider two instances of misuse resistant sMGM – with and
without re-keying. We consider EK to be a random permutation with n = 128
and k = 256. The section sizes for the re-keyed instance are l0 = 0 and l = 26.
In the Table 1 we provide security bounds for these two cases with a growing
number q of encryption queries and a single nonce value used in all queries.
The number of forgery attempts is fixed and equal to 1, the length mP of
plaintexts is bounded by 210 blocks or 214 bytes (which is the maximum size
of TLS 1.3 records) and there is no additional data in all queries. In the table
we denote by δpriv upper bounds for success probabilities of attack on privacy
in MRAE model and by δint of forgery in MRAE-int model.

q
non re-keyed sMGM re-keyed sMGM

δint δpriv δint δpriv

232 2−62 2−43 2−62 2−49

240 2−46 2−27 2−46 2−33

248 2−30 2−11 2−30 2−17

256 1 1 2−14 1

Table 1: sMGMs security bounds
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3 Definitions

Let |a| be the bit length of the string a ∈ {0, 1}∗. For a bit string a
we denote by |a|n = d|a|/ne the length of the string a in n-bit blocks. By
{0, 1}6s we denote the set of bit strings which length is less or equal to s.

For a string a ∈ {0, 1}∗ and a positive integer l 6 |a| let msb`(a) be
the string, consisting of the leftmost l bits of a. For nonnegative integers l
and i let strl(i) be l-bit representation of i with the least significant bit on
the right, let int(M) be an integer i such that str`(i) = M . For bit strings
a ∈ {0, 1}n and b ∈ {0, 1}n we denote by a ⊗ b a string which is the result
of their multiplication in GF (2n) (here strings encode polynomials in the
standard way). If the value s is chosen from a set S uniformly at random,
then we denote s U←− S. We define a function Set11: {0, 1}n → {0, 1}n,
Set11(x) = x or (110 . . . 0).

For any set S, define Perm(S) as the set of all bijective mappings on S
(permutations on S), and Func(S) as the set of all mappings from S to S.
A block cipher E with a block size n and a key size k is the permutation
family

(
EK ∈ Perm({0, 1}n) | K ∈ {0, 1}k

)
, where K is a key.

4 sMGM mode

In this section we define a new AEAD mode – sMGM. The parameters
of sMGM[E, r, l0, l, siv] are defined in Section 2. For the nonce length the
following limits should be observed: 0 6 r 6 n − 2 − dlog2(2dk/ne)e. The
СTR-KM and MultTag functions are defined in Figure 2.
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СTR-KM(K,N, IV, f, len)

K0 ← K

t← max(0, d(len− l0)/le)
st← 1, end← l0

for j = 0 . . . t do :

for i = st . . . end do :

Xi ← EKj (0‖f‖strn−2(IV + i− 1))

if j 6= t : Kj+1 ← KM(Kj , N)

st← end+ 1

end← min(end+ l, len)

return X1, . . . Xlen

KM(K,N)

s← dk/ne
for i = 1 . . . s do :

Ki ← EK(10‖strn−2(N + i− 1))

return msbk(K
1‖K2‖ . . . ‖Ks)

MultTag(K, {H1, . . . ,Hlen},M, len)

M1‖ . . . ‖Mlen ←M

τ ← Set11

(
len⊕

i=1

Mi ⊗Hi

)

T ← EK(τ)

return T

Figure 2: СTR-KM and MultTag functions

The key, plaintext, associated data, ciphertext and tag sets for
sMGM[E, r, l0, l, siv] are defined as follows: K = {0, 1}k, N = {0, 1}r,
A = P = C = {0, 1}6n(2n−2−2), T = {0, 1}n. Moreover, the following condi-
tion should be satisfied: 0 < |A| + |P | 6 n(2n−2 − 2). The key generation
function sMGM.Gen() is defined as K U←− {0, 1}k, encryption and decryption
algorithms are defined in Figures 3a and 3b respectively.

5 Security analysis

In this section we provide security analysis of misuse resistant sMGM
instance (i.e. sMGM[E, r, l0, l, 1]) in the corresponding models. There are
separate results for integrity formalized by MRAE-int model, and chosen
ciphertexts confidentiality formalized by MRAE model.

We will denote by AdvMRAE-int
AEAD (A) and AdvMRAE

AEAD (A) the advantage of an
adversary A succeeding in breaking the properties of the AEAD mode in
MRAE-int and MRAE models respectively. The advantage in the MRAE-int
model is the probability that an adversary, which may repeat nonces in its
queries, is able to forge a ciphertext that will be accepted as valid. The
advantage in the MRAE model is the increase in the probability that an
adversary, which may repeat nonces in its queries, is able to successfully
distinguish an AEAD ciphertext from the output of an ideal cipher. In the
MRAE model the adversary also has access to the Decrypt oracle, which in

L. Akhmetzyanova, E. Alekseev, A. Babueva, A. Bozhko and S. Smyshlyaev 28



sMGM: parameterizable AEAD-mode

sMGM[E, r, l0, l,0].Enc(K,N,A, P )

h← |A|n, q ← |P |n, len← h+ q + 2, s← dk/ne
N ← int(N‖0n−r−2)

. . . . . . . . . . . . . . . . . . .Encryption. . . . . . . . . . . . . . . . . . .

{Γ1, . . . ,Γq} ← СTR-KM(K,N + s,N, 1, q)

C ← P ⊕msb|P |(Γ1 ‖ . . . ‖ Γq)

. . . . . . . . . . . . . . . . . . . . Padding . . . . . . . . . . . . . . . . . . . .

a← n|A|n − |A|, c← n|C|n − |C|
M ← A‖0a‖C‖0c‖strn(|A|)‖strn(|C|)

. . . . . . . . . . . . . . . . .Tag generation . . . . . . . . . . . . . . . . .

{H1, . . . ,Hlen} ← СTR-KM(K,N,N, 0, len)

T ← MultTag(K, {H1, . . . ,Hlen},M, len)

return (C, T )

sMGM[E, r, l0, l,1].Enc(K,N,A, P )

h← |A|n, q ← |P |n, len← h+ q + 2, s← dk/ne
N ← int(N‖0n−r−2)

. . . . . . . . . . . . . . . . . . . . Padding . . . . . . . . . . . . . . . . . . . .

a← n|A|n − |A|, p← n|P |n − |P |
M ← A‖0a‖P‖0p‖strn(|A|)‖strn(|P |)

. . . . . . . . . . . . . . . . .Tag generation . . . . . . . . . . . . . . . . .

{H1, . . . ,Hlen} ← СTR-KM(K,N,N, 0, len)

T ← MultTag(K, {H1, . . . ,Hlen},M, len)

. . . . . . . . . . . . . . . . . . .Encryption. . . . . . . . . . . . . . . . . . .

IV ← int(msbn−2(T ))

{Γ1, . . . ,Γq} ← СTR-KM(K,N + s, IV, 1, q)

C ← P ⊕msb|P |(Γ1 ‖ . . . ‖ Γq)

return (C, T )

(a) sMGM.Enc algorithm

sMGM[E, r, l0, l,0].Dec(K,N,A,C, T )

h← |A|n, q ← |C|n, len← h+ q + 2, s← dk/ne
N ← int(N‖0n−r−2)

. . . . . . . . . . . . . . . . . . . . Padding . . . . . . . . . . . . . . . . . . . .

a← n|A|n − |A|, c← n|C|n − |C|
M ← A‖0a‖C‖0c‖strn(|A|)‖strn(|C|)

. . . . . . . . . . . . . . . . Tag verification . . . . . . . . . . . . . . . .

{H1, . . . ,Hlen} ← СTR-KM(K,N,N, 0, len)

T ′ ← MultTag(K, {H1, . . . ,Hlen},M, len)

if T ′ 6= T : return ⊥

. . . . . . . . . . . . . . . . . . .Decryption. . . . . . . . . . . . . . . . . . .

{Γ1, . . . ,Γq} ← СTR-KM(K,N + s,N, 1, q)

P ← C ⊕msb|C|(Γ1 ‖ . . . ‖ Γq)

return P

sMGM[E, r, l0, l,1].Dec(K,N,A,C, T )

h← |A|n, q ← |C|n, len← h+ q + 2, s← dk/ne
N ← int(N‖0n−r−2)

. . . . . . . . . . . . . . . . . . .Decryption. . . . . . . . . . . . . . . . . . .

IV ← int(msbn−2(T ))

{Γ1, . . . ,Γq} ← СTR-KM(K,N + s, IV, 1, q)

P ← C ⊕msb|C|(Γ1 ‖ . . . ‖ Γq)

. . . . . . . . . . . . . . . . . . . . Padding . . . . . . . . . . . . . . . . . . . .

a← n|A|n − |A|, p← n|P |n − |P |
M ← A‖0a‖P‖0p‖strn(|A|)‖strn(|P |)

. . . . . . . . . . . . . . . . Tag verification . . . . . . . . . . . . . . . .

{H1, . . . ,Hlen} ← СTR-KM(K,N,N, 0, len)

T ′ ← MultTag(K, {H1, . . . ,Hlen},M, len)

if T ′ 6= T : return ⊥
return P

(b) sMGM.Dec algorithm

Figure 3: sMGM mode
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ideal world always return an error. These two models are formally defined in
Appendix A.

Standard security notion for block ciphers are PRP-CPA («PseudoRan-
dom Permutation under Chosen Plaintext Attack») and PRF («PseudoRan-
dom Function») [6]. We will denote by AdvPRP

E (A) and AdvPRF
E (A) the ad-

vantage of an adversary A succeeding in distinguishing EK from a random
permutation and a random function respectively.

5.1 Auxiliary results

In this section we introduce some auxiliary results, which will be used
throughout subsequent proofs. We begin with Bernstein’s result for switching
between random permutation and random function.

Theorem 1 (Theorem 2.3 [7]). For any distinguisher Df with an oracle
f : {0, 1}n → {0, 1}n, making at most q queries, the following inequality
holds:

Pr[Dπ → 1] 6 Pr[Dρ → 1] ·
(

1− q − 1

2n

)−q/2
,

where π U←− Perm(n) and ρ U←− Func(n).

Hereafter we will denote an expression
(
1− q−1

2n

)−q/2 by Bq. The next
statement will allow us to switch between a single random function and a
set of independent random functions, when applying them to a number of
non-overlapping subsets.

Statement 1. For any finite set A, any integer k ≤ |A|, any subsets
A1, . . . , Ak ⊆ A, such that A = A1 t . . . t Ak, Ai ∩ Aj = ∅ for i 6= j,
and any distinguisher Df with an oracle f : A → A, the following equality
holds:

Pr[Dρ → 1] = Pr
[
Dρ̂ → 1

]
,

where ρ U←− Func(A) and ρ̂ = {ρ1, . . . , ρk}, ρi U←− Func(A), ρ̂(a) = ρi(a) for
a ∈ Ai.

5.2 MRAE integrity of sMGMs

Theorem 2. For any MRAE-int-adversary A for sMGMs, making at most
qE queries to the Encrypt oracle and at most qD queries to the Decrypt
oracle, where the block-length of associated data in each query is at most
mA, the block-length of plaintexts and ciphertexts in each query is at most
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mP and the number of distinct nonce values in all queries is at most qN ,
there exist PRP-adversaries C and C0 for block cipher E, such that

AdvMRAE-int
sMGM[E,r,l0,l,1](A) ≤

(
q(q − 1)

2n−1
+
qD
2n

+ qN tIAdv
PRP
E (C)

)
·BqN tI

l+s ·

·Bq(2l0+2s+1) + AdvPRP
E (C0),

where q = qE +qD, s = dk/ne and tI = d(mA+mP +2− l0)/le. Adversary C
makes at most l+s queries to its oracle and C0 makes at most q(2l0 +2s+1)
queries.

Proof. For processing the messages sMGMs uses the same block cipher with
distinct key values: master key K and section keys Ki that depend on nonce
values. We will consider block cipher with each distinct key as separate block
cipher. Our foremost goal in the first part of the proof is to replace all block
ciphers in sMGMs with random functions. This will allow us to apply Corol-
lary 1 from [1] and obtain the bound. Recall, that we write sMGMs instead
of sMGM[E, r, l0, l, 1] for simplicity.

Now we proceed with the first step of the proof. At this step we replace
block cipher with a master keyK by random permutation π0. Note that block
cipher EK is used for initial section processing, first re-keying mechanism and
tag generation. We write sMGMs[EK ] to specify used block cipher. Let us
consider experiments ExpMRAE-int

sMGMs[EK ] and ExpMRAE-int
sMGMs[π0]. In a straightforward

manner we construct such an adversary C0, that

Pr
[
ExpMRAE-int

sMGMs[EK ](A)→ 1
]
≤ Pr

[
ExpMRAE-int

sMGMs[π0](A)→ 1
]

+ AdvPRP
E (C0).

The adversary C0 uses the adversaryA as a black box. It intercepts the queries
of the adversary A and process them by itself using its own oracle instead of
calling EK or π0. Therefore, to simulate q queries C0 makes at most q(2l0 +
2s + 1) calls to its oracle, where 2l0 term defines the number of processed
blocks in the initial section during encryption and tag generation steps, 2s
term defines the number of processed blocks in the re-keying mechanism and
+1 arises from a call in a Tag generation process. The adversary C0 outputs
the same bit as the adversary A.

The next step is to replace the random permutation π0 with a random
function ρ0. Applying Bernstein’s result (Theorem 1), we have

Pr
[
ExpMRAE-int

sMGMs[π0](A)→ 1
]
≤ Pr

[
ExpMRAE-int

sMGMs[ρ0](A)→ 1
]
·Bq(2l0+2s+1).

Since all inputs to this random function in the cases of 1) computing
values Hj for initial section and computing first intermediate key in the tag
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generation part; 2) computing values Γj for initial section and computing first
intermediate key in the encryption part; 3) computing the tag are different
(because of fixed bits in inputs), using one random function is indistinguish-
able from using three independent random functions ρI , ρC , ρt for these three
cases due to Statement 1.

From this, our aim is to replace every block cipher in the tag generation
part of sMGMs with a corresponding random function. We denote the keys
appearing within the re-keying during processing the i-th, 1 6 i 6 qN , ad-
versarial query with a new nonce by K(i−1)tI+1, K(i−1)tI+2, . . . , Ki·tI , where tI
defines the maximum number of sections. Keys K(i−1)tI+1, are generated us-
ing random function ρI and, since ρI inputs are separated with fixed bits
for Hj generation and for the re-keying processing, they can be consid-
ered random for every new nonce value (follows from Statement 1). Other
keys Kj+1 are generated as KM(Kj, N). In a case, when a key is chosen
randomly, we will write it with calligraphic font – Kj. We will also write
sMGMs[ρI , EK1

, EK2
, . . . , EKi·tI+1

, EKi·tI+2
. . . , EKqN ·tI

] to specify the block ci-
phers used in each integrity re-keying section in order of appearance (through-
out all queries).

Now let us consider experiments ExpMRAE-int
sMGMs[ρI ,ρ1,...,ρi−1,EKi ,EKi+1

,...] and
ExpMRAE-int

sMGMs[ρI ,ρ1,...,ρi−1,πi,EKi+1
,...]. In a straightforward manner we construct such

an adversary Ci, that

Pr
[
ExpMRAE-int

sMGMs[...,ρi−1,EKi
,...](A)→ 1

]
6 Pr

[
ExpMRAE-int

sMGMs[...,ρi−1,πi,...]
(A)→ 1

]
+ AdvPRP

E (Ci).

The adversary Ci uses the adversary A as a black box. It intercepts the
queries of the adversary A and process them by itself using its own oracle
instead of calling EKi

or πi. Therefore, Ci makes at most l + s calls to its
oracle. It outputs the same bit as A.

Next, we replace the random permutation with a random function, ap-
plying Bernstein’s result (Theorem 1):

Pr
[
ExpMRAE-int

sMGMs[...,ρi−1,πi,EKi+1
,...](A)→ 1

]
≤ Pr

[
ExpMRAE-int

sMGMs[...,ρi−1,ρi,EKi+1
,...](A)→ 1

]
·Bl+s,

where ρi is used both for Hj and Ki+1 generation. However, since ρi inputs
are separated with fixed bits for these two cases, we can claim, that the
key Ki+1 is generated randomly and independently from Hj (follows from
Statement 1). Thus,

Pr
[
ExpMRAE-int

sMGMs[...,ρi,EKi+1
,...](A)→ 1

]
= Pr

[
ExpMRAE-int

sMGMs[...,ρi,EKi+1
,...](A)→ 1

]
.
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Bringing all together, we have the following inequality:

Pr
[
ExpMRAE-int

sMGMs[...,ρi−1,EKi ,EKi+1
...](A)→ 1

]
≤

≤ Pr
[
ExpMRAE-int

sMGMs[...,ρi−1,ρi,EKi+1
...](A)→ 1

]
·Bl+s + AdvPRP

E (Ci).

Note that in the case, when Ki is the key of last section, the same transi-
tion can be applied with small differences in justifications. The randomness of
the next key (first intermediate key in the next query processing) is achieved
earlier, since it is generated by ρI function.

Hence, starting from the experiment ExpMRAE-int
sMGMs[ρI ,EK1

,...] and subsequently
applying the described transition qN · tI times, we obtain

Pr
[
ExpMRAE-int

sMGMs[ρI ,EK1
,...](A)→ 1

]
≤

≤
(
. . .
(

Pr
[
ExpMRAE-int

sMGMs[ρI ,ρ1,...,ρqN ·tI ](A)→ 1
]
·Bl+s + AdvPRP

E (CqN ·tI)
)
Bl+s +

+ AdvPRP
E (CqN ·tI−1)

)
Bl+s + . . .+ AdvPRP

E (C2)
)
Bl+s + AdvPRP

E (C1) =

= Pr
[
ExpMRAE-int

sMGMs[ρI ,ρ1,...,ρqN ·tI ](A)→ 1
]
·BqN tI

l+s +

qN ·tI∑

i=1

AdvPRP
E (Ci) ·Bi−1

l+s . (1)

It is easy to see, that in the experiment ExpMRAE-int
sMGMs[ρI ,ρ1,...,ρqN ·tI ] interme-

diate keys for tag generation process are produced, but not used — random
functions, used to produce coefficients Hj, are selected independently from
them. From here, we can consider an experiment, where intermediate keys
are not generated. Moreover, since the inputs to the functions ρI , . . . , ρqN ·tI
do not intersect (for repeating nonces we just reuse previously computed co-
efficients Hj), due to Statement 1, we can unite them under a single random
function ρh. Hence,

Pr
[
ExpMRAE-int

sMGMs[ρI ,ρ1,...,ρqN ·tI ](A)→ 1
]

= Pr
[
ExpMRAE-int

sMGMs[ρh](A)→ 1
]

The next step is to proceed only with the tag generation part of
sMGMs[ρh]. For this let us introduce an auxiliary MAC construction
sMGM-MAC.
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sMGM-MAC.Gen()

ρt, ρh
U←− Func(n)

K ← (ρt, ρh)

return K

PreTag(ρh, N,M)

l← |M |n
for i = 1 . . . ` do :

Hi ← ρh(00‖strn−2(N + i− 1))

τ ← Set11r

(
l⊕

i=1

(Mi ⊗Hi)

)

return τ

sMGM-MAC.Tag(K,N,M)

τ ← PreTag(ρh, N,M)

T ← ρt(τ)

return T

sMGM-MAC.Verify(K,N,M, T )

τ ← PreTag(ρh, N,M)

T ′ ← ρt(τ)

if T ′ 6= T : return false

return true

Figure 4: The sMGM-MAC scheme

We claim that there exists an UF-CMA-adversary D, making at most qE
queries to the Tag oracle and at most qD queries to the V erify oracle, such
that

Pr
[
ExpMRAE-int

sMGMs[ρh](A)→ 1
]
≤ Pr

[
ExpUF-CMA

sMGM-MAC(D)→ 1
]
.

Indeed, let us construct the adversary D, that uses the adversary A as
a black box. The adversary D intercepts the queries of the adversary A
and process them by itself using its own oracles. For encryption/decryption
D implements lazy sampling for ρC . For tag generation/tag verification the
adversary D implements the padding procedure and sends the appropriate
queries to its oracles.

If A makes a non-trivial valid query (N,A,C, T ) to the Decrypt oracle,
then the adversary D decrypts C using ρC to obtain a plaintext P and then
makes corresponding non-trivial query (N,M = A‖0a‖P‖0c‖lenA‖lenP , T )
to the V erify oracle. Hence, if the adversary A forges, then the adversary
D also forges in ExpUF-CMA

sMGM-MAC.
Finally, we can apply Corollary 1 from [1] to obtain a bound for

Pr
[
ExpUF-CMA

sMGM-MAC(D)→ 1
]
:

Pr
[
ExpUF-CMA

sMGM-MAC(D)→ 1
]
≤ q(q − 1)

2n−1
+
qD
2n
.
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Summarizing all the obtained bounds, we have

Pr
[
ExpMRAE-int

sMGMs[EK ](A)→ 1
]
≤

≤
((

q(q − 1)

2n−1
+
qD
2n

)
·BqN tI

l+s +

qN ·tI∑

i=1

AdvPRP
E (Ci) ·Bi−1

l+s

)
·Bq(2l0+2s+1) + AdvPRP

E (C0) ≤

≤
(
q(q − 1)

2n−1
+
qD
2n

+

qN ·tI∑

i=1

AdvPRP
E (Ci)

)
·BqN tI

l+s ·Bq(2l0+2s+1) + AdvPRP
E (C0). (2)

Denoting by C the adversary with the the biggest advantage among Ci,
we obtain the statement of the Theorem.

5.3 MRAE security of sMGMs

Theorem 3. For any MRAE-adversary A for sMGMs, making at most qE
queries to the Encrypt oracle and at most qD queries to the Decrypt oracle,
where the block-length of associated data in each query is at most mA, the
block-length of plaintexts and ciphertexts in each query is at most mP , the
number of distinct nonce values in all queries is at most qN and the number
of queries with the same nonce is at most qR, there exist PRP-adversaries
B0,BI and BC for block cipher E, such that

AdvMRAE
sMGM[E,r,l0,l,1](A) ≤ q2

2n−1
+
q2 max(l, l0)

2n−2
+
qD
2n

+
q2(2l0 + 2s+ 1)2

2n+1
+

+ qN tI
(l + s)2

2n+1
+ qN tC

(qRl + s)2

2n+1
+ AdvPRP

E (B0) + qN tIAdv
PRP
E (BI)+

+ qN tCAdv
PRP
E (BC),

where q = qE + qD, s = dk/ne, tI = d(mA + mP + 2 − l0)/le and tC =
d(mP − l0)/le. Adversary B0 makes at most q(2l0 + 2s + 1) queries to its
oracle, BI makes at most l+s queries and BC makes at most qRl+s queries.

Proof. We start with replacing all block ciphers with random functions. This
will allow us to use the MRAE security theorem for SIV constructions from
[14] to bound the security of sMGMs by PRF security of sMGM-MAC and
IND-CPA$ security of СTR-KM (with random IV and independent random
functions used for processing each section).

First of all, we replace EK with a random function ρ0. As in the previ-
ous proof, we firstly replace it with a random permutation, building a PRP
adversary B0. After that we use PRP/PRF Switching Lemma to replace ran-
dom permutation with a random function. It is easy to see, that there are at
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most q(2l0 + 2s+ 1) calls to EK , hence, we have

Pr
[
ExpMRAE−0

sMGMs[EK ,E](A)→ 1
]
≤ Pr

[
ExpMRAE−0

sMGMs[ρ0,E](A)→ 1
]

+

+
q(2l0 + 2s+ 1)(q(2l0 + 2s+ 1)− 1)

2n+1
+ AdvPRP

E (B0).

At the next step we replace all other block ciphers with random functions
as in the previous proof. However, we can’t use Bernstein’s lemma to switch
from pseudorandom permutation to pseudorandom function, thus we have to
apply PRP/PRF Switching Lemma [10]. There are at most qN · tI keys in
the tag generation part and qN · tC keys in the encryption part. We construct
adversaries BIi and BCi for each block cipher used in the tag generation and
encryption parts respectively. For each block cipher in the tag generation
part an adversary BIi makes at most l+ s queries (for processing the section
and re-keying). For each block cipher in the encryption part an adversary BCi
makes at most qRl + s queries (we multiply by qR since block cipher inputs
for Γj generation are distinct even if the same nonce is used). We denote a
mode with independent random functions by sMGMs[ρ0, ρ̂]. At this point we
have

Pr
[
ExpMRAE−0

sMGMs[ρ0,E](A)→ 1
]
≤ Pr

[
ExpMRAE−0

sMGMs[ρ0,ρ̂]
(A)→ 1

]
+ qN tI

(l + s)(l + s− 1)

2n+1

+ qN tC
(qRl + s)(qRl + s− 1)

2n+1
+

qN ·tI∑

i=1

AdvPRP
E (BIi ) +

qN ·tC∑

i=1

AdvPRP
E (BCi ).

In sequel we denote by BI (BC) an adversary with the biggest advantage
among BIi (BCi resp.).

We will denote by СTR-KM[ρ̂C ] a СTR-KM (see Figure 2) construction,
in which for each unique nonce in each re-keying section an independent
random function is used to produce Γi (in queries with a repeating nonce the
same sequence of independent functions is used). Encryption and decryption
algorithms for СTR-KM[ρ̂C ] are defined naturally.

Since inputs to random functions in the tag generation and encryption
parts of sMGMs do not intersect, due to Statement 1, we claim, that these
two parts are independent from each other. Finally we apply Theorem 1 [14].
There exist adversaries D and C such that

Pr
[
ExpMRAE−0

sMGMs[ρ0,ρ̂](A)→ 1
]
− Pr

[
ExpMRAE−1

sMGMs[EK,E](A)→ 1
]

=

= Pr
[
ExpMRAE−0

sMGMs[ρ0,ρ̂](A)→ 1
]
− Pr

[
ExpMRAE−1

sMGMs[ρ0,ρ̂](A)→ 1
]

=

= AdvMRAE
sMGMs[ρ0,ρ̂](A) ≤ AdvPRF

sMGM-MAC[ρt,ρh](D) + AdvIND-CPA$
СTR-KM[ρ̂C ](C) +

qD
2n
.
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The only thing left is to derive a bound for AdvIND-CPA$
СTR-KM[ρ̂C ](C). The idea is

similar to the classical proof of IND-CPA$ security of СTR from [6]. In that
proof the bad case happens if counters in two queries overlap. In our case,
since each section is processed with its own independent random function,
the bad case happens if for two queries counters in the same section overlap.
We denote that event by Bad and an event, that counters overlap in queries
j1 and j2, by Badj1j2.

We notice, that if in queries j1 and j2 counters overlap in the i-th section,
then the following inequality holds

IVj1 + k′(i)− l′(i) + 1 ≤ IVj2 + k′(i) ≤ IVj1 + k′(i) + l′(i)− 1⇔

IVj1 − l′(i) + 1 ≤ IVj2 ≤ IVj1 + l′(i)− 1,

where l′(i) is a length of the i-th section (equal to l0 if i = 0 and to l
otherwise) and k′(i) is the counter offset in the begining of the i-th section
(equal to 0 if i = 0 and to l0 + l(i− 1) otherwise). Hence, for the probability
of the event Badj1j2 we have

Pr[Badj1j2 ] = Pr
[
IVj1 , IVj2

U←− {0, 1}n−2 : ∃i : IVj1 − l′(i) + 1 ≤ IVj2 ≤ IVj1 + l′(i)− 1
]
.

Since for every 0 ≤ i ≤ tC it is true, that l′(i) ≤ max(l0, l), we can bound
the probability in the following way

Pr
[
IVj1 , IVj2

U←− {0, 1}n−2 : ∃i : IVj1 − l′(i) + 1 ≤ IVj2 ≤ IVj1 + l′(i)− 1
]
≤

≤ Pr
[
IVj1 , IVj2

U←− {0, 1}n−2 : IVj1 −max(l0, l) + 1 ≤ IVj2 ≤ IVj1 + max(l0, l)− 1
]

=

=
2 max(l0, l)− 1

2n−2
.

From that we obtain a bound for the event Pr[Bad ] (and, therefore for
the adversarial advantage), going through all possible pairs of queries:

AdvIND-CPA$
СTR-KM[ρ](C) ≤ Pr[Bad ] ≤

∑

1≤j1<j2≤q
Pr[Badj1j2 ] ≤

≤ q(q − 1)

2
· 2 max(l0, l)− 1

2n−2
≤ q2 max(l0, l)

2n−2
.

Finally, using Lemma 1 from [1] to obtain a bound for
AdvPRF

sMGM-MAC[ρt,ρh](D) and connecting everything together, we have the
required bound.
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6 Open problems

In the future work we are going to develop the proposed parameteri-
zable AEAD conception by adding new security features provided by the
mode with respect to exploitation properties. Such properties as leakage re-
silience, RUP-security, Key-dependent messages security are to be considered
in particular. We believe that the designated goal can be achieved in sMGM
without significant difficulties by combining the building blocks of the mode
in an appropriate way.
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[5] Brandstetter L., Fischlin M., Schröder R.L., Yonli M. (2020) On the Memory Fault Resilience
of TLS 1.3. In: van der Merwe T., Mitchell C., Mehrnezhad M. (eds) Security Standardis-
ation Research. SSR 2020. Lecture Notes in Computer Science, vol 12529. Springer, Cham.
https://doi.org/10.1007/978-3-030-64357-7_1

[6] Bellare M., Rogaway P. Introduction to modern cryptography //Ucsd Cse. – 2005. – Т. 207.
– С. 207.

[7] Bernstein, D.J.: Stronger Security Bounds for Permutations (2005),
http://cr.yp.to/papers.html (accessed on May 31, 2012)

[8] John Black, Phillip Rogaway, and Thomas Shrimpton. 2002.Encryption-Scheme Security in
the Presence of Key-Dependent Messages. In Revised Papers from the 9th Annual Inter-
national Workshop on Selected Areas in Cryptography (SAC ’02). Springer-Verlag, Berlin,
Heidelberg, 62–75.
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A Security models

This section introduces models for an adversary that may repeat nonces
in its queries. We begin with the strongest model, which formalizes both in-
tegrity and confidentiality properties – MRAE («Misuse-Resistant Authen-
ticated Encryption - integrity»), firstly introduced in [14].

Definition 1. For an AEAD-scheme Π the advantage of a MRAE-adversary
A is defined as follows:

AdvMRAE
Π (A) = Pr

[
ExpMRAE−1

Π (A)→ 1
]
− Pr

[
ExpMRAE−0

Π (A)→ 1
]
,

where experiments ExpMRAE-int
Π are defined below:

ExpMRAE−b
Π (A)

K
$←− Π.Gen( )

sent← ∅

b′ $←− AEncryptb,Decryptb( )

return b′

Oracle Encryptb(N,A, P )

if (N,A, P, ·, ·) ∈ sent :

return ⊥
if b = 1 :

(C, T )← Π.Enc(K,N,A, P )

else :

C ‖ T U←− {0, 1}|P |+s
sent← sent ∪ {(N,A, P,C, T )}
return (C, T )

Oracle Decryptb(N,A,C, T )

if (N,A, ·, C, T ) ∈ sent :

return ⊥
if b = 1 :

return Π.Dec(K,N,A,C, T )

else :

return ⊥

We also separately define a model formalizing the integrity property of
AEAD schemes in nonce misuse setting – MRAE-int.

Definition 2 (MRAE-int). For an AEAD-scheme Π the advantage of a
MRAE-int-adversary A is defined as follows:

AdvMRAE-int
Π (A) = Pr

[
ExpMRAE-int

Π (A)→ 1
]
,

where experiment ExpMRAE-int
Π is defined below:
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ExpMRAE-int
Π (A)

K
$←− Π.Gen( )

sent← ∅
win← false

AEncrypt,Decrypt( )

return win

Oracle Encrypt(N,A, P )

(C, T )← Π.Enc(K,N,A, P )

sent← sent ∪ {(N,A,C, T )}
return (C, T )

Oracle Decrypt(N,A,C, T )

P ← Π.Dec(K,N,A,C, T )

if (P 6= ⊥) ∧ ((N,A,C, T ) /∈ sent) :

win← true

return P
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Abstract

One of the most popular ways to turn a keyless hash function into a keyed one is
the HMAC algorithm. This approach is too expensive in some cases due to double
hashing. Excessive overhead can sometimes be avoided by using certain features of
the hash function itself. The paper presents a simple and safe way to create a keyed
cryptoalgorithm (conventionally called «Streebog-K») from hash function Streebog
H(M). Let K be a secret key, then KH(K,M) = H(K||M) is a secure pseudoran-
dom function (PRF) and, therefore, a good message authentification code (MAC).
The proof is obtained by reduction of the security of the presented construction
to the resistance of the underlying compression function to the related key attacks
(PRF-RKA). The security bounds of Streebog-K are essentially the same as those of
HMAC-Streebog, but the computing speed doubles when short messages are used.

Keywords: Streebog, Streebog-K, PRF, MAC, HMAC, provable security

1 Introduction

The HMAC algorithm was proposed in 1996 [10] as an efficient way to
construct a keyed transformation (and, most importantly, a secure message
authentification code) from a keyless hash function H(M)

HMAC(K,M) = H
(
(K ⊕ opad)||H(K ⊕ ipad||M)

)
,

where K is obtained by padding the secret key K with zero bits, opad and
ipad are different nonzero constants.

The security proof [10] explicitly assumes the use of a «plain» Merkle-
Damg̊ard [7, 8] cascade as an underlying hash function H(M): the message
M is padded and splitted into b-bit blocks; the compression function g is
iteratively applied to the previous n-bit state and b-bit block; the initial
state IV is the predefined constant; the last state is the result of hashing. The
result largely depends, among other things, on the weak collision resistance
(WCR) of H in the «secret initial state» setting.

Collision resistance is broken in practice for several widely used hash
functions, such as MD5 and SHA-1. In 2006, an updated proof was presented
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in [14], showing that the HMAC-MD5 and HMAC-SHA-1 nevertheless remain
secure. The reduction shows that HMAC is a secure pseudorandom function
(PRF) if g is a secure PRF (in the secret key and also in some restricted
related-key settings). The proof was obtained via a non-uniform reduction
(with «non-constructible» adversaries), leading to the insignificance of this
result in practice [13].

In [13], along with a critique of the results [14], an alternative proof
was also presented (the definition of PRF is slightly different). More precise
bounds with the same initial requirements [14] and without the use of a
«non-uniform computation model» were also obtained in the works [15, 17].

Russian hash function Streebog [1] can also be used in the HMAC [3, 6].
Streebog uses a modified Merkle-Damg̊ard approach. Its compression func-
tion is based on a 12-rounds AES-like block cipher in Miyaguchi-Preneel
mode. The internal state and the message block consist of n = 512 bits. The
output length of hash function can be either 512 or 256-bit.

The most important differences from the «plain» cascade are the follow-
ing:

– before processing the i-th block, the state is summed modulo 2 with
the number of already hashed bits;

– the last call of the compression function is used to «mix» the checksum
(modulo 2n) of all message blocks.

It is important to note that the differences between Streebog and the
Merkle-Damg̊ard scheme do not allow direct use of the results [10, 14, 13, 15,
17] for HMAC-Streebog. The proof of the latter’s security was, among other
things, given in [16]. However, the reduction descends not to the properties
of the compression function g, but to the properties of the hash function H
itself.

Unfortunately, HMAC-Streebog has a significant overhead when work-
ing with short messages. We have at least 8 (resp. 9) calls of g for
HMAC-Streebog-256 (resp. 512). However, the design of Streebog implicitly
generates a more efficient solution.

The aforementioned features allow us to prove that «Streebog-K»
(«Keyed Streebog») KH(K,M) = H(K||M) is a secure pseudorandom func-
tion (PRF) under some plausible assumptions about the compression func-
tion g. Thus, processing a short message requires 4 computations of g: padded
key, padded message, bit length, checksum. It is also easy to see that the pro-
posed cryptoalgorithm does not require any changes in Streebog itself. Other
methods of involving K, such as secret-IV [11], along with simplifying the
finalization and a number of small changes can provide a more computa-
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tionally efficient and no less secure solution. Unfortunately, all this requires
edits in the formal description of the hash function and in many existing im-
plementations. Therefore, we consider «Streebog-K» that is devoid of these
disadvantages.

The security of Streebog against the length-extension attack (i.e. the
particular case of PRF-security) is explicitly claimed in [5]. However, as far
as we know, there are no publicly available formal proofs.

The analysis of Streebog-K was carried out in the paradigm of provable
security [19, 18]. We start from high-level description of Streebog (section 3)
and its equivalent representation [22] carefully considered in the proof. Next,
in section 4 we present and discuss «hard-to-solve» problems: the indistin-
guishability of g from family of random functions under related key attacks
(PRF-RKA) in two various settings. In the main part of the paper (section 5)
we reduce the PRF properties of Streebog-K to the PRF-RKA properties of
g. Roughly speaking, if there is an effective attack against Streebog-K, then
there is an attack against g. The reduction gives us the upper bound on the
probability of the adversary’s success (for example, the forgery or the key
recovery). The bound functionally depends on the capabilities of the adver-
sary (amount of the computation resources, the number of adaptively chosen
input-output pairs).

Two «beyond security bound» attacks against Streebog-K were also
briefly considered (section 6). The first is the simple forgery attack, the sec-
ond one is the key recovery attack, almost identical to the same against
HMAC-Streebog [23].

Similar proofs can be also relatively easily obtained for HMAC-Streebog
[3] and S3G [4]. The corresponding results are briefly discussed in section 7.
The security bounds are almost the same in all cases, but Streebog-K requires
a weaker notion of PRF-RKA-security from g.

The good security bounds in the PRF setting allow you to use Streebog-K
as a secure MAC and key derivation function.

2 Notations and definitions

We use the following notations throughout the paper:
n = 512 – block size in bits; k ≤ 512 – key size in bits; ⊕ – bitwise XOR

operation; �, � – addition and subtraction modulo 2n = 2512;
|| – concatenation of binary strings;

V ∗ – the set of all binary strings of a finite length;
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V n – the set of all n-bit strings with naturally defined operations «⊕»
and «�»;

V ≤L – the set of binary strings of length no more than L bits;
(V n)≤l – the set of binary strings of length no more than l · n bits, the

length of each string is a multiple of n;
bin(x) – n-bit representation of the integer x;
sum�(M) = m1 �m2 � . . . �ml – the checksum (modulo 2n) of blocks

from l-block message M = m1||m2||...|ml;
sum′�(M) = m1�. . .�ml−1 – the checksum of all blocks from the message

M = m1||m2||...|ml, except for the last block;
Func(X,Y) – the set of all mappings from the set X to the set Y;
X

R← X – uniform and random selection of element X from the set X.
The adversary is modeled by an interactive probabilistic algorithm that

has access to other algorithms (oracles). We denote by AdvTMF (A) a quanti-
tative characterization (advantage) of the capabilities of the adversary A in
realizing a certain threat, defined by the model TM , for the cryptographic
scheme F. The resources of A are measured in terms of time and query com-
plexities. The time complexity t includes the description size of A in some
computation model. The query complexity q is measured in the number of
adaptively chosen input/output pairs. If F has a variable input length, the
maximum length lmax of the query (in n-bit blocks) is also characteristic
of the adversary’s resources. Without loss of generality, we assume that A
always uses exactly q unique queries (no redundancy and repetitions). The
result of computations A after interacting with oracles O1, O2, ... Ow, w ∈ N
is some value x (usually binary), AO1,O2,...Ow ⇒ x.

The maximum of the advantage among all resource constrained adver-
saries is denoted by

AdvTMAlg (t, q, lmax) = max
A(t′,q′,l′):t′≤t, q′≤q, l′≤lmax

AdvTMAlg (A).

The cryptoalgorithm Alg is called secure in the threat model TM with respect
to adversaries limited by resources (t, q, lmax) if AdvTMF (t, q, lmax) < ε, where
ε is some small value determined by the requirements for the strength of the
cryptosystem.

To demonstrate the practical significance of the obtained results, we some-
times substitute heuristic estimates based on assumptions into derived secu-
rity bounds. The resulting informal estimates are denoted by symbol «/ »
meaning «less or equal if the assumptions are true».

Definition. The advantage of A in the model PRF (PRF -CMA –
indistinguishability from a random function under chosen message attack)
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for the keyed cryptoalgorithm F : K×X→ Y is

AdvPRFF (A) = Pr
(
K

R← K;AFK(·) ⇒ 1
)
−Pr

(
F

R← Func(X,Y);AF(·) ⇒ 1
)
,

where K, X, Y are spaces of the keys, messages, and outputs respectively.
As the example, for a PRF with a fixed input length, we have (K,X,Y) =

(V n, V n, V n). For Streebog-K, (K,X,Y) = (V k, V ≤L, V n).

3 Streebog and Streebog-K

Streebog hashes the messageM ∈ V ∗ as follows. The text is padded with
bit string 10 . . . 0. At least one bit is always added, even if the message bit
length L is already divisible by n. The string M ′ = M ||10 . . . 0 is divided
into l blocks of n = 512 bits m1||m2|| . . . ||ml. The compression function is
sequentially applied to the previous state, the block and the counter

hi+1 = g(hi,mi+1, i), i = 0, ..., l − 1, h0 = IV ∈ V n,

where IV is a predefined constant which is different in both versions of the
hash function, the counter i = bin(i·n) ∈ V n is the number of already hashed
bits.

Two more transformations are performed at the finalizing stage: the bit
length L and the checksum Σ = sum�(M ′) are «mixed» with the state

hl+1 = g(hl, L,0), H = g(hl+1, Σ,0).

If 256-bit hash function is used, the output H truncated to 256 bit.

Figure 1: Keyless hash function Streebog-512.

The compression function is based on a 12-rounds AES-like block cipher
E in Miyaguchi-Preneel mode

g(hi,mi+1, i) = E(hi ⊕ i,mi+1)⊕ hi ⊕mi+1 = hi+1.
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In [22], the equivalent representation was proposed (see the detailed figure
in the Appendix)

hi+1 = E(hi ⊕ i,mi+1)⊕ (hi ⊕ i)⊕mi+1︸ ︷︷ ︸
g′(hi⊕i,mi+1)

⊕ i,

hi+1 = g′(hi ⊕ i,mi+1)⊕ i,

hi+2 = g′(g′(hi ⊕ i,mi+1)⊕ i⊕ (i� 1)︸ ︷︷ ︸
∆i

,mi+2)⊕ (i� 1).

Adjacent counters are summed with each other. However, the last counter
appears differently hl = g′(hl−1 ⊕ (l� 1),ml)⊕ (l� 1)︸ ︷︷ ︸

∆̃l−1

.

Hence, g(hi,mi+1, i) is replaced by

g(hi,mi+1) = E(hi,mi+1)⊕ hi ⊕mi+1 ⊕∆i, i = 0, . . . , l − 2,

g(hi,mi+1) = E(hi,mi+1)⊕ hi ⊕mi+1 ⊕ ∆̃i, i = l − 1,

and the sequence of unique counters i is replaced by a «quasi-periodic» one
∆i = i⊕ (i� 1), for example,

∆0,∆1, . . . , ∆̃15 = 1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,15,

∆0,∆1, . . . ,∆15, ∆̃16 = 1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31,16.

Also, it is important that ∆i 6= ∆̃i ∀i = 0, ..., 2n − 1.
The keyed cryptoalgorithm Streebog-K defined as (fig. 2)

KH(K,M) = H(K||M) = H(K||0...0︸︷︷︸
n−k
||M), K ∈ V k, K ∈ V n,

where 256 ≤ k ≤ 512 = n and K is padded with zero bits if necessary (as
in [3]). Streebog-256 and Streebog-512 can be used as H without significant
differences in properties. Note that due to the key’s prepending, the last value
∆̃l = l has the index l, and not l − 1. Further in the text, the compression
function means g(h,m) = E(h,m)⊕ h⊕m.
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Figure 2: Streebog-K with the equivalent representation [22].

4 Related key attack settings

The security proof presented in the next section shows that if the adver-
sary can break PRF-security of Streebog-K, then one of the following two
problems is also easy to solve. However, we expect these problems to be hard
– g successfully resists attacks using related keys in (at least) two settings.
Therefore, the security of Streebog-K is also difficult to break.

Problem 1. PRF -RKA⊕-security of gBK(·) = g(K, ·) in sense

Adv
PRF−RKA⊕
g. (A) = Pr

(
K

R← V n, Ag(K,·),g(K⊕φ,·) ⇒ 1
)
−

− Pr
(
f, f ′

R← Func(V n, V n), Af(·),f ′(·) ⇒ 1
)

– the pair of the compression functions (with the key K and with the related
key K⊕φ) is indistinguishable from the pair of random functions. The value
of φ 6= 0 is chosen once by the adversary before the sequence of queries. The
query consists of the block m and the binary flag «key K»/«key K ⊕ φ».

In the most favorable case, there are only two distinguishing methods:
brute-force attack against two keys and birthday-paradox

Adv
PRF−RKA⊕
g. (t, q) / 2 · t

2n
+

q2

2n+1
.

Problem 2. PRF -RKA�-security of gOK = g(·, K). The relation between
the keys is modular addition

AdvPRF−RKA�gO (A) = Pr
(
K

R← V k;Ag(·,K�·) ⇒ 1
)
−

−Pr
(
K

R← V k; fK�σ
R← Func(V n, V n), ∀σ ∈ V n;AfK�·(·) ⇒ 1

)
.

The query consists of the block m and the value σ. The response is
gO
K�σ(m) = g(m,K � σ) or fK�σ(m) correspondingly. We can hope that in
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the absence of specific vulnerabilities, the only possible attack is the parallel
key guessing

AdvPRF−RKA�gO (t, q) / t · q
2k−1

.

The more related keys are used, the easier it is to carry out the attack.
The complexity of solving basic problems should be confirmed by con-

structive cryptanalysis of the compression function. The impossible differen-
tial single-key attack against gB is presented in [24] and covers 6.75 out of 12
rounds. In [25], attacks on 7 rounds in the PRF model are proposed for gB

and gO. We managed to adapt methods [25] to build only 8-round attacks in
the related-key settings.

Despite the many papers on the topic [26, 27, 28, 29, 30, 31, 32], to
the best of our knowledge, no effective full-round algorithms for constructing
preimages and collisions of various types have been published. This is implicit
evidence of the good cryptographic properties of g.

The existing results of cryptanalysis, as well as the conservative design
of the underlying block cipher E and its key schedule, suggest that there are
no special attacks on full-round versions of the compression function also
in the PRF-RKA settings. In other words, the two basic problems under
consideration are actually computationally hard.

The appearance of more efficient cryptographic methods of the compres-
sion function g will not render the presented security proof of Streebog-K
incorrect. Specific attacks on g can be taken into account in the security
bounds due to the absence of heuristic arguments in the proof.

5 Proof of PRF-security

Next, we show the reducibility of Streebog-K security to the problems
discussed in the previous section. The equivalent representation (figure 2) is
the start point KH(0)(K,M) = KH(K,M).

Step 1. We define the padding transformation pad : V ∗ → (V n)≤lmax

that sequentially adds to M :
– the nonempty binary string 10 . . . 0 to achieve the multiplicity of the

block length;
– the block bin(L) representing the length of M in bits.
Let M ′ consists of l + 1 full-length blocks (l ≥ 1), then

KH(0)(K,M) = KH(1)(K, pad(M) = M ||10 . . . 0||bin(L)), M ∈ V ∗,
KH(1)(K,M ′) = g

(
Csc(g(IV,K),M ′), K � sum′�(M ′))

)
, M ′ ∈ (V n)≤lmax ,
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and the «mixing» L is an implicit part of the cascade transformation

Csc(KCsc,M
′) = g(. . . g(g(KCsc ⊕∆0,m1)⊕∆1,m2) . . .⊕ ∆̃l,ml+1),

where KCsc = g(IV,K) and ml+1 = bin(L).
The pad is injective, and hence if KH(1) is secure with arbitrary block-

length inputs, then KH(0) is also an equally good PRF with M ∈ V ∗.
Step 2. We replace gOK = g(·, K � ·) (the first and last compression

functions) with a family of true random functions fK�·(·) and obtain KH(2).
Algorithm A, which distinguishes KH(2) from KH(1), can be used to attack gOK
in the model PRF -RKA�. The corresponding algorithm BRKA works as fol-
lows. To process requests from A, one preparatory query (IV, 0) to the oracle
g(·, K � ·) is required. So, BRKA obtains KCsc. Each query M ∈ (V n)≤lmax

requires from BRKA no more than lmax computations and one related-key
query (Csc(KCsc,M), σ = sum′�(M)). The result of work A is equal to the
result of work BRKA and the query complexity is qB = 1 + qA.

Pr
(
AKH(1)(·) ⇒ 1

)
− Pr

(
AKH(2)(·) ⇒ 1

)
≤ AdvPRF−RKA�gO (BRKA).

Step 3. The essence of the step is contained in the following statement.
Lemma. The cascade Csc(KCsc,M), M ∈ (V n)≤lmax is itself PRF-secure

provided that g. is secure in the PRF -RKA⊕ model

AdvPRFCsc (t, q, lmax) ≤ q · lmax · Adv
PRF -RKA⊕
g. (t′, q),

where t′ = t+O(q · lmax).
The inequality presented above is similar to [9, Theorem 3.1] on the PRF-

security of a «plain» cascade pCsc (i.e. without addition with ∆0,...,∆̃l). The
differences are as follows: the relevant threat model for g. has been changed
from PRF to PRF -RKA⊕; the sequence ∆0, ...,∆l−1, ∆̃l is used; the prefix-
free restriction is not imposed on the adversary’s queries.

Obviously, the cascade isn’t secure if the adversary can predict some
output for non-queried input. If the value pCsc(K,M) is known for some
message M , then pCsc(K,M ||p) can also be easily computed for any block p
(length extension attack). Hence, the PRF-security of pCsc is proved only for
the case when none of the queried messages could be a prefix of any other.

Our situation is different. The value Csc(K,m1|| . . . ||ml+1) does not give
a direct opportunity to compute Csc(K,m1|| . . . ||ml+1||p) due to the ∆l 6=
∆̃l. Ifml+1 is the last block, then g(Kg⊕∆̃l,ml+1) is computed, otherwise we
have g(Kg⊕∆l,ml+1), where Kg is some intermediate state. The calculation
is performed using related keys, and the relation is equal to φl = ∆̃l ⊕ ∆l.
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We formalize this intuition using the PRF -RKA⊕ notion and give the proof
in Appendix B.

Thus, the last call of the compression function with checksum mixing is
not necessary to ensure the security of Streebog-K (of course, under the two
assumptions about security of g).

Step 4. Consider a special threat model called FINAL

AdvFINALCsc (A) = Pr
(
KCsc

R← V k, A ⇒ (M1, . . . ,Mq),

∃i, j : Csc(KCsc,Mi) = Csc(KCsc,Mj), Mi 6= Mj OR
∃i : Csc(KCsc,Mi) = IV ).

An adversary A which is effective in this model allows to construct the algo-
rithm BFINAL attacking Csc in the PRF model. BFINAL runs the algorithm
A and obtains q different messages (M1, . . . ,Mq). For each message BFINAL
requests from its oracle the value Yi = F(Mi) (resp. Yi = Csc(KCsc,Mi)).
If BFINAL obtains the collision or the value IV among (Y1, ..., Yq) then the
result is 1, otherwise 0. Hence

Pr(BCsc(KCsc,·)
FINAL ⇒ 1) = p0 ≥ AdvFINALCsc (A),

Pr(BF(·)
FINAL ⇒ 1) = p1 ≤

q · (q − 1)

2

1

2n
+

q

2n
,

AdvPRFCsc (BFINAL) = p0 − p1 ≥ AdvFINALCsc (A)−
(
q · (q − 1)

2

1

2n
+

q

2n

)
,

AdvFINALCsc (A) ≤ AdvPRFCsc (BFINAL) +
q2 + q

2n+1
.

The last call of the compression function in Streebog «mixes» checksum
with the state. At the second step, this transformation was replaced by a
family of random functions fK�σ(·) R← Func(V n, V n), ∀σ ∈ V n. One query
has already been made KCsc = fK�0(IV ).

The query Mi from A produces the pair of values

(Yi, σi) = (Csc(KCsc,Mi), sum
′
�(Mi))

If there are no collisions (Yi, σi) 6= (Yj, σj) for all i 6= j and for all i:
(Yi, σi) 6= (IV, 0), then fK�·(·) is not requested twice with the same query.
Thus, the result is indistinguishable from a random function.

The transformation KH(2) is represented as follows.
Initialization: K R← V k; H ′0, H ′1, . . . , H ′q

R← V n; KCsc = H ′0 = fK�0(IV );
On query Mi, i = 1, ..., q compute:
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– Yi = Csc(KCsc,Mi); Hi = H ′i; σi = sum′�(Mi);

– (*) if (Yi, σi) = (Yj, σj) for some j < i then Hi = Hj;

– (*) if (Yi, σi) = (IV, 0) then Hi = KCsc;

– return Hi.

If rows marked with (*) are not executed, then the result is indistinguish-
able from a random function. Delete these rows and obtain KH(3).

The probability of the conditions (*) being true does not exceed the
probability of a successful attack in the FINAL model on Csc (if we remove
checksums, then it is essentially the same thing). Hence, by «fundamental
game-playing lemma»

Pr
(
AKH(3)(·) ⇒ 1

)
− Pr

(
AKH(2)(·) ⇒ 1

)
≤ AdvPRFCsc (BFINAL) +

q2 + q

2n+1
.

The set of transitions presented leads to the following theorem.
Theorem (PRF-security of Streebog-K). For any adversary A with

time complexity at most t that makes q queries, where the maximal message
length is at most (lmax−1) blocks, there exist the adversaries B′ and B′′ such
that

AdvPRFKH (A) ≤ AdvPRF−RKA�gO (B′) + q · lmax · Adv
PRF−RKA⊕
g. (B′′) +

q2 + q

2n+1
.

The query complexity of B′ and B′′ is q+ 1 and q correspondingly. The time
complexity of both adversaries is t′ = t+O(qlmax).

Assuming t � q · lmax and with the estimates of AdvPRF−RKA�gO and
Adv

PRF−RKA⊕
g. based on generic attacks

AdvPRFKH (t, q, lmax) / t · q
2k−1

+
t · q · lmax

2n−1
+
q3 · lmax

2n
.

It should be noted that the bound presented in the theorem almost coincides
with the corresponding one in HMAC and can be considered tight in some
sense (see, for example [15]). At the same time, the approximate estimate,
which was given for illustrative purposes, is not accurate and significantly
exaggerates the capabilities of the adversary. Despite this, Streebog-K can be
used in practice without any restrictions on the amount of data processed.
Of course, the presented estimates do not consider threats that are outside
the formal model, e.g. side-channel attacks and others.

For example, let Streebog-K be used as MAC with 256-bit key. The output
is truncated to τ = 64 bits, q = 248 messages are processed with one key,
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each message has a length of no more than lmax = 264 blocks. The computing
power of the adversary is about t = 2128 operations. Hence, the probability
of creating a forgery in one attempt is bounded by [12, Proposition 7.3] (SUF
– Strong UnForgeablility)

AdvSUFKH (t, q, lmax) ≤ AdvPRFKH (t, q, lmax) +
1

2τ
/ 2−63,

and the numerical value is close to the ideal 2−τ = 2−64.

6 Beyond the bound attacks

To complete the description of the properties and features of Streebog-K,
we briefly present two attacks on it. Once again, we note that attacks have
a significant probability of success only if the amount of material and com-
puting resources of the adversary is greater than allowed according to the
provable security bounds.

6.1 Existential forgery

The attack is carried out under the conditions of the adaptively chosen
messages.

The set of l-block messages Mi = bin(i)||bin(2n − i)||C, i = 1, ..., q is
prepared, where C contains arbitrary blocks. The checksums of all messages
are the same sum�(Mi) = sum�(Mj), 1 ≤ i, j ≤ q.

The oracle is queried for the values of Hi = KH(K,Mi).
For simplicity, we assume that after processing of the two first blocks

bin(i)||bin(2n − i), all intermediate states are different. Further transforma-
tions will be identical for each message.

Assuming that when processing the j-th block (j = 3, . . . , l), a random
mapping is applied to each intermediate state in parallel, the probability
of a collision for an arbitrary pair is estimated by Pr(Hi = Hj, i 6= j) =
Θ (l · 2−n), see [23, Lemma 1]. Then the probability of a collision among q
messages Pr(∃i, j : Hi = Hj, i 6= j) = Θ

(
q2 · l · 2−n

)
.

A collision generated by a pair of messages Mi, Mj most likely occurs
when processing one of the message blocks, and not when finalizing. Hence,
we have

KH(K,Mi||P ) = KH(K,Mj||P ), P ∈ V n.

The adversary uses the possibility of adaptive setting, obtains Hq+1 =
KH(K,Mi||P ) and creates the forgery Mj||P with the code Hq+1.

The attack is the same for both Streebog-K and HMAC-Streebog.
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6.2 Key recovery

In [23], among other things, the key-recovery attack against
HMAC-Streebog (with 512-bit key) was presented. The time complexity is
at least t = 2419 operations.

The attack consists of two phases. Both of them have almost the same
time complexity.

The first phase is the state-recovery attack. This method is generic for
HMAC with HAIFA-like [21] hash function. The optimal time complexity is
about t = 2419 operations. The oracle is queried about q = 2358 times. The
length of each query is at least l = 251 blocks. Other values of the q and l
will result in more time complexity.

The target of the second phase is the secret key. This part of the attack
can only be applied to HMAC-Streebog and similar cryptoalgorithms.

The state recovery attack can be used against Streebog-K without any
modification. So, we omit its description and refer to [23]. As a result of the
first phase, the adversary obtains the l-block messageM and the correspond-
ing secret state x (after processing the message and before finalization).

Key recovery phase is much easier for Streebog-K.
The adversary constructs 2u-collision starting with the state x (the time

complexity is about u · 2n/2 operations [20]). The value of the multicollision
is x∗ = Csc(KCsc,M ||Pi||10..0||bin(L)) and Pi contains exactly u blocks,
i = 1, ..., 2u. By queries to the oracle the values Hi = KH(K,M ||Pi) are
collected and g(x∗, K � σi) = Hi, where σi = sum�(M ||Pi||10..0) (see fig.
3). We assume that almost all σi are different and the same is true for Hi.

Figure 3: Key recovery attack (with known state x).

Thus, we need to guess zi = K � σi for some i. We compute g(x∗, z̃j) =

H̃j and check the match H̃j = Hi, j = 1, ..., 2v. If H̃j = Hi is true then
K � σi = z̃j can also be true with high probability. If 2u · 2v = 2n, we expect
one true match to be found.

The time complexity of the key recovery phase is t ≈ l·2u+u·2n/2+2v and
with u = 230, l = 251, t ≈ 2283, the query complexity is q = 2u. Consequently,
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the complexity of the first phase is much greater than the second.
Thus, Streebog-K does not provide «512-bit security» in the sense of

resistance to the key recovery. This is also true for HMAC-Streebog. We
suggest using 256-bit keys in Streebog-K.

7 HMAC, S3G and GOST94

The obtained security proof for Streebog-K can be used with some mod-
ifications for a number of similar cryptoalgorithms.

HMAC-Streebog uses the key four times. The relation between keys is
defined by two operations simultaneously. In the second step of the proof,
the stronger model is used instead of PRF -RKA� (problem 2)

Adv
PRF−RKA⊕,�
gO (A) = Pr

(
K

R← V k;Ag(·,(K⊕·)�·) ⇒ 1
)
−

−Pr
(
K

R← V k; fi
R← Func(V n, V n), ∀i ∈ V n;Af(K⊕·)�·(·) ⇒ 1

)
,

the query is (m,φ, σ), the response is y = g(m, (K ⊕ φ)� σ). The heuristic
estimate of complexity for PRF -RKA⊕,� is the same as for PRF -RKA�.
Problem 1 and the rest of the steps remain unchanged, but one more step is
added. The collision after the first call of the hash function H((K⊕ipad)||M)
is taken into account, as well as the collision between the last related key and
the other three. The result is the following theorem (the proof is presented
in Appendix).

Theorem (PRF-security of HMAC-Streebog). For any adversary A
with time complexity at most t that makes q queries, where the maximal
message length is at most (lmax − 1) blocks, there exist adversaries B′ and
B′′ such that

AdvPRFHMAC-Streebog(A) ≤ Adv
PRF−RKA⊕,�
gO (B′)+

+q · lmax · Adv
PRF−RKA⊕
g. (B′′) +

q2 + q

2n+1
+

3(q2 + q)

2τ+1
,

where τ ∈ {256, 512} is the bit length of the output. The query complexity
of B′ and B′′ is 2 + 2 · q and q correspondingly. The time complexity of both
adversaries is t′ = t+O(qlmax).

Cryptoalgorithm S3G [4] is defined as S3G(K,M) = H(K||M), but the
k-bit key is not padded to 512 bits, k ∈ {128, 256}. The number of calls to
g is always the same for the selected k. Yet another variant of the compres-
sion function is defined as gOOK (m,m′) = g(m,K||m′), m′ ∈ V n−k with the
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corresponding threat model

Adv
PRF−RKA�,||
gOO (A) = Pr

(
K

R← V k;Ag(·,(K||·)�·) ⇒ 1
)
−

−Pr
(
K

R← V k; fi
R← Func(V n, V n), ∀i ∈ V n;Af(K||·)�·(·) ⇒ 1

)
,

the query is (m,m′, σ), the response is y = g (m, (K||m′)� σ). The second
step of the proof changes accordingly. In the third step, the tree does not
have a single root, the number of roots is arbitrary from 1 to q. The fourth
step of the proof does not require significant changes.

Hash function GOST94 [2] is based on the «plain» Merkle-Damg̊ard
scheme (the state and the message size n = 256 bit) with one excep-
tion: the last call of the compression function g94 «mixes» checksum of
the message (modulo 2n) to the state. The first step of the security proof
HMAC-GOST94 should take into account changes in the padding. The sec-
ond step uses the same reduction as for HMAC-Streebog (gO94 must be secure
in the PRF -RKA⊕,� model). The third step is simply using the previously
known result [9, Th. 3.1] (g.94 must be a secure PRF). At the fourth step we
use a well-known «extension trick» as in the proof of HMAC [14, Sec. 7]. The
last step is the same as for HMAC-Streebog. However, it should be noted that
the security of g94, as far as we know, was not examined in the PRF model,
unlike g [24, 25]. Therefore, in the case of HMAC-GOST94, we cannot say
without a doubt that the basic problems are really computationally hard.

8 Conclusion

The paper presents «Streebog-K» («Keyed Streebog»)

KH(K,M) = H(K||M), K = K||0...0,
based on keyless hash function Streebog. The proposed solution has almost
the same cryptographic strength as HMAC-Streebog. This is true both from
the provable security point of view, and with regard to the applicability of
attacks. At the same time, the speed is doubled when processing short texts.

The suggested proof shows that Streebog-K is a pseudorandom function
(PRF) and, therefore, a secure message authentification code (MAC). The
security is reduced to the resistance of the underlying compression function
to the related key attacks (PRF-RKA). The existing results indicate that the
compression function is indeed secure in the relevant threat models.

The obtained results can be slightly modified to create security proofs of
HMAC-Streebog, HMAC-GOST94, S3G and similar cryptoalgorithms. Such
changes were also briefly listed.
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We also propose two open problems to consider:
1) Is it possible to replace problem 1 (PRF -RKA⊕) in the reduction

with the simple PRF model?
2) Is there an attack in any model that would be more effective against

Streebog-K than against HMAC-Streebog?
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B Proof of the lemma

Lemma. The cascade

Csc(KCsc,M) = g(. . . g(KCsc ⊕∆0,m1) . . .⊕ ∆̃l,ml+1),

where M = m1||m2||...||ml+1 ∈ (V n)≤lmax, 1 ≤ l + 1 ≤ lmax, is PRF-secure
provided that g. is secure in the PRF -RKA⊕ model

AdvPRFCsc (t, q, lmax) ≤ q · lmax · Adv
PRF -RKA⊕
g. (t′, q),

where t′ = t+O(q · lmax).
Proof. Let’s imagine queries to the cascade in the form of a tree:
the root v0 is KCsc; the nodes vi are the intermediate states; the results are
stored in leaves. Each edge of the tree is labeled with the the block mi from
the message M

KCsc = v0
m1→ v1

m2→ v2
m3→ v3 . . .

ml+1→ vl+1, 1 ≤ l + 1 ≤ lmax.

At each level (height) after processing all requests, there will be no more than
q nodes.

Consider an arbitrary node vi, which is essentially an intermediate secret
key. If mi+1 is not the last, then g(vi ⊕∆i,mi+1) = vi+1 is computed. If the
block m′i+1 is the last, then ∆̃i is used g(vi ⊕ ∆̃i,m

′
i+1) = v′i+1. The first

secret key is Kg = vi ⊕ ∆i, the second one is K ′g = vi ⊕ ∆̃i. The relation
between the keys is defined as

φi = Kg ⊕K ′g = ∆i ⊕ ∆̃i = (i⊕ (i� 1)) ⊕ i = i� 1, i = 0, . . . , lmax.

Figure 5: Node vi of the tree. The internal (resp. external) edges and nodes are highlighted
in blue (resp. red).

The adversary will never observe the values of the internal nodes of the
tree. Hence, all adversary’s queries will be independent of these values. For a
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«plain» cascade from [9], this was ensured by limiting the queries (none of the
queried message could be a prefix of any other). In our case, the mentioned
independence is provided essentially by two different functions that compute
internal and external nodes, respectively.

We use a «hybrid argument» for tree levels (from 1 to lmax) and for nodes
of each level (from 1 to q).

Denote by Csci the cascade transformation starting from level i, Csc0 =
Csc. At level i, we define the hybrid game and the corresponding oracle Ci as
follows:

– Initialization: F R← Func
(
(V n)i, V n

)
; F′ R← Func

(
(V n)≤i, V n

)
;

– On query M = (m1, ...,ml) ∈ (V n)l, 1 ≤ l ≤ lmax from A compute:

if l ≤ i then y = F′(M); return y;
if l > i then Mpre = (m1, . . . ,mi); Msuff = (mi+1, . . . ,ml);
return y = Csci(F(Mpre),Msuff).

All internal (resp. external) nodes of the tree are calculated using F (resp.
F′). The oracle C0(·) is identical to the Csc(KCsc, ·). Indeed, if i = 0 thenMpre

is an empty string, Msuff = M , F(Mpre) = KCsc and y = Csc0(KCsc,M).
The algorithm Clmax

(·) is essentially a random function

AdvPRFCsc (A) = Pr
(
AClmax(·) ⇒ 1

)
− Pr

(
AC0(·) ⇒ 1

)
.

Let A be able to effectively distinguish C0(·) and C1(·), then it is pos-
sible to construct B0 distinguishing the compression function from the ran-
dom function in the PRF -RKA⊕ model. Really, for the one-block message
M = m1 algorithm B0 queries the value f ′(m1) (this is either the value of
the second random function, or g(K ⊕ φ1,m1)). For any multi-block query
M = (m1,m2, . . . ,ml) received from A, algorithm B0 asks its oracle for the
value f(m1) (resp. g(K,m1)). Recall that the secret random key K is es-
sentially the value K = KCsc ⊕∆0 (also distributed uniformly on V n), and
therefore, B0 correctly emulates the beginning of the cascade. Next, the value
Csc1(f(m1), (m2, . . . ,ml)) is computed and sent to A without queries to the
oracle. The result of B0 is equal to the result of A and

Pr
(
AC1(·) ⇒ 1

)
− Pr

(
AC0(·) ⇒ 1

)
≤ Adv

PRF−RKA⊕
g. (B0).

Consider the general case. Let A be able to effectively distinguish Ci(·)
and Ci−1(·) (figure 6).
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Figure 6: Trees formed by queries to Ci(·) (left) and Ci−1(·) (right).

We turn to the case of q parallel games in the PRF -RKA⊕. The cor-
responding adversary Bi has access to q pairs of oracles (q pairs of random
functions (fj(·), f ′j(·)) or q pairs of (g.Kj

(·), g.Kj⊕φi(·)), j = 1, .., q). The query
from Bi consists of (j, b ∈ {1, 2},m ∈ V n), where b specifies the first or
the second oracle of the j-th pair. Due to the independence of the pairs, the
hybrid argument is straightforward, and we have

Pr
(
Bf·(·),f ′·(·)
i ⇒ 1

)
− Pr

(
Bg.K·(·),g.K·⊕φi(·)
i ⇒ 1

)
≤

q∑

j=1

Adv
PRF−RKA⊕
g. (Bi,j).

The value of φi = i�1 is chosen equally by all PRF -RKA⊕-adversaries Bi,j,
j = 1, ...q. The algorithm of Bi,j is similar to that of B0. In fact, the latter
processes queries that affect the root of the tree, and Bi,j uses messages that
depend on the j-th node at depth i.

M = (m1, . . . ,ml) is the query from A to the oracle Ci(·) or Ci−1(·). The
algorithm Bi must perfectly simulate both of them:

– Initialization: PrefixMap[P ] = ∅, ∀P ∈ (V n)i−1; maxj = 1;

– On query M = (m1,m2, . . . ,ml) ∈ (V n)l, 1 ≤ l ≤ lmax from A com-
pute:

– if l < i then return y
R← V n; (recall that there are no duplicate

queries M);

– if PrefixMap[(m1, . . . ,mi−1)] = ∅ then
PrefixMap[(m1, . . . ,mi−1)] = maxj;
maxj = maxj + 1;

– j = PrefixMap[(m1, . . . ,mi−1)];
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– if l = i then y = f ′j(mi); (resp. y = g.Kj⊕φi(mi)) by query (j, 2,mi);
return y;

– if l > i then z = fj(mi); (resp. z = g.Kj
(mi)) by query (j, 1,mi);

Msuff = (mi+1, . . . ,ml);
y = Csci(z,Msuff); return y.

First of all, we note that requests shorter than l blocks always generate a
random response (both Ci and Bi). Different prefixes (m1, . . . ,mi−1) generate
queries to different oracles. PrefixMap is used to store all queried prefixes
(m1, ...,mi−1). Initially, there is not a single entry in PrefixMap. If the prefix
has not been queried before, a new entry is created in PrefixMap, otherwise,
the j corresponding to the prefix is extracted. After all interactions, we have
1 ≤ maxj ≤ q. In other words, PrefixMap stores at least one and at most
q elements. If maxj = 1, then all queries had the same prefix. If maxj = q,
then the prefixes of all queries were different.

Let Bi interact with q pairs of random functions. Therefore, if l = i then
the response is really random (as y = F′(M) in the case of Ci). If l > i

then it is also truly random (as the intermediate value F(Mpre)). Further
computation of the cascade is identical in both cases. So, Bi simulates Ci(·)
for the adversary A.

Let Bi interact with q pairs of the compression functions
(g.Kj

(·), g.Kj⊕φi(·)). Imagine that Mpre = (m1, . . . ,mi−1) and in-
stead of requesting a random function F(Mpre), we implicitly use
secret keys from the j-th pair of oracles. Next, the computations
y = Csci(g(Kj,mi), (mi+1, . . . ,ml)) are equivalent to the Csci−1 cascade,
and the perfect simulation of Ci−1(·) is also constructed.

Thus, we consistently replace Ci−1(·) with Ci(·) (i = 1, ..., lmax), and sum-
ming up the advantages, we obtain the statement of the lemma

AdvPRFCsc (A) ≤
lmax∑

i=1

(
Pr
(
ACi(·) ⇒ 1

)
− Pr

(
ACi−1(·) ⇒ 1

))
≤

≤
lmax∑

i=1

q∑

j=1

Adv
PRF−RKA⊕
g. (Bi,j).
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C Adaptation of the proof for HMAC-Streebog

Recall that the HMAC is represented as

HMAC(K,M) = H
(
(K ⊕ opad)||H(K ⊕ ipad||M)

)
,

where ipad, opad ∈ V n, ipad 6= opad, K = (K||0...0) ∈ V n. We consider the
case when H is Streebog-256 or Streebog-512 (fig. 7 and 8).

Denote by τ ∈ {256, 512} the bit length of the hash function output.
The intermediate output is HI = H((K ⊕ ipad)||M) ∈ V τ and the keys for
cascades are KI

Csc = g(IV,K ⊕ ipad), KO
Csc = g(IV,K ⊕ opad).

The proof of the PRF-security for HMAC-Streebog is similar to the cor-
responding one for Streebog-K. Next, we describe the changes.

The first step remains the same. We proceed to the analysis when the
message consists of n-bit blocks (HMAC(1)).

In the second step, the stronger model is used instead of PRF -RKA�
(problem 2)

Adv
PRF−RKA⊕,�
gO (A) = Pr

(
K

R← V k;Ag(·,(K⊕·)�·) ⇒ 1
)
−

−Pr
(
K

R← V k; fi
R← Func(V n, V n), ∀i ∈ V n;Af(K⊕·)�·(·) ⇒ 1

)
,

the query is the triple (m,φ, σ), the response is y = g(m, (K ⊕ φ)� σ).
We replace gOK = g(·, (K⊕·)� ·) (the first and last compression functions

in the inner and outer hash functions) with a family of true random functions
f(K⊕·)�·(·) and obtain HMAC(2).

Algorithm A, which distinguishes HMAC(2) from HMAC(1), can be used
to attack gOK in the model PRF -RKA⊕,�. The corresponding algorithm
BRKA works as follows. To process requests from A, two preparatory queries
(IV, ipad, 0) and (IV, opad, 0) to the oracle g(·, (K⊕·)�·) are required (KI

Csc

and KO
Csc are obtained). Each query M ∈ (V n)≤lmax requires from BRKA no

more than O(lmax) computations and two related-key queries

(Csc(KI
Csc,M), ipad, σI = sum′�(M)),

(Csc(KO
Csc, H

I ||10...0||bin(n+ τ)), opad, σO = sum�(HI ||10...0)).

The result of work A is equal to the result of work BRKA and the query
complexity is qB = 2 + 2 · qA.

Pr
(
AHMAC(1)(·) ⇒ 1

)
− Pr

(
AHMAC(2)(·) ⇒ 1

)
≤ Adv

PRF−RKA⊕,�
gO (BRKA).

The third and fourth steps also remain the same.
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The fifth step.
As a result of four steps we construct HMAC(3) as a truly random function

generating HI . The last compression function is defined in HMAC(3) as a
family of random functions f(K⊕opad)�σO(x). The value of HI affects both
inputs (σO and x). We concern only about σO and ignore x. The adversary
A makes q queries to HMAC(3) and thereby generates 2 + 2 · q queries to
f(K⊕·)�·(·). During the entire interaction, the following keys will be generated:

K ⊕ ipad,
K ⊕ opad,

KI
1 =(K ⊕ ipad)� σI1 ,

KO
1 =(K ⊕ opad)� σO1 ,

. . .

KO
q =(K ⊕ ipad)� σIq ,

KO
q =(K ⊕ opad)� σOq .

We have two possible «bad» events:
1) collision in the sequence KO = {KO

1 , ..., K
O
q };

2) nonempty intersection of KO and KI = {KI
1 , ..., K

I
q , K⊕ipad,K⊕opad}.

If no bad events have occurred, then the last compression function never
queried with the coinciding arguments and hence output of HMAC(3) is in-
distinguishable from a true random function.

The collision in KO is guaranteed to generate the collision in the output
of HMAC(3). Therefore, we are obliged to consider them.

Collisions in KI are not unsafe. This is taken into account in step 4, if
the same keys are used, then the inputs are probably different.

The nonempty intersection of KO and KI may not lead to the reuse of
random functions values, but to simplify the analysis, we consider only the
worst case and assume that x value is the same for the same keys.

The probability of the first «bad» event is equal to the probability of the
collision HI ∈ V τ

Pr(∃i 6= j : KO
i = KO

j ) = Pr(∃i 6= j : σOi = σOj ) ≤ q · (q − 1)

2τ+1
.

The set KI contains at most (q + 2) elements. Due to the bijectivity of
modular addition, we have at most (q + 2) values σO at which KO ∈ KI .
Hence, there are at most (q + 2) values HI that lead to «bad» event 2

Pr(KO ∩KI 6= ∅) ≤ q · (q + 2)

2τ
.
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and by the union bound and «fungamental game-playing lemma»

AdvPRF
HMAC(3)(q, lmax) ≤ q · (q − 1)

2τ+1
+
q · (q + 2)

2τ
=

3(q2 + q)

2τ+1
.

Figure 7: HMAC-Streebog-256 with equivalent representation. The message M consists of
L < 512 bits.

Figure 8: HMAC-Streebog-512 with equivalent representation. The message M consists of
L < 512 bits.
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Abstract

Guaranteed number of activations (GNA) is an important characteristics to de-
termine effectiveness of differential cryptanalysis of a given XS-circuit. In this paper
we propose an approach to optimize known algorithm for GNA computation, based
on branch and bound method and the analysis of special matrices which define XS-
circuit. The experiments show that the proposed algorithm significantly outperforms
the existing approach. We prove that canonical forms of XS-circuit and its dual co-
incide that provides the strict connection between the guaranteed number of linear
and differential activations. The circuits with extremal values of GNA are studied.
Several hypothesises were made based on computational experiments. One of the hy-
pothesises is that there are no XS-circuits of dimension greater then 2, which achieve
an optimal GNA on every round.

Keywords: guaranteed number of activations, XS-circuit, differential cryptanalysis, linear
cryptanalysis, branch and bound method.

1 Introduction

Many symmetric cryptographic algorithms may be described by circuits
in which vertices are binary words of particular length m and operations
belong to the following set:

1. R — cyclic shift (rotation);

2. X — bitwise modulo 2 addition;

3. A — addition of words as integers modulo 2m;
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4. L — bitwise logical AND and OR;

5. M — multiplication of words as elements of the field of order 2m;

6. S — substitution of words with preservation of their length m.

Usage of these operations in different combinations gives us different cir-
cuit types, for example ARX or LRX. Our work mostly focuses on XS-circuits,
develops framework for XS-circuits cryptanalysis, proposed in [1]. We give
new information about XS-circuits gained via rigorous analysis and multiple
experiments, which are made with a help of the optimizations that we applly
to the guaranteed number of activations computation algorithm [2].

Number of activations is the amount of non-zero differences on S-block
inputs within the rounds of the whole circuit. Guaranteed number of ac-
tivations is the minimal number of activations for the given circuit. This
characteristic gives us a lower bound of differential cryptanalysis complex-
ity and allows to obtain preliminary estimates of the resilience of the given
circuit to the differential cryptanalysis [3].

Another well-known method for cryptanalysis of block ciphers is a linear
cryptanalysis [4]. Linear and differential methods are one of the main statisti-
cal methods, dual to each other in probability relations search [6]. For finding
a lower bound of XS-circuit linear cryptanalysis complexity it is possible to
use the guaranteed number of activations for the dual XS-circuit.

Current work consists of 7 sections. Section 1 is an introduction. In Sec-
tion 2 notation and some necessary information about XS-circuits and exist-
ing GNA algorithm is given. In Section 3 we give detailed explanation of the
optimizations we applied to the original algorithm. In Section 4 we compare
performance between original and proposed versions of GNA algorithm, and
additionally compute activation times for some well-known circuits, including
ones which were never computed before. In Section 5 we prove the equiva-
lence of guaranteed number of differential and linear activations. In Section 6
XS-circuits with maximum possible GNA-values are discussed. In Section 7
there is a Conclusion.

2 XS-circuits and guaranteed number of activations

XS-circuits describe block ciphers that utilize 2 operations: X) bitwise
modulo 2 addition of binary words and S) substitution of words using key-
dependent S-boxes with possibly complicated internal structure. There are
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a lot of ciphers based on XS-circuits. For example, MARS3, SMS4, Skipjack
and the famous Feistel network.

Let F be a field of characteristic 2. Instantiate the circuit over by substi-
tuting an oracle S : F→ F for the operation S. We get the mapping Fn → Fn:

(a,B, c)[S](x) = xB + S(xa)c,

where a, c ∈ Fn2 and elements of the matrix B belong to F2. XS-circuits could
be described with a special extended matrix of XS-circuit

(
B a
c 0

)
=




b11 b12 . . . b1n a1
b21 b22 . . . b2n a2
... ... . . . ...
bn1 bn2 . . . bnn an
c1 c2 . . . cn 0



.

Any XS-circuit can be transformed to the equivalent
form (a,B, c = (0, 0, . . . , 0, 1)), where B is a uniquely determined Frobenius
cell. Such form is called the first canonical form [1].

Let us combine t instances of the circuit (a,B, c) by connecting one in-
stance’s output to the next instance’s input. The resulting XS-circuit is called
a t-round cascade and denoted by (a,B, c)t. I -th activation time of the cir-
cuit (a,B, c) is denoted by ρi(a,B, c). It equals to the minimum number of
rounds t such that (a,B, c)t guarantees i activations [1].

Matrix G of dimension (t+n)× 2t, where n stands for circuit dimension
and t for the amount of rounds, is built using extended matrix of XS-circuit
in the first canonical form [2]

G = G(n, a, b, t)

Its columns have the following form:

τ − 1





0 0
... ...
0 0

n+ 1

{
a b

0 1

t− τ





0 0
... ...
0 0
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where b is the last column of B.
Existing GNA algorithm [2] is based on computation of the distance of

a specific linear code built on the base of matrix G. The main idea of this
algorithm is a search of partition of G into two submatrices G0 and G1 such
that:

1. Submatrix G0 contains k + 1 columns from G;

2. rank (G0) < t+ n− 1, where t is the number of rounds, n is the length
of a and b;

3. Submatrix G1 does not contain any columns that are linearly dependent
with columns from G0;

4. If such partition exists, k is incremented. Otherwise GNA of given circuit
is equal to t− k.

3 Proposed optimization

Branch and bound is a well-known algorithm design paradigm for discrete
and combinatorial optimization problems. The algorithm explores branches
of a tree, which represent subsets of the solution set. Before enumerating
the candidate solutions of a branch, the branch is checked against upper and
lower estimated bounds on the optimal solution, and is discarded if it cannot
produce a better solution than the best one found so far by the algorithm.
The name «branch and bound» for the first time appeared in 1963 paper
dedicated to traveling salesman problem [5], where proposed method was
used for the optimization of exhaustive search.

In this section we will consider our proposed optimizations of the GNA
algorithm inspired by branch and bound. To do this, we introduce the fol-
lowing

Definition 1. We will call the partition of pairs of columns of the matrix G
into matrices G0 and G1 «non-increasing» if G1 contains a column that
linearly depends on the columns of the matrix G0.

The complexity of the existing algorithms grows exponentially in t and n.
We propose a new approach based on usage of branch and bound method for
building partitions of matrix G.

Consider a binary tree where each terminal leaf corresponds to a single
partition of pairs of matrix G columns into matrices G0 and G1. Root of
given tree corresponds to an empty set of pairs of matrix G columns. The
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first left node corresponds to the situation when the matrix G0 is empty and
matrix G1 consists of the first pair of columns from G only. The first right
node otherwise has the matrix G1 empty and the first pair of columns in G0.
On the i-th step of the tree construction a step to the left corresponds to
addition of i-th pair to G1 and step to the right admits to G0. As the result
of such construction we obtain the tree of partitions of matrix G. In that tree
each leaf corresponds to a partition of pairs of matrix G columns subset into
matrices G0 and G1.

Proposition 1. If node corresponds to the «non-increasing» partition, then
all it’s children also correspond to «non-increasing» partitions.

It means that during tree traversal we may stop on the first such node and
do not traverse it’s children at all. Such approach helps to noticeably speed
up brute force, but still could be improved even more. Let n be a dimension
of the XS-circuit.

Lemma 1. For any n consecutive pairs of columns from G, the first column
of the n+ 1-th pair is linearly dependent on them.

Proof. From Lemma 1 from the article [2] it follows that if t ≥ n, then the
matrix G has a full rank equal to the numbers of rows (n + t). We call the
rows that have nonzero elements s ignificant. Consider n consecutive pairs
of columns and leave only significant rows in them. The resulting matrix
coincides with the matrix G at t = n and has a rank equal to 2n. By addition
to the first column of the n + 1-th pair to such matrix, we get matrix with
dimension (2n) × (2n + 1), but the rank of the matrix cannot exceed the
number of significant rows, therefore the rank of such matrix is equal to 2n.
Then the additional column is linearly dependent with the rest.

Lemma 2. Let a1 and b1 not be equal to 1 simultaneously and the conditions
of Lemma 1 are fulfilled. Then one of the columns of the preceding pair will
be linearly dependent on the columns of the following n pairs.

Proof. Note that a1 and b1 cannot be equal to 0 at the same time, otherwise
the round of such an XS-circuit will not be reversible. Having carried out
arguments similar to the proof of the Lemma 1, we get that the column from
the preceding pair, whose first element is 0, will be linearly expressed through
the rest.

The sufficient conditions for the partition to be «non-increasing» are pro-
vided by the following
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Theorem 1. Let G0 contains n consecutive pairs of columns. If one of the
following cases holds, the partition is «non-increasing»:

1) there is a pair from G1 with a greater ordinal number than n consecutive
pairs from G0;

2) a1 and b1 are not equal to 1 at the same time.

Proof. 1) Consider a pair from G1 which ordinal number is minimal and is
greater than the ordinal numbers of n consecutive pairs of columns from G0.
If such pair of columns follows n consecutive pairs from G0, then according
to Lemma 1 it follows that the first of its columns is linearly dependent on
the columns from G0. By definition, such partitioning is «non-increasing». If
ordinal number of such pair is not equal to the ordinal number of the pair
which follows after n consecutive pairs from G0, then because this number is
minimal, there exists n consecutive pairs of columns from G0 that their max-
imum ordinal number will be one less than ordinal number of pair from G1.
Then, according to the reasoning above, such a partition is «non-increasing».

2) From the construction of the matrix G0 and Lemmas 1, 2, it follows
that if G0 contains n consecutive pairs of columns and a1, b1 are not equal
to 1 at the same time, then in G1 there is a column that is linearly dependent
on the columns of the matrix G1. Then, by definition, such partition is «non-
increasing».

Theorem 1 allows us to add criteria that cuts off obviously non-optimal
branches of the search. Also, additional criteria can be deduced from it.
For example, the following proposition gives us opportunity to cutoff branch
with «non-increasing» partition even before occurrence of n consecutive pairs
in G0, as soon as their appearance becomes inevitable:

Proposition 2. Let a1 and b1 are not equal to 1 simultaneoisly and for the
partition, given by the processed node of the tree, it is impossible to com-
plement the matrix G0 to k + 1 pairs of columns without the appearance
of n consecutive pairs of columns from G. Then such partition is «non-
increasing».

Consider Theorem 7 from the article [1]. Let (a,B, c) be a circuit of
dimension n in which B is a Frobenius cell with a characteristic polynomial
λn + bnλ

n−1 + . . . + b1. The circuit is invertible if and only if one of the
following cases holds:

1. b1 = 1 and a1 (b2c1 + b3c2 + . . .+ bncn−1 + cn) + a2c1 + a3c2 + . . . +
ancn−1 = 0;
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2. b1 = 0, a1 = 1 and b2c1 + b3c2 + . . .+ bncn−1 + cn = 1.

By definition of the first canonical form we have c = (0, . . . , 0, 1). Then
if the circuit from the condition of Theorem 7 from [1] has the first canonical
form, then both cases are rewritten as follows:

1. b1 = 1 и a1 = 0;

2. b1 = 0 и a1 = 1.

Then it is possible to exclude the condition «a1 and b1 not be equal to 1 at
the same time» from Proposition 2 for all invertible circuits.

So the main optimization of the algorithm is achieved by using the branch
and bound method based on Proposition 1 and the cutoff criteria based on
Theorem 1 and Proposition 2.

4 Computational experiments

In order to run computational experiments, for the original version of the
algorithm we use the implementation written in Python by the author of
the original article on GNA (All calculations were performed on Intel Core
i5-7300HQ) [8]. Proposed algorithm is an algorithm built using additional
criteria for a branch and bound algorithm based on corollaries from Theo-
rem 1.

In this section we run existing and proposed versions of algorithm in order
to compute guaranteed number of activations for some well-known circuits.

4.1 SMS4

SM4 (SMS4) is a block cipher used in the Chinese National Standard
for Wireless LAN WLAN Authentication and Privacy Infrastructure since
2016 (GB/T 32907-2016). Encryption or decryption of one block of data is
composed of 32 rounds. It easy to see from plots in Figure 1 that computation
of GNA for 32 rounds would have take several hours, if the old version of
algorithm was used.
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Figure 1: GNA computation time for SMS4 (n = 4) a) with a linear time scale b) with a
logarithmic time scale

4.2 Skipjackg-4

Skipjack was proposed as the encryption algorithm in a US government-
sponsored scheme of key escrow, and the cipher was provided for use in the
Clipper chip, implemented in tamperproof hardware. It is an unbalanced
Feistel network with 32 rounds (the same as for SM4).
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Figure 2: GNA computation time for skipjackg-4 (n = 4) a) with a linear time scale b)
with a logarithmic time scale

4.3 BeltWBL-4

This block cipher was described in standart [7]. According to [1],
BeltWBL is the core of the belt-keywrap algorithm which provides confi-
dentiality and integrity control of variable length keys.
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Figure 3: GNA computation time for beltWBL-4 (n = 4) a) with a linear time scale b)
with a logarithmic time scale

4.4 Computation results

Number SMS4 skipjackg-4 beltWBL-4
of rounds Ex. alg. Pr. alg. Ex. alg. Pr. alg. Ex. alg. Pr. alg.

15 1,2366 0,1947 3,5638 0,1209 1,5898 0,134
16 1,818 0,1267 6,5453 0,1083 2,9466 0,1289
17 2,5896 0,0738 15,4309 0,1826 4,9232 0,0878
18 3,8312 0,0352 27,4088 0,1508 13,085 0,3157
19 15,5206 0,2303 57,0557 0,182 40,8592 1,2425
20 60,0129 1,2929 131,3367 0,2681 67,303 0,8394
21 89,1743 0,8057 231,5267 0,2155 176,574 2,5539
22 132,9802 0,4689 644,076 0,5805 391,1274 3,4973
23 197,0892 0,264 1589,793 1,4337 994,2484 6,6221
24 735,1466 1,4642 2916,3251 1,117 1677,1016 4,5253
25 2555,2445 7,1559 7348,0468 2,6989 3183,5355 2,9505
26 — 4,3972 — 2,1177 — 11,3771
27 — 2,7019 — 4,7252 — 9,9593
28 — 1,6709 — 9,9505 — 6,84
29 — 8,0172 — 8,2899 — 26,1846
30 — 35,8738 — 16,2128 — 76,8393
31 — 23,0073 — 13,2468 — 66,3372
32 — 14,217 — 12,983 — 196,2868
33 — 9,0241 — 22,1154 — 180,3136
34 — 40,0366 — 21,3304 — 560,1749
35 — 169,632 — 37,8486 — 388,0823

Table 1: GNA computation time in seconds for SMS4, skipjackg-4, beltWBL-4

As shown in table 1 and graphs with logarithmic time scale, the time
complexity of the proposed algorithm remains exponentially dependent on
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the number of rounds.
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ρi(SMS4) 4 5 9 10 14 15 19 20 24 25 29 30 34 35 39
ρi(Skipjackg-4) 4 7 8 10 12 13 14 17 20 22 23 25 27 28 30
ρi(BeltWBL-4) 4 7 8 10 12 15 18 19 21 23 26 29 30 32 34
ρi(GFN1-4) 4 7 8 10 12 13 14 17 20 22 23 25 27 28 30
ρi(Feistel) 2 3 5 6 8 9 11 12 14 15 17 18 20 21 23

Table 2: Computed activation times for a some well-known circuits

By using proposed algorithm it is possible to extend table of activation
times presented in [1], that allows us to compute GNA for the full-round
variants of the ciphers.

5 GNA application to linear cryptanalysis

As it was mentioned earlier, it is possible to use GNA in order to get
preliminary estimate of resistance against both differential and linear crypt-
analysis [1, 4]. In papers [1, 2] it was shown that in order to get the number of
linear activations of the circuit, GNA of the dual circuit should be computed.
The dual circuit to (a,B, c) is the circuit (cT , BT , aT ).

Following Theorem shows that the guaranteed number of linear activa-
tions is the same as the guaranteed number of differential activations.
Theorem 2. Let (a,B, c) be a XS-circuit in the first canonical form.
Then the first canonical form of its dual circuit

(
cT , BT , aT

)
coincides

with (a,B, c).
Proof. Consider the idea of the proof. Denote the dual circuit to the (a,B, c)
as
(
ā, B̄, c̄

)
. By definition of duality: ā = cT , B̄ = BT , c̄ = aT . We

bring the
(
ā, B̄, c̄

)
to the first canonical form

(
ã, B̃, c̃

)
. Further we prove

that B̃ = B and ã = a. See appendix for details of the proof.

It follows, that all the provided experiments also show the number of
linear activations. In particular, Table 2 shows not only differential but linear
activation times as well.

6 XS-circuits with extremal value of GNA

6.1 Maximum value of the GNA

The set of regular XS-circuits splits into equivalence classes with respect
to the similarity relation [1]. Let us choose the representatives of classes XS-
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circuits with matrix representation of the form

(
B a
c 0

)
=




0 0 . . . 0 0 b1 a1
1 0 . . . 0 0 b2 a2
0 1 . . . 0 0 b3 a3
... . . . . . .

... ... ... ...
0 0 . . . 1 0 bn−1 an−1
0 0 . . . 0 1 bn an
0 0 . . . 0 0 1 0




.

The following questions arise:

– how to find the maximum or minimum value of GNA for regular circuits
for the fixed number of rounds?

– is there a regular circuit that reaches the maximum value of GNA for
any number of rounds?

– is it possible to propose a construction of regular XS-circuits with a
maximum or almost maximum value of GNA?

By using the proposed version of the algorithm for calculating GNA we
computed maximum values of the GNA for different n. Figure 4 shows max-
imum values of the GNA for number of rounds from 2 to 23.

We found that for n > 2 there are no regular XS-circuits that reach
maximum number of activations in each round. For n = 2, there are 3 XS-
circuits with maximum guaranteed number of activations:

S1 =




0 1 0
1 0 1
0 1 0


 , S2 =




0 0 1
1 1 0
0 1 0


 , S3 =




0 0 1
1 0 1
0 1 0


 .
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Figure 4: Maximum value of the GNA for number of rounds from 2 to 23

The circuit S1 is equivalent to the Feistel network circuit and S2 is the
same as the circuit that describes the cipher MISTY2.

Let us denote the GNA for r rounds as δ(r).

Proposition 3. For XS-circuit with matrix S3 it holds

δ(3k − 1) = 2k − 1,

δ(3k) = 2k,

δ(3k + 1) = 2k,

where k > 1.

Proof. The induction basis is verified directly (fig. 4). Suppose the statement
is true for k. Let us prove it for k + 1. Let’s construct a matrix [2]

G = G
(
2, [1, 1]T , [0, 0], t

)
,

where
t ∈ {3(k + 1)− 1, 3(k + 1), 3(k + 1) + 1} and t > 4.

Then it holds
(x1, x2, . . . , xt+2)G = W = (u, v),

where u is the vector of differences in the inputs of the XS-circuit after t− 3
rounds, and the vector v contains the differences after additional three

D. Parfenov, A. Bakharev, A. Kutsenko, A. Belov, and N. Atutova 77



Effective algorithm to compute guaranteed number of activations in XS-circuits and it’s...

rounds, i.e.

u = (x1 + x2, x3, x2 + x3, x4, . . . , xt−3 + xt−2, xt−1) ,

v = (xt−2 + xt−1, xt, xt−1 + xt, xt+1, xt + xt+1, xt+2) .

By the induction hypothesis for t − 3 rounds, the guaranteed num-
ber of activations is equal to 2k − 1 if t− 3 = 3k − 1, and equals 2k
if (t− 3) ∈ {3k, 3k + 1}. Therefore, there are such elements of the field, for
which there are 2k − 1 or 2k activations. Fix these elements. Our goal is to
find such elements of the field which minimize number of activations.

Consider two cases:

– on the (t− 3)-th round activation occurred;

– on the (t− 3)-th round activation did not occur.

If activation did not occur, then xt−1 = 0. In this case if xt−2 = 0, then u is
zero vector and activation in u did not occurred. That contradicts the choice
of the vector u. So xt−2 = α 6= 0. Since xi + xi+1 and xi+2 either both zero
or nonzero [2], we have xt = β 6= 0. Hence

v = (α + 0, β, 0 + β, xt+1, β + xt+1, xt+2) .

Similary xt+1 6= 0. Hence there are two ore more activations in vector v. To
get exactly 2 activations put xt+1 = xt = β. Hence

v = (α + 0, β, 0 + β, β, β + β, 0) = (α, β, β, β, 0, 0)

and after t-th round number of activations equals 2(k + 1) − 1, in
case of t = 3(k + 1)− 1, and equals 2(k + 1), in case of t = 3(k + 1)
or t = 3(k + 1) + 1.

The case when activation occurred on the t − 3 round is considered by
the same way.

We also propose the following

Hypothesis 1. For n = 2 and arbitrary XS-circuit

δ(3k − 1) 6 2k − 1,

δ(3k) 6 2k,

δ(3k + 1) 6 2k,

where k > 1, i.e. S3 is optimal (achieves maximal GNA) for any number of
rounds.
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Although there are no optimal circuits for n > 2, there are circuits
that reach the optimal number of activations starting from a certain round,
see Figure 5. Therefore, for n > 2 the concept of an optimal circuit can be
replaced by a concept of a t-optimal circuit, i.e. circuit that achieve the opti-
mal number of activations for all rounds starting from t. The same essential
questions arise for t-optimal circuits:

1. What is the minimum value of t for which t-optimal circuits exist?

2. Is it possible to propose a construction of t-optimal circuit, and how to
prove their t-optimality?

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

1
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3
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8

9
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11

Number of rounds
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N
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maximum
skipjackg4

Figure 5: GNA for skipjackg4

6.2 Minimum value of the GNA

Also, during exhaustive search through all XS-circuits of low dimensions
we observed a class of regular XS-circuits with a minimum number of ac-
tivations. The structure of such circuits can be deduced theoretically. It is
considered in the following

Proposition 4. Let (a,B, c) be a regular XS-circuit of dimension n in the
first canonical form and a+ b = (1, 0, . . . , 0). Then ρk(a,B, c) = kn.

Proof. Let’s find the number d(F2, n, a, b, t). Since a + b = (1, 0, . . . , 0),
we have xτ+n = xτ (see [2], Section 4). If we take the input differ-
ence (x1, . . . , xn) = (0, . . . , 0, 1), then d(F2, n, a, b, t) =

⌊
t
n

⌋
. From [2] we
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have d(n, a, b, t) 6 d(F2, n, a, b, t) and
⌊
t
n

⌋
is the lower bound on the guar-

anteed number of activation d(n, a, b, t), then d(n, a, b, t) =
⌊
t
n

⌋
.

Therefore, we found the class of XS-circuit that is potentially vulnerable
to differential and linear attacks and is not recommended for use.

7 Conclusion and further plans

In our work we propose an optimization to GNA algorithm which sig-
nificantly speeds up its computation, which could be useful in cipher design
because it allows to get preliminary estimate of resistance against differ-
ential and linear cryptanalysis. Implementation of proposed algorithm was
approved by the author of the original papers on GNA, and currently is used
as the main version [8].

We prove that the number of differential activations coincides with the
number of linear activations that provides simultaneous estimate of efficiency
for both types of attacks.

During algorithm analysis we additionally succeeded in finding some in-
teresting facts: such as a structure of XS-circuits with minimum GNA, that
are potentially vulnerable to attacks, or the fact that there are no XS-circuits
of dimension n > 2 which achieve an optimal GNA on any amount of rounds.

We plan to continue the investigation of the properties of XS-circuits, in
particular, apply information received from analysis of computational exper-
iments to design primitives based on XS-circuits with an optimal guaranteed
number of activations. Such circuits are able to provide balanced high level
of security against both linear and differential attacks. Possible primitives
include block ciphers, hash-functions and random number generators. In this
field, such primitives as sponge functions, based on XS-circuits, should also
be studied.
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8 Appendix

Proof. Denote the dual circuit to the (a,B, c) as
(
ā, B̄, c̄

)
. By definition of

duality: ā = cT , B̄ = BT , c̄ = aT . We bring the
(
ā, B̄, c̄

)
to the first canonical

form
(
ã, B̃, c̃

)
by using the theory from [1]:

1) Let’s find the matrix B̃ = A−1B̄A = A−1BTA,
where A =

(
ā B̄ā . . . B̄n−1ā

)
.

Since ā = cT and c = (0, . . . , 0, 1), then in B̄iā we are only interested in
the last column.

B̄2 =




0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1
b1 b2 b3 . . . bn







0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1
b1 b2 b3 . . . bn




=




0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1
b1 b2 b3 . . . bn
b1bn b1 + b2bn b2 + b3bn . . . bn−1bn



.

Note that the matrix B̄, when multiplied on the left, lifts the last n− 1
rows one up. Denote by αi the lower right element of the matrix B̄i. Then
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the matrix A has the following form:

A =




0 0 0 . . . 0 0 1
0 0 0 . . . 0 1 α1

0 0 0 . . . 1 α1 α2
... ... ... ... ... ... ...
0 0 1 . . . αn−5 αn−4 αn−3
0 1 α1 . . . αn−4 αn−3 αn−2
1 α1 α2 . . . αn−3 αn−2 αn−1




,

where αi = bn+1−i +
i−1∑
j=1

αjbn+1−i+j. Then from AA−1 = E find the elements

of the matrix A−1:

A−1 =




α−1n−1 α−1n−2 . . . α−12 α−11 1
α−1n−2 α−1n−3 . . . α−11 1 0
... ... . . . ... ... ...

α−11 1 . . . 0 0 0
1 0 . . . 0 0 0



,

where α−1i = αi +
i−1∑
j=1

α−1j αi−j.

C = BTA =




0 0 . . . 0 1 α1

0 0 . . . 1 α1 α2
... ... . . . ... ... ...
1 α1 . . . αn−3 αn−2 αn−1
c1 c2 . . . cn−2 cn−1 cn



,
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where ci = bn+1−i +
i−1∑
j=1

αjbn+1−i+j = αi.

B̃ = A−1BTA

=




α−1n−1 α−1n−2 . . . α−11 1
α−1n−2 α−1n−3 . . . 1 0
... ... . . . ... ...

α−11 1 . . . 0 0
1 0 . . . 0 0







0 0 . . . 1 α1

0 0 . . . α1 α2
... ... . . . ... ...
1 α1 . . . αn−2 αn−1
c1 c2 . . . cn−1 cn




=




0 0 . . . 0 w1

1 0 . . . 0 w2

0 1 . . . 0 w3
... ... . . . ... ...
0 0 . . . 1 wn



,

where wn+1−i = αi +
i−1∑
j=1

α−1j αi−j = α−1i , i = 1, 2, . . . , n. Consider these

numbers in details:

α−1i = αi +
i−1∑

j=1

α−1j αi−j

= bn+1−i +
i−1∑

j=1

(
α−1j αi−j + αjbn+1−i+j

)

= bn+1−i +
(
α−11 αi−1 + α1bn+2−i

)
+
(
α−12 αi−2 + α2bn+3−i

)

+ . . .+
(
α−1i−2α2 + αi−2bn−1

)
+
(
α−1i−1α1 + αi−1bn

)

= bn+1−i +
i−1∑

j=1

αj
(
bn+1−i+j + α−1i−j

)
.

We obtain that

α−11 = bn ⇒ α−12 = bn−1 ⇒ α−13 = bn−2 ⇒ . . .⇒ α−1n = b1

and finally B̃ = B.
2) Now let’s find the vector ã = PA−1ā = PA−1cT .
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We have

A−1cT =




α−1n−1 α−1n−2 . . . α−11 1
α−1n−2 α−1n−3 . . . 1 0
... ... . . . ... ...

α−11 1 . . . 0 0
1 0 . . . 0 0







0
0
...
0
1




=




1
0
...
0
0



,

so we are only interested in the first column of the matrix P .

P = P (c̃A) =




c̃AM1

c̃AM2
...

c̃AMn


 ,

where Mn = E,Mi = BMi+1 + bi+1E = Bn−i + bnB
n−i−1 + . . .+ bi−1E.

c̃A = aT




0 0 . . . 0 1
0 0 . . . 1 α1
... ... . . . ... ...
0 1 . . . αn−3 αn−2
1 α1 . . . αn−2 αn−1




= (v1, v2, . . . , vn−1, vn) ,

where vi = an+1−i +
i−1∑
j=1

αjan+1−i+j, i = 1, 2, . . . , n. Consider in details these

matrices

Bk =




0 ∗ . . . ∗
... ... . . . ...
0 ∗ . . . ∗
1 ∗ . . . ∗
0 ∗ . . . ∗
... ... . . . ...
0 ∗ . . . ∗




⇒Mn−t =




bn+1−t ∗ . . . ∗
... ... . . . ...
bn ∗ . . . ∗
1 ∗ . . . ∗
0 ∗ . . . ∗
... ... . . . ...
0 ∗ . . . ∗




.

Then

P =




vM1

vM2
...

vMn−1
vMn




=




p1 ∗ . . . ∗
p2 ∗ . . . ∗
... ... . . . ...

pn−1 ∗ . . . ∗
pn ∗ . . . ∗



,
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where pn+1−i = vi +
i−1∑
j=1

vjbn+1−i+j = an+1−i +
i−1∑
j=1

(αjan+1−i+j + vjbn+1−i+j).

We are to prove that
i−1∑
j=1

(αjan+1−i+j + vjbn+1−i+j) = 0. It can be

i−1∑

j=1

(αjan+1−i+j + vjbn+1−i+j)

=
i−1∑

j=1

[
an+1−i+j

(
bn+1−j +

j−1∑

k=1

αkbn+1−j+k

)

+ bn+1−i+j

(
an+1−j +

j−1∑

k=1

αkan+1−j+k

)]

=
i−1∑

j=1

(
an+1−i+jbn+1−j + bn+1−i+jan+1−j

)

+
i−1∑

j=2

j−1∑

k=1

αk

(
an+1−i+jbn+1−j+k + bn+1−i+jan+1−j+k

)

Consider the last two amounts separately. For the first one it holds

i−1∑

j=1

(an+1−i+jbn+1−j + bn+1−i+jan+1−j)

= (an+2−ibn + bn+2−ian) + (an+3−ibn−1 + bn+3−ian−2)

+ . . .+ (an−1bn+3−i + bn−1an+3−i) + (anbn+2−i + bnan+2−i) = 0,

whereas for the second one we have the following multipliers with
each αi, i = 1, 2, . . . , i− 2:

α1 : (an+3−ibn + bn+3−ian) + (an+4−ibn−1 + bn+4−ian−1) + . . .+ (an−1bn+4−i +
bn−1an+4−i) + (anbn+3−i + bnan+3−i) = 0;

α2 : (an+4−ibn + bn+4−ian) + (an+5−ibn−1 + bn+5−ian−1) + . . .+ (an−1bn+5−i +
bn−1an+5−i) + (anbn+4−i + bnan+4−i) = 0;

...

αi−3 : (an−1bn + bn−1an) + (anbn−1 + bnan−1) = 0;

αi−2 : (anbn + bnan) = 0,
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therefore, all the multipliers of αi are zero.
Thus, we obtain that pi = ai for i = 1, 2, . . . , n. Then it holds

ã = PA−1cT =




p1 ∗ . . . ∗
p2 ∗ . . . ∗
... ... . . . ...

pn−1 ∗ . . . ∗
pn ∗ . . . ∗







1
0
...
0
0




=




a1
a2
...

an−1
an




= a.
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Abstract

The present article is concerned with the problem of constructing vectorial
Boolean functions (S-Boxes) with strong cryptographic properties through the ap-
plication of heuristic algorithms. We propose a (new) cost function for increasing
performance of nonlinear vectorial Boolean functions generation. Also, we revisit
the Spectral-linear and Spectral-difference methods and present a modification of
these methods, derived from some new results related to the linear and differential
characteristic of S-Boxes in the optimization of these properties. Combining the pro-
posed modification with the assistance of some cost functions we provide some 8-bit
S-Boxes having comparable properties with the best reported in public literature by
using the heuristic approach, but (the proposed modification) outperform, in terms
of the average number of S-Boxes evaluated to evolve the cryptographic parameters,
most of the results given in the state-of-the-art.

Keywords: S-Box, nonlinearity, differential uniformity, heuristic algorithms.

1 Introduction

In Cryptography, many symmetric primitives are often iterations of
several rounds. Each round, which must depend on the key, consists of
a confusion layer and a diffusion layer. The confusion layers are usually
formed by vectorial Boolean functions (S-Boxes) to provide nonlinear re-
lationship between the input bits and the output bits while the diffusion
layers are formed by global linear mappings mixing the output of the dif-
ferent S-Boxes.

The design criteria for S-Boxes, depending on the synthesis strategy of
the cryptographic primitive, evolve over time. Each security requirement
corresponds to an specific goal of resisting certain cryptographic attacks,
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which use (most of them) the linear, differential and algebraic properties
of S-Boxes.

The known methods for generating S-Boxes can be divided into four
main classes: algebraic constructions, pseudo-random generation, heuristic
techniques and constructions from small to large S-Boxes. Each approach
has its advantages and disadvantages respectively (see, Section 4). In this
article we particularly focus on the algebraic aspects of some heuristic
methods, used to obtain cryptographically strong S-Boxes.

We propose a (new) cost function for increasing performance of non-
linear vectorial Boolean functions generation. Several articles have been
taken the advantage of the linear and differential characteristic of S-Boxes
for optimizing its basic cryptographic properties and in this fashion, we
present two efficient optimization methods derived from some new results
related to the linear and differential characteristic of S-Boxes, which can
be used for constructing cryptographically strong S-Boxes.

The article is structured as follows: In Section 2 we give some basic def-
initions and notations about (vectorial) Boolean functions. In Section 3,
we present our design criteria for selecting S-Boxes with strong crypto-
graphic properties. An updated overview of the most relevant results of
the state-of-the-art by using the existing approaches is given in Section 4.
In Section 5 we present new strategies for constructing cryptographically
strong 8-bit S-Boxes which allows combine the proposed modifications of
the spectral-linear and spectral-differential methods with the assistance of
some cost functions. The result of our experiments and the corresponding
comparison with other relevant methods are compiled in Section 6. In the
final part we make conclusions of our research.

2 Basic definitions and notations

In this section, we introduce some basic notations and concepts needed
to describe and analyse (vectorial) Boolean functions. Common mathe-
matical notations are used. The notation Z+ denotes the set of positive
integers. For n ∈ Z+, Zn denotes the set {0, 1, 2, . . . , n− 1}.

Let F2 be a finite field of two elements. For any n ∈ Z+ we denote by
Fn2 = F2 × · · · × F2, the vector space of dimension n with the components
from the field F2, let 0 = (0, 0, . . . , 0) be the null vector of Fn2 and by ⊕ we
denote the addition operation of Fn2 . By S(Fn2) we denote the symmetric
group on Fn2 . We use the notation #A to denote the size of the set A,
by bxc we denote the floor function of the real number x and is equal to
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bxc = max{m ∈ Z | m 6 x}. The scalar product of a, b ∈ Fn2 is denoted by
〈a, b〉 and defined as 〈a, b〉 =

⊕n−1
i=0 aibi ∈ F2.

For any n ∈ Z+, the vectors from Fn2 can be interpreted as integers, such
that the leftmost bits correspond to the most significant bits. Let u ∈ Fn2 ,
then the same vector can be written as follows:

u = (u0, . . . , un−1) ∈ Fn2 , ⇔ u =
n−1∑

i=0

ui2
n−1−i ∈ Zn.

We define the indicator function as follows

Ind(x, y) =





1, if x = y;

0, if x 6= y.

From mathematical point of view, an S-Box is a mapping from Fn2 to
Fm2 . In what follows, we shall consider the case m = n and will focus only on
vectorial Boolean functions from S(Fn2), representing any such permutation
as a vector of Boolean functions:

Φ = (f0, . . . , fn−1), fi : Fn2 → F2, i = 0, 1, . . . n− 1. (1)

Alternatively, any n-bit S-Box Φ ∈ S(Fn2) can be specified by the so-
called tabular representation as follows:

Φ =

(
0 1 . . . i . . . 2n − 1

Φ(0) Φ(1) . . . Φ(i) . . . Φ(2n − 1)

)
.

But very often for simplicity, we represent S-Boxes by the vector of its
values (the so-called Look-Up Table) using the following notation:

LUT(Φ) = (Φ(0),Φ(1), . . . ,Φ(2n − 1)), where Φ(x) ∈ Fn2 .

For some fixed i = 0, 1, . . . , n − 1, every Boolean function fi can be
written as a sum over F2 of distinct t-order products of its arguments,
0 ≤ t ≤ n − 1; which is called the algebraic normal form (in brief, ANF)
of fi. The degree of the ANF of a Boolean function f with n-variables
is called the algebraic degree of f , denoted by dalg(f) and defined as the
maximum order of terms appeared in its ANF [7].

Functions fi written in (1) are called coordinate Boolean functions of
the S-Box Φ and it is well known (see, [7, p. 112]) that most of the desirable
cryptographic properties of Φ can be defined in terms of their their non-
trivial linear combinations, also called the S-Box component functions ,
denoted by Φb, and defined as Φb = 〈b,Φ〉 = b0f0 ⊕ . . . ⊕ bn−1fn−1 where
0 6= b = (b0, . . . , bn−1) ∈ Fn2 , bi ∈ F2, i ∈ {0, . . . , n− 1}.
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Definition 1 (Walsh transform). The Walsh transform Wf of a Boolean
function f : Fn2 → F2 is defined as:

Wf : Fn2 → Z,

Wf(a) =
∑

x∈Fn
2

(−1)f(x)⊕〈a,x〉, (2)

The multiset of all values of the Walsh transform of f is called the Walsh
spectrum of f .

For the Walsh transform of a Boolean function f : Fn2 → F2 it’s well
known the following property:

Lemma 1 (Parseval identity). For any Boolean function f : Fn2 → F2,
∑

a∈Fn
2

Wf(a)2 = 22n.

As far as the number of all coefficients Wf(a) of a Boolean function f
is 2n, we have immediately the following lemma

Lemma 2. For any Boolean function f : Fn2 → F2,

max
a∈Fn

2

|Wf(a)| ≥ 2
n
2 .

Definition 2 (Nonlinearity). The nonlinearity of a Boolean function f :
Fn2 → F2 is defined as:

NL(f) = 2n−1 − 1

2
max
a∈Fn

2

|Wf(a)|. (3)

In addition to concept of nonlinearity of Boolean functions, another
characteristic of the difference with affine functions was treated in [11]
namely curvature of a Boolean function f in n-variables.

Definition 3 (Curvature). Let f : Fn2 → F2 be a Boolean function in n-
variables. The curvature of f , denoted by curv(f), is defined as

curv(f) =
∑

a∈Fn
2

|Wf(a)|. (4)

As showed in [11], the curvature of a Boolean function of n-variables
has the following bounds

2n ≤ curv(f) ≤ 2
3n
2 , (5)
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where the lower bound becomes an equality if and only if f is affine and
the upper bound is achieved only when f is Bent. The curvature parameter
(which is affine invariant) is useful tool for characterizing “how close” is a
n-variables Boolean function f to being linear (or Bent) and in some sense
this parameter can indicate some insight about the nonlinearity of f . In
this article we discuss some aspects related to the notion of the curvature
of Boolean functions and its application in the optimization of the property
of nonlinearity.

From a cryptographic point of view S-Boxes with small values of Walsh
coefficients offer better resistance against linear attacks [7].

Using the Lemma 1 we obtain the following lower bound for the sum
of the k - power of the absolute values of Walsh coefficients:

Lemma 3. For any Boolean function f : Fn2 → F2 and any k ∈ N, k > 2

∑

a∈Fn
2

|Wf(a)|k >
⌊
k

2

⌋
· 22n.

Proof. Is not difficult to see that

∑

a∈Fn
2

|Wf(a)|k >
∑

a∈Fn
2

(
Wf(a)2

)bk2c >
⌊
k

2

⌋
·
∑

a∈Fn
2

Wf(a)2 =

⌊
k

2

⌋
· 22n.

Definition 4 (Linear Approximation table (LAT)). Let Φ: Fn2 → Fn2 . The
linear approximation table (LAT) of Φ is the mapping

LATΦ : Fn2 × Fn2 → Q,

LATΦ[a, b] =
2

2n
·# {x ∈ Fn2 | 〈a, x〉 = 〈b,Φ(x)〉} − 1 =

WΦb
(a)

2n
. (6)

LATΦ naturally defines a 2n × 2n matrix over Q.

Definition 5 (Linearity). Let Φ: Fn2 → Fn2 be a n-bit S-Box of S(Fn2). The
linearity of Φ is denoted by L(Φ) and can be defined as follows:

L(Φ) = max
a,b∈Fn

2\{0}
|LATΦ[a, b]| . (7)

Alternatively, the nonlinearity of Φ can be defined as:

NL(Φ) = 2n−1(1− L(Φ)) = 2n−1 − 1

2
max

a,b∈Fn
2\{0}
|WΦb

(a)| . (8)
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Definition 6 (Difference distribution table (DDT)). Let Φ : Fn2 → Fn2 . The
difference distribution table (DDT) of Φ is the mapping

DDTΦ : Fn2 × Fn2 → Q≥0,

DDTΦ[a, b] =
1

2n
·# {x ∈ Fn2 | Φ(x⊕ a)⊕ Φ(x) = b} . (9)

DDTΦ naturally defines a 2n × 2n matrix over Q≥0.

Definition 7 (Differential Uniformity). Let Φ : Fn2 → Fn2 . The differential
uniformity of Φ is denoted by δ(Φ) and is given by:

δ(Φ) = max
a,b∈Fn

2\{0}
DDTΦ(a, b).

The resistance offered by an S-Box against differential attacks is related
by the highest value of δ, for this reason S-Boxes must have a small value of
δ-uniformity for a sufficient level of protection against this type of attacks
(see, [7, 6]).

According to [29] we define the linear and the differential spectra of the
permutation Φ as follows.

For Φ ∈ S(Fn2) and numbers p1 ∈ Pn−1 and p2 ∈ Pn−2, let

Pj =
{ i

2j
∣∣ i = 0, . . . , 2j

}
,#Pj = 2j + 1, j ∈ {n− 2, n− 1},

then we define the next sets as follows

D(Φ, p1) =
{

(a, b) ∈ Fn2 × Fn2 \ {0,0}
∣∣ DDTΦ[a, b] = p1

}
,

and

L(Φ, p2) =
{

(a, b) ∈ Fn2 × Fn2 \ {0,0}
∣∣ |LATΦ[a, b]| = p2

}
.

Definition 8 (Differential spectrum ). The differential spectrum of an S-
Box Φ ∈ S(Fn2) is defined as:

D(Φ) =
{(
p1,#D(Φ, p1)

)
| p1 ∈ Pn−1

}
(10)

Definition 9 (Linear spectrum). The linear spectrum of an S-Box Φ ∈
S(Fn2) is defined as:

L(Φ) =
{(
p2,#L(Φ, p1)

)
| p2 ∈ Pn−2

}
(11)

Definition 10 (Minimum degree). The minimum algebraic degree (often
called the minimum degree) of an n-bit S-Box Φ, denoted by dmin(Φ), is
defined as the minimum algebraic degree of all the component functions,
that is

dmin(Φ) = min
0 6=b∈Fn

2

dalg(Φb(x)), (12)
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It is well-known that for any permutation Φ ∈ S(Fn2), dmin(Φ) ≤ dalg(Φ)
and these parameters are upper bounded by n − 1 (see, [7]). In general,
S-Boxes should have high values of dmin(·), dalg(·) because S-Boxes with low
values of these parameters are susceptible to algebraic attack, higher-order
differential, interpolation, cube attacks, etc (see, [7, 13]).

Definition 11 (r
(i)
Φ -parameter). For i > 0 the r

(i)
Φ parameter of an n-bit

S-Box Φ is defined as
r

(i)
Φ = dimH

(i)
Φ , (13)

where

H
(i)
Φ =

{
p ∈ F2[z1, . . . , z2n]

∣∣∣∀x ∈ Fn2 , p(x,Φ(x)) = 0, 0 < dalg(p) ≤ i
}
.

Definition 12 (rΦ-parameter). The rΦ-parameter of an n-bit S-Box Φ is
defined as

rΦ = min
{
i
∣∣∣r(i)

Φ > 0
}
. (14)

It is well-known that there exists certain methods of analysis of block
ciphers (see, [9]), exploiting the existence of polynomial relations involving
the input x to the S-box Φ and its output Φ(x) and in order to increase
the strength of a block cipher against these methods we need minimize
parameter r

(i)
Φ , i = rΦ, . . . , n and maximize parameters dmin(Φ) and rΦ

(see, for example, [26, 29]) .
It should be pointed that in [7, 37] parameter rΦ (defined slightly dif-

ferent) is called graph algebraic immunity of Φ and in these references is
denoted by AIgr(Φ).

3 General S-Box Design Criteria

Our goal, is to find permutations having high values of its basic cryp-
tographic parameters that satisfy the following criteria:

1. Maximum value of minimum degree;
2. Maximum value of rΦ with the minimum value of r

(i)
Φ ;

3. Minimum value of δ-uniformity limited by parameter listed below;
4. Maximum value of nonlinearity limited by parameter listed below.

In our case, when n = 8 a cryptographically strong S-Box Φ should
satisfy the following

Main cryptographic criteria for selecting S− Boxes of S(F8
2) :
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On some algebraic aspects of heuristic algorithms for constructing cryptographically strong...

• dmin(Φ) = 7;

• rΦ = 3 with r
(3)
Φ = 441;

• δΦ ≤ 8
256 ;

• NL(Φ) ≥ 100.

Our design criteria are basically the same as those included in the target
set of criteria for the Gradient descent method [26]. We don’t include the
absence of fixed point criteria because it can be easy achieved by using the
so-called linear (resp. affine) equivalence for S-Boxesa.

4 Existing approaches for constructing S-Boxes with

high values of its basic cryptographic parameters

As stated at beginning of this work, the existing methods for construct-
ing S-Boxes can be divided into four main classes: algebraic constructions,
pseudo-random generation, constructions from small to large S-Boxes and
heuristic techniques. In this section, we present an updated overview of the
most relevant results in the state-of-the-art.

– Algebraic constructions. The best and well-known example are
the so-called monomial permutations. Finite field inversion I = x2n−2

has best known differential uniformity and nonlinearity, δ(I) = 4
256 ,

NL(I) = 112 with the maximal value of minimum degree equal to 7.
Nevertheless, these nonlinear transformations exhibits a very simple
interpolation polynomial, and the number of such permutations is
low, in addition further analysis has shown that this approach leads
to existence of a system of polynomial equations with low degree (i.e.,

rI = 2 and r
(2)
I = 39) and a “potential vulnerability” to algebraic

attacks when using it as nonlinear layer in block ciphers.

– Pseudo-random generation. The S-Box entries by using this
method are generated from a table of random numbers and then one
simply test whether the resulting S-Box is good or not with respect
to a target set of cryptographic criteria. Pseudo-random generation of
S-Boxes also covers new generation techniques based on chaotic maps,
elliptic curves and quantum inspired methods [12, 28, 32, 1, 23, 2, 4, 3].
Permutations produced by pseudo-random generation have poor cryp-
tographic properties, for example, in the case of 8-bit S-Boxes, the
highest value for nonlinearity found is 98-100 and the differential uni-
formity are in the range of 10

256 up to a value of 16
256 , which are rather

aTwo n-bit S-Boxes Φ1 and Φ2 are linear (resp. affine) equivalent if there exist linear (resp. affine)
mappings A1, A2, such that Φ2(x) = A2(Φ1(A1(x)), ∀x ∈ Fn

2 .
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low compared to the values of 112 and 4
256 for the finite field inversion-

based case. However, these S-Boxes exhibits a complex interpolation
polynomial and maximal possible value of its graph algebraic immu-
nity. Although we always can generate a lot of such permutations there
is a small number of good S-Boxes by using this approach among all
in the search space.

– Heuristic techniques. This approach is aiming at using heuristic op-
timization techniques involving the hill climbing method [31], the sim-
ulated annealing method [8], the genetic algorithm [39, 25, 35], method
of gradient descent [26], Spectral-linear and Spectral-differential meth-
ods [29] or a combination of these in a process of iteratively improv-
ing a given S-Box or S-Boxes with respect to one or more proper-
ties [36, 33, 17, 5, 14, 20]. Considering the case when n = 8, the
S-Boxes obtained by using this method exhibits the following crypto-
graphic properties: differential uniformity and nonlinearity are up to

6
256 and 104, maximal values of minimum degree and graph algebraic
immunity equals to 7 and 3 respectively, which are the reality of nowa-
days when designing S-Boxes by using heuristic techniques [29, 24].
These S-Boxes frequently have a complex interpolation polynomial
and although there are a lot of such permutations is hard to find
them.

In almost all research [8, 39, 25, 24, 34, 19] devoted to problem of
constructing S-Boxes with high values of its basics cryptographic pa-
rameters by using this approach, the values of its Walsh-Transform
is taken under consideration in the optimization process and, in most
of cases (for not being absolute), the best results cannot be achieved
without the assistance of the so-called cost functions. Cost functions
help to describe the behavior of coefficients in the Walsh spectrum of
S-Boxes. Hence, a well descriptive cost function will undoubtedly help
to improve the final nonlinearity of S-Boxes. It should be pointed that
S-Boxes produced by heuristic techniques cannot achieve differential
uniformity and nonlinearity values close to algebraic constructions un-
less they are seeded with S-Boxes having optimal properties (see [25]),
but if we require an specific property that are not covered by algebraic
constructions such as high graph algebraic immunity or optimized the-
oretical DPA metrics then, heuristic techniques can generate S-Boxes
with high values of graph algebraic immunity and good enough values
of DPA metrics having at the same time almost optimal differential
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uniformity and nonlinearity. These are precisely their main advantages
compared to those produced by algebraic constructions.

– Constructions from small to large S-Boxes. The idea of this
method is to build larger S-Boxes from smaller ones. Because S-Boxes
must have good cryptographic properties so that a cryptographic
primitive (as a block cipher, for example) using them have good cryp-
tographic properties as well, it seems natural to use the cryptographic
phenomenon, whereby the strength of the smaller component is prop-
agated upwards to the larger object in backwards direction as well
— the S-Box itself may be constructed from smaller subcomponents
combined with small block cipher structures (Feistel, SPN, Misty or a
Lai-Massey) and certain algebriac operations like bitwise exclusive-or,
modular addition or finite field multiplication, which leads to the ap-
pearance of permutations with good values of its basic cryptographic
parameters. It should be pointed that when using this method we
can use or combine all the previous approaches. There are a several
reasons for constructing S-Boxes from smaller ones, for example: for
table -based software implementations the table s are smaller, for hard-
ware implementations the gate count is lower, for bit-sliced software
implementation the instructions count is lower, for vectorized imple-
mentation, small S-Boxes can use vector permutations. In many cases,
implementing several small S-Boxes requires less resources than im-
plementing a large one. Therefore, constructing S-Boxes from smaller
ones can reduce the implementation cost. The best S-Boxes (in term
of its cryptographic properties) obtained by using this approach are
given in [10, 16] and they attain the current record in the design of
8-bit S-Boxes with suboptimal properties.

5 New strategies for constructing 8-bit S-Boxes

through optimization algorithms

Generally speaking, most of heuristic methods for optimizing the cryp-
tographic properties of S-Boxes are based on two class of operations, swap
and crossoverb operations [15]. Some examples of successful application of
these operators can be found in [26, 39, 25, 35, 29, 36, 33, 17, 5, 14, 20, 34,
19].

bIn evolutionary computation, crossover, also called recombination, is a genetic operator used to
combine the genetic information of two parents to generate a new offspring.
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Following [21, Definition 9, p. 17] we define the product of two per-
mutations Φ1,Φ2 ∈ S(Fn2) as (Φ2 · Φ1)(x) = Φ1(Φ2(x)), ∀x ∈ Fn2 .
In this section we are interested in swap operations (called transpo-
sitions, from an algebraic point of view) on S-Boxes, i.e., a class of
transformations which convert the S-Box Φ ∈ S(Fn2) having LUT(Φ) =
(Φ(0), . . . ,Φ(i), . . . ,Φ(j), . . . ,Φ(2n−1)) into a new S-Box Φ′ ∈ S(Fn2) with
LUT(Φ′) = (Φ(0), . . . ,Φ(j), . . . ,Φ(i), . . . ,Φ(2n − 1)), where 0 ≤ i < j ≤
2n−1. The whole process can be synthesized using the group operation “·”
of S(Fn2) as follows. Let (i, j) be a transposition of S(Fn2), then the result
of applying a swap operation to Φ, yields a new S-Box Φ′ ∈ S(Fn2) given by
the following relationc Φ′ = (i, j) ·Φ, which in more details, can be defined
as follows

Φ′(x) =





Φ(x), if x 6= i, j;
Φ(j), if x = i;
Φ(i), if x = j.

With respect to the linear and differential characteristics of permuta-
tions multiplied by one transposition, it should be pointed that this issue
has been studied in [40], where the authors showed that for two S-Boxes
Φ,Φ′ ∈ S(Fn2) related as follows Φ′ = (i, j) ·Φ, the following relations holds:

• |L(Φ′)− L(Φ)| ≤ 4 · 2−n;

• |δ(Φ′)− δ(Φ)| ≤ 4 · 2−n.

These relation tell us that, multiplying some permutation by a transpo-
sition, the (non)linear and differential properties of the resulting function
will not change too much and in some cases they could be improved. How-
ever, improving these characteristics by using this approach is not a trivial
task due to the time complexity required for optimizing such cryptographic
properties.

We try to capture the behavior of the linear and differential character-
istics of one S-Box before and after the multiplication by some transposi-
tion(s) (i, j) ∈ S(Fn2) by means of their linear and differential spectrum.
Then, we check the fitness conditions of the new S-Box (Φ′) generated
through the multiplication with respect to the original S-Box (Φ) using a
function to decide whether Φ′ present better linear and differential charac-
teristics than Φ.

cIn others words, when multiplying a transposition by a permutation, we perform an exchange of the
values of a pair of inputs.
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5.1 Selection of cost functions

As stated in Section 4 the best results achieved by optimization al-
gorithms w.r.t nonlinearity are obtained by using of some cost functions
related to the linear spectrum of S-Boxes. Example of these cost functions
are presented in [8, 34, 19] and applied in [25, 17, 20, 24] with very good
results. Furthermore, the performance of various optimization algorithms
which use the aforementioned cost functions is analyzed in [34, 19], alto-
gether with the correlation analysis of these functions towards nonlinearity
property provided in [19]. Next, we present the definition of all these func-
tions. Moreover, we refer the interested lecturer to read further about them
in [8, 39, 34, 19].

Definition 13 (The WHS-fitnees function). Let Φ : Fn2 → Fn2 be a S-
Box and X, R — two real-valued parameters. The fitnees function WHS
presented in [8] is defined as:

WHS(Φ) =
∑

0 6=b∈Fn
2

∑

a∈Fn
2

||WΦb
(a)| −X|R

Definition 14 (The PCF -fitness function ). Let
−→H be the histogram of

the absolute values of the Walsh spectrum of an S-Box Φ such that
−→H is

represented by a vector having in the i-th component the number of coeffi-
cients associated to absolute value 4i from the Walsh spectrum of Φ and let
l indicate the last component of the vector with nonzero value. The fitness
function PCF(Φ) presented in [34] is defined as:

PCF(Φ) =
N−1∑

i=0

−→H(l − i)
2i

where 1 ≤ N ≤ l. In our case of study we maintain the configuration
proposed in [34] which have N = 10.

Definition 15 (TheWCF -fitness function ). Let Φ : Fn2 → Fn2 be an S-Box
and V = {0, 4, . . . , 2n

2 +1}. The fitness function WCF presented in [19] is
defined as:

WCF(Φ) =
∑

0 6=b∈Fn
2

∑

a∈Fn
2

∏

z∈V
||WΦb

(a)| − z|

5.1.1 On some bounds relating the curvature with some cost functions

When the curvature of a Boolean function f is near to the upper bound
of inequality (3) then f is close to Bent functions which have maximum
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nonlinearity. Furthermore, a Bent function satisfies that the absolute value
of all the coefficients in its Walsh-Hadamard spectrum is equal to 2

n
2 . Based

in these results, one can define the following for any Boolean function f :

Cf =
∑

x∈Fn
2

||Wf(x)| − 2
n
2 | (15)

It is straightforward to notice that in (15) the minimum value of Cf is
achieved if f is Bent and it is equal to 0. Although for balanced Boolean
functions we have that Cf > 0, lower values of Cf indicates that the coeffi-
cients in the Walsh-Hadamard spectrum of f are close to 2

n
2 and therefore

one may expect their nonlinearity to be better. However, this is not a
sufficient condition for the nonlinearity. In example, let us consider the
following 6-variable Boolean functions written in hexadecimal notation:

f1 = 0xf48091a920bf57d7 f2 = 0x1003b517aceb317f

With respect to nonlinearity we have NL(f2) = 24 and NL(f1) = 22
which clearly show that f2 is better than f1. However, the values of Cf
indicates the opposite scenario given that Cf1

= 240 and Cf2
= 256. Thus,

we reformulate Cf to add more importance to coefficients farther from 2
n
2

Ckf =
∑

a∈Fn
2

||Wf(a)| − 2
n
2 |k, (16)

where k ∈ Z, k > 2. For the particular case of functions f1 and f2, if
we set k = n = 6, then C6

f1
= 9240576 and C6

f2
= 4325376 which is in

correspondence to the relation between the nonlinearity values of f1 and
f2. The next proposition establishes a lower bound on the value of Ckf which
is useful in the case of balanced Boolean functions.

Proposition 1. For any Boolean function f : Fn2 → F2 and any k ∈ N, k >
2

Ckf > 2n
∣∣∣k · 2k−1

2 · curv(f)− 2n(2
n
2 + 1)k−2 − 2

k+2
2

∣∣∣ .

Proof. From the definition of the cost function Ckf and the binomial theorem
we obtain that

Ckf =
∑

a∈Fn
2

||Wf(a)| − 2
n
2 |k =

∑

a∈Fn
2

∣∣∣∣∣
k∑

i=0

(
k

i

)(
−2

n
2

)i |Wf(a)|k−i
∣∣∣∣∣ >

>

∣∣∣∣∣∣
∑

a∈Fn
2

k∑

i=0

(
k

i

)(
−2

n
2

)i |Wf(a)|k−i
∣∣∣∣∣∣

=

∣∣∣∣∣∣

k∑

i=0

(
k

i

)(
−2

n
2

)i∑

a∈Fn
2

|Wf(a)|k−i
∣∣∣∣∣∣

=
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=
∣∣∣(−1)k · 2n(k+2)

2 + k · (−1)k−1 · 2n(k−1)
2 · curv(f) + S

∣∣∣ ,
where by S is denoted the sum of the form

S =
k−2∑

i=0

(
k

i

)(
−2

n
2

)i∑

a∈Fn
2

|Wf(a)|k−i.

Considering the lemma 2 we obtain that

S > 22n
k−2∑

i=0

(
k

i

)(
−2

n
2

)i
⌊
k − i

2

⌋
> 22n(−1)k

k−2∑

i=0

(
k

i

)
2

ni
2 =

= 22n(−1)k
(
2

n
2 + 1

)k−2

and

Ckf >
∣∣∣(−1)k−12n

(
k · 2k−1

2 · curv(f)− 2n(2
n
2 + 1)k−2 − 2

k+2
2

)∣∣∣ =

= 2n
∣∣∣k · 2k−1

2 · curv(f)− 2n(2
n
2 + 1)k−2 − 2

k+2
2

∣∣∣ .

Finally, as the component functions of n-bit S-Boxes are n-variable
Boolean functions, the notion of Ckf can be easily extended such that for
any S-Box Φ : Fn2 → Fn2 :

CkΦ =
∑

06=b∈Fn
2

∑

a∈Fn
2

||WΦb
(a)| − 2

n
2 |k. (17)

Proposition 2. For any n-bit S-Box Φ : Fn2 → Fn2 and any k ∈ N, k > 2

CkΦ > 2n

∣∣∣∣∣∣
k · 2k−1

2

∑

0 6=b∈Fn
2

curv(Φb)− (2n − 1)
(

2n(2
n
2 + 1)k−2 − 2

k+2
2

)
∣∣∣∣∣∣
.

Proof. From the definition of the cost function CkΦ and the proposition 1
we obtain that

CkΦ =
∑

b∈Fn
2\{0}

∑

a∈Fn
2

||WΦb
(a)| − 2

n
2 |k =

∑

b∈Fn
2\{0}

Ck
Φb

>

> 2n
∑

b∈Fn
2\{0}

∣∣∣k · 2k−1
2 · curv(Φb)− 2n(2

n
2 + 1)k−2 − 2

k+2
2

∣∣∣ >
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> 2n

∣∣∣∣∣∣
∑

b∈Fn
2\{0}

k · 2k−1
2 · curv(Φb)− 2n(2

n
2 + 1)k−2 − 2

k+2
2

∣∣∣∣∣∣
=

= 2n

∣∣∣∣∣∣
k · 2k−1

2

∑

b∈Fn
2\{0}

curv(Φb)− (2n − 1)
(

2n(2
n
2 + 1)k−2 − 2

k+2
2

)
∣∣∣∣∣∣
.

In Table 1 we show the average number of solution evaluations of 1000
experiments using the hill climbing method described in Appendix C of [19]
to obtain a nonlinearity value equal 100 for the cost function presented in
this section and other relevant cost functions in the literature. For better
comprehension, we include the results achieved for the values of parameter
k ranging from k = 2 to k = 8. To establish a fair ground to the later com-
parison on the results we calculate the average nonlinearity of the results
presented in Table 1 of [29] for 1010 random generated S-Boxes (92.69),
which implies that the common nonlinearity value of a random generated
S-Box is equal to 92. Therefore, one can assume this value as the initial
nonlinearity value of the tested S-Boxes.

It should be pointed that the algorithm speeds up its performance when
the value of parameter k increases. In addition, the average number of
S-Boxes evaluated using the versions of CkΦ with parameter k ≥ 7 are
comparable to the cost functions from [34, 19] which have the best average
convergence ratios for different optimization algorithms. Also notice that
the cost function presented in [29] for the linear characteristic of S-Boxes
is the initial cost function analyzed in [34], which was later reformulated
to the function PCF in order to reduce the number of solutions that need
to be evaluated by different heuristic algorithms to obtain S-Boxes with
high nonlinearity. Furthermore, Ckf and CkΦ are special cases of Clark’s cost
function from [8] where the value of X is substituted based on the notion
of the curvature of Boolean functions and R = k.

It is interesting that in [39] the author heuristically search the values of
parameters X and R such that R ∈ [3, 25] and X ∈ [−25, 25] arriving at the
conclusion that the best set of parameters for bijective 8-bit S-Boxes has
R = 7 and X = 21. However, the data in Table 1 contradict these results.
Notice that using C7

Φ and C8
Φ, i.e (R = 7, X = 16) and (R = 8, X = 16),

the hill climbing method outperforms the configuration proposed in [39].
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Function C2
Φ C3

Φ C4
Φ C5

Φ C6
Φ C7

Φ C8
Φ PCF WCF WHS3,4 WHS7,21

[34] [19] [8] [39]

Average 37461 1102 345 221 175 156 142 154 140 737 171

Table 1: Performance of the hill climbing method from [19] to obtain nonlinearity 100
using different values of parameter k for cost function CkΦ and some representative cost
functions in the referred literature.

5.2 Adaptation of the Spectral-linear and Spectral-differential
methods to improve the basic cryptographic properties of
S-boxes

In the experiments conducted in this work, we use a variation of the
spectral differential and the spectral linear methods from [29]. In our adap-
tation of the methods we use parameters w1 = w2 = 1, i.e. only the best
S-Box is passed to the next round of the algorithm instead of a list con-
taining the best wi S-Boxes (i = 1, 2). Each time the algorithm produce a
new solution Φ′ from the round S-Box Φ we evaluate the superiority of Φ′

over Φ through the following binary function:

fitness
spl

(Φ,Φ′) =





1, if (δ(Φ′) ≤ δ(Φ) and L(Φ′) < L(Φ)) or
(δ(Φ′) ≤ δ(Φ) and L(Φ′) = L(Φ) and F1

Φ′ < F1
Φ);

0, otherwise.

(18)

fitness
spd

(Φ,Φ′) =





1, if (δ(Φ′) < δ(Φ) and L(Φ′) ≤ L(Φ)) or
(δ(Φ′) = δ(Φ) and L(Φ′) ≤ L(Φ) and F2

Φ′ < F2
Φ);

0, otherwise.

(19)

where F1
Φ and F2

Φ are the cost functions related to nonlinearity and
differential uniformity respectively. With respect to F1

Φ we use the cost
function described in Section 5.1.1. For function F2

Φ we use a variant the
cost function over the differential spectrum of S-Boxes introduced by Ivanov
et al. in [24] which we define as:

F2
Φ =

∑

0 6=a∈Fn
2

∑

b∈Fn
2

((2n · DDTΦ[a, b])(2n · DDTΦ[a, b]− 2)(2n · DDTΦ[a, b]− 4))2 .

Notice that in F2
Φ the values of the DDTΦ lower than 6

2n are not taken
into account in the calculus of the function. Moreover, if F2

Φ = 0 one can
ensure that δ(Φ) ≤ 4

2n .
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5.2.1 Some issues related to the Spectral-linear and Spectral-differential
methods

In this subsection, we perform an analysis of some issues related to
the Spectral-linear and Spectral-differential methods for concrete 8-bit S-
Boxes. Our results show the existence of some intermediate S-Boxes that
don’t meet the conditions given in Step 2 of these methods as indicated
in [29]d.

First of all, it should be pointed that when multiplying a permutation
by a transposition, the author of [29] perform an exchange of the values of
a pair of outputs, in what follows we denote a such multiplication by �,
defining the result of Φ′′ = (i, j)� Φ as

Φ′′(x) =





Φ(x), if Φ(x) 6= i, j;
j, if Φ(x) = i;
i, if Φ(x) = j.

The next proposition shows the natural relation between operations
“� ” and “ · ”.

Proposition 3. Let Φ be an n-bit S-Box from S(Fn2). Then for any Φ′,Φ′′ ∈
S(Fn2) such that Φ′ = (i, j) · Φ, Φ′′ = (i, j) � Φ, 0 ≤ i < j ≤ 2n − 1, the
following relations holds

Φ′′ =
(
Φ−1(i),Φ−1(j)

)
· Φ. (20)

Proof. To prove the proposition is sufficient to note that LUT(Φ′′) =
(Φ(0), . . . , j, . . . , i, . . . ,Φ(2n−1)) = (Φ(0), . . . ,Φ(j0), . . . ,Φ(i0), . . . ,Φ(2n−
1)), where by i0, j0 we denote the elements Φ−1(i),Φ−1(j) respectively.

In Step 2 of both methods, permutations g′i,j belonging to one of the
lists

I ′SDM =
{

(g′i,j, δ(g
′
i,j),#D(g′i,j, δ(g

′
i,j)),L(g′i,j))

}
,

I ′SLM =
{

(g′i,j,L(g′i,j),#L(g′i,j,L(g′i,j)), δ(g
′
i,j))
}
,

are defined as g′i,j = (x, x′)�gi and g′i,j = (y, y′)�gi, where i = 0, . . . ,#I ′−
1, x, x′ ∈ Xgi, y, y

′ ∈ Ygi, x < x′, y < y′, j = j(x, x′), j = j(y, y′)
are injective mappings (transpositions (x, x′), (y, y′) have special prop-
erties). Depending on which method is used, the list I ′SDM, I

′
SLM accepts

dWe refer to the full version of the Spectral-linear and Spectral-differential methods for better under-
standing of our results.
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only permutations g′i,j for which the following relations holds, δ(g′i,j) ≤
δ(gi), L(g′i,j) ≤ L(gi) and #D(g′i,j, δ(g

′
i,j)) < #D(gi, δ(gi)) if δ(g′i,j) = δ(gi)(

or L(g′i,j) ≤ L(gi), δ(g
′
i,j) ≤ δ(gi), and #L(g′i,j,L(g′i,j)) < #L(gi,L(gi)) if

L(g′i,j = L(gi)
)
. These relations seems to be natural and crucial at each it-

eration of Step 2 of the algorithms, because only the best S-Boxes in terms
of its basic cryptographic parameters (differential and linear) are included
in these lists and as a result of this iterative process the improvement of
these parameters can be expected.

Now, using the list of transpositions given in [29, Table
6, p. 114], denoted here by Transp and defined as Transp =
{(208, 194) , (45, 108) , (48, 192) , (0, 100) , (148, 159) , (121, 163) , (67, 247) ,
(36, 99) , (245, 159) , (189, 0) , (84, 230) , (109, 85) , (53, 10) , (25, 10) , (178, 217) ,
(41, 180) , (156, 179) , (112, 103) , (181, 145) , (42, 48) , (200, 88) , (235, 208) ,
(211, 122) , (6, 152) , (160, 121) , (5, 36) , (1, 124) , (129, 170) , (241, 104) ,
(153, 189) , (147, 172) , (219, 105) , (197, 181) , (218, 43) , (251, 83) , (110, 183)},
we have recreated (by using a SAGE [38] script given in Section 7) the
computation of the characteristics δ(·),L(·),#D(·),#L(·) involved in
Step 2 of the methods when optimizing the cryptogaraphic proper-
ties of S-Box of the national standard of Russian Federation GOST
R 34.11-2015 [22], denoted here by πKuz. Let define π

(i+1)
Kuz as fol-

lows, π
(i+1)
Kuz =(Transp[i − 1] � · · · � Transp[0]) � πKuz, where for each

i = 0, 1, . . . , 35,Transp[i] ∈ Transp.

Characteristics of the S− Box πKuz
δ(πKuz) =

8
256,L(πKuz) = 28

128,#D(πKuz, δ(πKuz)) = 25,#L(πKuz,L(πKuz)) = 14

Characteristics of the S− Box π
(i+1)
Kuz

δ(π
(1)
Kuz) =

8
256,L(π

(1)
Kuz) =

28
128,#D(π

(1)
Kuz, δ(π

(1)
Kuz)) = 24,#L(π

(1)
Kuz,L(π

(1)
Kuz)) = 12

δ(π
(2)
Kuz) =

10
256,L(π

(2)
Kuz) =

30
128,#D(π

(2)
Kuz, δ(π

(2)
Kuz)) = 1,#L(π

(2)
Kuz,L(π

(2)
Kuz)) = 1

δ(π
(3)
Kuz) =

10
256,L(π

(3)
Kuz) =

30
128,#D(π

(3)
Kuz, δ(π

(3)
Kuz)) = 1,#L(π

(3)
Kuz,L(π

(3)
Kuz)) = 1

δ(π
(4)
Kuz) =

10
256,L(π

(4)
Kuz) =

30
128,#D(π

(4)
Kuz, δ(π

(4)
Kuz)) = 1,#L(π

(4)
Kuz,L(π

(4)
Kuz)) = 1

δ(π
(5)
Kuz) =

10
256,L(π

(5)
Kuz) =

30
128,#D(π

(5)
Kuz, δ(π

(5)
Kuz)) = 1,#L(π

(5)
Kuz,L(π

(5)
Kuz)) = 2

δ(π
(6)
Kuz) =

10
256,L(π

(6)
Kuz) =

32
128,#D(π

(6)
Kuz, δ(π

(6)
Kuz)) = 1,#L(π

(6)
Kuz, δ(π

(6)
Kuz)) = 1

δ(π
(7)
Kuz) =

10
256,L(π

(7)
Kuz) =

32
128,#D(π

(7)
Kuz, δ(π

(7)
Kuz)) = 1,#L(π

(7)
Kuz, δ(π

(7)
Kuz)) = 1

δ(π
(8)
Kuz) =

10
256,L(π

(8)
Kuz) =

30
128,#D(π

(8)
Kuz, δ(π

(8)
Kuz)) = 1,#L(π

(8)
Kuz,L(π

(8)
Kuz)) = 1

. . .

δ(π
(34)
Kuz ) =

8
256,L(π

(34)
Kuz ) =

26
128,#D(π

(34)
Kuz , δ(π

(34)
Kuz )) = 2,#L(π

(34)
Kuz ,L(π

(34)
Kuz )) = 9

δ(π
(35)
Kuz ) =

6
256,L(π

(35)
Kuz ) =

26
128,#D(π

(35)
Kuz , δ(π

(35)
Kuz )) = 513,#L(π

(35)
Kuz ,L(π

(35)
Kuz )) = 1

δ(π
(36)
Kuz ) =

6
256,L(π

(36)
Kuz ) =

24
128,#D(π

(36)
Kuz , δ(π

(36)
Kuz )) = 526,#L(π

(36)
Kuz ,L(π

(36)
Kuz )) = 122

Table 2: Computation of characteristics δ(·),L(·),#D(·),#L(·) for πKuz and π
(i+1)
Kuz .

From Table 2 we can see that, no matters which algorithm could be used
to improve the differential and linear properties of πKuz, permutation π

(2)
Kuz

(and others) can not be included in the lists I ′SDM, I
′
SLM because the values
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of δ(π
(2)
Kuz),L(π

(2)
Kuz) are in conflict (in fact, they are worse) with relations

δ(g′i,j) ≤ δ(gi), L(g′i,j) ≤ L(gi) and this is inconsistent with the description
of the algorithms implementing the Spectral-differential and Spectral-linear
methods given in [29]. However, one can note from this Table that the
“special properties” of the transpositions may have a significant impact
when reducing the size of sets #D(g′i,j, δ(g

′
i,j)),#L(gi,L(gi)).

For the rest of S-Boxes compiled in [29, Tables 7-9, p. 114-115] we have
detected the same conflict related with the actual values δ(·),L(·) and re-
strictions δ(g′i,j) ≤ δ(gi), L(g′i,j) ≤ L(gi). We emphasize that we do not
question the efficiency of these methods, in fact we have obtained 8-bit
S-Boxes with the desired criteria by using these algorithms. Surprisingly,
when reproducing some experiments (optimization of differential and lin-
ear parameters of some known S-Boxes) made by the author of [29] we
have found some intermediate S-Boxes which do not satisfy the conditions
given by the description of the Spectral-linear and Spectral-differential al-
gorithms. These S-boxes have worse properties, but the final S-Box has the
desired cryptographic parameters and thus in sets I ′SDM, I

′
SLM could live S-

Boxes with poor differential and linear properties, and yet the algorithms
may output an S-Box with better parameters than the initial permutation.
However we believe that the special properties (which we don’t know) of
transpositions may play a crucial role in such scenarios.

5.2.2 New results derived from the Spectral-linear method

There is no doubt that the Spectral-linear method is proven to be ef-
fective towards the optimization of S-Boxes with nonlinearity up to 104.
Nonetheless, it consumes a high number of solution evaluations to produce
such results. To give the reader some clarity on this topic, using the next
propositions to make some estimations on the number of new S-Boxes
reviewed for each one of the permutations of the i − th iteration of the
Spectral-linear method assuming that #I = w2 = 1. The results are valid
for any way of multiplying permutations by transpositions, i.e., by per-
forming an exchange of the values of a pair of inputs or swapping a pair of
outputs.

Proposition 4. Let a, b ∈ Fn2 \ {0}, then for any Φ ∈ S(Fn2) such that
L(Φ) = |LATΦ[a, b]|, the following relations hold

#YΦ =

{
2n−1(1− L(Φ)), if LATΦ[a, b] < 0;
2n−1(1 + L(Φ)), if LATΦ[a, b] > 0.

(21)

where YΦ = {y ∈ Fn2 | 〈a, y〉 = 〈b,Φ(y)〉}.

Alejandro Freyre Echevarŕıa, Oliver Coy Puente, and Reynier A. de la Cruz Jiménez 105
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Proof. From the definition of linearity (7) we have L(Φ) =
max

a,b∈Fn
2\{0}
|LATΦ[a, b]|. Let us fix such a, b ∈ Fn2 \ {0}, for which

L(Φ) = |LATΦ[a, b]| .

It is not difficult to see that the vector space Fn2 can be decomposed as
follows

Fn2 = {y ∈ Fn2 | 〈a, y〉 = 〈b,Φ(y)〉} t {y ∈ Fn2 | 〈a, y〉 6= 〈b,Φ(y)〉}. (22)

From (22) we obtain

2n = #{y ∈ Fn2 | 〈a, y〉 = 〈b,Φ(y)〉}+ #{y ∈ Fn2 | 〈a, y〉 6= 〈b,Φ(y)〉},

which is equivalent to

1 =
#{y ∈ Fn2 | 〈a, y〉 = 〈b,Φ(y)〉}+ #{y ∈ Fn2 | 〈a, y〉 6= 〈b,Φ(y)〉}

2n
. (23)

Now, substituting (23) in the following equality

L(Φ) = |LATΦ[a, b]| =
∣∣∣∣

2

2n
·# {y ∈ Fn2 | 〈a, y〉 = 〈b,Φ(y)〉} − 1

∣∣∣∣

we have that

L(Φ) =

∣∣∣∣
#{y ∈ Fn2 | 〈a, y〉 = 〈b,Φ(y)〉} −#{y ∈ Fn2 | 〈a, y〉 6= 〈b,Φ(y)〉}

2n

∣∣∣∣ . (24)

From (24), by using the definition of |x|, x ∈ R, we deduce that:
If LATΦ[a, b] > 0, then

#{y ∈ Fn2 | 〈a, y〉 = 〈b,Φ(y)〉} = 2nL(Φ) + #{y ∈ Fn2 | 〈a, y〉 6= 〈b,Φ(y)〉}
= 2nL(Φ) + 2n −#{y ∈ Fn2 | 〈a, y〉 = 〈b,Φ(y)〉},

hence #{y ∈ Fn2 | 〈a, y〉 = 〈b,Φ(y)〉} = 2n−1(1 + L(Φ)).
If LATΦ[a, b] < 0, then

#{y ∈ Fn2 | 〈a, y〉 = 〈b,Φ(y)〉} = #{y ∈ Fn2 | 〈a, y〉 6= 〈b,Φ(y)〉} − 2nL(Φ)

= 2n −#{y ∈ Fn2 | 〈a, y〉 = 〈b,Φ(y)〉} − 2nL(Φ),

and in this case we have #{y ∈ Fn2 | 〈a, y〉 = 〈b,Φ(y)〉} = 2n−1(1− L(Φ)).

We also found interesting that construction of the set YΦ is always
the same regardless the sign of LATΦ[a, b], (a, b) ∈ L(Φ,L(Φ)), i.e. YΦ =
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{y ∈ Fn2 | 〈a, y〉 = 〈b,Φ(y)〉}. If LATΦ[a, b] < 0 then YΦ is the complement
of the set Y ′Φ = {y ∈ Fn2 | 〈a, y〉 6= 〈b,Φ(y)〉} which define the value of
LATΦ[a, b] as result of Proposition 4. The following proposition ensures
that in these cases the linearity (resp. nonlinearity) of Φ will not improve
after multiplication by transpositions created from YΦ.

Proposition 5. Let (i, j) be a transposition of S(Fn2) and Φ,Φ′ ∈ S(Fn2)
such that Φ′ = (i, j) · Φ, where n ≥ 4. If L(Φ,L(Φ)) = {(a, b)} and
LATΦ[a, b] < 0, then one of the following conditions hold

1. L(Φ′) = L(Φ) and #L(Φ′,L(Φ′)) ≥ #L(Φ,L(Φ));

2. L(Φ′) > L(Φ).

Proof. Let a, b ∈ \{0}, and YΦ′ = {y ∈ Fn2 | 〈a, y〉 = 〈b,Φ′(y)〉}. Since
Φ′ = (i, j) · Φ, then the following relation holds

#YΦ′ =
∑

y∈Fn
2

Ind(〈a, y〉 , 〈b,Φ′(y)〉) =

=
∑

y∈Fn
2\{i,j}

Ind(〈a, y〉 , 〈b,Φ′(y)〉) + Ind(〈a, i〉 , 〈b,Φ(j)〉) +

+ Ind(〈a, j〉 , 〈b,Φ(i)〉)
≤ #YΦ + 2, (25)

where
∑

y∈Fn
2\{i,j}

Ind(〈a, y〉 , 〈b,Φ′(y)〉) ≤
∑

y∈Fn
2

Ind(〈a, y〉 , 〈b,Φ′(y)〉) = #YΦ′.

From (25) we derive
#YΦ′ −#YΦ ≤ 2. (26)

Now, taking into account that LATΦ[a, b] < 0, then from Proposition 4
we have

• #YΦ = 2n−1(1− L(Φ));

• #YΦ′ ∈ {2n−1(1− L(Φ′)), 2n−1(1 + L(Φ′))}.
If #YΦ′ = 2n−1(1 + L(Φ′)), then from (26) we obtain

2n−1(L(Φ′) + L(Φ)) ≤ 2, (27)

which yields a contradiction because by using relations (6),(7) and lemma 2
we obtain that

2n−1(L(Φ′) + L(Φ)) = 2−1
(

max
a,b∈Fn

2 ,b6=0

∣∣WΦ′b(a)
∣∣+ max

a,b∈Fn
2 ,b6=0
|WΦb

(a)|)
)
≥ 2

n
2 .
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So we deduce that #YΦ′ = 2n−1(1− L(Φ′)) and from (26) we derive

2n−1
[
− (L(Φ′)− L(Φ))

]
≤ 2. (28)

This inequality holds in the following two cases

1. When L(Φ′) − L(Φ) = 0. In this case we obtain L(Φ′) = L(Φ),
which means that (a, b) ∈ L(Φ′,L(Φ′)), and thus #L(Φ′,L(Φ′)) ≥
1 = #L(Φ,L(Φ));

2. When L(Φ′)−L(Φ) > 0. In this case, we immediately obtain L(Φ′) >
L(Φ).

Therefore, the proof is complete.

For a given S-Box Φ ∈ S(Fn2) that satisfies the premises of Proposition 5
the Spectral-linear method from [29] will not find any S-Box Φ′ = (i, j) ·Φ,
(i, j) ∈ S(Fn2) which improves the linear spectrum of Φ and therefore the
algorithm stops. When an S-Box with this characteristics is supplied as
input of the Spectral-linear method, then the algorithm is not able to
improve the nonlinearity of such S-Box up to the best values reported
in [29].

Next, let us analyse the best possible scenario for the Spectral-linear
method using parameter w2 = 1. Suppose the input S-Box Φ as well all
S-Boxes of the i-th iteration of the method does not satisfy Proposition 5.
As consequence, it can be ensured that exist (a, b) ∈ L(Φ,L(Φ)) such
LATΦ[a, b] > 0. Hence, by Proposition 4 we have that the size of the set
YΦ = {y ∈ Fn2 | 〈a, y〉 = 〈b,Φ(y)〉} is equal to 2n−1(1 + L(Φ)). Finally,
we assume that on each iteration of the method the value of nonlinearity
improves, which is not necessarily true. If we took the initial value of non-
linearity as 92 (see discussion in Section 5.1.1), then we can estimate the
number of solution evaluations made by the algorithm as shown in Table
3.

Notice that this estimate is greater than the best average solution evalu-
ations to obtain the same value of nonlinearity presented in [19]. Moreover,
if the value of parameter w2 is greater, also the number of S-Boxes to be
evaluated will be higher.

5.2.3 Modified Spectral-linear method

Our variant of the Spectral-linear method introduce some changes w.r.t
the original implementation from [29] in addition to the aforementioned se-
lection of parameter w2 = 1. The creation of the set YΦ for a S-Box Φ and
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Iteration Initial NL Solution evaluations

1 92
(

164
2

)
= 13366

2 94
(

162
2

)
= 13041

3 96
(

160
2

)
= 12720

4 98
(

158
2

)
= 12403

5 100
(

156
2

)
= 12090

6 102
(

154
2

)
= 11781

Total 75401

Table 3: An estimation of the number of solution evaluations made by the Spectral-linear
method to reach nonlinearity 104 int best possible scenario.

a pair (a, b) ∈ L(Φ,L(Φ)) is based on the sign of the LATΦ[a, b], instead of
only using the values of y ∈ Fn2 such that 〈a, y〉 = 〈b,Φ(y)〉 as suggested
in [29]. The new selection of the set YΦ nullifies the result of Proposition 5
towards the optimization of the linear characteristic of the S-Box. The val-
ues of a and b to construct YΦ are selected at random from the pairs of ele-
ments in the set L(Φ,L(Φ)) as requested by the optimization process. This
turns the deterministic condition of the original Spectral-linear method to
a probabilistic approach, i.e. we can obtain different output S-Boxes no
matter if the initial substitution is the same. The general procedure of our
proposal is described in Algorithm 1.

5.2.4 Modified Spectral-differential method

Let XΦ = {x ∈ Fn2 | Φ(x ⊕ a) ⊕ Φ(x) = b, ∃ (a, b) ∈ D(Φ, δ(Φ))}.
Obviously, for any (a, b) ∈ D(Φ, δΦ) we have δΦ = #XΦ

2n and it is straight-
forward that the number of transpositions (i, j) generated from XΦ is equal
to
(

#XΦ

2

)
. Nonetheless, all these transpositions does not guarantee the im-

provement of the δ-uniformity of the S-Box Φ′ = Φ · (i, j) as expressed in
the next proposition.

Proposition 6. Let Φ,Φ′ be two S-Boxes such that Φ′ = (i, i⊕a) ·Φ where
i, i⊕ a ∈ XΦ. Then the following equality holds δΦ′ = δΦ.

Proof. Let XΦ′ = {y ∈ Fn2 | Φ′(y ⊕ a) ⊕ Φ′(y) = b,∃(a, b) ∈ D(Φ′, δ(Φ′))}.
Since Φ′ = (i, i ⊕ a) · Φ we have Φ′(i) = Φ(i ⊕ a), Φ′(i ⊕ a) = Φ(i) and
Φ′(x) = Φ(x) ∀ i, i⊕a 6= x ∈ Fn2 . Using these facts and taking into account
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Algorithm 1: Modified Spectral-linear method (MSLM)

Input: Permutation Φ ∈ S(Fn2 ) and the desired linearity value GoalL.

1 For permutation Φ of the i-th iteration of the algorithm, i ≥ 0, calculate the
values of L(Φ), δ(Φ), the list `i = L(Φ,L(Φ)) and set
YΦ = {y ∈ Fn2 | 〈a, y〉~ 〈b,Φ(y)〉} where (a, b) ∈ `i and the symbol ~ ∈ {=, 6=} in
accordance to the sign of LATΦ[a, b].

2 Construct the list of transpositions Y L
Φ = {(y, y′) ∈ YΦ × YΦ|y < y′}.

3 Using transposition (y, y′) ∈ Y L
Φ construct a new S-Box Φ′ = (y, y′) · Φ and go to

step 4. If all transpositions in Y L
Φ were used, then go to step 6.

4 If L(Φ′) ≤ GoalL and δ(Φ′) ≤ δ(Φ), then update Φ← Φ′ and go to step 7,
otherwise go to step 5.

5 If Φ′ satisfies the fitness conditions from (18) then:
(I) if L(Φ′) < L(Φ), then update Φ← Φ′ and go to step 1.

(II) if L(Φ′) = L(Φ), then update Φ← Φ′ and go to step 3 starting on the next
transposition of Y L

Φ .

6 Check if one of the following conditions holds:
(I) Update was made in step 5 (II), then go to step 1.

(II) No update was made in step 5 and ∃ (a′, b′) ∈ `i which is not used yet, then
recalculate the set YΦ and go to step 2.

(III) All the pairs in the list `i were used and no improvement of L(Φ) was found,
then go to step 7.

7 Return permutation Φ.

that Φ′(z⊕a)⊕Φ′(z) = Φ(z)⊕Φ(z⊕a) = b for z = i, i⊕a ∈ Fn2 we obtain

δΦ′ =
#XΦ′

2n
=

∑

i,i⊕a 6=x∈Fn
2

Ind(Φ(x⊕ a)⊕ Φ(x), b) + 2 · Ind(Φ′(i⊕ a)⊕ Φ′(i), b)

2n

=

∑

i,i⊕a 6=x∈Fn
2

Ind(Φ(x⊕ a)⊕ Φ(x), b) + 2 · Ind(Φ(i⊕ a)⊕ Φ(i), b)

2n

=

∑

x∈Fn
2

Ind(Φ(x⊕ a)⊕ Φ(x), b)

2n

=
#XΦ

2n
= δΦ.

A direct consequence of Proposition (6) is that there is no need to form
the transpositions (i, i ⊕ a), i, i ⊕ a ∈ XΦ because the δ-uniformity of the
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Algorithm 2: Modified Spectral-differential method (MSDM)

Input: Permutation Φ ∈ S(Fn2 ) and the desired δ-uniformity value Goalδ.

1 For permutation Φ of the i-th iteration of the algorithm, i ≥ 0, calculate the
values of L(Φ), δ(Φ), the list `i = D(Φ, δΦ) and the set of transpositions Xδ

Φ for
some (a, b) ∈ `i.

2 Using transposition (y, y′) ∈ Xδ
Φ construct a new S-Box Φ′ = (y, y′) · Φ and go to

step 3. If all transpositions in Xδ
Φ were used, then go to step 5.

3 If δ(Φ′) ≤ Goalδ and L(Φ′) ≤ L(Φ), then update Φ← Φ′ and go to step 6,
otherwise go to step 4.

4 If Φ′ satisfies the fitness conditions from (19) then:
(I) if δ(Φ′) < δ(Φ), then update Φ← Φ′ and go to step 1.

(II) if δ(Φ) = δ(Φ′), then update Φ← Φ′ and go to step 2 starting on the next
transposition of the list.

5 Check if one of the following conditions holds:
(I) Update was made in step 4 (II), then go to step 1.

(II) No update was made in step 4 and ∃ (a′, b′) ∈ `i which is not used yet, then
recalculate the set Xδ

Φ and go to step 2.
(III) All the pairs in the list `i were used and no improvement of δ(Φ) was found,

then go to step 6.

6 Return permutation Φ.

S-Box Φ′ = (i, i ⊕ a) · Φ will not be improved. So in order to improve
this parameter we need multiply Φ by any transposition belonging to the
following set {(i, j) | 0 ≤ i < j ≤ #XΦ − 1, j 6= i ⊕ a}. This reduce the

number of all transpositions from XΦ,
(

i.e,
(

#XΦ

2

))
, to check only

(
#XΦ

2

)
−

#XΦ

2 transpositions. Furthermore, the lower the value of δ-uniformity, the
lower the number of different transpositions that can be generated fromXΦ.
This can be a disadvantage in some scenarios due the reduced exploration
of the search space. To mitigate this side effect of decreasing the value of
δ-uniformity we introduce a minor modification w.r.t the original Spectral-
differential method from [29].

We define the set Xc
Φ = {y ∈ Fn2 |y /∈ XΦ} (also mentioned in Remark 4

of [29, p. 107]) as the complement of XΦ in Fn2 . Notice that Xc
Φ contains all

the values of Fn2 which are not solution of the equation Φ(y⊕a)⊕Φ(y) = b
for the pair (a, b) ∈ D(Φ, δ(Φ)). However, Xc

Φ may contain solutions of the
equation Φ(y)⊕Φ(y⊕α) = β for some (α, β) ∈ D(Φ, p1) having p1 ≤ δ(Φ),
then multiplying Φ by transposition (x, y) such that x ∈ XΦ and y ∈ Xc

Φ

there exist the possibility of reducing both #D(Φ, δ(Φ)) and #D(Φ, p1)
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which result in the later improvement of the δ-uniformity of Φ. Having
both, XΦ and Xc

Φ, we construct the set of transpositions

Xδ
Φ = {(x, y) ∈ XΦ ×Xc

Φ|x ∈ XΦ, y ∈ Xc
Φ} ∪ {(x, y) ∈ XΦ ×XΦ|x < y}

Using the set of transpositions Xδ
Φ we add more exploration to the

classical version of the Spectral-differential method. The pseudo-code of
the modified Spectral-differential method is shown in Algorithm 2.

5.2.5 Comments on the modified Spectral-linear method and Spectral-
differential method methods

Before introduce the results achieved in the experimental phase, we like
to summarize some aspects that we consider need to be explained in rela-
tion to our proposal. Firstly, we supply as input a desired value of linearity
(resp. δ-uniformity) which is used in step 3 of both algorithms to avoid the
unnecessary execution of the method if the desired cryptographic criteria
have been found already. Furthermore, by alternating between steps 3 and
5 (II) of the MSLM and steps 2 and 4 (II) of the MSDM we chain
several multiplications of the round S-Box Φ by different transpositions
generated from YΦ (resp. Xδ

Φ) instead of multiply by one transposition per
iteration as presented in [29]. Thus, the list of transpositions generated by
our methods to obtain an S-Box with improved linear (resp. differential)
characteristics will be larger than those presented in [29]. Finally, as we
stated for the modified Spectral-linear method, the selection of the pairs
(a, b) ∈ L(Φ,L(Φ)) (resp. D(Φ, δ(Φ)) is random, which makes our methods
probabilistic on the contrary of the proposal from [29] which claim to be
deterministic.

6 Experimental results and discussion

The algorithms described in the previous section can be applied sepa-
rately until we obtain a desired value of L(Φ) (resp. δ(Φ)). Although, we
decide to join the optimization phase carried by these algorithms (as sug-
gested by the author of [29]) as an iterative process where the MSLM is
applied first to the input S-Box and its output is passed to the MSDM.
Then if the linear and differential criteria are not satisfied, the process is
repeated on the output S-Box from the MSDM. Moreover, for a round
S-Box Φ we use the value of Lg (resp. δg) equal to L(Φ) − 2

2n−1 (resp.
δ(Φ)− 2

2n ).
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The experimental phase was designed to run 200 experiments separated
in two blocks of 100 executions according to the required values of nonlin-
earity and differential uniformity. On each block of experiments we record
the average number of S-Boxes evaluated (see Table 4) by the proposed op-
timization scheme with the objective of establish a comparison between our
proposal and the state-of-the-art papers on the optimization of S-Boxes.

Cryptographic Number of Average Evaluated
criteria experiments S-Boxes
NLΦ = 102 δΦ = 6

256
100 52191

NLΦ = 104 δΦ = 8
256

100 65134

Table 4: Average number of S-Boxes evaluated by the proposed optimization method.

As one may notice our proposal is able to produce S-Boxes having non-
linearity up to 104 and differential uniformity down to 6

256 . If we compare
our results in terms of nonlinearity with the results from [8, 39, 34, 19]
there is no great difference because in the majority of these papers the
authors also obtain S-Boxes having nonlinearity 104. Our proposal outper-
forms them because it also guarantees a good value of differential unifor-
mity. Particularly, in the case of S-Boxes having 104 and 8

256 of nonlinearity
and differential uniformity respectively, the average number of evaluated
S-Boxes reported in table 4 is better than the best number reported in [19]
where the authors does not take into account the differential uniformity pa-
rameter in the optimization process. Furthermore, in the case of the work
of Picek et al. [34], the authors introduce the differential uniformity in
a multi-objective optimization process carried out by NSGA-II algorithm
and the results obtained w.r.t the average number of S-Boxes evaluated sur-
passes the half million of S-Boxes which is by magnitude greater than our
results. Finally, none of the aforementioned papers achieve a substitution
box with differential uniformity value of 6

256 .
Following the discussion, there exist some papers in the referred lit-

erature which achieve the combination of nonlinearity and differential
uniformity equal to 104 and 6

256 respectively starting from random S-
Boxes [29, 24].

Moreover, our proposal is based in one of these papers [29]. Hence, it is
straightforward that our goal is to achieve the same values of nonlinearity
and differential uniformity reported in these papers. Although in practice it
consumes a high number S-Box evaluations, we were able to obtain S-Boxes
having such values of nonlinearity and differential uniformity. In Table 5
we compile an S-Box (denoted by π) which has the aforementioned cryp-
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π

NL(π) = 104, δ(π) = 6
256, dmin(π) = 7, rπ = 3, r

(3)
π = 441.

0B 70 7A B4 DD 36 4D EB F9 47 55 D2 99 A5 92 C7

6A 50 EF 31 2E BA 53 10 11 C5 5D 67 61 0E A6 94

3A 88 21 AB 1F 5E E2 F4 62 76 1E C8 3B 4A 7E 7C

32 C4 3C 57 F6 86 15 60 1A 38 2F ED 87 06 D1 CE

79 C1 8E 20 90 01 A3 80 D5 7F 03 66 E5 C6 D4 96

EE B5 B6 63 EC EA 37 6E B1 84 6B 3F E0 D7 8C C0

8B 9B 52 3D 6F 3E BD 0D B0 58 74 0C 22 F3 E3 DC

89 D6 24 BE BC C3 AF 40 98 07 42 59 CD 00 2C 82

41 E1 FC 78 DE D9 85 DF 44 0A E7 30 A8 0F 2B 6C

56 18 9E 48 7D 8A CA 46 14 1B 33 D0 FA 54 B3 69

CF 02 BF 93 05 5A A2 68 64 45 E8 FF 9C 39 08 16

73 CB 34 DB 23 4F 1D 75 5F 35 95 F8 BB A1 26 91

12 1C F2 B7 71 72 A9 83 04 F1 B2 E6 29 25 77 A7

17 E9 D8 FD 09 51 F5 E4 4C AD 81 2D 97 4B 9D AA

C2 2A F7 6D AC 8D 65 DA AE C9 B9 9A 27 F0 5B 13

9F FE 19 D3 5C 49 FB 8F CC A0 28 4E B8 7B 43 A4

Table 5: The LUT(π) in hexadecimal and its properties.

π′Kuz
NL(π′Kuz) = 104, δ(π′Kuz) =

6
256, dmin(π

′
Kuz) = 7, rπ′Kuz = 3, r

(3)

π′Kuz
= 441.

2D BE DD C4 CF 6E EE 50 FC 11 12 DA 3F C5 14 4D

E9 77 5C 61 93 09 3A 2E 79 36 BA BB 4F 8A 5F 31

F9 1F A1 DE E2 8B EF 21 CC 1C 30 42 13 01 FF 7A

22 D3 64 89 9D 6A 8F A0 06 0B ED 98 7F D4 F1 05

63 34 B3 51 9F 02 DB AB 52 2A B1 A2 C6 48 96 68

C1 78 EC 43 08 0C 76 EB 67 72 3E 47 5E B7 5D 87

15 B5 CE 9B 10 7B 9A C7 F3 45 0E EA 20 9E C8 65

B0 AA 19 95 0A 35 CD 7E 73 54 F0 80 83 BD B2 57

DF F5 A5 A9 82 A8 FD D6 D7 17 2C 44 7C 16 B9 03

E0 0F 29 5A 69 94 32 81 DC E8 28 18 4E 33 8E 4A

A7 D1 60 56 37 00 62 F2 1A B8 41 A3 84 BC 26 38

AD F6 46 92 27 9C FB 0D 8C 90 24 7D 75 D5 91 3B

07 2F 49 40 86 AC 1D F7 6F 71 6B 58 88 C3 55 AE

E1 1B D9 97 E6 6D F8 FE 8D E4 3D 53 CA D8 85 99

C2 1E BF A4 CB 2B F4 5B C9 23 25 D0 70 FA 6C C0

74 A6 59 D2 4C E7 B4 3C 04 66 AF E3 39 4B E5 B6

Sequence of transpositions to convert πKuz into π
′
Kuz

(0, 8), (0, 49), (0, 50), (0, 69), (0, 110), (0, 126), (0, 183), (0, 193), (0, 200), (0, 211),

(0, 232), (1, 6), (1, 31), (1, 80), (1, 97), (1, 111), (1, 134), (1, 163), (23, 26), (23, 62),

(33, 63), (48, 63), (105, 190), (0, 228), (72, 239), (167, 239), (239, 247), (171, 185),

(185, 217), (185, 219), (37, 134), (161, 211), (161, 218), (78, 98), (82, 132), (132, 217),

(42, 218), (218, 247), (52, 108), (50, 172), (51, 207), (99, 233), (35, 147), (3, 9), (7, 141),

(7, 155), (44, 90), (170, 175), (108, 251), (1, 120), (46, 116), (116, 158), (130, 186),

(194, 232), (212, 244), (19, 22), (22, 70), (40, 90), (8, 74), (18, 103), (88, 226), (146, 173),

(182, 206), (8, 74), (23, 182), (23, 245), (108, 224), (148, 188), (161, 248), (1, 213),

(12, 203), (14, 28), (205, 210), (92, 181), (42, 151), (103, 122), (42, 151), (82, 151),

(105, 177), (37, 74), (111, 116), (19, 223), (47, 188), (1, 236), (48, 155), (64, 87),

(139, 177), (188, 248), (64, 254), (90, 151), (18, 134), (37, 40), (115, 139), (34, 111),

(34, 116), (46, 246), (237, 254), (46, 246), (113, 188), (83, 163), (124, 205), (107, 200),

(4, 180), (103, 134), (4, 198), (21, 230), (4, 198), (23, 230), (4, 180), (68, 146), (28, 248),

(139, 218), (146, 233), (81, 106), (106, 236), (201, 225), (10, 237), (49, 182), (106, 217),

(107, 233), (203, 233), (76, 134), (164, 225), (24, 137), (240, 242), (29, 118), (12, 217),

(135, 232), (40, 79), (112, 150), (82, 173), (66, 135), (135, 138), (22, 77)

Table 6: The evolved S-Box π′
Kuz ∈ S(F8

2) in hexadecimal, its properties and the sequence
of 134 transpositions to convert πKuz into π′

Kuz. Transpositions in green were made by the
MSLM while transpositions in blue were made by the MSDM.

tographic parameters obtained after evaluating approximately one million
S-Boxes.

In addition, we apply our optimization scheme to πKuz, and obtain in
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around three million evaluations an S-Box having the same cryptographic
parameters reported in [29, 24]. The Look-Up Table of the optimized S-
Box (denoted by π′Kuz), its cryptographic properties and the sequence of
transpositions to obtain this permutation are presented in Table 6. The
Look-Up Tables of πKuz and π′Kuz differ in 139 values.

Reference NL(Φ) δ(Φ) dmin(Φ) rΦ

Ivanov et al. [25] 112 6
256

7 2
Bolufé & Tamayo [5] 112 NR NR NR
This work 104 6

256
7 3

Menyachikhin [29] 104 6
256

7 3
Ivanov et al. [24] 104 6

256
7 3

Kazymyrov et al. [26] 104 8
256

7 3
Picek et al. [34] 104 8

256
NR NR

Freyre et al. [19] 104 8
256

6 3
Tesař [39] 104 NR NR NR
Freyre et al. [20] 102 8

256
7 3

Clark et al. [8] 102 NR NR NR
Freyre [17] 100 8

256
6 3

Millan [30] 100 NR NR NR
Zahid et al. [41] 96 10

256
6 3

Kim et al. [27] 96 16
256

2 2

Table 7: Comparison of nonlinearity and differential uniformity of some state-of-the-art
S-Boxes obtained through optimization. NR states for not reported in the corresponding
reference and no resulting S-Box was presented either.

Finally, we present in Table 7 a comparison of our results with some
papers on optimization of S-Boxes w.r.t nonlinearity and δ-uniformity. It
worth to remark that the results shown in the table were taken regardless
the seeding methods used to start the optimization process and, as far as we
know, the top three results in the table receive as input S-Boxes produced
by constructions that give them some advantages towards the properties of
nonlinearity and differential uniformity rather than the random generation.

7 Conclusions

In this work we have presented a detailed analysis of a new cost func-
tion to evolve S-Boxes with good nonlinearity values. In addition, we study
the algebraic characteristic of the linear spectrum of an S-Box and design
a new optimization method which take advantage of some interesting re-
sults derived from the propositions of Section 5.2.2. We also extend the
search space of the modified spectral differential method [29] through the
construction of a larger set of transpositions to be used by Algorithm 2.
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Finally, the experimental results obtained in this paper are comparable
in quality to the best reported in public literature for evolution of random
generated S-Boxes. Moreover, we outperform, in terms of the average num-
ber of S-Boxes evaluated to obtain the desired cryptographic parameters,
most of the research papers taken as reference point in our investigation.

References

[1] Abd el-Latif A. A., Abd-el-Atty B., Amin M., Iliyasu A. M., “Quantum-inspired cascaded
discrete-time quantum walks with induced chaotic dynamics and cryptographic applica-
tions”, Scientific reports, 10 1 (2020), 1–16.

[2] Abd el-Latif A. A., Abd-el-Atty B., Venegas-Andraca S. E., “novel image steganography
technique based on quantum Substitution Boxes”, Optics & Laser Technology, 116 (2019),
92–102.

[3] Azam N. A., Hayat U., Ullah I., “An injective s-Box design scheme over an ordered iso-
morphic elliptic curve and its characterization”, Security and communication networks,
2018 .

[4] Azam N. A., Hayat U., Ullah I., “Efficient construction of a Substitution Box based on a
Model elliptic curve over a finite field”, Frontiers of Information Technology & Electronic
Engineering, 20 10 (2019), 1378–1389.
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Alejandro Freyre Echevarŕıa, Oliver Coy Puente, and Reynier A. de la Cruz Jiménez 116
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Appendix

The following SAGE [38] script prints some characteristics (used in
Section 5.2.1) of intermediate S-Boxes involved in Step 2 of algorithms
implementing the spectral-linear and spectral-differential methods [29] for
optimizing the cryptogaraphic properties of the S-Box πKuz of the national
standard of Russian Federation GOST R 34.11-2015 [22].

#!/usr/bin/sage
from sage.all import *
from sage.crypto.sbox import SBox
import copy

# multiplication of permutation by a transposition
def mult by transp(s, pos1, pos2):

tmp = list(copy.deepcopy(s))
a, b = tmp.index(pos1), tmp.index(pos2)
tmp[a], tmp[b] = tmp[b], tmp[a]

return tmp

# this function return the set D(s,DU(s))
def D(s,p1):

n = SBox(s).input size()
T = SBox(s).difference distribution table()
table = []
for x in range(1, 2**n):

for y in range(1, 2**n):
if abs(T[x][y]) == p1:

table.append([x,y])

return table

# this function return the set L(s,LIN(s))
def L(s,p1):

n = SBox(s).input size()
f coef = "fourier coefficient"
T = SBox(s).linear approximation table(scale = f coef)
table = []
for x in range(1, 2**n):

for y in range(1, 2**n):
if abs(T[x][y]) == p1:

table.append([x,y])

return table
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On some algebraic aspects of heuristic algorithms for constructing cryptographically strong...

# the Look−Up Table of Kuznyechik S−Box
pi Kuz = [

0xfc, 0xee, 0xdd, 0x11, 0xcf, 0x6e, 0x31, 0x16, 0xfb, 0xc4,
0xfa, 0xda, 0x23, 0xc5, 0x04, 0x4d, 0xe9, 0x77, 0xf0, 0xdb,
0x93, 0x2e, 0x99, 0xba, 0x17, 0x36, 0xf1, 0xbb, 0x14, 0xcd,
0x5f, 0xc1, 0xf9, 0x18, 0x65, 0x5a, 0xe2, 0x5c, 0xef, 0x21,
0x81, 0x1c, 0x3c, 0x42, 0x8b, 0x01, 0x8e, 0x4f, 0x05, 0x84,
0x02, 0xae, 0xe3, 0x6a, 0x8f, 0xa0, 0x06, 0x0b, 0xed, 0x98,
0x7f, 0xd4, 0xd3, 0x1f, 0xeb, 0x34, 0x2c, 0x51, 0xea, 0xc8,
0x48, 0xab, 0xf2, 0x2a, 0x68, 0xa2, 0xfd, 0x3a, 0xce, 0xcc,
0xb5, 0x70, 0x0e, 0x56, 0x08, 0x0c, 0x76, 0x12, 0xbf, 0x72,
0x13, 0x47, 0x9c, 0xb7, 0x5d, 0x87, 0x15, 0xa1, 0x96, 0x29,
0x10, 0x7b, 0x9a, 0xc7, 0xf3, 0x91, 0x78, 0x6f, 0x9d, 0x9e,
0xb2, 0xb1, 0x32, 0x75, 0x19, 0x3d, 0xff, 0x35, 0x8a, 0x7e,
0x6d, 0x54, 0xc6, 0x80, 0xc3, 0xbd, 0x0d, 0x57, 0xdf, 0xf5,
0x24, 0xa9, 0x3e, 0xa8, 0x43, 0xc9, 0xd7, 0x79, 0xd6, 0xf6,
0x7c, 0x22, 0xb9, 0x03, 0xe0, 0x0f, 0xec, 0xde, 0x7a, 0x94,
0xb0, 0xbc, 0xdc, 0xe8, 0x28, 0x50, 0x4e, 0x33, 0x0a, 0x4a,
0xa7, 0x97, 0x60, 0x73, 0x1e, 0x00, 0x62, 0x44, 0x1a, 0xb8,
0x38, 0x82, 0x64, 0x9f, 0x26, 0x41, 0xad, 0x45, 0x46, 0x92,
0x27, 0x5e, 0x55, 0x2f, 0x8c, 0xa3, 0xa5, 0x7d, 0x69, 0xd5,
0x95, 0x3b, 0x07, 0x58, 0xb3, 0x40, 0x86, 0xac, 0x1d, 0xf7,
0x30, 0x37, 0x6b, 0xe4, 0x88, 0xd9, 0xe7, 0x89, 0xe1, 0x1b,
0x83, 0x49, 0x4c, 0x3f, 0xf8, 0xfe, 0x8d, 0x53, 0xaa, 0x90,
0xca, 0xd8, 0x85, 0x61, 0x20, 0x71, 0x67, 0xa4, 0x2d, 0x2b,
0x09, 0x5b, 0xcb, 0x9b, 0x25, 0xd0, 0xbe, 0xe5, 0x6c, 0x52,
0x59, 0xa6, 0x74, 0xd2, 0xe6, 0xf4, 0xb4, 0xc0, 0xd1, 0x66,
0xaf, 0xc2, 0x39, 0x4b, 0x63, 0xb6

]

# List of transpositions given by A.V. Menyachikhin in Table 6 p.114 of the
# article: Spectral−linear and spectral−differential methods for generating
# S−boxes having almost optimal cryptographic parameters

Transp =[
(0x6e, 0xb7), (0xfb, 0x53), (0xda, 0x2b), (0xc5, 0xb5),
(0xdb, 0x69), (0x93, 0xac), (0x99, 0xbd), (0xf1, 0x68),
(0x81, 0xaa), (0x01, 0x7c), (0x05, 0x24), (0xa0, 0x79),
(0x06, 0x98), (0xd3, 0x7a), (0xeb, 0xd0), (0xc8, 0x58),
(0x2a, 0x30), (0xb5, 0x91), (0x70, 0x67), (0x9c, 0xb3),
(0x29, 0xb4), (0xb2, 0xd9), (0x19, 0x0a), (0x35, 0x0a),
(0x6d, 0x55), (0x54, 0xe6), (0xbd, 0x00), (0xf5, 0x9f),
(0x24, 0x63), (0x43, 0xf7), (0x79, 0xa3), (0x94, 0x9f),
(0x00, 0x64), (0x30, 0xc0), (0x2d, 0x6c), (0xd0, 0xc2)
]

# reversing the list of transpositions and calculating the size of Transp
Transp = Transp[::−1]
size of Transp = len(Transp)

if name == " main ":
# computation of some characteristics for Kuznyechik S−Box
g = pi Kuz
car dif g = SBox(g).differential uniformity()
car lin g = SBox(g).linearity()
card D g = len(D(g, car dif g))
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card L g = len(L(g, car lin g))

# printing the characteristics of Kuznyechik S−Box
print("#"*102)
print("\t\t\tCharacteristics of the S−Box")
print(

"DU(pi Kuz) = {0}".format(car dif g),
"\tLIN(pi Kuz) = {0}".format(car lin g),
"\t#D(pi Kuz, DU(pi Kuz’)) = {0}".format(card D g),
"\t#L(pi Kuz, LIN(pi Kuz’)) = {0}".format(card L g)
)

print("#"*102)
print(’’)

# printing the characteristics of intermediate S−Boxes involved in
# Step 2 of algorithms implementing the Spectral−linear and
# Spectral−differential methods
for i in range(size of Transp):

g = mult by transp(pi Kuz, Transp[i][0], Transp[i][1])
car dif g = SBox(g).differential uniformity()
car lin g = SBox(g).linearity()
card D g = len(D(g, car dif g))
card L g = len(L(g, car lin g ))
pi Kuz = g

print("="*100)
print("Characteristics of the previous S−Box multiplied by " +

"transposition −> "+str(Transp[i]))
print(

"DU(pi Kuz " + str(i+1) + ")= {0}".format(car dif g),
"\tLIN(pi Kuz " + str(i+1) + ")= {0}".format(car lin g),
"\t#D(pi Kuz " + str(i+1) + ")= {0}".format(card D g),
"\t#L(pi Kuz " + str(i+1) + ")= {0}".format(card L g)
)

print("="*100)
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Abstract

Related-key attacks against block ciphers are often considered unrealistic. In
practice, as far as possible, the existence of a known «relation» between the secret
encryption keys is avoided. Despite this, related keys arise directly in some widely
used keyed hash functions. This is especially true for HMAC-Streebog, where known
constants and manipulated parameters are added to the secret key. The relation is
determined by addition modulo 2 and 2n. The security of HMAC reduces to the
properties of the underlying compression function. Therefore, as an initial analysis
we propose key-recovery methods for 10 and 11 rounds (out of 12) of Streebog
compression function in the related-key setting. The result shows that Streebog
successfully resists attacks even in the model with such powerful adversaries.

Keywords: Streebog, related-key, truncated differentials, rebound

1 Introduction

A secure cryptographic keyless hash function H must meet many require-
ments, including the three most well-known: preimage resistance, second
preimage resistance and collision resistance. Similar requirements are im-
posed on the compression function g(H,M) if the hash function is based on
the Merkle-Damg̊ard (MD) scheme [4, 3].

However, if the MD-like hash function is converted into the keyed one
using HMAC [7] with the secret K

HMAC(K,Msg) = H((K ⊕ opad)||H((K ⊕ ipad)||Msg)),

then other properties are expected from the compression function [8].
Firstly, g(H, ·) with the secret state H must be indistinguishable from a

truly random function.
Secondly, the pair g(·, K⊕ipad) and g(·, K⊕opad) must be indistinguish-

able from a pair of random functions. In other words, g must be protected
from attacks using two related keys [5].

CTCrypt 2022 122



Related-key attacks on the compression function of Streebog

Even more interesting is the situation when the Russian hash function
Streebog [1] is used in HMAC. Streebog uses the Merkle-Damg̊ard approach
with some subtle differences, including the use of the checksum (modulo 2n)
of all message blocks in the finalization. In HMAC-Streebog there are four
calls of the compression function where the secret key is used, one of them is

g(·, (K ⊕ ipad)�Σ)

where Σ is the checksum that the attacker can freely manipulate by changing
the message, «�» denotes the addition modulo 2n.

Therefore, it would be reasonable for HMAC-Streebog to require
g(·, (K ⊕ Φ) � Σ) with the random secret K to be indistinguishable from
a family of random functions. In general, the input and parameters Φ, Σ
are adaptively chosen by the adversary. One can consider such significant
capabilities of the attacker mostly exaggerated, but they are convenient for
security proofs.

Streebog and its underlying transformations have received a lot of atten-
tion from cryptographers. Basically, the articles on the topic were devoted to
analysis in the keyless settings [9–17, 19, 20].

We can cite only three works [18, 22, 23] devoted to the analysis of Stree-
bog when using secret keys.

In [22] the key-recovery attacks on HMAC-Streebog were presented as
the extension of the generic state-recovery attacks on HMAC. The time and
data complexities of attacks are significantly more than «provable secure»
bounds of HMAC [8]. The method also does not use the properties of the
compression function.

Impossible differential properties of the compression function are utilized
in [18] to mount secret-state recovery attacks on 6.75-rounds g(H, ·). The
article [23] presents 7-round key-recovery attacks against g(H, ·) and g(·,M),
where H (resp. M) is secret.

As far as we know, the Streebog compression function has not been pre-
viously considered in the related-key settings. We extend the approach pre-
sented in [23] to attack g(·,M) and propose the key-recovery method for
g(·, (K ⊕ Φ) � Σ). First, we construct the single-key method that works
with a negligible success probability, but also with a relatively low time com-
plexity. The rebound technique [24] and the truncated differentials [6] are
the main parts of the method. Next, we present the effective way to convert
this method into a highly probable one by using the sets of related keys. As
a result, we have a key-recovery method against 10 and 11 rounds (of 12).
Comparative characteristics are presented in table 1.
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We are convinced that our results provide an additional argument showing
that Streebog compression function has a sufficient security margin even in
the related-key setting.

Setting Rounds Time Memory Data Keys Description

secret H

6.75 2399.5 2349 2483 1 [18]
6.75 2261.5 2205 2495.5 1 [18]
7 2421 2354 264 1 [23]
12 2256 2256 2256 1 birthday-paradox distinguisher
12 2512 ∼ 2 1 key guessing

secret M

7 2240 220 2113 1 [23]
10 2224 294 2225 2198 Section 6 (any relation)
10 2232 291 2168 2145 Section 6 (only ⊕)
11 2224 268 2225 2224 Section 6 (only ⊕)
12 2367 2145 2145 2145

parallel key guessing12 2314 2198 2198 2198

12 2288 2224 2224 2224

12 2256 2256 2256 2256

12 2512 ∼ 2 1 key guessing

Table 1: Attacks on the Streebog compression functions in secret-key settings. «Time» (t)
in g computations, «Memory» in n-bit blocks, «Data» (q) in chosen message-output pairs
over all keys, «Keys» is the number of used related keys (single-key attack is denoted by
«Keys = 1»).

2 Definitions

Let F28 be a finite field. Each element of F28 can be interpreted as an
integer or a binary vector. Denote 8 × 8 matrix space over F28 by F8×8

28 (we
also use symbol F8

28 as a vector space). Elements from F8×8
28 will be denoted

by capital letters: A, B. Blocks of states and messages also belong to F8×8
28 .

Elements of a matrix are indexed by 0 ≤ i, j ≤ v−1 (for example, a = A[0, 0]
is an element from the upper-left corner of the matrix). A[i, ·] is i-th row of A,
A[·, j] is j-th column of A. Elements from F28/F8

28/F
8×8
28 can be represented

as 8-, 64-, 512-bit strings, respectively.
Denote addition modulo 2 and addition modulo 2n by symbols «⊕» and

«�» correspondingly, n = 512. These operations are defined naturally for all
the objects under consideration.

We refer to ∆B = B⊕B′ ∈ F8×8
28 as a difference and indicate it in bold:

∆M , ∆K4. If ∆B[i, j] 6= 0 then we say that the position (i, j) is active,
otherwise inactive. The differential trail is the sequence of the differences
after each transformation in the cipher. The truncated differential trail is the
set of the differential trails that have the same active positions.
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The transformations over F8×8
28 (also over F8

28 and F28) are denoted in Sans
Serif font: f, S, L. The notation LS indicates a composition of transformations,
where S applies first (the reverse order «left-to-right» is used on the figures).
The inverse transformations are specified by f−1.

3 Streebog

The state size of Streebog consists of n = 512 bits (8× 8 bytes).
The message Msg is hashed as follows.
The text is always padded with bit string 10 . . . 0 and divided into l

blocks of n bits Msg||10 . . . 0 = M1|| . . . ||Ml. The compression function is
sequentially applied to the previous bit state and block

Hi+1 = gi·n(Hi,Mi+1), i = 0, ..., l − 1, H0 = IV ∈ F8×8
28 ,

where IV is a predefined constant. The counter N = i · n ∈ F8×8
28 is the

number of already hashed bits.
The bit length L and the checksum Σ = M1� ...�Ml are «mixed» with

the state at the finalizing stage

Hl+1 = g0(Hl, L), Hl+2 = g0(Hl+1, Σ).

If 256-bit hash function is used, the output Hl+2 is truncated to 256 bit.
The compression function gN(H,M) employs AES-like XSPL-cipher E in

the Miyaguchi-Preenel mode

gN(H,M) = E(H ⊕N,M)⊕H ⊕M = R, where

H ∈ F8×8
28 is the previous state of the hash function;

M ∈ F8×8
28 is the message block;

N ∈ F8×8
28 is the number of previously hashed bits;

R ∈ F8×8
28 is the output (the next state of hash function).

The block cipher E consists of 12 rounds and a post-whitening key addi-
tion. Each round consists of four operations:

X – modulo 2 addition of an input block with a round key;
S – parallel application of the fixed bijective substitution s to each byte

of the state;
P – transposition of the state;
L – parallel application of the linear transformation l to each row of the

state. In [21], it was shown that l-transformation can be represented as the
MDS matrix L over F8×8

28 .
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The block cipher formula is

E(K,M) = X[K13]LPSX[K12] . . . LPSX[K2]LPSX[K1](M).

The key schedule uses round constants RCi ∈ F8×8
28 , i = 1, 2, . . . , 12, and

round keys Ki ∈ F8×8
28 , i = 1, 2, . . . , 13 are derived from a master key K0 as

follows:

K0 = H ⊕N, K1 = LPS(H ⊕N), Ki+1 = LPS(Ki⊕RCi), i = 1, 2, . . . , 12.

We also denote the intermediate states before X, S, P, L transformations
in i-th round as Xi, Yi, Zi, Wi correspondingly (X1 = M , Y1 = M ⊕ K1,
Z1 = S(Y1), W1 = P(Z1), etc.). The states in the key schedule are denoted
in a similar way HXi = Ki, HYi, HZi, HWi, where H = HX0, HX1 =
LPS(H ⊕N) etc.

We define an r-round compression function with r + 1 round keys as:

g(H,M) = (X[Kr+1]LPSX[Kr] . . . LPSX[K1](M))⊕H ⊕M.

Next, we also assume that N is an arbitrary constant C0.
HMAC-Streebog (see figure 1) is defined in [2] as

HMAC-Streebog(K,Msg) = H
(
(K ⊕ opad)||H((K ⊕ ipad)||Msg)

)
,

where K ∈ F8×8
28 is obtained by padding the k-bit secret key K with zero

bits, 256 ≤ k ≤ 512, opad and ipad are different nonzero constants.

Figure 1: HMAC-Streebog-512, 512 ≤ L < 1024, Σ = M1 �M2.
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The secret key K is used four times as part of the message input. The
checksum Σ is directly controlled by the attacker and determines the relation
between the keys. The sequence of the chosen messages Msg1,...,Msgq gen-
erates the sequence of the chosen relations Σ1,...,Σq. Hence, the adversary
has as many related keys as needed. The state H is usually not known to the
attacker, but we assume the opposite. Firstly, H can be revealed as a result
of some generic attack against HMAC, secondly, this may be convenient for
a formal security proof. The output R is observed only after the last call of g,
but if, for example, H(K||Msg) is used instead of HMAC, then R is known.

Thus, these considerations motivate us to examine the security of

g(H,M) = R, M = (K ⊕ Φ)�Σ,

where K is the secret 512-bit key, the output R is observed, and H, Φ, Σ are
chosen adaptively. If g is secure even in the described setting, then there is
no reason to worry about cases when the opponent has fewer opportunities.

4 Generic attack

The key-recovery attacks on the cryptoalgorithm are usually compared to
a simple guessing of the key. Obviously, a k-bit key can be found with 2k−1

trials on average.
However, in the related-key setting we have another generic attack. Let,

for example, the adversary attacks an arbitrary block cipher E. The sequence
of ciphertexts C1,...,Cq is the result of encryption of the same text P , but
with the different key

Ci = E(K ⊕ Φi, P ), i = 1, ..., q.

Pairs (Ci,Φi) are sorted by Ci and stored in memory. The attacker makes
t guesses K̃. If the value of C̃ = E(K̃, P ) exists in memory C̃ = Cj, then
surely K = K̃ ⊕ Φj, 1 ≤ j ≤ q. One revealed key allows to trivially find all
the others. The probability of successful guessing in one attempt is q · 2−k.
Hence, if t · q = 2k then the probability of the successful attack exceeds 1

2 .
Therefore, 2r related keys allow to mount generic attack with 2k−r time

and 2r memory complexities. We emphasize that the time complexity of any
related-key attack should be compared with 2k−r, not 2k.

The optimal time complexity is 2k/2 with r = k
2 . Informally speaking, any

cryptoalgorithm with a k-bit key provides only k
2 -bit security if the number

of the related keys available to the adversary is unlimited. Also note that the
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type of relation can be rather arbitrary and include, for example, modular
addition. The main thing is that the attacker has access to encryption with
different keys and the relations between the keys are known.

5 Single-key attack

At the beginning, we consider the case when the message
M = (K ⊕Φ)�Σ is secret and Φ = Σ = 0. The attack against 7 rounds in
such conditions was considered earlier in [23]. We use the similar approach
and construct the low-probability attack against 10 rounds of

g(H,M) = E(H,M)⊕H ⊕M = R.

The master-key H of the underlying block cipher is directly chosen by
the adversary

E(H,M)⊕M = R⊕H = R̃.

The key-recovery method consists of two stages.
«Offline» stage uses the rebound approach [24]. About 228 pairs (H,H ′)

are generated. Each pair determines a truncated differential trail
∆K1 → ...→ ∆K11. Some precomputations are also performed under the
assumption that ∆Y9 = ∆K9.

«Online» stage. For each input pair (H,H ′) we get the output (R̃, R̃′).
The truncated related-key differential trail ∆M → . . . → ∆R̃ is realized
with a probability of at least ptrail = 2−224. For each pair (R̃, R̃′) we construct
on average one possible value of the unknown internal state and check it
directly. If the rare event actually occurred, then we definitely obtain the
true key.

The patterns of the active S-boxes are

∆K1 → . . .→∆K11 : « 8−1−8−64−8−1−8−64−64−64−64»,

∆M →∆Y1 → . . .→∆R̃ : «0−8−0−8−0 −8−0−8−0 −64−64−64».

The offline stage constructs the suitable round keys for the block cipher.
Choose arbitrary nonzero bytes in one arbitrary column of the difference
∆HW3 (highlighted with green on figure 2).

Propagate forward to ∆HY4 = X[C4]L(∆HW3). Similarly in the back-
ward direction ∆HZ4 = P−1L−1(∆K5). Thus, we have 2558·8·2558·8 ≈ 2134

pairs (∆HY4,∆HZ4).
Solve equation S(HY4⊕∆HY4)⊕ S(HY4) = ∆HZ4. We get a total of

more than 2132 solutions (see Appendix A).
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In «outbound phase» we compute

K1 = X[C1]S
−1 . . .P−1L−1X[C4](HY4) and K11 = LPSX[C10] . . . LPS(HY4).

We assume that the part ∆K1 ← ∆K2 ← ∆K3 of the constructed trail
match the pattern «8 – 1 – 8» with probability 8 · 255/2558 ≈ 2−53 due to
the transition «1 ← 8». Note that any of eight possible patterns «1 ← 8»
is suitable. Similar reasoning is true for ∆K6 → ∆K7 → ∆K8 (and any
values of ∆K9 → ∆K10 → ∆K11 is appropriate.). Actually 64 truncated
trails are used, eight appropriate propagation possibilities in the backward
and the same for forward.

As a result we obtain about qpair = 226 = 2132−53−53 pairs (H,H ′) and
approximately 223 = 226/8 of them have the active first column. The time
complexity of the offline stage is about toffline = 2134 operations.

Figure 2: Offline stage. One of the possible truncated differential trail over first eight
round keys.

At the online stage, pairs (R̃, R̃′) are requested for each (H,H ′) from the
«oracle».

We expect four internal collisions at the same time (figure 3). In the
considered single-key setting,M = M ′ and ∆M = 0. The differences ∆K1,
∆K3, ∆K5, ∆K7 induce eight active bytes (one row or one column of the
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state) in the «encryption». If the transitions through S are the same in both
«encryption» and «key schedule» then ∆K2, ∆K4, ∆K6, ∆K8 make a
zero difference in «encryption».

Before the first non-linear layer ∆Y1 = ∆K1⊕∆M = ∆K1. We hope
that ∆HZ1 = ∆Z1. The transition ∆HY1 → ∆HZ1 is possible, hence,
the probability ∆Y1 → ∆Z1 is not less than pcoll = (2/256)8 = 2−56. If
actually ∆HZ1 = ∆Z1 then we obtain the first internal collision

∆Y2 = ∆K2 ⊕∆X2 = LP(∆HZ1)⊕ LP(∆Z1) = 0.

Figure 3: Online stage. Truncated related-key differential trail. The first round.

The same is true for ∆Y3 = ∆K3 and «parallel» transitions
∆HY3 → ∆HZ3, ∆Y3 → ∆Z3 (figure 4). We also assume that
Pr (∆Z3 = ∆HZ3) = pcoll.

Figure 4: Online stage. The third round.

Similarly for the third and the fourth internal collision (figure 5),
Pr (∆Z5 = ∆HZ5) = pcoll, Pr (∆Z7 = ∆HZ7) = pcoll.
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Therefore, we have

ptrail = Pr (∆X9 = 0) = Pr (∆Y9 = ∆K9) ≥ (pcoll)
4 = 2−56·4 = 2−224.

We use this distinguishing feature to construct the attack.

Figure 5: Online stage. Rounds 5, 6, 7 and 8.

After the rebound, the precomputations are performed at the offline stage.
We have 226 pairs (H,H ′) and derived round keys (K1, ..., K11), (K ′1, ..., K

′
11).

Assuming that the trail is realized, (H,H ′) determines the only one
∆Y9 = ∆K9. Try all possible values in the column Y9[·, i] and propagate
∆Y9[·, i] to ∆W10[·, i], i = 0, .., 7.

For fixed (H,H ′) eight tables are stored in memory, i-th table contains
the sequence of sorted values ∆W10[·, i] = W10[·, i]⊕W ′

10[·, i],

W10[·, i] = (PS(K10[i, ·]⊕ LPS(Y9[·, i]))) ,
W ′

10[·, i] = (PS(K ′10[i, ·]⊕ LPS(∆Y9[·, i]⊕ Y9[·, i]))) .

and corresponding set of W10[·, i]. Assuming that after two nonlinear layers,
∆W10[·, i] is distributed uniformly, one value of ∆W10[·, i] corresponds to
one value of W10[·, i] on average.
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Figure 6: Additional precomputation at the offline stage.

For all (H,H ′) about 226 · 8 · 264 tables are constructed. In total, this
step requires about 2 · 226 · 8 · 264 = 294 computations and the same number
of n-bit blocks in memory. Hence, the complexity of the offline stage almost
does not increase, toffline = 2134 + 293 ≈ 2134.

Consider again the online stage. The pair (H,H ′) defines the last round
keys (K ′11, K

′
11) and the output pair (R̃, R̃′). The difference ∆M is also

known to the adversary (in the single-key setting ∆M = 0). If the differential
trail really happened (∆X9 = 0), then i-th column of

∆W10 = L−1(∆R̃⊕∆K11 ⊕∆M)

must be in i-th table. Otherwise, the pair will surely be discarded. Usually one
solution W10[·, i] for i-th column is found. We construct internal state W10,
computeM = L(W10)⊕K11⊕R̃ and check them with the other input-output
pair (H,R). The average time complexity of the online stage is estimated as
tonline ≈ qpair. The probability of success is negligible

p1k-attack ≈ qpair · ptrail = 226 · 2−224 = 2−198.

6 Related-key attacks

The single-key low-probability attack presented above can be easily trans-
formed into attack in the related-key setting.

Let’s perform the offline stage once and store 226 convenient pairs (H,H ′)
and precomputed tables in memory. We use about 2r = 2198 = (p1k-attack)

−1

related keys and try the online stage against each of them independently. If
one key is recovered, then all the others are can, too, be easily found from
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known relations. The probability of success is now significant and is estimated
as 1− (1− p1k-attack)

2r ≈ 1− e−1 ≈ 0.63.
The time complexity is t = 2134 + 226 · 2198 ≈ 2224 (for comparison, the

generic method t = 2k−r = 2314). It is not difficult to see that almost any
possible relation can be used (M ⊕ Φ, M �Σ, M ⊕ Φ� Σ etc.).

However, a more effective attacks exists if the relation is bitwise xor (i.e.
M ⊕ Φ). We describe them in the following two subsections.

6.1 Reducing the number of related keys

At the offline stage, we select only those pairs (H,H ′) that activate only
one chosen column ∆K1[·,0] 6= 0, ∆K1[·,1] = ... = ∆K1[·,7] = 0. The
number of convenient pairs has been reduced to qpair = 223 = 226/8.

At the online stage, we use many sets

Mi = {M⊕Φ′i⊕Φj}, Φj[·, 0] 6= 0, Φj[·, 1] = ... = Φj[·, 7] = 0, j = 0, ..., 264−1,

of the related keys. The values of Φ′i are chosen so that Mi1 ∩ Mi2 = ∅,
∀i1 6= i2. The set induces (2128 − 264) ≈ 2128 different pairs (M,M ′), where
also only the first column of the difference may be active ∆M [·, 0] 6= 0, other
columns are obviously inactive. Note that the pairs (M,M) are also used.
The pairs (M,M ′) and (M ′,M) are distinct if M 6= M ′. Indeed, (M,M ′)
and (H,H ′), H 6= H ′ generates two related-key differential trails,

(M ⊕H)⊕ (M ′ ⊕H ′) = (M ′ ⊕H)⊕ (M ⊕H ′), but in general
S(M ⊕H)⊕ S(M ′ ⊕H ′) 6= S(M ′ ⊕H)⊕ S(M ⊕H ′).

Hence, about 2128 · qpair = 2151 starting points are obtained with one M (at
the same time, the number of the required queries is 2 · qpair · 264 = 288).

The probability of the resulting trail is slightly worse. If ∆M = 0,
then ∆Y1 = ∆K1 and there is always a possibility to the transition
∆Y1 → ∆Z1, where ∆Z1 = ∆HZ1. Otherwise, ∆Y1 6= ∆K1 and the
target transition ∆Y1 → ∆Z1 may be impossible. However, assuming that
∆Y1[·,0] is random, we can treat ∆Z1 also as random value and estimate

prand-coll = Pr(∆Z1 = ∆HZ1) = 2−64 < pcoll.

The probability of the modified truncated trail is

p′trail = prand-coll · (pcoll)3 = 2−232.

The rest of the attack is the same.
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Thus, we need about qset = 281 = (p′trail · 2151)−1 sets M. The total
number of the related keys is qkey = qset · 264 = 2145 = 2r. The number
of the queries q = 2 · qpair · 264 · qset = 2169. The memory for tables at
the precomputation is 2 · qpair · 8 · 264 = 291. The time complexity slightly
increases t = qset · 2128 · qpair = (p′trail)

−1 = 2232, but for the generic attack
t = 2k−r = 2369.

Figure 7: Online stage. Truncated related-key differential trail. The first round.
∆M [·,0] 6= 0.

6.2 Extension to 11 round

We change the truncated differential trail used by adding one round at
the beginning (figure 8). The patterns of the active S-boxes are

∆K1 → . . .→∆K12 :« 64−8−1−8−64−8−1−8−64−64−64−64»,
∆M →∆Y1 → . . .→∆Y12 :«64−0 −8−0−8−0 −8−0−8−0 −64−64−64».

The rebound starts with ∆HW4 and ∆K6 instead of ∆HW3 and ∆K5.
The remaining steps are similarly «shifted to the right» (see Appendix B).

To provide ∆Y1 = ∆X2 = 0, we must use ∆M = ∆K1. In this case,
the probability of the rare event does not change ptrail = (pcoll)

4 = 2−224.
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Figure 8: Truncated related-key differential trail, ∆M = ∆K1.

We use only one pair (H,H ′) after the offline stage. Hence, only one
sequence (K1, K

′
1) → . . . → (K12, K

′
12) is used, and 2 · 8 · 264 = 268 n-bit

blocks of memory are required to store the rows of ∆W11 and W11 after the
precomputation.

The i-th pair of the related keys is

(Mi,M
′
i) = (M ⊕ Φi,M ⊕ Φi ⊕∆K1), i = 1, ...,

qkey
2
,

different values of Φi should give qkey different keys, and ∆M = ∆K1 is
always true. Again, each pair of keys gives two points to start for the online
stage

((H,Mi), (H
′,M ′

i)) and ((H,M ′
i), (H

′,Mi)) .

The success probability is also (1 − e−1) ≈ 0.63 with qkey = (ptrail)
−1. The

query complexity is q = 2 · qkey = 2225. As in previous attacks, the time
complexity is equal to the number of starting points

t ≈ toffline + 2 · qkey
2

= qkey = 2224 = 2r.

For comparison, the complexity of the generic method t = 2k−r = 2288.

7 Conclusion

In many practical cases, Streebog hashes the secret key joined to the
message. Due to the checksum modulo 2n in the finalization, the related
keys always arise. For example, in HMAC-Streebog the one processed block
is M = (K ⊕ Φ) � Σ, where K is the secret key, Φ is known, Σ is cho-
sen adaptively by the adversary. Therefore, this motivates us to investigate
round-reduced Streebog compression function g(H,M) with the secret M
under above mentioned relations.
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Among all the threat models for symmetric keyed cryptoalgorithms, the
related-key setting is one of the most powerful. We present key-recovery al-
gorithms up to 10 rounds (out of 12) when almost any relations exist (e.g.
addition modulo 2 or modulo 2n). If only bitwise xor is used then the attack
can be extended for 11 rounds. The rebound approach and the related-key
truncated differential trails are extensively used. The time complexity of the
methods is close to that of the generic approaches.

Thus, we have significant evidence that Streebog compression function
is hard to break even in the threat model under consideration. Therefore,
another argument was obtained in favor of the security of Streebog-based
keyed algorithms.
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A Differential properties of Streebog’s S-box

The differential distribution table (DDT) is defined as follows

DDT[∆x][∆y] = |{x : s(x)⊕ s(x⊕∆x) = ∆y}| ,
where s : F28 → F28, x,∆x,∆y ∈ F28.

The distribution of the number of solutions for Streebog’s S-box is shown
in the table below.

Solutions 0 2 4 6 8 256

Number 38235 22454 4377 444 25 1

For random non-zero ∆x,∆y ∈ F28\0 the probability that at least some
solution exists is

p = Pr (|{x : ∆y = s(x)⊕ s(x⊕∆x)}| > 0) =
22454 + 4377 + 444 + 25

2552
.
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Let ∆x 6= 0, ∆y 6= 0, and it is also known that the equation

s(x)⊕ s(x⊕∆x) = ∆y

has a solution x. Then we get a conditional distribution of the number of
solutions (

2 4 6 8
22454

27300

4377

27300

444

27300

25

27300

)
.

The expected value of such a distribution (i.e., the average number of solu-
tions provided that at least one solution exists) is

1

27300
(2 · 22454 + 4 · 4377 + 6 · 444 + 8 · 25) =

216 − 28

27300
= 2.39 . . . = z.

The case «S(∆HY4 ⊕HY4)⊕ S(HY4) = ∆HZ4»
We assume, that ∆HZ4 is a random difference. We also know that

∆HZ4 consisting only of non-zero bytes. Fix the position of columns in
∆HW3 and ∆K5.

Each row in ∆HY4 is also completely non-zero and belongs to a set of
255 elements.

The probability that a single byte matches is p ≈ 0.419. Hence a row
matches with a probability of p8 ≈ 2−10.

The probability that among the allowed ∆HY4[0, ·] there is a suitable
one is 1− (1− p8)255 ≈ 2−2.2.

Therefore, the probability for a match of all 8 rows equals to 2−2.2·8 =
2−17.6.

Each pair (∆HY4,∆HZ4) for which the equation is solvable gives on
average of z64 ≈ 280.4 solutions.

We have 2558 ≈ 264 possible values ∆HZ4.
Repeat for all pairs of columns in ∆HW3 and ∆K5.
As a result we obtain about

8 · 8 · 264+80.4−17.6 ≈ 2132

valid states HY4.
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B Detailed pictures for 11-round attack

Figure 9: Offline stage. Rebound.
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Figure 10: The truncated related-key differential trail. 9 rounds.
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Figure 11: Additional precomputation at the offline stage.
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Abstract

Properties of the additive differential probability adpXR of the composition of
bitwise XOR and a bit rotation are investigated where the differences are expressed
using addition modulo 2n. This composition is widely used in ARX constructions
consisting of additions modulo 2n, bit rotations and bitwise XORs. Differential crypt-
analysis of such primitives may involve maximums of adpXR, where some of its input
or output differences are fixed. Although there is an efficient way to calculate this
probability, many its properties are still unknown. In this work we find maximums
of adpXR, where the rotation is one bit left/right and one of its input differences is
fixed. Some symmetries of adpXR are obtained as well.

Keywords: ARX, differential cryptanalysis, XOR, bit rotation, modular addition.

1 Introduction

ARX is one of the modern architectures for symmetric cryptography
primitives that uses only three operations: addition modulo 2n (Addition,
�), circular shift (Rotation,≪ ) and bitwise addition modulo 2 (XOR, ⊕).
Examples of such schemes include block ciphers TEA [1, 2], FEAL [3], Three-
fish [4], Speck [5], stream ciphers Salsa20 [6] and its modification ChaCha [7],
SHA-3 finalists BLAKE [8] and Skein [4], MAC algorithm Chaskey [9]. ARX
constructions have many advantages: fast performance and compactness of
its program implementation, resistance to timing attacks. However, it is dif-
ficult to determine if they are secure against differential cryptanalysis [10]
that studies how input differences transform to the output differences.

In this work we consider differences that are expressed using addition
modulo 2n. In some cases they are more appropriate than XOR differences,
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especially if round keys are added modulo 2n and the number of XOR op-
erations is much less than the number of modulo 2n operations (see, for in-
stance, [11]). The additive differential probability adpf(α1, . . . , αk → αk+1)
for a function f : (Zn2)k → Zn2 , where α1, . . . , αk+1 ∈ Zn2 , is defined as

Pr
x1,...,xk∈Zn2

[f(x1 � α1, . . . , xk � αk) = f(x1, . . . , xk)� αk+1].

Here α1, . . . , αk and αk+1 are its input differences and its output difference
respectively. The additive differential probability of a rotation (adp≪) and
XOR (adp⊕) were studied in [12, 13] and [14, 15, 16]. The formula for the
additive differential probability adpRX for the composition (x≪ r)⊕ y was
obtained in [17]. Also, it was pointed out that it is inaccurate to calculate
differential probability of the composition by assuming that the inputs of the
basic operations are independent (the same is true for XOR differences, see,
for instance, [18]). Note that we can add � operation to a composition and
express new differential probabilities from the old ones in a direct way, since
the considered differences go through � with probability one. For instance, it
works for the function ((x�z)≪ r)⊕y if we know differential probabilities
for (x≪ r)⊕ y.

We investigate the properties of adpXR for the function (x ⊕ y) ≪ r.
They are similar to the properties of adpRX since adpXR(α, β

r→ γ) =

adpRX(γ, β
n−r→ α). Although the formula for adpRX has been proposed, many

its properties are still unknown. This work is devoted to maximums of adpXR,
where the rotation is one bit left/right and one of the first two arguments
is fixed. More precisely, we find β′, γ′ such that maxβ,γ adpXR(α, β

r→ γ) =

adpXR(α, β′
r→ γ′), where r = 1 (one bit left rotation) and r = n − 1 (one

bit right rotation). In addition, we obtain some symmetries of adpXR. Using
these symmetries, we can get distinct differentials whose probabilities are the
same. It may be interesting for maximum differentials. Note that we do not
analyze maximums for other argument fixations as well as for other rotations.
These cases look more difficult. At the same time, considered maximums for
r = 1 and r = n − 1 are very similar to maximums for adp⊕. It may be an
additional reason not to use these rotations in cryptographic primitives.

The paper is organized as follows. Necessary definitions are given in Sec-
tion 2. In Section 3 we introduce auxiliary definitions of adp⊕c and adp⊕a,b
and rewrite the formula from [17] to obtain an expression for adpXR in these
terms (Theorem 2 and Corollary 1). Section 4 is devoted to the symmetries
of adpXR which turned out to be similar to the symmetries of adp⊕ (Theo-
rem 4). Section 5 describes maximums of adpXR, where the rotation is one bit
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left and one of the first two arguments is fixed (Theorem 6). Similar results
are obtained in Section 6 for the one bit right rotation (Theorem 7).

2 Preliminaries

Let x, y ∈ Zn2 be elements of the n-dimensional vector space over the
two-element field. Note that x = (x0, x1, . . . , xn−1), i.e. its least and most
significant bits are x0 and xn−1 respectively. Since ARX schemes mix mod-
ulo 2 and modulo 2n operations, we denote that x + y, x − y and −x
mean x′+ y′ mod 2n, x′− y′ mod 2n and −x′ mod 2n respectively, where
x′ = x0 + x12

1 + ... + xn−12
n−1. In other words, x is a binary repre-

sentation of the integer x′ ∈ {0, . . . , 2n − 1}. The rotation is defined as
x≪ r = (xn−r, . . . , xn−1, x0, . . . , xn−r−1). Let

x = (x0 ⊕ 1, x1 ⊕ 1, . . . , xn−1 ⊕ 1).

Recall that x = 2n − 1− x. We define x⊕a, a ∈ Z2, in the following way:

x⊕a =

{
x, if a = 0

x, if a = 1
.

The vector (a, x0, x1, . . . , xn−1) is denoted by xa. In terms of integers, xa =
2x+a (mod 2n+1). Also, x � y if and only if xi ≤ yi for all i ∈ {0, . . . , n−1}.

We consider differences that are expressed using addition modulo 2n. The
additive differential probability adpf for f : (Zn2)k → Zn2 is defined as follows:

adpf(α1, . . . , αk → αk+1) = 2−kn#{x1, . . . , xk ∈ Zn2 :

f(x1 + α1, . . . , xk + αk) = f(x1, . . . , xk) + αk+1},
where α1, . . . , αk ∈ Zn2 and αk+1 ∈ Zn2 are called input differences and an
output difference respectively.

In this work we consider adp⊕(α, β → γ) for the function x⊕ y (see [14,
16]), adpXR(α, β

r→ γ) for the function (x ⊕ y)≪ r and adpRX(α, β
r→ γ)

for the function (x≪ r)⊕ y (see [17]).
Let e0, . . . , e7 be standard basis vectors of Q8, Q is the field of rationals.

They are vector-columns. There is a matrix approach for calculating adp⊕.

Theorem 1 (Lipmaa et al. [14], 2004). Let L = (1, 1, 1, 1, 1, 1, 1, 1),
A0, . . . , A7 be 8× 8 matrices, where

A0 =
1

4




4 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
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and Ak = ((Ak)i,j) = ((A0)i⊕k,j⊕k), where i, j, k ∈ Z3
2. Then

adp⊕(α, β → γ) = adp⊕(ω) = LAωn−1Aωn−2 . . . Aω0
e0,

where α, β, γ ∈ Zn2 and the differential (α, β → γ) is written as the octal
word ω = ωn−1 . . . ω0 with ωi = ωi(α, β, γ) = 4αi + 2βi + γi.

Note that we will use both integer and binary vector notations in the
indexes of matrices and coordinates, i.e. the matrices Ap2p1p0 and A4p2+2p1+p0

(coordinates vp2p1p0 and v4p2+2p1+p0 of v ∈ Q8) mean the same. Also, [16,
Proposition 1] provides that adp⊕ is symmetric. We will refer to the results
of [16] taking into account this fact.

3 A formula for adpXR

We will represent a formula for adpXR by rewriting the formula from [17].
First of all, we introduce auxiliary terms. The function carry : Zn2×Zn2 → Z2

is defined in the following way:

carry(x, y) = 0 if and only if x+ y < 2n as integers, x, y ∈ Zn2 .

Let us introduce adp⊕c and adp⊕a,b:

adp⊕c (α, β → γ) =2−2n#{x, y ∈ Zn2 : (x+ α)⊕ (y + β) = γ + (x⊕ y),

carry(x⊕ y, γ) = c}, where c ∈ Z2,

adp⊕a,b(α, β → γ) =2−2n#{x, y ∈ Zn2 : (x+ α)⊕ (y + β) = γ + (x⊕ y),

carry(x, α) = a, carry(y, β) = b}, where a, b ∈ Z2.

Their values for α, β, γ ∈ Z2 are given in Table 1.

Proposition 1. We can calculate adp⊕c and adp⊕a,b in the following way:

adp⊕a,b(α, β → γ) = La,bAωn−1 . . . Aω0
e0,

adp⊕c (α, β → γ) = LcAωn−1 . . . Aω0
e0,

where

wi = 4αi + 2βi + γi,

L0 = (1, 0, 1, 0, 1, 0, 1, 0), L1 = (0, 1, 0, 1, 0, 1, 0, 1)

L0,0 = (1, 1, 0, 0, 0, 0, 0, 0), L0,1 = (0, 0, 1, 1, 0, 0, 0, 0)

L1,0 = (0, 0, 0, 0, 1, 1, 0, 0), L1,1 = (0, 0, 0, 0, 0, 0, 1, 1)
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Table 1: adp⊕
a,b(α, β → γ) and adp⊕

c (α, β → γ), α, β, γ ∈ Z2

αβγ adp⊕
0,0 adp⊕

0,1 adp⊕
1,0 adp⊕

1,1 adp⊕
0 adp⊕

1

000 1 0 0 0 1 0
011 1/2 1/2 0 0 1/2 1/2
101 1/2 0 1/2 0 1/2 1/2
110 1/4 1/4 1/4 1/4 1 0

001 0 0 0 0 0 0
010 0 0 0 0 0 0
100 0 0 0 0 0 0
111 0 0 0 0 0 0

Proof. By Theorem 1, we know that adp⊕(α, β → γ) = Lv, where v =
Aωn−1 . . . Aω0

e0 and L = (1, 1, 1, 1, 1, 1, 1, 1). It remains to take into ac-
count the conditions for carries. S-function approach [15, §4] for calculating
adp⊕ gives us that the coordinate v4a+2b+c (vabc in binary form) equals to
2−2n#{x, y ∈ Zn2 : (x + α) ⊕ (y + β) = γ + (x ⊕ y) where carry bits of
x+α, y+β are a and b respectively, borrow bit of (x+α)⊕(y+β)−(x⊕y)
is c}. Note that this borrow bit equals to the carry bit of (x⊕ y) + γ. Thus,
carry(x, α) = a, carry(y, β) = b and carry(x⊕ y, γ) = c.

Next, we need to sum several coordinates of v. Let us calculate adp⊕1,0,
i.e. carry(x, α) = 1, carry(y, β) = 0, carry(x ⊕ y, γ) ∈ {0, 1}. We should
take the sum v4 + v5 (in other words, v100 + v101). Thus, adp⊕1,0 = L1,0v.

It is not difficult to check all other formulas.

Next, we prove the following lemma similar to [16, Lemma 4].

Lemma 1. Let a, b, c ∈ Z2, and k, w0, . . . , wn ∈ Z3
2, n ≥ 0. Then

– LcAωn . . . Aω0
ek = Lc⊕k0Aωn⊕k . . . Aω0⊕ke0,

– La,bAωn . . . Aω0
ek = La⊕k2,b⊕k1Aωn⊕k . . . Aω0⊕ke0.

Proof. Indeed, it is straightforward that At⊕k = TkAtTk, ek = Tke0, Lc⊕k0 =
LcTk and La⊕k2,b⊕k1 = La,bTk, where t ∈ Z3

2 and Tk is the 8 × 8 involution
matrix that swaps the i and i⊕ k coordinates, i ∈ Z3

2.

Now we rewrite the formula from [17] in terms of adp⊕c and adp⊕a,b. Note
that in the denotation α′′ = (α, α′), where α ∈ Zn2 , α′ ∈ Zm2 , α contains the
least significant bits of α′′, i. e. α′′ = (α0, . . . , αn−1, α

′
0, . . . , α

′
m−1).

Theorem 2. Let α, β, γ ∈ Zn−r2 , α′, β′, γ′ ∈ Zr2. Then
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adpXR((α, α′), (β, β′)
r→ (γ′, γ))

=
∑

a,b,c∈Z2

adp⊕a,b(α, β → γ⊕c)adp⊕c (α′⊕a, β′⊕b → γ′).

Proof. Let x = (α, α′), y = (β, β′), z = (γ′, γ). According to the formula for
adpRX that was found in [17, Theorem 1] (adpARX without changing ∆γ),

adpXR(x, y
r→ z) = adpRX(z, y

n−r→ x)

[17]
= 2−2n

∑

j∈{0,2,4,6}
FjBsn−1 . . . BsrRBsr−1 . . . Bs0Cj,

where si = ziyi+n−rxi+n−r (4zi + 2yi+n−r + xi+n−r as an integer), F0 = L0,0,
F2 = L0,1, F4 = L1,0, F6 = L1,1 and Cj = ej, see [17, §5.4]. The matrices
B000, . . . , B111, R are given in [17, Appendix A] (they are denoted by A
there). It can be seen that R = e4L0 + e5L1 and Babc = 4Acba where a, b, c ∈
Z2. Let vi = xi+n−ryi+n−rzi, i ∈ {0, . . . , n− 1}. Using Lemma 1, we get that

adpXR((α, α′), (β, β′)
r→ (γ′, γ))

=
∑

j∈{0,2,4,6}
FjAvn−1 . . . Avr(e4L0 + e5L1)Avr−1 . . . Av0ej

=
∑

j∈{0,2,4,6}
L0,0Avn−1⊕j . . . Avr⊕j(e4⊕jL0 + e5⊕jL1)Avr−1⊕j . . . Av0⊕je0

=
∑

j∈{0,2,4,6}
L0,0Avn−1⊕j . . . Avr⊕je4⊕j × L0Avr−1⊕j . . . Av0⊕je0

+
∑

j∈{0,2,4,6}
L0,0Avn−1⊕j . . . Avr⊕je5⊕j × L1Avr−1⊕j . . . Av0⊕je0

=
∑

a,b∈Z2

L0,0Avn−1⊕ab0 . . . Avr⊕ab0e100⊕ab0 × L0Avr−1⊕ab0 . . . Av0⊕ab0e0

+
∑

a,b∈Z2

L0,0Avn−1⊕ab0 . . . Avr⊕ab0e101⊕ab0 × L1Avr−1⊕ab0 . . . Av0⊕ab0e0

=
∑

a,b∈Z2

La,bAvn−1⊕100 . . . Avr⊕100e0 × L0Avr−1⊕ab0 . . . Av0⊕ab0e0

+
∑

a,b∈Z2

La,bAvn−1⊕101 . . . Avr⊕101e0 × L1Avr−1⊕ab0 . . . Av0⊕ab0e0

=
∑

a,b,c∈Z2

La,bAvn−1⊕10c . . . Avr⊕10ce0 × LcAvr−1⊕ab0 . . . Av0⊕ab0e0

=
∑

a,b,c∈Z2

La,bAvn−1⊕10c . . . Avr⊕10ce0 × LcAvr−1⊕ab0 . . . Av0⊕ab0e0
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Finally, La,bAvn−1⊕10c . . . Avr⊕10ce0 = adp⊕a,b(α, β → γ⊕c) and
LcAvr−1⊕ab0 . . . Av0⊕ab0e0 = adp⊕c (α′⊕a, β′⊕b → γ′) by Proposition 1.

Corollary 1. Let α, β, γ ∈ Zn−r2 , α′, β′, γ′ ∈ Zr2, and a = α0 ⊕ β0 ⊕ γ0,
a′ = α′0 ⊕ β′0 ⊕ γ′0, i. e. a, a′ ∈ Z2. Then

adpXR((α, α′), (β, β′)
r→ (γ′, γ)) = adp⊕a′,0(α, β → γ⊕a)adp⊕a (α′⊕a

′
, β′ → γ′)

+adp⊕
a′,1

(α, β → γ⊕a)adp⊕a (α′
⊕a′
, β′ → γ′).

Proof. By Theorem 2, the following holds

adpXR((α, α′), (β, β′)
r→ (γ′, γ))

=
∑

p,q,u∈Z2

adp⊕p,q(α, β → γ⊕u)adp⊕u (α′⊕p, β′⊕q → γ′).

If α0 ⊕ β0 ⊕ γ0 = 1, then adp⊕(α, β → γ) = 0, see, for instance, [14]. It
means that adp⊕p,q(α, β → γ) = adp⊕u (α, β → γ) = 0. Hence, we can exclude
u 6= α0 ⊕ β0 ⊕ γ0 = a. Also, we can consider only

α′0 ⊕ p⊕ β′0 ⊕ q ⊕ γ′0 = 0⇒
{
p = α′0 ⊕ β′0 ⊕ γ′0 = a′, if q = 0,

p = α′0 ⊕ β′0 ⊕ γ′0 = a′, if q = 1.

This completes the proof.

4 Symmetries of adpXR

In this section we prove some symmetries of adpXR. We start with the
following properties of the function carry.

Proposition 2. Let x, y, α ∈ Zn2 , α 6= 0. Then the following holds:

1. carry(x, y) = carry(y, x),

2. carry(x− α, α) = carry(x,−α)⊕ 1,

3. carry(x, α) = carry(x,−α)⊕ 1.

Proof. The first point is straightforward. To be precise, we will use +, − and
�, � for the integer and modulo operations respectively. Also, it can be seen
that 2n − α = �α as integers since α 6= 0.

Let us prove the second point: carry(x�α, α) = 0⇐⇒ (x�α) +α < 2n

⇐⇒ x ≥ α as integers. Indeed, if x ≥ α, (x�α) +α = x−α+α = x < 2n.
Otherwise, (x� α) + α = 2n + x− α + α = 2n + x ≥ 2n.
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At the same time, x ≥ α ⇐⇒ x ≥ 2n− (2n− α) ⇐⇒ x+ (2n− α) ≥ 2n

⇐⇒ x+ (�α) ≥ 2n ⇐⇒ carry(x,�α) = 1.
Finally, carry(x, α) = 0 ⇐⇒ 2n − 1− x+ α < 2n ⇐⇒ 2n − x+ α ≤ 2n

⇐⇒ x+ (2n − α) ≥ 2n ⇐⇒ x+ (�α) ≥ 2n ⇐⇒ carry(x,�α) = 1.

Next, we need to prove symmetries of adp⊕c and adp⊕a,b.

Theorem 3. Let α, β, γ ∈ Zn2 , c ∈ Z2. Then

1. adp⊕c (α, β → γ) = adp⊕c (−α, β → γ) = adp⊕c (α,−β → γ),

2. adp⊕c (α, β → γ) = adp⊕c⊕1(α, β → −γ) for γ 6= 0,

3. adp⊕c (α, β → γ) = adp⊕c (β, α→ γ) = adp⊕c (α + 2n−1, β + 2n−1 → γ),

4. adp⊕a,b(α, β → γ) = adp⊕a,b(α, β → −γ),

5. adp⊕a,b(−α, β → γ) = adp⊕a⊕1,b(α, β → γ) for α 6= 0,

6. adp⊕a,b(α,−β → γ) = adp⊕a,b⊕1(α, β → γ) for β 6= 0.

Proof. First of all, we refer to the symmetries of adp⊕. It can be seen (we may
refer to the proofs of [16, Propositions 1, 3]) that the condition for x, y ∈ Zn2
to satisfy (x+α)⊕(y+β) = γ+(x⊕y) is equivalent to any of the following:

1. x′ = x+ α, y′ = y + β satisfy (x′ + α)⊕ (y′ + β) = −γ + (x′ ⊕ y′),

2. x′ = x+ α, y′ = y + β satisfy (x′ + α)⊕ (y′ − β) = γ + (x′ ⊕ y′).

Let us start with the first two point. Indeed,

adp⊕c (α,−β →γ)
2
= {x′ = x+ α, y′ = y + β :

(x′ + α)⊕ (y′ − β) = γ + (x′ ⊕ y′), carry(x′ ⊕ y′, γ) = c}.

Taking into account the points of Proposition 2 (p.2 and p.3), we have that

carry(x′ ⊕ y′, γ) = carry((x+ α)⊕ (y + β), γ) = carry((x⊕ y) + γ, γ)

= carry(x⊕ y − γ, γ)
p.2
= carry(x⊕ y,−γ)⊕ 1

p.3
= carry(x⊕ y, γ).

Thus, adp⊕c (α, β → γ) = adp⊕c (α,−β → γ). The same is true for −α due to
their symmetry. Next,

adp⊕c (α, β →− γ)
1
= {x′ = x+ α, y′ = y + β :

(x′ + α)⊕ (y′ + β) = −γ + (x′ ⊕ y′), carry(x′ ⊕ y′,−γ) = c}.
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By the points of Proposition 2, we can see that

carry(x′ ⊕ y′,−γ) = carry((x+ α)⊕ (y + β),−γ)

= carry((x⊕ y) + γ,−γ)
p.2
= carry(x⊕ y, γ)⊕ 1.

Thus, adp⊕c (α, β → γ) = adp⊕c⊕1(α, β → −γ).
Also, it is not difficult to check by definition that adp⊕c (α, β → γ) =

adp⊕c (β, α→ γ) = adp⊕c (α + 2n−1, β + 2n−1 → γ).
The proof of the rest points is very similar to the proof of the previous

ones. We use the same x′, y′. Let us consider the case of −β.
adp⊕a,b(α,− β → γ)

2
= {x′ = x+ α, y′ = y + β : (x′ + α)⊕ (y′ − β)

= γ + (x′ ⊕ y′), carry(x′, α) = a, carry(y′,−β) = b}.
Taking into account the points of Proposition 2, we have that

carry(y′,−β) = carry(y + β,−β)
p.2
= carry(y, β)⊕ 1, also,

carry(x′, α) = carry(x+ α, α) = carry(x− α, α)
p.2
= carry(x,−α)⊕ 1

p.3
= carry(x, α). (1)

Thus, adp⊕a,b(α, β → γ) = adp⊕a,b⊕1(α,−β → γ). The same is true for −α
due to their symmetry. Next, let us consider −γ.

adp⊕a,b(α,β → −γ)
1
= {x′ = x+ α, y′ = y + β : (x′ + α)⊕ (y′ + β)

= −γ + (x′ ⊕ y′), carry(x′, α) = a, carry(y′, β) = b}.
The equality (1) gives us exactly what we need, the condition for β is the
same for this case. Thus, adp⊕a,b(α, β → γ) = adp⊕a,b(α, β → −γ).

Now we obtain some symmetries of adpXR.

Theorem 4. The values of adpXR satisfy the following properties:

– adpXR(α, β
r→ γ) = adpXR(β, α

r→ γ),

– adpXR(α, β
r→ γ) = adpXR(α + 2n−1, β + 2n−1 r→ γ)

– adpXR(α, β
r→ γ) = adpXR(±α,±β r→ ±γ), where ±α means that we

can substitute either α or −α,
Proof. The first two points are straightforward. Next, we do not consider β
since α and β are symmetric. Let α, β, γ ∈ Zn−r2 , α′, β′, γ′ ∈ Zr2. According
to Theorem 2, adpXR((α, α′), (β, β′)

r→ (γ′, γ)) is equal to
∑

a,b,c∈Z2

adp⊕a,b(α, β → γ⊕c)adp⊕c (α′⊕a, β′⊕b → γ′). (2)
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Case 1. α 6= 0 (resp. γ′ 6= 0). Thus, −(α, α′) = (−α, α′). Let us sub-
stitute (−α, α′) to (2): adp⊕c (α′

⊕a
, β′⊕b → γ′) = adp⊕c (α′⊕a⊕1, β′⊕b → γ′).

Also, adp⊕a,b(−α, β → γ⊕c) = adp⊕a⊕1,b(α, β → γ⊕c) by Theorem 3. But
(2) does not change if we replace a by a ⊕ 1. Similar reasons work for
−(γ′, γ) = (−γ′, γ).

Case 2. α = 0 (resp. γ′ = 0). Thus, −(0, α′) = (0,−α′). Substituting
(0,−α′) to (2), adp⊕1,b(0, β → γ⊕c) = 0 by definition. Hence, we can only
consider a = 0. But in this case adp⊕c does not contain α′. By Theorem 3,
adp⊕c (−α′, β′⊕b → γ′) = adp⊕c (α′, β′⊕b → γ′). It means that (2) does not
change. Similar reasons work for −(0, γ) = (0,−γ).

5 Maximums of adpXR for r = 1

In this section we consider maximums of adpXR for r = 1 (the rotation
is one bit left), where one of the first two arguments is fixed. First of all, we
prove the recurrence formulas for adp⊕c and adp⊕a,b which are similar to ones
for adp⊕ obtained in [16, Theorem 3].

Theorem 5. Let α, β, γ ∈ Zn2 , p ∈ Z3
2, a, b, c ∈ Z2 and wt(p) be even. Then

adp⊕c (αp2, βp1 → γp0) =
1

2wt(p)

∑

q∈Z3
2,q�p

adp⊕c⊕q0(α
⊕q2, β⊕q1 → γ⊕q0),

adp⊕a,b(αp2, βp1 → γp0) =
1

2wt(p)

∑

q∈Z3
2,q�p

adp⊕a⊕q2,b⊕q1(α
⊕q2, β⊕q1 → γ⊕q0).

If wt(p) is odd, adp⊕c (αp2, βp1 → γp0) = adp⊕a,b(αp2, βp1 → γp0) = 0.

Proof. By Proposition 1, adp⊕c (αp2, βp1 → γp0) = LcAωn−1 . . . Aω0
Ap2p1p0e0.

First of all, adp⊕(αp2, βp1 → γp0) = 0 if wt(p) is odd. Next, let wt(p)
be even. It can be seen that Ap2p1p0e0 = 1

2wt(p)

∑
q∈Z3

2,q�p
eq. Therefore,

adp⊕c (αp2, βp1 → γp0) =
1

2wt(p)

∑

q∈Z3
2,q�p

LcAωn−1 . . . Aω0
eq

Lemma 1
=

1

2wt(p)

∑

q∈Z3
2,q�p

Lc⊕q0Aωn−1⊕q . . . Aω0⊕qe0

=
1

2wt(p)

∑

q∈Z3
2,q�p

Lc⊕q0Aαn−1βn−1γn−1⊕q2q1q0 . . . Aα0β0γ0⊕q2q1q0e0
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=
1

2wt(p)

∑

q∈Z3
2,q�p

adp⊕c⊕q0(α
⊕q2, β⊕q1 → γ⊕q0).

The recurrence formula for adp⊕a,b can be proven in the same way.

Using these formulas, we prove the following lemma.

Lemma 2. Let α, β, γ ∈ Zn2 , a ∈ Z2. Then the following holds:

adp⊕a,0(α, β → γ) + adp⊕a,1(α, β → γ)

≤ adp⊕0,0(α, α→ 0) + adp⊕1,1(α, α→ 0).

Proof. Let us prove the statement by induction. The base of the induction
n = 1 directly follows from Table 1. Suppose that it holds for all α, β, γ ∈
Zn2 , a ∈ Z2. We prove that it is true for α′, β′, γ′ ∈ Zn+1

2 , a′ ∈ Z2. Let
p = (α0, β0, γ0) and α′ = αp1, β

′ = βp2, γ′ = γp3. We suppose that wt(p)
is even, since in other cases adp⊕(α, β → γ) = 0 and the inequality holds.
According to Theorem 5,

adp⊕a,0(α
′, β′ → γ′) + adp⊕a,1(α

′, β′ → γ′)

=
1

2wt(p)

∑

q∈Z3
2,q�p

(adp⊕a⊕q0,q1(α
⊕q0, β⊕q1 → γ⊕q2)

+ adp⊕a⊕q0,q1(α
⊕q0, β⊕q1 → γ⊕q2)). (3)

Case 1. p0 = 0. In this case adp⊕0,0(α
′, α′ → 0) + adp⊕1,1(α

′, α′ → 0) =
adp⊕0,0(α, α→ 0) + adp⊕1,1(α, α→ 0). If (p1, p2) = 0, the equality (3) and the
induction hypothesis prove the statement. Let (p1, p2) = (1, 1). Then,

adp⊕a,0(α
′, β′ → γ′) + adp⊕a,1(α

′, β′ → γ′)

=
1

4

∑

(q1,q2)∈Z2
2

(adp⊕a,q1(α, β
⊕q1 → γ⊕q2) + adp⊕a,q1(α, β

⊕q1 → γ⊕q2)).

At the same time, adp⊕a,q1(α, β
⊕q1 → γ⊕q2) + adp⊕a,q1(α, β

⊕q1 → γ⊕q2) ≤
adp⊕0,0(α, α→ 0) + adp⊕1,1(α, α→ 0) by the induction hypothesis.

Case 2. p0 = 1. First of all, we note that the equality (3) consists of 4
terms. Moreover, two of them are zero, since the last bits of their arguments
are of odd weight. Next,

adp⊕0,0(α
′, α′ → 0) + adp⊕1,1(α

′, α′ → 0)

=
1

4
(adp⊕0,0(α, α→ 0) + adp⊕1,1(α, α→ 0)) (4)
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=
1

4
(adp⊕1,1(α, α→ 0) + adp⊕0,0(α, α→ 0)). (5)

Let (p1, p2) = (1, 0). According to the equality (3),

adp⊕a,0(α
′, β′ →γ′) + adp⊕a,1(α

′, β′ → γ′)

=
1

4

∑

q∈Z2

(adp⊕a,q(α, β
⊕q → γ) + adp⊕a,q(α, β

⊕q → γ)) (6)

+
1

4

∑

q∈Z2

(adp⊕a,q(α, β
⊕q → γ) + adp⊕a,q(α, β

⊕q → γ)). (7)

Note that in both (6) and (7) a term for q = 0 or for q = 1 equals to zero.
Therefore, the induction hypothesis provides that (6) ≤ (4) and (7) ≤ (5).
The case of (p1, p2) = (0, 1) is the same.

Finally, the next theorem describes how to find maxβ,γ adpXR(α, β
1→ γ).

Theorem 6. Let us fix the first argument of adpXR. Then

max
β,γ∈Zn2

adpXR(α, β
1→ γ) = adpXR(α, α

1→ 0), where α ∈ Zn2 .

Proof. Let α, β, γ ∈ Zn−r2 , α′, β′, γ′ ∈ Zr2, and a = α0⊕β0⊕γ0, a′ = α′0⊕β′0⊕
γ′0, i. e. a, a′ ∈ Z2. Then adpXR((α, α′), (β, β′)

1→ (γ′, γ)) = p ·adp⊕a′,0(α, β →
γ⊕a) + q · adp⊕

a′,1
(α, β → γ⊕a), where p = adp⊕a (α′⊕a

′
, β′ → γ′) ≤ 1 and

q = adp⊕a (α′
⊕a′
, β′ → γ′) ≤ 1, see Corollary 1. At the same time,

adpXR((α, α′), (α, α′)
1→ 0) = adp⊕0,0(α, α→ 0) + adp⊕1,1(α, α→ 0).

Since p, q ≤ 1, Lemma 2 provides that p · adp⊕a′,0(α, β → γ⊕a) + q ·
adp⊕

a′,1
(α, β → γ⊕a) ≤ adpXR((α, α′), (α, α′)

1→ 0).

6 Maximums of adpXR for r = n− 1

In this section we consider maximums of adpXR for r = n − 1 (in other
word, the rotation is one bit right), where one of the first two arguments is
fixed. Let us start with the following lemmas.

Lemma 3. Let α ∈ Zn2 and c ∈ Z2. Then it is true that max
β,γ∈Zn2

adp⊕c (α, β →
γ) ≤ max

β,γ∈Zn2
adp⊕0 (α, β → γ) = max

β,γ∈Zn2
adp⊕(α, β → γ) = adp⊕(α, α→ 0).
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Proof. It is clear that maxβ,γ adp⊕c (α, β → γ) ≤ maxβ,γ adp⊕(α, β → γ).
Also, [16, Theorem 2] provides that maxβ,γ adp⊕(α, β → γ) = adp⊕(α, α→
0). At the same time, adp⊕(α, α→ 0) = adp⊕0 (α, α→ 0) by definition.

Lemma 4. Let α ∈ Zn2 , α0 = 0. Then adp⊕(α, α→ 0) ≤ adp⊕(α, α→ 0).

Proof. The case of n = 1 is straightforward. Next, adp⊕(α′1, α′1 → 0) <
adp⊕(α′0, α′0→ 0) holds for any α′ ∈ Zn−1

2 by [16, Corollary 5]. Let α = α′0.
Due to the symmetries of adp⊕ (see [16, Proposition 3]), adp⊕(α′1, α′1 →
0) = adp⊕(−(α′1),−(α′1)→ 0). Also, −(α′1) = α′1 = α′0 = α.

The next theorem describes how to find maxβ,γ adpXR(α, β
n−1→ γ).

Theorem 7. Let us fix the first argument of adpXR. Then

1. max
β,γ∈Zn2

adpXR(α0, β
n−1→ γ) = adpXR(α0, α0

n−1→ 0), where α ∈ Zn−1
2 ,

2. max
β,γ∈Zn2

adpXR(α01, β
n−1→ γ) = adpXR(α01, α00

n−1→ 2n−1), α ∈ Zn−2
2 ,

3. max
β,γ∈Zn2

adpXR(α11, β
n−1→ γ) = adpXR(α11, α00

n−1→ 2n−1), α ∈ Zn−2
2 .

Proof. According to Corollary 1, adpXR((α, α′), (β, β′)
n−1→ ((γ′, γ)) = p ·

adp⊕a (α′⊕a
′
, β′ → γ′) + q · adp⊕a (α′

⊕a′
, β′ → γ′), where p = adp⊕a′,0(α, β →

γ⊕a), q = adp⊕
a′,1

(α, β → γ⊕a). Table 1 shows us possible values of p and q:

α 0 1

β 0 1 0 1

αβγ⊕a 000 000 011 011 101 101 110 110

a′ 0 1 0 1 0 1 0 1

p 1 0 1/2 0 1/2 1/2 1/4 1/4

q 0 0 0 1/2 0 0 1/4 1/4

Case 1. α = 0, i.e. (α, α′) = (0, α′) = α′0. First of all,

adpXR((0, α′), (0, α′)
n−1→ 0)

a′=0
= adp⊕0 (α′, α′ → 0) = adp⊕(α′, α′ → 0).

According to the first four columns of the table above, adpXR(α′0, (β, β′)
n−1→

(γ, γ′)) takes one the following values: adp⊕a (α′, β′ → γ′), 0, 1
2adp⊕a (α′, β′ →

γ′) and 1
2adp⊕a (α′, β′ → γ′). In light of Lemma 3, it is not difficult to see that

any of them is not more than adp⊕(α′, α′ → 0). The first point is proven.

N. Kolomeec, I. Sutormin, D. Bykov, M. Panferov, and T. Bonich 154



On differential characteristics modulo 2n of the composition of bitwise exclusive-or and...

Case 2. α = 1, i.e. (α, α′) = (1, α′) = α′1. According to the last four
columns of the table above, adpXR(α′1, (β, β′)

n−1→ (γ, γ′)) takes one of the
following values:

1

2
adp⊕a (α′, β′ → γ′) (8)

1

2
adp⊕a (α′, β′ → γ′) (9)

1

4
adp⊕a (α′, β′ → γ′) +

1

4
adp⊕a (α′, β′ → γ′) (10)

1

4
adp⊕a (α′, β′ → γ′) +

1

4
adp⊕a (α′, β′ → γ′) (11)

Case 2.1 α′0 = 0. According to the second point of the theorem,
let us define m0 = adpXR(α′1, α′0

n−1→ 2n−1)
a′=0
= 1

2adp⊕0 (α′, α′ → 0) =
1
2adp⊕(α′, α′ → 0). Then by Lemmas 3 and 4 (they are marked bellow as 3
and 4 respectively) we obtain that

m0 =
1

2
adp⊕(α′, α′ → 0)

3
≥ (8),

m0

4
≥ 1

2
adp⊕(α′, α′ → 0)

3
≥ (9),

m0 =
1

4
adp⊕(α′, α′ → 0) +

1

4
adp⊕(α′, α′ → 0)

4
≥ 1

4
adp⊕(α′, α′ → 0) +

1

4
adp⊕(α′, α′ → 0)

3
≥ (10), (11).

The second point is proven.
Case 2.2 α′0 = 1. According to the third point of the theorem, let

us define m1 = adpXR(α′1, α′0
n−1→ 2n−1)

a′=1
= 1

2adp⊕0 (α′, α′ → 0) =
1
2adp⊕(α′, α′ → 0). Similarly to the previous case, we obtain that

m1

4
≥ 1

2
adp⊕(α′, α′ → 0)

3
≥ (8),

m1 =
1

2
adp⊕(α′, α′ → 0)

3
≥ (9),

m1 =
1

4
adp⊕(α′, α′ → 0) +

1

4
adp⊕(α′, α′ → 0)

4
≥ 1

4
adp⊕(α′, α′ → 0) +

1

4
adp⊕(α′, α′ → 0)

3
≥ (10), (11).

The theorem is proven.

Due to Theorem 4, Theorems 6 and 7 provide exactly the same if we fix
the second argument of adpXR.
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7 Conclusion

By rewriting the formula from [17], we have obtained some symmetries of
adpXR. They turned out to be similar to the symmetries of adp⊕ [16]. Also, if
the rotation is one bit left/right, we have found maximums of adpXR, where
one of its input differences is fixed. Although these rotations are difficult to
meet in real ciphers, the results obtained show us that the optimal differen-
tials of adpXR may be theoretically found in some cases. Also, anything that
is true for adpXR works for adpRX as well (taking into account positions of
arguments and the rotation parameter). The maximums for other argument
fixations as well as for other rotations are the topics for future research.
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Abstract

In 2002, Russell and Wang proposed a definition of entropic security, which was
developed within the framework of secret-key cryptography. An entropically secure
system is unconditionally secure, that is, unbreakable regardless of the adversary’s
computing power. In 2004, Dodis and Smith further developed the results of Russell
and Wang and, in particular, stated that the notion of an entropically secure sym-
metric encryption scheme is extremely important for cryptography because one can
construct entropically secure symmetric encryption schemes with keys much shorter
than the length of the input, thus circumventing Shannon’s famous lower bound on
key length.

In this report we suggest an entropically secure scheme for the case where the
encrypted message is generated by a Markov chain with unknown statistics. The
length of the required secret key is proportional to the logarithm of the message
length (as opposed to the length of the message itself for the one-time pad).

Keywords: Information Theory, entropy security, indistinguishability, symmetric encryption
scheme, unconditionally secure, Markov chain, unknown statistics.

1 Introduction

In 1949, K. Shannon, in his remarkable article [1], described the perfect
secret system and showed that the one-time pad is such a system. Since
then, it has been generally accepted that the length of the secret key should
be equal to the length of the encrypted message (or at least its entropy).
Russell and Wang [2] proposed the notion of entropic security, which gives a
possibility to build a symmetric encryption scheme with a secret key much
shorter than the length of the input, thus, in a sense, circumventing the
mentioned Shannon’s lower bound on key length. Informally, the entropy-
secure symmetric encryption scheme uses the entropy of the input message
to make the required secret key shorter.
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The concept of entropic security has been generalized and developed by
Dodis and Smith [3] and investigated by several other authors [4, 5, 6]. In
order to describe it, suppose that there is a sender Alice and a receiver Bob
who share a secret key K, and Alice wants to securely send some messageM
to Bob over a public channel. The messageM is assumed to come from some
a-priori distribution on Λn where Λ is a finite alphabet, n ≥ 1, and K is a
sequence of equally probable and independent binary digits. Informally, the
goal is to compute E(M,K) which allows Bob to extract M from E(M,K)
using K and (the decoder) D(E,K), (D(E,K) = M), in such a way as
to reveal “no information” about M to the adversary Eve beyond what she
already knew. It is assumed that E(M,K) is a probabilistic map, that is, it
can also use random numbers, which are unknown to Bob.

The following formal definition of the entropic security belongs to Russell
and Wang [2] (see also Dodis and Smith [3]):

Definition 1. A probabilistic map E(M,K) is said to hide all functions f
on Λn to {0, 1}∗ with leakage ε, ε > 0, if, for every adversary A, there exists
some adversary Â (who does not know E(M,K)) such that for all functions
f from Λn to {0, 1}∗,

|Pr{A(E(M,K)) = f(M)} − Pr{Â( ) = f(M)} | ≤ ε. (1)

(Note that Â does not know E(M,K) and, in fact, she guesses the meaning
of the function f(M), ignoring E(M,K).)

The cipher E(M,K) is ε-entropically secure for a probability distribution
P on Λn if E(M,K) hides all functions f on Λn to {0, 1}∗ with leakage ε
when M obeys the distribution P .

Another concept, namely, that of indistinguishability, provides another
way evaluate the strength of the cipher. To describe it, we first need to
define min-entropy.

For a probability distribution P on the alphabet S the min-entropy is
defined as follows:

hmin(P ) = − log max
a∈S

P (a) , (2)

log = log2.

Definition 2. (Dodis and Smith [3].) A randomized map Y () is (t, ε)-
indistinguishable if there is a random variable G such that for every dis-
tribution on a set M with min-entropy at least t, we have

SD(Y (M), G) ≤ ε,
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where for two probability distributions A,B

SD(A,B) =
1

2

∑

M∈M
|Pr{A = M} − Pr{B = M}| .

Informally, in what follows the map Y ( ) will be the cipher and, again,
G does not depend on the ciphered message. So, Eve can guess the message
regardless of its cipher.

Dodis and Smith [3] showed that entropy security and indistinguishability
are equal (up to small constants in key length). In particular, they show that
if a cipher is ε-entropically secure, it is 4ε-indistinguishable.

The main result of this paper is as follows: We describe an ε-entropically
secure cipher for the case where the probability distribution µ is unknown,
but it is known that it belongs to class of stationary ergodic Markov chains
with finite memory, or connectivity, m, m ≥ 0, whose definition is given
in Appendix. (If m = 0 then the symbols generated by µ are independent
and identically distributed – i.i.d.). The length of the required secret key is
c1 log n+ c2 log(1/ε) + c3, where n is the length of encrypted sequence, c1, c2

and c3 are constants that depend onm and the size of the alphabet Λ. (Recall
that all participants know m, but the secret key are known only to Alice and
Bob and the key is used only once).

The proposed method is based on the concept of the ε-entropically se-
cure cipher and some results of universal coding, which makes it possible to
efficiently “compress” messages with unknown statistics [7].

2 Preliminaries

2.1 Universal coding

First, we consider the simplest case where the alphabet is {0, 1}n, n ≥ 1
and letters are generated by some i.i.d. source µ and µ(0), µ(1) are unknown.
The goal is to build a lossless code which “compresses” n-letter sequences in
such a way that the average length (per letter) of the compressed sequence
is close to the Shannon entropy h(µ), which is the lower limit of the code-
word length (lossless code is such that the encoded messages can be decoded
without errors and h(µ) = −(µ(0) log µ(0) + (1−µ(0)) log(1−µ(0)) ) [7, 8].

The first universal code was invented by Fitingoff [9] and we use this code
as a part of the suggested entropically secure cipher. In order to describe this
code we consider any word v ∈ {0, 1}n and denote by ν the number of ones
in v and let Sν be the set of n-length words with ν ones. Fitingoff proposed
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to encode the word v by two subwords u (prefix) and w (suffix), where u is
the binary notation of an integer ν and w is the index of the word v in the
subset Sν. It is assumed that the words in Sν are ordered 0 to (|Sν| − 1)
(say, lexicographically) and the lengths of u and w are equal to dlog(n+ 1)e
and dlog |Sn|e, respectively. For example, for n = 3, v = 100 we obtain
ν = 1, u = 01, w = 10.

Recall the definition of the so-called prefix-free code. A set of words U
is prefix-free if for any u, v ∈ U neither u is a prefix of v nor v is a prefix
of u [8]. Clearly, the Fitingoff code is prefix-free. If some code λ is prefix-
free, then for any sequence x1x2....xn, n ≥ 1, xi ∈ Λ, the encoded sequence
λ(x1)λ(x2)...λ(xn) can be decoded to x1x2....xn without errors. Hence, any
prefix-free code is a lossless one.

If we denote the Fitingoff code by codeF we obtain from its description

|codeF (v)| = dlog(n+ 1)e+ dlog |Sν|e + 1 . (3)

For this code the ability to compress messages is based on the simple observa-
tion that probabilities of all messages from Sν are equal for any distribution
µ and, hence, µ(v) ≤ 1/|Sν| for µ and any word v ∈ Sν. From this inequality
and (3) we obtain

|codeF (v)| ≤ log(n+ 1) + 3 + log(1/µ(v)) . (4)

(Let’s explain the name “universal code.” Clearly, the average code-length
Eµ(|codeF |) is not grater than log(n+1)+3+nh(µ) and, hence, the average
length per letter Eµ(|codeF |)/n is not grater than h(µ) + (log n + 3)/n).
We can see that Eµ(|codeF |)/n → h(µ) if n→∞. So, one code compresses
sequences generated by any µ, that is, the code universal.)

The Fitingoff code described generalizes to i.i.d. processes with any finite
alphabet Λ, as well as to Markov chains with memory or connectivity m,
based on the same method as for binary i.i.d. [7]. Namely, the set of all n-
letter words is divided into subsets of equiprobable words, and the code of
any word is represented by a prefix and a suffix, where the prefix contains the
number of the set with equiprobable words which contains the encoded one,
and the prefix is the number in this set. It can be shown that the number of
sets with equiprobable words is bounded above by (|Λ| − 1)|Λ|m ([7, 8]), and
similarly (4) we can deduce that

|codeF (v)| ≤ log((|Λ| − 1)|Λ|m) + 3 + log(1/µ(v)) . (5)

It is important to note that there exists an algorithm to find the code-
words which is based on method of fast calculation of numbers in Sν, see
[10]. The complexity of this algorithm is O(n log3 n log log n).
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2.2 Entropically secure ciphers

Dodis and Smith [3], based on the results of Russell and Wang [2], proved
the following

Theorem (Russell-Wang, Dodis- Smith ) ([2], [3]). Let there be a
probability distribution σ on an alphabet Λ = {0, 1}l, l ≥ 1. Then, for any
ε > 0, there exists an ε- entropically secure cipher E(M,K), M ∈ {0, 1}l
with the length of the key

|K| = l − hmin(σ) + 2log(1/ε) + 2. (6)

Take any such cipher and denote it cipherRW−DS(M,K). Dodis and
Smith described three algorithm of such ciphers with a key length (6) whose
complexity grows polynomially in l and log(1/ε) (One such a cipher is de-
scribed in Appendix).

It is important to note that each of the three constructions of the ciphers
depends only on min-entropy, that is, the cipher construction is the same for
all distributions with the same min-entropy (but, of course, depends on ε and
l).

3 The cipher

3.1 Randomised prefix-free codes

Let λ be a prefix-free code for some alphabet Λ∗ and L = maxa∈Λ∗ |λ(a)| .
The randomized code ρλ maps elements from Λ∗ to the set {0, 1}L defined
as follows:

ρλ(ai) = λ(ai) r
i
|λ(ai)|+1r

i
|λ(ai)|+2...r

i
L , (7)

where ri|λ(ai)|+1, r
i
|λ(ai)|+2, ..., r

i
L are uniformly distributed and independent

random bits (for all i).
Let us define the probability distribution πλ,µ on {0, 1}L as follows:

πλ,µ(y1y2...yL) = µ(a)2−(L−|λ(a)|)

if y1y2...y|λ(ai)| = λ(a). (8)

If for some y = y1...yL any λ(a) is not a prefix of y, then πλ,µ(y) = 0.
Let us estimate the min-entropy of the distribution πλ,µ. From this equa-

tion and the definition of the min-entropy (2) we obtain the following:

hmin(πλ,µ) = L−max
a∈Λ

(|λ(a)| − log(1/µ(a)) . (9)

B. Ryabko 163



Entropically secure cipher for messages generated by Markov chains with unknown statistics

Now we consider the Fitingoff code applied to n-letter sequences gener-
ated by a Markov chain µ of memory m over some alphabet Λ. The Fitigoff
code is prefix-free and, hence, from (5) and (9) we obtain the following

Statement. For any distribution µ

hmin(πcodeF ,µ) > L− (|Λ|m(|Λ| − 1) log n + 3) . (10)

In particular, for an i.i.d. source with binary alphabet

hmin(πcodeF ) > L− (log n+ 3) .

3.2 Description of the cipher

Here we describe a cipher with the key of length const1 log n +
const2 log(1/ε)+const3, which is ε-entropically secure for n-letter sequences
generated by any (unknown) Markov chain µ of memory m over some alpha-
bet Λ.

Briefly, the encryption is done as follows: first compress the message with
the Fitingoff code, then randomize the encoded message according to (7) and
then encrypt the received ρcodeF ,µ( ) with an entropically secure cipher. (Note
that the distribution of µ is unknown.)

In detail, this algorithm is as follows:
Parameters: ε > 0, the alphabet Λ, the memory of Markov chain m

and the length of the ciphered message n.
Input: a word v ∈ Λn.
1st step: Encode v with the Fitigoff code codeF (v) (with parameters

Λ,m and n).
2nd step: Calculate the random word ρcodeF (v) (∈ {0, 1}L).
3rd step: Calculate the ε-entropically secure cipher

cipherRW−DS(ρcodeF (v), K) with the length of the secret key |K| =
(|Λ|m(|Λ| − 1) log n+ 2 log(1/ε) + 5 bits.

Output: cipherRW−DS(ρcodeF (v)).
The decryption algorithm is as follows: first Bob decrypts the word

E(ρcodeF (v), K) (= cipherRW−DS(ρcodeF (v)) ) with the known secret key K
and obtains the word ρcodeF (v). Then, based on the prefix-free property of
the Fitingoff code, Bob finds the word codeF (v) and then decodes it to get
v.

The described cipher uses compression and randomisation. Denote it
cipherc&r.

The theorem of Russell-Wang and Dodis-Smith guarantees the entropic
security and indistinguishability for the first cipher cipherRW−DS, so, we
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need to prove a similar property for the proposed cipherc&r. Despite the
equivalence of the concepts of entropic security and indistinguishability [3],
we will prove these properties separately due to the great importance of this
fact for the described cipher cipherc&r.

The following theorem describes the entropic security property for this
cipher:

Theorem 1. Let ε > 0 and suppose that the cipher cipherc&r is applied
to n-letter words M generated by a stationary ergodic Markov chain with
memory m,m ≥ 0, and an alphabet Λ, and let the length of the secret key
K be (|Λ|m(|Λ| − 1) log n + 2 log(1/ε) + 5. Then cipherc&r is ε-entropically
secure, that is, for any function A : {0, 1}L → {0, 1}∗ and f : Λn → {0, 1}∗
there exists such a function Â : {0, 1}L → {0, 1}∗ that

|Pr{A(cipherc&r(M,K) = f(M)} − Pr{Â( ) = f(M)}| ≤ ε,

where Â does not use cipherc&r(M).

Proof. The cipher cipherRW−DS(ρcodeF (v), K) with the length of the se-
cret key |K| = (|Λ|m(|Λ| − 1) log n+ 2 log(1/ε) + 5 is applied to {0, 1}L (see
the step 3). First we note that the cipher is ε-entropically secure. Indeed,
from Theorem of Russell-Wang and Dodis- Smith (see (6)) and the estimate
of the min-entropy (10) we can see that such a cipher exists for the distri-
bution πcodeF ,µ for any (unknown) µ. So, from the definition of ε-entropical
security we can see that for any function g

|Pr{A(cipherRW−DS(v) = g(v)} − Pr{Â( ) = g(v)}| ≤ ε,

where v, v ∈ {0, 1}L, g is any function defined on {0, 1}L (g : {0, 1}L →
{0, 1}∗) and Â( ) does not depend on v (to be short, λ = codeF ). Taking into
account that the code λ is prefix-free, we can define such a function φ that for
any a ∈ Λn and u = ρλ(a), φ(u) = a. For any function f : Λn → {0, 1}∗ and
M consider the function g(ρλ(M)) = f(φ(ρλ(M))(= f(M)). This equation
is valid for the function g and for v = ρλ(M), hence

|Pr{A(cipherds(ρλ(M)) = f(φ(ρλ(M))}−

Pr{Â( ) = f(φ(ρλ(M))}| ≤ ε.

Taking into account that cipherc&r(M) = cipherRW−DS(ρλ(M)) and
f(φ(ρλ(M)) = f(M), we can see from the latter inequality that

|Pr{A(cipherc&r(M)) = f(M)}−
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Pr{Â( ) = f(M)}| ≤ ε .

The theorem is proven.
The following theorem establishes indistinguishability of cipherc&r.

Theorem 2. Let ε > 0 and and suppose that the cipher cipherc&r is ap-
plied to n-letter words M generated by a stationary ergodic Markov chain
with memory m,m ≥ 0, and an alphabet Λ, and let the length of the se-
cret key K be (|Λ|m(|Λ| − 1) log n + 2 log(1/ε) + 5. Then, this cipher is 4ε-
indistinguishable.

Proof. The cipher cipherRW−DS is ε-entropically secure (see Theorem 1).
As we mentioned in Introduction, Dodis and Smith [3] showed that it means
that this cipher is 4ε-indistinguishable. Our goal is to prove this property for
cipherc&r. The 4ε-indistinguishability means that SD(cipherRW−DS, G) ≤
4ε, where G is a random variable on {0, 1}L (which is independent on
cipherRW−DS).

Define Ua = {cipherRW−DS(λ(a) r) : r ∈ {0, 1}L−λ(a)} and let the a
random variable of G′(v) be defined as follows:

Pr{G′ = v} =
∑

w∈Uv
Pr{G = w}.

The following chain of equalities and inequalities is based on these definitions
and the triangle inequality for L1:

SD(cipherc&r, G
′) =

1

2

∑

u∈Λn

|Pr{cipherc&r = u} − Pr{G′ = u}| =

1

2

∑

v∈{0,1}n
|
∑

w∈Uv
(Pr{cipherRW−DS = w} − Pr{G = w})| ≤

1

2

∑

v∈Λn

∑

w∈Uv
|Pr{cipherRW−DS = w} − Pr{G = w} | =

1

2

∑

w∈{0,1}L
Pr{cipherRW−DS = w} − Pr{G = w} | =

SD(cipherRW−DS, G) ≤ 4ε .

So, SD(cipherc&r, G
′) ≤ 4ε.

Theorem is proven.
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Let us estimate the complexity of encoding and decoding. As we men-
tioned above, the encoding and decoding fitting complexity is O(n logconst).
The complexity of the Dodis and Smith cipher is polynomial in n. Thus, the
complexity of the proposed cipher is also polynomial in n.

4 Appendix

4.1 The definition of a stationary ergodic Markov chain with
memory, or connection, m.

First we give a definition of stationary ergodic processes. The time shift
T on Λ∞ is defined as T (x1, x2, x3, . . . ) = (x2, x3, . . . ). A process P is called
stationary if it is T -invariant: P (T−1B) = P (B) for every Borel set B ⊂ Λ∞.
A stationary process is called ergodic if every T -invariant set has probability
0 or 1: P (B) = 0 or 1 whenever T−1B = B [11, 12].

We denote byM∞(Λ) the set of all stationary and ergodic sources and let
M0(Λ) ⊂ M∞(Λ) be the set of all i.i.d. processes. We denote by Mm(Λ) ⊂
M∞(Λ) the set of Markov sources of order (or with memory, or connectivity)
not larger than m, m ≥ 0. By definition µ ∈Mm(Λ) if

µ(xt+1 = ai1|xt = ai2, xt−1 = ai3, ... , xt−m+1 = aim+1
, ...)

= µ(xt+1 = ai1|xt = ai2, xt−1 = ai3, ... , xt−m+1 = aim+1
)

for all t ≥ m and ai1, ai2, . . . ∈ Λ.

4.2 Entropically secure ciphers.

In this part we describe one entropically secure cipher from [3], part 3.2.
Let {hi}i∈I be some family of functions hi : {0, 1}k → {0, 1}n, indexed

over the set I = {0, 1}r. By definition, a collection of functions from n-bit
words to n-bits is XOR-universal if:

∀a, x, y ∈ {0, 1}n, x 6= y, Pr{hi(x)⊕ hi(y) = a} ≤ 1

2n−1
,

if i is randomly chosen from I according to the uniform distribution (⊕ is
symbol-by-symbol modulo 2 summation). Also, suppose that there is a XOR-
universal collection of functions whose description is public and, hence, it is
known to Alice, Bob and Eve.

Dodis and Smith consider an encryption scheme of the form

E(m,K, i) = (i;m⊕ hi(K)
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where i is randomly chosen from I according to the uniform distribution,
and K is a k-bit secrete key. Note that m is a ciphered message of length
n, i is the number of hi in the set I and i = log |I| = r. (Dodis and Smith
notice that this scheme is a special low-entropy, probabilistic one-time pad.)
Decryption is obviously possible, since the description of the function hi
is public. It is shown [3] that this cipher is ε-entropically secure for |k| ≥
n− hmin + 2 log(1/ε) + 2 if the function family {hi}i∈I is XOR-universal.

An example of XOR-universal family is as follows [3]: View {0, 1}n as
F = GF (2n), and embed the key set {0, 1}k as a subset of F . For any i ∈ F ,
let hi(K) = iK, with multiplication in F . This yields a family of linear
maps {hi} with 2n members. For this family the complexity of ciphering and
deciphering is O(n log n log log n) [3].

It is important to note that the length of the secret key (k) depends only
on the min-entropy of the probability distribution and does not depend on
other parameters of the distribution.
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Abstract

Consider a random binary sequence X1, . . . , Xn and hypothesis Hp that elements
of this sequence are independent and identically distributed on the set {0, 1} with
probabilities P{Xi = 1} = p, P{Xi = 0} = 1 − p, where p ∈ (0, 1). Earlier two
goodness-of-fit criterions for the hypothesis H0.5 were proposed, these criterions were
based on computation of Lempel-Ziv statistics. In this paper these criterions are
generalized for any p ∈ (0, 1).

For both criterions a sequence of the length n = mT is divided into m blocks
of (equal) length T , for these blocks we compute values of Lempel-Ziv statistics
W1(T ), . . . ,Wm(T ). If the hypothesis Hp is true, these values are independent and
their distributions are equal, so we may construct goodness-of-fit tests for hypothesis
Hp based on these statistics via standard methods.

The first criterion is based on the statistic W̃ (2mT ) = (W1 +W2 + . . .+Wm)−
(Wm+1 + Wm+2 + . . . + W2m), the distribution of this statistic is symmetric about
zero.

The statistic of the second criterion is the value χ̃2(mrT ) = max1≤k≤m χ
2
k(T ),

where χ2
1(T ), . . . , χ2

m(T ) are values of chi-square statistics corresponding to
W1(T ), . . . ,Wm(T ).

For both criterions we propose limit distributions of statistics, and for the first
criterion we also obtain an estimation for the speed of convergence to the limit
normal distribution.

Keywords: Lempel-Ziv, RNG testing, statistical criterion, computation.

1 Introduction

The most common type of binary sequences used in cryptography are
sequences with independent elements that are equiprobably distributed on
the set {0, 1}. However, non-equiprobable distributions are also a part of
cryptography: lattice-based cryptography is based on samples from discrete
Gaussian distributions on integers and in McElice cryptosystem random bi-
nary vectors with fixed numbers of 0’s and 1’s are used.

The simplest non-equiprobable discrete distribution is Bernoulli distribu-
tion on the set {0, 1}, for this distribution probability of 1 is equal to p and
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probability of 0 is equal to 1 − p for some p ∈ (0, 1). In this paper we gen-
eralize our previous results of studying distributions of Lempel-Ziv statistic
for equiprobable binary sequences with p = 0.5 and goodness-of-fit criterions
based on this statistic for any p ∈ (0, 1).

For computation of Lempel-Ziv statistic a sequence X1, X2, . . . of ele-
ments of alphabet {0, 1} is divided into subsequences of digits (words) in
such a way that any next word is the least word that is not equal to any of
previous words; the first word is the empty word. The statistic of Lempel-Ziv
criterion is the amountW (T ) of words obtained in such a way for a sequence
X = (X1, X2, . . . , XT ) of the length T.

Examples:
Binary sequence 011101101011 of 12 digits is divided into 7 words

∅, (0), (1), (11), (01), (10), (101) and remainder 1 that is not considered be-
cause it is equal to the third word.

Binary sequence 010101101010 of 12 digits is divided into 7 words
∅, (0), (1), (01), (011), (010), (10) without remainder.

The main hypothesis considered in this paper is the hypothesis Hp that
digits of sequence X are independent and distributed on {0, 1} with proba-
bilities

P{Xi = 1} = p,P{Xi = 0} = 1− p,
where p ∈ (0, 1).

In section 5 of this paper we present a method for computation of dis-
tribution of random variable W (T ) for the hypothesis Hp. This method was
proposed in a previous paper of V.G. Mikhailov ([4]).

Remark that due to symmetry the distributions of W (T ) for hypothesis
Hp and H1−p are exactly equal.

Distributions of W (T ) for T = 1000 and p = 0.1, 0.5, 0.9 are given in
Appendix, table 1. Values of EW (T ), DW (T ), σ(W (T )) =

√
DW (T ) and

E(W (T ))3 for T = 1000, 2000, . . . , 6000 and p = 0.1, 0.2, . . . , 0.9 are pre-
sented in Appendix, table 2.

The Lempel-Ziv criterion is a goodness-of-fit criterion for the hypothe-
sis Hp, this criterion is defined as follows:

{|W (T )− µ(T )| < Cσ(T )} ⇒ Hp,

{|W (T )− µ(T )| ≥ Cσ(T )} ⇒ H̄p,

where C is a critical level,Hp is the full alternative for hypothesisHp, µ(T ) =
EW (T ) and σ(T ) =

√
DW (T ).
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Lempel-Ziv critetion for hypothesis H0.5 for a long time was a part of the
NIST Statistical Test Suite — well-known collection of statistical criterions
for testing the quality of random and pseudorandom equiprobable binary
sequences designed by the National Institute of Standards and Technology,
USA ([1], [2]).

Due to insufficient knowledge about speed of convergence of the distri-
bution of statistic W (T ) to the limit distribution, it was recommended to
use Lempel-Ziv criterion only for long equiprobable binary sequences, i.e. for
T ≥ 106 ([1]). This shortcoming was mentioned as one of reasons for remov-
ing this criterion from NIST Suite ([3]). Our method allows to compute the
exact distribution of statistic W (T ) and calculate probability to reject the
hypothesis Hp if it is correct for any p ∈ (0, 1).

In this paper we propose two goodness-of-fit criterions for hypothesis
Hp, p ∈ (0, 1). We also propose limit distributions for statistics of these
criterions and for the first statistic we have obtained explicit estimations for
the speed of convergence to limit (normal) distribution.

2 Criterion with summation

Divide a sample X = (X1, X2, . . . , X2mT ) into 2m nonintersecting blocks
of the length T and for each of these 2m blocks compute value of Lempel-Ziv
statistic W (T ). Denote computed values as W1,W2, . . . ,W2m and compute
statistic

W̃ (2mT ) = (W1 +W2 + . . .+Wm)− (Wm+1 +Wm+2 + . . .+W2m).

Formula for this statistic may be rewritten as

W̃ (2mT ) =
m∑

i=1

Vi(2T ) =
m∑

i=1

(Wi(T )−Wi+m(T )),

in this way random variable W̃ (2mT ) is represented as the sum of m inde-
pendent values Vi(2T ) that are identically distributed and

EVi(2T ) = 0,EW̃ (2mT ) = 0,DW̃ (2mT ) = 2mDW (T ).

Goodness-of-fit criterion for hypothesis Hp for sample X that is based on
statistic W̃ (2mT ) is defined as follows:

{
|W̃ (2mT )| < C

√
DW̃ (2mT )

}
⇒ Hp,
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{
|W̃ (2mT )| ≥ C

√
DW̃ (2mT )

}
⇒ H̄p.

Hypothesis H̄p is the full alternative to hypothesis Hp, C is the critical level
and for a given significance level α > 0 the critical level C may be chosen by
rule 2(1 − Φ(C)) ≈ α. However, for given values m and T we can compute
exact distribution of statistic W̃ (2mT ) and calculate exact probabilities for
the first and the second type of errors for any critical level C.

For a given values ofm and T the distribution ofW (T ) may be computed
by formulae from section 5 and after that the distribution of Vi(2T ) may be
computed by formula

P{Vi(2T ) = k} =
∑

l

P{W (T ) = l}P{W (T ) = l − k}.

For random variable V (2T ) we have computed for T = 1000, . . . , 6000 and
p = 0.1, 0.2, . . . , 0.9 values E|V (2T )|, DV (2T ), σ(V (2T )) =

√
DV (2T )

and E|V (2T )|3, these values are presented in Appendix, table 3.

The distribution of random variable W̃ (2mT ) may be computed as the
m-fold convolution of the distribution Vi(2T ).

Examples of distributions of W̃ (2mT ) for T = 1000, p = 0.5, m = 1
and m = 10 are presented in Appendix, table 4. Values of expectation and
variance of W̃ (2mT ) are not presented because expectation of W̃ (2mT ) is
equal to zero for any T and m, and variance of W̃ (2mT ) may be easily
calculated via equality DW̃ (2mT ) = 2mDW (T ) and value of DW (T ) from
Appendix, table 2.

2.1 On the accuracy of normal approximation for W̃ (2mT ).

The accuracy of normal approximation of the distribution of statis-
tic W̃ (2mT ) may be estimated via well-known Berry–Esseen inequality (in-
equality for constant C1 may be found in [5]).

Theorem 1. For distribution function of random variable W̃ (2mT ) the fol-
lowing inequality is valid:

sup
−∞<x<∞

∣∣∣∣∣∣∣
P





W̃ (2mT )√
DW̃ (2mT )

< x




− Φ(x)

∣∣∣∣∣∣∣
≤ C1E|V (2T )|3

(2mDW (T )))3/2
, (1)

where C1 ≤ 0.4774.
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Corollary 1. If m→∞, then for any −∞ < x <∞

P





W̃ (2mT )√
DW̃ (2mT )

< x




→ Φ(x).

Computed values of the right part of inequality (1) for
T = 1000, . . . , 6000, p = 0.1, 0.2, . . . , 0.9 and m = 1000, 2000 are given in
Appendix, table 5. These values show that this upper bound for accuracy
of normal approximation of W̃ (2mT ) significantly depends on amount of
blocks m and almost does not depend on size of block T and on value of
probability p. As it is reasonable to expect, for a sample of fixed size the
higher accuracy is obtained if the sample is divided into the greater number
of blocks. As an example, for a sample of size 2mT = 4 · 106 the right part
of inequality (1) for m = 2000 is approximately 3.5 times smaller than for
m = 1000.

2.2 Criterion with summation: exact values

A goodness-of-fit criterion for hypothesis Hp based on statistic W̃ (2mT )
may be constructed as follows.

For sample X1, . . . , X2mT we compute value of W̃ (2mT ) and accept or
reject hypothesis Hp by following rules:

{
|W̃ (2mT )| < l}

}
⇒ Hp,

{
|W̃ (2mT )| ≥ l

}
⇒ H̄p.

Here H̄p is the full alternative to hypothesis Hp, l is the critical level.

The probability to reject hypothesis Hp if it is correct is equal to

αl = P{Hp rejected|Hp correct} = P
{
|W̃ (2mT )| ≥ l|Hp

}
=

= 1−P
{
|W̃ (2mT )| < l|Hp

}
.

Now we present an example of such a criterion for equiprobable distribu-
tion p = 0.5, size of block T = 1000 and m = 10. Remind that distributions
of statistics W̃ (2mT ) for T = 1000, p = 0.5 and m = 1 or m = 10 may be
found in Appendix, table 4. Values for probability of error αl for m = 10 and
different values of level l are presented in following table:
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l 1 2 3 4 5 6 7 8
αl 0.9090 0.7317 0.5678 0.4238 0.3038 0.2089 0.1376 0.0867
l 9 10 11 12 13 14 15 16
αl 0.0522 0.0300 0.0165 0.0086 0.0043 0.0020 0.0009 0.0004

Values of αl for m = 10 and l = 1, . . . , 16.

Similar goodness-of-fit criterions for hypothesis Hp may be constructed
in the same way for any value of p ∈ (0, 1).

3 Criterion of chi-square type

Consider amount of natural numbers with significant probability that
random variable W (T ) is equal to that number. As an example, for any
T consider amount of n such that P{W (T ) = n} ≥ 0.0001. Analysis of
distributions of W (T ) for different values of T and p shows that for fixed
value of T amount of such numbers n grows as probability p moves away
from equiprobable value p = 0.5: for T = 1000 amount of such n is equal to
8 for p = 0.5 and is equal to 33 for p = 0.1.

We propose a criterion of chi-square type that is based on well-known
fact of mathematical statistics (e.g. [6], §3.2, section 2).

Statement 1. Let the support of a random variable ξ be divided into in-
tervals ∆1, . . . ,∆N . Let simple hypothesis H0 for the distribution of ξ be
considered and let P{ξ ∈ ∆j} = p0

j , j = 1, . . . , N, if this hypothesis is
true. For a given sample X1, . . . , Xn of values of random variable ξ and any

j = 1, . . . , N compute values vj =
n∑
i=1

I{Xi∈∆j} and value

χ2 =
N∑

j=1

(vj − np0
j)

2

np0
j

.

Then for n → ∞ the distribution of random variable χ2 converges to chi-
square distribution with N − 1 degrees of freedom.

Denote the distribution function of chi-square distribution with N − 1
degrees of freedom as χ2

N−1(x). For a given significance level α ∈ (0, 1) define
critical level C(N − 1, α) by equality

χ2
N−1(C(N − 1, α)) = α. (5)

For chi-square criterion the hypothesis H0 is accepted if

{χ2 ≤ C(N − 1, α)}

V. Kruglov 174



Two Lempel-Ziv goodness-of-fit criterions for nonequiprobable random binary sequences

and is rejected if
{χ2 > C(N − 1, α)}.

Now we propose goodness-of-fit criterion for hypothesis Hp that is based
on dividing samples into blocks and using chi-square criterion. For clearness
of explanation we use explicit values of probabilities of distribution W (T )
for T = 1000 and p = 0.1 (ref. Appendix, table 1).

Consider sampleX1, . . . , Xn of n = mrT digits, each digit is equal to zero
or one. We divide this sample into mr nonintersecting blocks of the length
T and for each block compute value W (T ), as a result we obtain mr values

W1,1(T ),W1,2(T ), . . . ,W1,r(T ),

W2,1(T ),W2,2(T ), . . . ,W2,r(T ),

. . .

Wm,1(T ),Wm,2(T ), . . . ,Wm,r(T ).

For T = 1000 and p = 0.1 we divide the set of possible values of W (T )
into N = 12 intervals

∆1 = {0, . . . , 100},∆2 = {101},∆3 = {102},∆4 = {103},

∆5 = {104},∆6 = {105},∆7 = {106},∆8 = {107},
∆9 = {108},∆10 = {109},∆11 = {110},∆12 = {111, 112, . . .},

so, according to previously computed distribution of W (T ),

p0
1 = 0.113825, p0

2 = 0.0473614, p0
3 = 0.0592027, p0

4 = 0.0706947,

p0
5 = 0.0805426, p0

6 = 0.0874356, p0
7 = 0.0903182, p0

8 = 0.0886453,

p0
9 = 0.0825413, p0

10 = 0.072801, p0
11 = 0.0607218, p0

12 = 0.145911.

In other aspects construction of chi-square criterion does not depend of
values of T and p.

Remark 1. Probabilities p0
1, . . . , p

0
12 are presented here with the accuracy

up to 6-th digit and the sum of these twelve values is equal to 1.0000006.
During the computation these values were calculated with higher accuracy
and for calculated values

1− p0
1 − p0

2 − p0
3 − . . .− p0

12 = 5.42101 · 10−20.
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For any k = 1, . . . ,m and corresponding r values

Wk,1(T ),Wk,2(T ), . . . ,Wk,r(T )

we compute values vk,1(T ), vk,2(T ), . . . , vk,12(T ) which are equal to amounts
of values Wk,i(T ) that turned out to be in one of the twelve intervals ∆j, i.e.

vk,j(T ) =
∣∣{i = 1, . . . , r : Wk,i(T ) ∈ ∆j

}∣∣, j = 1, . . . , 12.

We compute statistics

χ2
k(rT ) =

12∑

j=1

(vk,j(T )− np0
j)

2

np0
j

, k = 1, . . . ,m,

and the final statistic

χ̃2(mrT ) = max
1≤k≤m

χ2
k(rT ).

For a given significance level α > 0 we calculate the quantile C(11, α1/m)
and define the criterion by the rules

{
χ̃2(mrT ) < C(N − 1, α1/m)

}
⇒ Hp,

{
χ̃2(mrT ) ≥ C(N − 1, α1/m)

}
⇒ H̄p,

where N = 12 and H̄p is the full alternative for main hypothesis Hp.

The form of the final statistic χ̃2(mrT ) as maximum of values of partial
statistics χ2

k(rT ) gives us simplicity of its limit distribution.

Theorem 2. Let the hypothesis Hp be true, so random variables
X1, . . . , XmrT are independent and equiprobably distributed on {0, 1} with
probabilities P{Xi = 1} = p, P{Xi = 0} = 1 − p, where p ∈ (0, 1). If
parameters m, T and N are fixed and r →∞, then

P{χ̃2(mrT ) < x} → 1−
(
1− χ2

N−1(x)
)m
, x ∈ (−∞,+∞) (6)

P
{
χ̃2(mrT ) ≥ C(N − 1, α1/m)

}
→ α. (7)

There χ2
N−1(x) is the distribution function of the chi-square distribution with

N−1 degrees of freedom and C(N−1, α) is the function of α defined in (5).

So, if the hypothesis Hp is true and the size mrT of a sample increases,
then the probability to reject Hp tends to α.

The choice of parameterN depends on the distribution of random variable
W (T ) and this distribution changes as the parameter T grows. For a given T
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we should sort out from the support of W (T ) such natural numbers that the
probability that W (T ) is equal to any of these numbers is significant. The
set of such numbers (and the rest numbers in the support) may be divided
into intervals ∆1, . . . ,∆N according to common principles of construction of
chi-square criterions. If value T increases, then the number of values such
that random variableW (T ) is equal to this value with significant probability
also increases.

4 On computation of the probabilities of distribu-
tion W (T )

Lempel-Ziv algorithm sequentially composes a dictionary of words of 0
and 1. Denote by S(n) the cumulative length of all words in a dictionary of
n words, then the following events are equal:

{
W (T ) < n

}
=
{
S(n) > T

}
.

Via this observation the computation of distribution of W (T ) may be imple-
mented by significantly simpler computation of distribution of S(n). Formu-
lae for distributions of S(n) are presented in the next theorem.

Theorem 3. Let for X1, X2, . . . the hypothesis Hp is true. Then

P{S(n+ 1) = n+ r} =

=
n∑

k=0

(1− p)kpn−kCk
n

r∑

l=0

P{S(k) = l}P{S(n− k) = r − l}

for any r = 0, 1, . . . , n(n− 1)/2.

Initial and boundary values of probabilities P{S(n+ 1) = r} are defined
by equalities

P{S(0) = 0} = 1,P{S(1) = 0} = 1,P{S(2) = 1} = 1,

P{S(n+ 1) = r} = 0, r = 0, . . . , n− 1.

Proofs of these statements were given in [4].

So we may compute distributions of random variables S(n) and via these
distributions easily compute the distribution of random variable W (T ) by
simple formula

P{W (T ) = n} =
T∑

k=0

(
P{S(n) = k} −P{S(n+ 1) = k}

)
.
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Appendix

Table 1 (in 2 parts). Probabilities of distributions of random variables
W (T ) for T = 1000 and p = 0.1, 0.5, 0.9. Probabilities that are not presented
in tables are smaller than 0.0001.

T = 1000, p = 0.5

n P{W (T ) = n}
169 0.0007489
170 0.00899
171 0.06482
172 0.2457

173 0.4099
174 0.2361
175 0.03306
176 0.0006201
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T = 1000, p = 0.1 or p = 0.9.

n P{W (T ) = n}
89 0.0001293
90 0.0002615
91 0.0005096
92 0.0009567
93 0.00173
94 0.00301
95 0.00504
96 0.008113
97 0.01255
98 0.01863
99 0.02654
100 0.03624
101 0.04736
102 0.05920
103 0.07069
104 0.08054

105 0.08744
106 0.09032
107 0.08865
108 0.08254
109 0.0728
110 0.06072
111 0.04782
112 0.03549
113 0.02478
114 0.01625
115 0.009986
116 0.005744
117 0.003086
118 0.001545
119 0.0007202
120 0.0003117
121 0.000125
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Table 2. Values of EW (T ), DW (T ), σ(W (T )) =
√

DW (T ) and
E(W (T ))3 for T = 1000, 2000, . . . , 6000 and p = 0.1, 0.2, . . . , 0.9.

p 1− p T EW (T ) DW (T ) σ(W (T )) E(W (T ))3

0.9 0.1 1000 105.863 19.5466 4.42116 138.162
0.9 0.1 2000 181.480 31.4802 5.61073 282.414
0.9 0.1 3000 250.429 41.8801 6.47148 433.066
0.9 0.1 4000 315.589 51.5959 7.18303 591.918
0.9 0.1 5000 378.173 60.8781 7.80244 758.405
0.9 0.1 6000 438.839 69.8330 8.35662 931.577
0.8 0.2 1000 139.086 11.5378 3.39673 62.7145
0.8 0.2 2000 242.194 19.0237 4.36162 132.600
0.8 0.2 3000 337.030 25.6001 5.05966 206.903
0.8 0.2 4000 427.119 31.6750 5.62805 284.689
0.8 0.2 5000 513.950 37.4138 6.11668 365.409
0.8 0.2 6000 598.333 42.9038 6.55010 448.675
0.7 0.3 1000 158.736 5.71317 2.39022 21.9139
0.7 0.3 2000 278.223 9.30922 3.05110 45.4569
0.7 0.3 3000 388.475 12.4729 3.53171 70.4316
0.7 0.3 4000 493.409 15.3950 3.92364 96.5354
0.7 0.3 5000 594.683 18.1539 4.26073 123.583
0.7 0.3 6000 693.202 20.7917 4.55979 151.452
0.6 0.4 1000 169.466 2.15506 1.46801 5.10445
0.6 0.4 2000 297.917 3.34503 1.82894 9.83187
0.6 0.4 3000 416.617 4.37681 2.09208 14.6800
0.6 0.4 4000 529.691 5.32151 2.30684 19.6638
0.6 0.4 5000 638.888 6.20801 2.49159 24.7670
0.6 0.4 6000 745.165 7.05167 2.65550 29.9740
0.5 0.5 1000 172.899 0.96268 0.98116 1.53175
0.5 0.5 2000 304.220 1.34154 1.15825 2.49722
0.5 0.5 3000 425.627 1.65301 1.28569 3.40601
0.5 0.5 4000 541.309 1.92859 1.38874 4.29211
0.5 0.5 5000 653.046 2.18096 1.47681 5.16860
0.5 0.5 6000 761.811 2.41656 1.55453 6.02637

V. Kruglov 180



Two Lempel-Ziv goodness-of-fit criterions for nonequiprobable random binary sequences

Table 3. Values E|V (2T )|, DV (2T ), σ(V (2T )) =
√

DV (2T ) and
E|V (2T )|3 for T = 1000, 2000, . . . , 6000 and p = 0.1, 0.2, . . . , 0.9.

p 1− p T E|V (2T )| DV (2T ) σ(V (2T )) E|V (2T )|3
0.9 0.1 1000 4.97597 39.0932 6.25246 390.533
0.9 0.1 2000 6.32021 62.9605 7.93476 798.119
0.9 0.1 3000 7.29320 83.7601 9.15206 1224.19
0.9 0.1 4000 8.09734 103.192 10.1583 1673.58
0.9 0.1 5000 8.79717 121.756 11.0343 2144.59
0.9 0.1 6000 9.42315 139.666 11.8180 2634.50
0.8 0.2 1000 3.81661 23.0756 4.80370 177.208
0.8 0.2 2000 4.90922 38.0475 6.16826 374.857
0.8 0.2 3000 5.69870 51.2003 7.15544 585.000
0.8 0.2 4000 6.34121 63.3499 7.95927 805.004
0.8 0.2 5000 6.89338 74.8276 8.65029 1033.31
0.8 0.2 6000 7.38305 85.8076 9.26324 1268.82
0.7 0.3 1000 2.67397 11.4263 3.38029 61.8622
0.7 0.3 2000 3.42516 18.6184 4.31491 128.442
0.7 0.3 3000 3.97006 24.9459 4.99459 199.080
0.7 0.3 4000 4.41393 30.7900 5.54887 272.906
0.7 0.3 5000 4.79543 36.3077 6.02559 349.400
0.7 0.3 6000 5.13374 41.5835 6.44852 428.213
0.6 0.4 1000 1.61960 4.31011 2.07608 14.3913
0.6 0.4 2000 2.03477 6.69007 2.58652 27.7349
0.6 0.4 3000 2.33560 8.75362 2.95865 41.4588
0.6 0.4 4000 2.58041 10.6430 3.26236 55.5470
0.6 0.4 5000 2.79065 12.4160 3.52364 69.9666
0.5 0.5 1000 1.05493 1.92537 1.38758 4.29894
0.5 0.5 2000 1.26349 2.68309 1.63801 7.04866
0.5 0.5 3000 1.41194 3.30601 1.81824 9.62922
0.5 0.5 4000 1.53127 3.85718 1.96397 12.1292
0.5 0.5 5000 1.63290 4.36191 2.08852 14.5852
0.5 0.5 6000 1.72236 4.83312 2.19844 17.0151
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Table 4 (in 2 parts). Probabilities of distributions of random
variables W̃ (2mT ) for T = 1000, p = 0.5, m = 1 and m = 10.

T = 1000, p = 0.5,m = 1

n P{W̃ (2mT ) = n}
-5 0.0005318
-4 0.004736
-3 0.02756
-2 0.1005
-1 0.2218

0 0.2895
1 0.2218
2 0.1005
3 0.02756
4 0.004736
5 0.0005318

T = 1000, p = 0.5,m = 10

n P{W̃ (2mT ) = n}
-16 0.0001207
-15 0.000268
-14 0.0005659
-13 0.001136
-12 0.002168
-11 0.003931
-10 0.006772
-9 0.01108
-8 0.01723
-7 0.02543
-6 0.03566
-5 0.04747
-4 0.05999
-3 0.07198
-2 0.08198
-1 0.08864

0 0.09098
1 0.08864
2 0.08198
3 0.07198
4 0.05999
5 0.04747
6 0.03566
7 0.02543
8 0.01723
9 0.01108
10 0.006772
11 0.003931
12 0.002168
13 0.001136
14 0.0005659
15 0.000268
16 0.0001207
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Table 5. Values of the right part of inequality (1) for
T = 1000, 2000, . . . , 6000, p = 0.1, 0.2, . . . , 0.9 and m = 1000, 2000.

p 1− p T m = 1000 m = 2000

0.9 0.1 1000 2.41206e-005 8.52792e-006
0.9 0.1 2000 2.41184e-005 8.52713e-006
0.9 0.1 3000 2.41088e-005 8.52375e-006
0.9 0.1 4000 2.41024e-005 8.52149e-006
0.9 0.1 5000 2.40985e-005 8.52009e-006
0.9 0.1 6000 2.40960e-005 8.51922e-006
0.8 0.2 1000 2.41344e-005 8.53281e-006
0.8 0.2 2000 2.41135e-005 8.52540e-006
0.8 0.2 3000 2.41063e-005 8.52286e-006
0.8 0.2 4000 2.41025e-005 8.52151e-006
0.8 0.2 5000 2.41002e-005 8.52071e-006
0.8 0.2 6000 2.40988e-005 8.52020e-006
0.7 0.3 1000 2.41795e-005 8.54874e-006
0.7 0.3 2000 2.41366e-005 8.53358e-006
0.7 0.3 3000 2.41219e-005 8.52839e-006
0.7 0.3 4000 2.41147e-005 8.52582e-006
0.7 0.3 5000 2.41105e-005 8.52435e-006
0.7 0.3 6000 2.41080e-005 8.52347e-006
0.6 0.4 1000 2.42801e-005 8.58431e-006
0.6 0.4 2000 2.41971e-005 8.55497e-006
0.6 0.4 3000 2.41667e-005 8.54422e-006
0.6 0.4 4000 2.41516e-005 8.53888e-006
0.6 0.4 5000 2.41435e-005 8.53600e-006
0.6 0.4 6000 2.41393e-005 8.53455e-006
0.5 0.5 1000 2.42924e-005 8.58868e-006
0.5 0.5 2000 2.42123e-005 8.56035e-006
0.5 0.5 3000 2.41834e-005 8.55011e-006
0.5 0.5 4000 2.41720e-005 8.54608e-006
0.5 0.5 5000 2.41702e-005 8.54547e-006
0.5 0.5 6000 2.41755e-005 8.54733e-006
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Abstract

We present and discuss the results of empirical testing the ability of the NIST
Statistical Test Suite to detect very long repetitions in binary sequences. We con-
struct the set of deterministic binary sequences that are not rejected by the NIST
Suite and corrupt all of them in a deterministic way. To corrupt a binary sequence
we choose several its substrings of fixed length and insert in this sequence the copy
of each substring. The length of substrings was chosen to be significantly larger than
the typical length of the longest repeated substring. If the number of repeated sub-
strings in the corrupted sequence is moderate then the NIST Suite does not reject
such explicit nonrandom binary sequences. We describe the algorithm of searching
for the longest repetition of substrings in a binary sequence of length n. This al-
gorithm is based on the suffix tree and its time and space complexities are of the
order O(n).

The examples of cryptographically weak sequences passing the standard statisti-
cal tests may stimulate the construction of new batteries of tests for random number
generators.

Keywords: statistical testing, binary sequence, corrupted sequence, randomness,
equiprobability, longest repeated substring.

1 Introduction

The problem of testing output binary sequences of Random Number Gen-
erators (RNG) is very important for cryptography (as well as for other appli-
cations of RNG). The aim of such testing is to decide whether RNG generates
sequences which may be considered as realizations of equiprobable Bernoulli
sequence and therefore may be used in cryptosystems. Without such testing
a bad RNG outputs may destroy safety properties of cryptosystems.

The quality checking of binary sequences usually is based on some well-
known batteries of tests, for example, NIST [3], TestU01 [4] etc. There are
large intersections of types of tests included in different batteries. Any bat-
tery of tests consist of several statistical tests, all tests of the battery are
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applied to each tested sequence. Of course, there are many properties of
binary output sequences of RNGs which are undesirable for cryptographic
applications, and it is hardly possible to construct a battery of tests detect-
ing each such property. But it is reasonable to collect examples of sequences
having such properties and use them to estimate the completeness of bat-
teries. For example, in [5, 6] we show that simple combinations of pairs of
binary linear recurrent sequences may be accepted as good by all tests of the
NIST statistical package with high probability.

During the generation of the RNG sequence various failures may occur
such as software and hardware faults, transmission noise and interference,
program bugs etc. Some faults may result in repetition of long substrings in
generated sequences, which is obviously bad property from a cryptographic
point of view. It is interesting to assess the ability of the NIST battery of
tests to reject binary sequences with substring repetitions having lengths
significantly larger than the typical length of string repetition in the random
equiprobable Bernoulli sequence.

2 Short description of NIST Statistical Test Suite

The full version of NIST Statistical Test Suite consists of 15 tests. The
result of the execution of each test is the value of one or more statistics. To
make a decision the values of statistics are transformed into p-values (the
p-value is the probability to obtain the value of statistics at least as large
as the actually observed one, under the assumption that the null hypothesis
H0 on the randomness and equiprobability of binary sequences is true). The
number of all p-values generated by the full version of test suite is 188.
The Non-overlapping Template Matching Test, Random Excursions Test,
Random Excursions Variant Test, Serial and Cumulative Sums Tests generate
148, 8, 18, 2 and 2 p-values correspondingly, other tests generate one p-
value each. We have not taken into account the results of Non-overlapping
Template Matching Test (the number of p-values is too large and this test
is not sensitive to a moderate number of repetitions in a sequence) and the
results of two tests connected with Random Excursions (these tests do not
generate any p-values for large part of tested sequences, detailed explanation
see in [6]).

So, we have considered results of 12 tests generating 14 p-values, see Table
1.
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# Name of Test Used Statistics

1 Frequency normed difference between frequencies
of 1 and 0 in the sequence

2 Block
Frequency

relative frequences of ones in adjacent nonintersecting
128-bit blocks of the sequence

3 Cumulative
Sums

maximal deviation from 0 for ±1 walk constructed
by a segment of binary sequence, results in 2 statistics

4 Runs the total number of 1-runs and 0-runs in the sequence

5 Longest
Run

maximal lengths of 1-runs in adjacent nonintersecting
104-bit blocks of the sequence

6 Binary Matrix
Rank

ranks of binary 32× 32-matrices formed from adjacent
nonintersecting 1024-bit blocks of the sequence

7
Discrete
Fourier

Transform

the number of coefficients of discrete Fourier transform of

the n-bit sequence exceeding h =
√
n log 1

0.05
in absolute value

8
Overlapping
Template
Matching

numbers of 9-bit intersecting 1-series in 1032-bit
adjacent blocks of the sequence

9 "Universal
statistical test"

sum of base 2 logarithms of distances between equal
nonintersecting 7-bit blocks of n-bit sequence

10 Approximate
Entropy

frequencies of intersecting 10- and 11-bit blocks
in the sequence

11 Serial frequencies of intersecting 16-, 15- and 14-bit blocks
in the sequence, results in 2 statistics

12 Linear
Complexity

lengths of shortest linear shift registers generating
adjacent nonintersecting 500-bit blocks of the sequence

Table 1: List of NIST Statistical Tests considered

Note. The decision made by each test depends on the closeness of p-value
to 0. It should be noted that we didn’t take into account the specific values
of p-values at which hypothesis H0 is accepted or rejected on the base of all
tests. That is, as it happens in practice, in our paper we are interested in a
specific decisions taken by each individual test.

3 Description of our experiments

We have applied 12 tests from Table 1 to pseudorandom sequences of two
types:
a) sequences generated by a block cipher,
b) the same sequences corrupted by repetitions of blocks.

The first type sequences were obtained by means of AES block cipher in
the CFB (Cipher Feedback Block) mode (see Fig.1) with the zero initializa-
tion vector (IV) and plaintext block (Plaintext), the key for each sequence was
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randomly selected from the set of 128-bit binary sequences, the length in bit
of all sequences was chosen to be the same and equal to n = 220 = 1.048.576
each (value corresponds to the NIST input size recommendation for the
length of tested sequences).

Figure 1:

The second type sequences were obtained by corruption the sequences of
the first type. The process of corruption was as follows:

– generate list L = {ai}2S
i=1 of 2 ·S different random numbers in the range

ai ∈ {1, 2, . . . , n− T + 1}, where n is the length of the tested sequence, S is
the number of repeated substrings of length T , then divide sorted or unsorted
list L into pairs (a2i−1, a2i), i = 1, . . . , S,

– corrupte each initial sequence of the first type by replacing block of
bits at positions a2i, a2i + 1, . . . , a2i + T − 1 with block of bits at positions
a2i−1, a2i−1 + 1, . . . , a2i−1 + T − 1 for each i = 1, 2, . . . , S.

We have tested sequences with different parameters of corruptions: the
values of list sizes S were 1, 10, 25, 50, 70, 100, 200, 400, 500; the number
of different random keys is 214 = 16384, the values of repeated substring
lengths T were 40, 50, 100, 400.

Keys (on Fig.1) and lists L of random numbers were obtained using the
open source cryptographic library OpenSSL:

int RAND_bytes(unsigned char *buf, int num);

this function generates num bytes using the cryptographicaly secure generator
of pseudorandom numbers (CSPRNG), and saves them in the buf array. By
default, the CSPRNG generator provides a security level of 256 bits when
initialized from a trusted entropy source.

Fig. 2 shows the first 256 output bytes of the RAND_bytes function, from
which the first 16 keys were constructed.
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Figure 2:

As an example, below is a sorted list L of 50 numbers used to corrupt
sequence of length n = 1.048.576 by repetitions of blocks of length 40:

6489 59901 69008 75675 94503 102388 105642 106546
116832 130615 145061 169698 183628 191460 225708 262244
276073 280945 299171 301080 382641 386106 410347 453254
454345 469001 548554 581574 604659 604697 646954 685538
689773 708682 738990 758877 761486 762812 777841 783019
804029 845813 877750 886345 922985 926170 954648 976396
982654 998914

Each sequence was tested by all 15 tests from the NIST Test Suite, but,
as was mentioned above, the results of three tests not included in Table 1
were not taken into account. The application of 12 tests to each segment
results in 14 different p-values (the tests with number 3 and 11 from Table 1
results in two p-values). The critical level of p-value was chosen as 0.01: if
the p-value does not exceed 0.01, then test rejects the hypothesis H0 on the
randomness and equiprobability for tested sequence. For each sequence we
save the numbers of concrete tests rejecting the hypotheses H0.

Table 2 contains the results of our experiments: the numbers of rejected
sequences from 16384 sequences by the statistical tests from Table 1 with
critical level of p-value is 0.01 (the numbers from the first column correspond
to the test numbers from the Table 1).
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HHH
HHH№

S
T 10 25 50 70 1 50 50 100 100 200 400

40 40 40 40 400 50 100 50 100 100 100
1 157 155 164 167 155 149 160 167 168 190 185 218
2 171 172 180 180 172 174 170 174 171 172 208 263

3 149 155 160 151 150 152 151 163 153 179 177 215
162 159 160 162 168 161 167 163 169 187 185 217

4 156 153 155 153 158 155 161 157 160 160 179 209
5 189 186 191 188 191 190 193 191 183 190 194 203
6 149 152 158 138 145 148 153 167 138 203 529 3682
7 190 194 177 178 203 189 193 196 189 180 198 216
8 179 186 174 188 178 183 170 181 164 189 188 168
9 191 195 190 186 182 190 195 197 192 199 205 311
10 184 191 201 234 223 196 228 286 287 479 1021 3732

11 168 197 255 382 496 220 500 1543 1218 6680 15755 16384
150 162 202 269 332 180 342 899 685 3251 11485 16381

12 189 188 183 186 171 182 182 182 187 170 164 179

Table 2: The numbers of rejected sequences for each test, two numbers in a cell correspond
to two test statistics, the second column of the table corresponds to the noncorrupted
sequences, the number of tested sequences is 214, S is the number of repetitions, T is the
length of repetition

If the null hypothesis H0 is true then the distributions of p-values may be
approximated by the uniform distribution on [0, 1]. The number of rejected
sequences by any test in this case should have the Binomial distribution with
parameters (N, p) = (16384, 0.01) (N = 16384 is the number of trials, p =
0.01 is the critical level of p-values) and expectation and standard deviation
respectively Np = 163.84 and

√
Np(1− p) ≈ 12.74. The probability that

the value of such random variable belongs to the set {126, 127, . . . , 201} is
equal to 0.9962. Values outside this set are marked by boldface in Table
2. Note that, for example, values about 500 means that corresponding test
rejects H0 approximately in one case of 32.

Table 2 shows that the NIST Test Suite accepts as random and equiprob-
able the binary sequences with a moderate number of repetitions of small
length or with a small number of repetitions of large length.

In view of this results we propose to use the test based on the longest
repeated substring (LRS). The algorithm for computing the longest repeated
substring uses the well-known tree-like data structure representing all suffixes
of an arbitrary string. Such data structures are called suffix trees and, in par-
ticular, allow to find the longest repeated substrings of the string in time
linear in the length of the string. The method proposed by E.Ukkonen in [2]
is developed as a linear-time version of simple algorithm (having quadratic
complexity) for suffix tries. The complexity of construction a suffix tree for
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a binary sequence of the length n is O(n) operations and the same stor-
age space, the complexity of finding the longest substring or all the longest
substrings by means of the constructed suffix tree is equal to O(n) also.

We could get the p-values for this new test from the limit theorem 3 of [1]:
let X1, X2, . . . , Xn, . . . be the sequence of independent identically distributed
random variables taking values 1, 2, . . . ,m and

P {Xi = k} = pk,
m∑

k=1

p2
k = P,

if µ(n) is the length of the longest substring in the random sequence of length
n, then

P {µ(n) ≥ τ} ≈ 1− exp

(
−1− P

2
P τ− 2 lnn

|lnP |

)
.

If the sequence {Xi}ni=1 is equiprobable Bernoulli sequence, then P is equal
to 1

2 and we define p-value for outcome τ as

P {µ(n) ≥ τ} ≈ 1− exp

(
−
(

1

2

)τ+2− 2 lnn
|ln 2|
)
. (1)

We have tested all sequences of the first type with this LRS test; the
test results are included in Table 3. The first and the fourth rows of the
Table contain the lengths τ of the longest repeated substrings, the second
and the fifth rows contain the numbers of corresponding sequences, the third
and sixth rows contain the average numbers of longest repeated substrings
in the sequence under the condition that the longest repeated substring has
length τ .

τ 34 35 36 37 38 39 40 41 42 43
# 9 295 1989 3720 3930 2797 1701 963 444 262
## 8.44 3.98 2.35 1.57 1.27 1.12 1.07 1.03 1.01 1.02
τ 44 45 46 47 48 49 50 51 53
# 139 63 36 12 14 4 4 1 1
## 1 1 1 1 1 1 1 1 1

Table 3: Numbers of sequences out of 16384 with longest repeated substring of length τ

If we use (1) as the p-value distribution law for LRS test, then for example

P {µ(n) ≥ 44} ≈ 0.0155, P {µ(n) ≥ 45} ≈ 0.0078,

214 ·P {µ(n) ≥ 45} ≈ 127.5.

In our experiment the number of sequences out of 16384 with the length of
the longest repeated substring at least 45 is equal to 135.
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4 Conclusion

It may be concluded that tests included in the NIST Test Suite may fail
to reject binary sequences with a moderate amount of repetitions of lengths
which are significantly larger than the expected length of the longest repeated
substring in the sequence. We propose the test for the longest repeated sub-
string with linear time and space complexities.
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Abstract

The nonlinearity of a vectorial function is defined as the Hamming distance to a
set of affine mappings. Connections between the parameters characterizing the close-
ness of a vectorial function to affine mappings and the analogous parameters of its
coordinate functions are established. Boundaries and estimates for the distribution
of nonlinearity of arbitrary and balanced vectorial functions, as well as permuta-
tions, are obtained. The nonlinearity defined here is compared with the nonlinearity
specified as minimal among nonlinearities of all nontrivial linear combinations of
coordinate functions. Classes of mappings with a high nonlinearity are constructed.

Keywords: vectorial function, balanced mapping, permutation, Hamming distance,
nonlinearity, probability distribution.

1 Introduction

Let Fq denote a finite field of q elements, where q = pm, p is a prime
number,m is a natural number, and Fn

q is an n-dimensional vector space over
the given field, where n is a natural number. Denote by P n,k

q the set of all
mappings of the space Fn

q into the space Fk
q . In what follows, the mapping F ∈

P n,k
q will be called a q-valued vectorial function vectorial function, and in the

case k = 1 we will use similar terms without the adjective “vectorial”.
Any vectorial function is uniquely determined by an ordered set of coordi-

nate functions. The case of a finite field allows us to represent each coordinate
function as a polynomial over the field. The algebraic degree of nonlinearity
degF is usually defined as the maximum of the degrees of polynomials repre-
senting its coordinate functions. Under the condition degF ≤ 1 the mapping
F is affine. If, in addition, the constant terms of all polynomials are equal
to zero, the mapping F is linear. Denote by An,k

q and Ln,kq the subsets of all
affine fnd linear mappings from the set P n,k

q respectively.
In the case k ≤ n, a vectorial function F ∈ P n,k

q is called balanced if
it takes all values the same number of times, that is, for any y ∈ Fk

q the
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condition |F−1(y)| = qn−k is satisfied. Obviously, every coordinate function
of a balanced vectorial function is also balanced. Moreover, it follows from
[12] that a vectorial function is balanced if and only if any nontrivial linear
combination of its coordinate functions is balanced. Denote by Bn,k

q the sub-
set of balanced vectorial functions from the set P n,k

q . For k = n the set Bn,n
q

coincides with the set of bijective mappings of space Fn
q into itself or permu-

tations of the space Fn
q , which will be denoted by Snq .

The article [7] emphasizes that the problem of approximating discrete
functions by linear analogs is of great importance in cryptography, where it
is required to use discrete functions that are the most remote from linear
functions1. In the same place, two approaches to determining the measure
of closeness of any functions to linear functions are distinguished. The first
approach is based on estimating the Hamming distance from a given function
to a set of linear functions, the second one is based on the difference properties
of the functions. The present paper is devoted to the development of the first
approach in the case of q-valued vectorial functions.

In the case k = 1, the Hamming distance in the space Fqn
q from a func-

tion f ∈ P n,1
q to the set An,1

q is usually called the nonlinearity of the q-valued
function f . Let’s denote it as Nf . Functions with the maximum value of non-
linearity among all functions of n variables are called maximally nonlinear.
In the Boolean case, the set of distances from a function to all linear func-
tions uniquely determines the nonlinearity of the function, and, as follows
from the results of [16], for even values of n, the class of maximally non-
linear Boolean functions coincides with the class of Boolean bent functions.
For q > 2, knowing the distances to all linear functions does not allow us to
draw a conclusion regarding its nonlinearity, and even for even values of n,
as it was shown in [20] (presented at CTCrypt 2021), not all q-valued bent
functions are maximally nonlinear.

In the case of an arbitrary k and q, as a measure of closeness of vectorial
functions, we take the Hamming distance in the space Fqn

qk
and denote the

distance between the functions F1 and F2 from P n,k
q by ρ(F1, F2). Let’s define

the nonlinearity of the vectorial function F ∈ P n,k
q by the formula

NF = min
A∈An,kq

ρ(F,A). (1)

The nonlinearity NF can be expressed as NF = qn − RF , where RF is the
maximum size of the piecewise affinity region over all possible representations
of F in piecewise affine form [26].

1In this case, linear functions on groups and quasigroups are understood as homomorphisms, while
linear and affine functions on finite fields are considered in the conventional sense.
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In the case of k > 1, the definition (1) differs from the popular definition
introduced in [15], in which the nonlinearity of the mapping F ∈ P n,k

q with
a set of coordinate functions f = (f1, . . . , fk) is given by the equality

NLF = min
w∈Fkq\{0}

N〈w ,f 〉, (2)

where 〈∗, ∗〉 means the scalar product of vectors, that is, it is the minimum
among the nonlinearities of all nontrivial linear combinations of coordinate
functions. Although in both cases the Hamming distance is used, in (1) we
are talking about the distance between the vectorial function F and the set
of affine mappings An,k

q in the space Fqn

qk
, while in (2) we consider the distance

between the set of all nontrivial linear combinations of coordinate functions
of the mapping F and the set of affine functions An,1

q in the space Fqn
q .

Separately, it is worth highlighting the study of the characteristics of
"nonlinearity" of mappings in the article [10], as well as the works [24, 9, 4]
and subsequent papers by these authors using measures of closeness (consent)
other than the Hamming distance were used. Note, that most of the results
of these papers relate to the determination of the closeness of functions to
homomorphisms, the class of which, in the case of a finite field that is not
simple, includes the set of affine mappings, but doesn’t reduce to it.

Unlike the other measures mentioned, the Hamming distance is a metric.
The nonlinearity NF vanishes only for affine mappings, and in this sense it
agrees well with the algebraic degree of nonlinearity of a q-valued vectorial
function. Finding affine analogues with a relatively small value of ρ(F,A) and
the value of nonlinearity NF can be used in cryptography, for example, when
solving a system of nonlinear equations by methods using affine approxima-
tions. Thus, [6, 8] describes a method based on partitioning the space Fn

2 into
r subsets on which the restrictions of F coincide with the restrictions of some
affine mappings. The complexity of this method depends on the value of r,
the minimum possible value of which is called the order affinity and denoted
by ardF . This method can be easily transferred to the q-valued case.To find
partitions with a relatively small value of r, the algorithm of enumeration
of affine analogs, ordered by increasing value ρ(F,A), can be used, and the
value of the nonlinearity NF allows us to obtain a lower estimate of the order
affinity of the form

ardF ≥ qn/(qn −NF ). (3)

The last remarks speak in favor of studying the parameters ρ(F,A) and
NF . In what follows, unless otherwise stated, by nonlinearity we mean the
nonlinearity of NF in the sense of (1).
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2 Properties of parameters characterizing the closeness
of a vectorial function to affine mappings

For further presentation, we need one more notation for the Hamming
distance to an affine mapping. In the case k = 1, any affine function a ∈ An,1

q

can be uniquely represented by a scalar product

a(x ) = 〈x+,a〉, (4)

where x+ = (1, x1, . . . , xn),a = (a0, a1, . . . , an) ∈ Fn+1
q . Associating the

function a with the vector a from (4), let’s denote the distance between the
functions f ∈ P n,1

q and a ∈ An,1
q in the space Fqn

q by ρaf . Then the nonlinearity
formula for a q-valued function takes the form Nf = mina∈Fn+1

q
ρaf .

Denote M s,t
q the set of matrices over the field Fq consisting of s rows and

t columns. Then any affine mapping A ∈ An,k
q can be uniquely represented

by multiplying a vector2 x+ ∈ Fn+1
q by a matrix A ∈M n+1,k

q of the form

A(x ) = x+A. (5)

Assume that a mapping A ∈ An,k
q have a set of coordinate functions

{a1, . . . , ak}, and the matrix A representing it in (5) has the form3 {ai,j}
for i = 0, 1. . . . , n and j = 1, . . . , k. Then, for each coordinate function aj,
the j-th transposed column of the matrix A acts as the vector a in relation
(4), and the ordered set of free terms of all coordinate functions coincides
with the zero row of the matrix A. Relation (5) can also be given by the
more familiar expression A(x ) = xÃ⊕ a0, where Ã ∈M n,k

q is a submatrix
of the matrix A obtained by excluding zero row a0 from A.

Taking into account the isomorphism of the vector space Fk
q and the

field Fqk , let’s use the Hamming distance in the space Fqn

qk
and denote the

distance between the vectorial functions F ∈ P n,k
q and A ∈ An,k

q by ρAF , where
the matrix A corresponds to the mapping A in representation (5). Then the
nonlinearity formula (1) takes the form

NF = min
A∈M n+1,k

q

ρAF . (6)

The nonlinearity NF is invariant for EA-equivalent mappings from P n,k
q ,

as is the nonlinearity NLF . Indeed, vectorial functions F and F ′ from P n,k
q

are considered to be EA-equivalent if there exist bijective mappings B ∈ An,n
q

2The symbol x+ means adding a zero coordinate to the vector x with the value of the field unit.
3In contrast to the conventional notation, the rows of a matrix, denoted by a latin letter without a

superscript tilde, are numbered starting from zero.
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and L ∈ Lk,kq , as well as a mapping C ∈ An,k
q , such that the identityF ′ =

L(F (B(x )))⊕C(x ). In the matrix representation, this identity has the form

F ′(x ) = (F (x+B))+L⊕ x+C , (7)

where the matrix B =
(

b0

B̃

)
∈ M n+1,n

q and its submatrix B̃ ∈ M n,n
q is

nonsingular, the matrix L =
( 0

L̃

)
∈ M k+1,k

q and its submatrix L̃ ∈ M k,k
q is

nonsingular, and the matrix C =
( c0

C̃

)
∈M n+1,k

q .

Proposition 1. Let vectorial functions F and F ′ from P n,k
q be EA-

equivalent, and relation (7) is valid for them. Then the distances from these
mappings to affine ones are related by the equality

ρA
′

F ′ = ρAF , (8)

where the matrices A =
( a0

Ã

)
,A′ =

(
a′0
Ã′

)
∈ Mn+1,k

q , the submatrix Ã′ =

B̃ÃL̃⊕ C̃ and the zero row a′0 = (a0 ⊕ b0Ã)L̃⊕ c0.

The proof is similar to the proof of assertion 2 in [18].

Corollary 1. For EA-equivalent vectorial functions from P n,k
q , the un-

ordered set {ρAF | A ∈Mn+1,k
q } and the nonlinearity NF are invariants.

Let us now consider the case when a vectorial function is obtained from
another vectorial function by adding or eliminating several coordinate func-
tions. Comparing the number of coincidences of the resulting vectorial func-
tion with affine functions obtained by adding or eliminating coordinate func-
tions at the same places, we will see that when new coordinate functions are
added, the nonlinearity doesn’t decrease, and when some of the original ones
are excluded, it doesn’t increase. Adding any linear combinations of the origi-
nal coordinate functions and an arbitrary affine function does not change the
nonlinearity. For comparison, we note that the alternative nonlinearity of a
vectorial function in the sense (2), on the contrary, doesn’t increase with the
addition of coordinate functions and doesn’t decrease with exclusion. Adding
at least one linear combination of the original coordinate functions and an
arbitrary affine function nullifies the nonlinearity in the sense (2).

Since the nonlinearity doesn’t increase when all but one of the coordi-
nate functions are eliminated, we can conclude that the nonlinearity of the
vectorial function is greater than or equal to the nonlinearity of each of its co-
ordinate functions, and, therefore, the inequality NF ≥ NLF is valid, which
becomes into equality for k = 1. Moreover, the next assertion holds.
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Proposition 2. Let a vectorial function F ∈ P n,k
q have a set of coordinate

functions f = (f1, . . . , fk). Then the following inequality is true

NF ≥ max
w∈Fkq

N〈w,f〉.

Proof. In the case when the vector w is zero, the inequality is obvious. To
prove the nonzero case, it suffices to note that the EA-equivalent function of
the form F (x )L̃j, where wj 6= 0 and the matrix L̃j ∈ M k,k

q , is obtained by
replacing the j-th column in the identity matrix with the column vector w ,
has a linear combination 〈w , f 〉 as thej-th coordinate function.

By analogy with the parameters of the function f ∈ P n,1
q defined in [17]

by the equality δaf = (q − 1)q−1 − ρaf q−n, let’s define the parameters of the
vectorial function F ∈ P n,k

q by the relations

δAF = (qk − 1) q−k − ρAF q−n = µA
F q−n − q−k. (9)

where µA
F is the number of coincidences of the vectorial function F with the

affine mapping A ∈ An,k
q . It can be seen from the right side of the chain

(9) that with a random choice of the argument x from Fn
q , the parameter δAF

shows the deviation of the probability of coincidence of the vectorial functions
F and A from the average over all affine mappings, equal to q−k.

Let’s call the affinity index of the vectorial function F ∈ P n,k
q the quantity

δF = max
A∈M n+1,k

q

δAF . (10)

Relations (6), (9), and (10) imply the formula

NF = (qk − 1) qn−k − δF qn. (11)

The formula expression for the relationship between the introduced pa-
rameters of the vector function and the analogous parameters of the coordi-
nate functions gives the following assertion.

Proposition 3. Let fj ∈ P n,1
q , where 1 ≤ j ≤ k, be the j-th coordinate

of the vectorial function F ∈ P n,k
q . Then for any vector a ∈ Fn+1

q and any
matrix B̃ ∈Mn,k−1

q we have

δafj =
∑

b0∈Fk−1q

δ
A(b0)
F , (12)

where the matrix A(b0) ∈ Mn+1,k
q is obtained by concatenating the column

order of the matrix B =
(

b0
B̃

)
∈ Mn+1,k−1

q into 1, . . . , j − 1, j + 1, . . . , k

places and a column vector a at the j-th place.
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Proof. Let us prove Proposition 3 without loss of generality in the case of k =
2 and j = 1. For an affine function a ∈ An,1

q represented by a vector a ∈ Fn+1
q

and any vector (b1, . . . , bn) ∈ Fn
q , consider the set of q matrices {A(b0) ∈

M n+1,2
q | b0 ∈ Fq} obtained by adding to the column vector a the second

column vector b = (b0, b1, . . . , bn) with an arbitrary element b0. Then the
number of coincidences of functions f1 and a satisfies the relation µa

f1
=

∑
b0∈Fq µ

A(b0)
F . Applying (9), we obtain the chain of equalities

δaf1 = µa
f1
q−n − q−k+1 =

∑

b0∈Fq
(µ

A(b0)
F q−n − q−k) =

∑

b0∈Fq
δ
A(b0)
F .

Using the relation of the form
∑

a0∈Fq δ
(a0,a1,...,an)
f = 0 given in [17] for a

function f ∈ P n,1
q , we obtain an relation for the parameters δAF .

Corollary 2. Let F ∈ P n,k
q . Then for any matrix Ã ∈Mn,k

q we have
∑

a0∈Fkq

δ
A(a0)
F = 0, (13)

where the matrix A(a0) =
( a0

Ã

)
∈Mn+1,k

q .

Relations (9), (10), (11) and (13) allow us to obtain bounds for affinity
index and nonlinearity of any vectorial function F ∈ P n,k

q of the form

0 ≤ δF ≤ 1− q−k (14)

and
0 ≤ NLF ≤ NF ≤ qn − qn−k. (15)

For the nonlinearity NLF from [17] follow bounds of the form4

0 ≤ NLF ≤ (q − 1)qn−1 − qn/2−1. (16)

The upper bound of the affinity index in (14) and the lower bounds of the
nonlinearity in (15) and (16) are reached when F itself is an affine mapping.
The lower bound in (14) and the upper bound in (15) can be refined. The
reachability of the upper bound in (16) will be discussed further.

In the case when a vectorial function is a permutation S of the space Fn
q ,

it can be represented as a permutation s of the field Fqn in some basis. It
follows from [18] that Ns ≤ qn − 2. In contrast to the case of a ring modulo

4For q = 2, these bounds follow from the results of [16], and for q = p, they were obtained in [13].
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qn, here it follows from the condition that the permutation of the field Fqn

is affine that the corresponding permutation of the space Fn
q is also affine.

Consequently, for a permutation of the space S ∈ Snq and the corresponding
permutation of the field s ∈ S1

qn, the following inequalities hold:

0 ≤ NLS ≤ NS ≤ Ns ≤ qn − 2. (17)

In the case q = 2, the behavior of the nonlinearity in the sense (2) for
arbitrary mappings, balanced vectorial functions, and permutations has been
studied by many authors. The article [3] should be singled out, in which, in
addition to reviewing the results in this direction, an attempt was made to
integrate them and refine the bound (16). To study permutations of spaces
over the field F2, of interest is the upper bound of the nonlinearity

NLS ≤ 2n−1 − 2(n−1)/2, (18)

resulting from the Sidelnikov–Chabaud––Vaudenay’s bound [23, 5], which
can only be reached for odd values of n. Since every nontrivial linear combi-
nation of permutation coordinate functions is balanced, one can also use the
nonlinearity bound for balanced functions from [22] and obtain the inequality

NLS ≤ 2n−1 − 2n/2−1 − 2. (19)

The bounds (18) and (19) refine the bound (16) for the Boolean case.

3 Estimates for the distribution of nonlinearity of ar-
bitrary mappings, balanced vectorial functions, and
permutations

Consider a set of mappings with nonlinearity not exceeding a given value
{F ∈ P n,k

q | NF ≤ r}, where 0 ≤ r ≤ qn (in what follows, we will also use
the short notation {NF ≤ r} for the indicated set). As follows from (15),
for r ≥ qn − qn−k the set {F ∈ P n,k

q | NF ≤ r} coincides with the entire
set P n,k

q . For k = 1, in the article [27], in particular, it is shown that for
Boolean functions for 0 ≤ r < 2n−1 − 2n/2−1 the following inequality holds:
|{Nf ≤ r}| ≤ 2n+1

∑r
i=0

(
2n

i

)
. In [17], this result was generalized to the case

of q-valued functions.
Theorem 1. Let the vectorial function F be chosen randomly and with equal
probability from the set P n,k

q . Then for 0 ≤ r < qn − qn−k for the probability
of the event {F ∈ P n,k

q | NF ≤ r} we have the following estimate

P(NF ≤ r) ≤ qk(n+1−qn)
r∑

i=0

(
qn

i

)
(qk − 1)i. (20)
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Proof. To an affine mapping Ah ∈ An,k
q , where h = 1, . . . , qk(n+1), we as-

sociate the set {F ∈ P n,k
q | ρ(F,Ah) ≤ r}. Each such set is the union of

pairwise disjoint r+1 sets, that is, the equality {F ∈ P n,k
q | ρ(F,Ah) ≤ r} =⋃r

i=0{F ∈ P n,k
q | ρ(F,Ah) = i} is satisfied. In turn, the powers of the latter,

in accordance with [21], are found by the formula

|{F ∈ P n,k
q | ρ(F,Ah) = i}| =

(
qn

i

)
(qk − 1)i. (21)

Then the chain of relations is valid

P(NF ≤ r) = |{NF ≤ r}|/|P n,k
q | ≤ q−kq

n

qk(n+1)∑

h=1

|{F ∈ P n,k
q | ρ(F,Ah) ≤ r}| =

q−kq
n

qk(n+1)∑

h=1

r∑

i=0

(
qn

i

)
(qk − 1)i = qk(n+1−qn)

r∑

i=0

(
qn

i

)
(qk − 1)i.

Remark 1. To simplify the calculation of the expression on the right side
of relation (20), for r ≤ (qn + 1)/2 and qk 6= 2, we can use the inequality

r∑

i=0

(
qn

i

)
(qk − 1)i <

(
qn

r

)
(qk − 1)r+1/(qk − 2).

Let’s now consider the case balanced vectorial functions.

Theorem 2. Let the mapping G be chosen randomly and with equal prob-
ability from the set Bn,k

q . Then for 0 ≤ r < qn − qn−1 for the probability of
the event {G ∈ Bn,k

q | NG ≤ r} we have the following estimate

P(NG ≤ r) ≤ (qn−k!)k
k∏

h=1

(qn+1 − qh)
r∑

i=0

1/(qn − i)!
i∑

j=0

(−1)j/j!, (22)

Proof. It is carried out similarly to the proof of Theorem 1. In this case, for
any affine mapping A that isn’t balanced, the inequality ρ(G,A) ≥ qn−qn−1

holds, and, therefore, such mappings can be excluded from consideration. The
number of affine balanced mappings is

∏k
h=1(q

n+1 − qi). Based on the for-
mula obtained for the Hamming distance in [21], for the number of balanced
vectorial functions removed at a distance i from a balanced affine mapping
B, as (21) the following inequality is used

|{G ∈ Bn,k
q | ρ(G,B) = i}| ≤ qn!/(qn − i)!

i∑

j=0

(−1)j/j!, (23)

and the cardinality of the set Bn,k
q is qn!/(qn−k!)k.
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Finally, consider the case of permutations. As follows from (17), for r ≥
qn − 2 the set {S ∈ Snq | NS ≤ r} coincides with the set Snq .

Corollary 3. Let the permutation S be chosen randomly and with equal
probability from the set Snq . Then for 0 ≤ r < qn − qn−1 for the probability
of the event {S ∈ Snq | NS ≤ r} we have the following estimate

P(NS ≤ r) ≤
n∏

h=1

(qn+1 − qh)
r∑

i=0

1/(qn − i)!
i∑

j=0

(−1)j/j!. (24)

To prove Corollary 3, it suffices to put k equal to n in (22). Note that in
this case, for an affine permutation, the inequality (23) becomes an equality.

Remark 2. To simplify the calculations of the expressions included in the
right-hand sides of relations (22) and (24), we can use the approximation∑j

t=0(−1)t/t! ≈ e−1, and also use the Stirling formula.

Using the obtained results, it is easy to show, for example, that for most
vectorial functions from P 4,4

2 , space permutations from S4
2 , and field permu-

tations from S1
16, the nonlinearity is greater than or equal to 8, 8, and 11.

4 Construction of highly nonlinear vectorial functions

For q = 2 and even values of n, the nonlinearity NLF in the sense (2)
reaches the upper bound in (16) only in the case of Boolean vectorial bent
functions. It follows from the results of [14] that such mappings exist only
under one more condition n ≥ 2k. Under these conditions, various classes
of Boolean vectorial bent functions have been constructed (see [25, 11]). For
q > 2 and k = 1, it was shown in [20], that the bent functions from Maiorana-
McFarland’s and Dillon’s families are not maximally nonlinear, and a new
family of maximally nonlinear bent functions was constructed. A similar sit-
uation with respect to nonlinearityNLF in the sense (2) also takes place for
vectorial functions.

Let’s demonstrate this using the method proposed here for constructing
vectorial functions belonging to the set Pmn,m

p from bent functions belonging
to the set P n,1

q , where q = pm, m ≥ 2, and n is even. Let the bent func-
tion f ∈ P n,1

q . We represent the field Fq as an m-dimensional vector space
over the prime field Fp and define a vectorial function F whose coordinate
functions are the corresponding coordinates of the bent function f in the
given representation, and whose variables belong to the vector space Fmn

p .
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In accordance with the results of article [2], all nontrivial linear combina-
tions of the vectorial function F are also bent functions. For p = 2, each
such linear combination is a Boolean bent function, and, accordingly, the
vectorial function F has the maximum possible nonlinearity NLF equal to
2mn−1− 2mn/2−1. But for p > 2, as follows from the work [19], in order to be
guaranteed to obtain a nonlinearity NLF equal to (p− 1)pmn−1− pmn/2−1, it
is also necessary to take the maximally nonlinear bent function as the initial
function f .

Example 1. Let q = 9 and n = 2, and the generating polynomial g(x) =
x2⊕x⊕1 is used to construct a field of nine elements, and, accordingly, F9 =
{0, 1, 2, x, x⊕ 1, x⊕ 2, 2x, 2x⊕ 1, 2x⊕ 2} = {0, 1, 2, 3, 4, 5, 6, 7, 8}. Consider
two bent functions from P 2,1

9 : f1 = x1x2 and f2 = x2
1 ⊕ 3x2

2. According to
[18], f1 has nonlinearity Nf1 equal to 64, and f2 is a maximally nonlinear
bent function with nonlinearity Nf2 equal to 71. The vectorial functions F1

and F2 from P 4,2
3 obtained from them using the method described above have

the following sets of coordinate functions: {2x1x3⊕x1x4⊕x2x3, x1x3⊕x2x4}
and {2x2

1⊕2x2
3⊕x2

4⊕2x1x2⊕x3x4, x
2
1⊕x2

2⊕2x2
3⊕2x3x4}. They satisfy the

equalities NLF1
= 48 and NLF2

= 51 with respect to the nonlinearities in the
sense (2), and the equalities NF1

= 64 and NF2
= 68 for the nonlinearities

in the sense (1) are also valid.Taking into account formula (3), the affinity
orders satisfy the relations ardF1 ≥ 5 and ardF2 ≥ 7.

Since it follows from Theorem 1 that the inequality NF ≥ 58 holds for
most mappings from P 4,2

3 , the above example shows that the use of vectorial
functions with maximum nonlinearity NLF provides high nonlinearity NF

and the order affinity ard F . This is confirmed by the following result.

Statement 1. If the vectorial function F ∈ P n,2
3 satisfies the equality

NLF = 2 · 3n−1 − 3n/2−1, (25)

then its affinity index, nonlinearity, and affinity order satisfy the inequalities

δF ≤ 4 · 3−n/2−2, (26)

NF ≥ 4 · (2 · 3n−2 − 3n/2−2), (27)

ardF ≥





4, if n = 2;
7, if n = 4;
8, if n = 6;
9, if n ≥ 8.

(28)
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Proof. For a function f ∈ P n,1
q and a vector ã ∈ Fn

q , denote by 5ã
f the set of

q parameters {δ(a0,ã)
f | a0 ∈ Fq}, and for a vectorial function F ∈ P n,k

q and a

matrix Ã ∈M n,k
q , denote by5Ã

F the set of qk parameters {δ
(a0

Ã

)

F | a0 ∈ Fk
q}.

Let a mapping F ∈ P n,2
3 with a set of coordinate functions f = (f1, f2)

satisfy condition (25). Then n is even, and it follows from the results of [19]
that, for any vectors w ∈ F2

3\{0} and ã ∈ Fn
3 , sets of the form5ã

〈w ,f 〉 consist
of a parameter equal to −2 · 3−n/2−1 and two parameters equal to 3−n/2−1.

For any matrix Ã = ( ã1,ã2 ) ∈M n,2
3 , the set5Ã

F includes nine parameters
{δA(a0,1,a0,2)

F | a0,1, a0,2 ∈ Fq}, where A(a0,1, a0,2) =
( a0,1,a0,2

ã1,ã2

)
∈ M n+1,2

3 .
Applying sums (12) to them, we obtain two systems of linear equations





δ
A(0,0)
F + δ

A(0,1)
F + δ

A(0,2)
F = δ

(0,ã1)
f1

δ
A(1,0)
F + δ

A(1,1)
F + δ

A(1,2)
F = δ

(1,ã1)
f1

δ
A(2,0)
F + δ

A(2,1)
F + δ

A(2,2)
F = δ

(2,ã1)
f1

(29)





δ
A(0,0)
F + δ

A(1,0)
F + δ

A(2,0)
F = δ

(0,ã2)
f2

δ
A(0,1)
F + δ

A(1,1)
F + δ

A(2,1)
F = δ

(1,ã2)
f2

δ
A(0,2)
F + δ

A(1,2)
F + δ

A(2,2)
F = δ

(2,ã2)
f2

(30)

where their right sides are either (−2 · 3−n/2−1, 3−n/2−1, 3−n/2−1), or
(3−n/2−1,−2 · 3−n/2−1, 3−n/2−1), or (3−n/2−1, 3−n/2−1,−2 · 3−n/2−1).

Let us now define a vectorial function by the relation F ′ = F L̃′, where
L̃′ =

(
1,1
0,1

)
∈M 2,2

3 , with the set of coordinate functions {f1, f1 ⊕ f2}. Since
the matrix L̃′ is nonsingular, the vectorial function F ′ is EA-equivalent to the
mapping F and, in accordance with relations (8) and (9), for any matrix A ∈
M n+1,2

3 , we have the equality δA
′

F ′ = δAF , where A′ =
(

a ′0
Ã′

)
∈ M n+1,2

3 , the

submatrix Ã′ = ÃL̃′ and the zero row a ′0 = a0L̃′. Taking into account the
form of the matrix L̃′, for all possible a0,1, a0,2 ∈ Fq, we have the relations

δ
A′(a0,1,a0,1⊕a0,2)
F ′ = δ

A(a0,1,a0,2)
F . (31)

Applying sums (12) with respect to the second coordinate F ′, we obtain
a system of linear equations





δ
A′(0,0)
F ′ + δ

A′(1,0)
F ′ + δ

A′(2,0)
F ′ = δ

(0,ã1⊕ã2)
f1⊕f2

δ
A′(0,1)
F ′ + δ

A′(1,1)
F ′ + δ

A′(2,1)
F ′ = δ

(1,ã1⊕ã2)
f1⊕f2

δ
A′(0,2)
F ′ + δ

A′(1,2)
F ′ + δ

A′(2,2)
F ′ = δ

(2,ã1⊕ã2)
f1⊕f2
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which, with the help of relations (31), is reduced to the form




δ
A(0,0)
F + δ

A(1,2)
F + δ

A(2,1)
F = δ

(0,ã1⊕ã2)
f1⊕f2

δ
A(0,1)
F + δ

A(1,0)
F + δ

A(2,2)
F = δ

(1,ã1⊕ã2)
f1⊕f2

δ
A(0,2)
F + δ

A(1,1)
F + δ

A(2,0)
F = δ

(2,ã1⊕ã2)
f1⊕f2

(32)

where the right side (32) can take only the three values indicated above.
By analogous reasoning, we obtain that one more EA-equivalent vectorial

function given by the relation F ′′ = F L̃′′, where L̃′′ =
(

1,1
0,2

)
∈M 2,2

3 , with the
set of coordinate functions {f1, f1⊕2f2} leads to a system of linear equations





δ
A(0,0)
F + δ

A(1,1)
F + δ

A(2,2)
F = δ

(0,ã1⊕2ã2)
f1⊕2f2

δ
A(0,1)
F + δ

A(1,2)
F + δ

A(2,0)
F = δ

(1,ã1⊕2ã2)
f1⊕2f2

δ
A(0,2)
F + δ

A(1,0)
F + δ

A(2,1)
F = δ

(2,ã1⊕2ã2)
f1⊕2f2

(33)

where the right side (33) can again take only the three values indicated above.
Combining systems (29), (30), (32) and (33), we obtain a system

of 12 linear equations. The use of other nontrivial linear combinations
of coordinate functions does not lead to the emergence of new equa-
tions. The right side of the resulting unified system can take 81 values.
Each of the possible 81 systems is compatible and has one solution.
Using these solutions, we conclude that for any matrix Ã ∈ M n,2

3

the collection 5Ã
F does not go beyond two sets of the form {−8 ·

3−n/2−2, 3−n/2−2, 3−n/2−2, 3−n/2−2, 3−n/2−2, 3−n/2−2, 3−n/2−2, 3−n/2−2, 3−n/2−2}
and {−5 · 3−n/2−2,−2 · 3−n/2−2,−2 · 3−n/2−2,−2 ·
3−n/2−2, 3−n/2−2, 3−n/2−2, 3−n/2−2, 4 · 3−n/2−2, 4 · 3−n/2−2}. Therefore, in-
equalities (26) and (27) are valid. Applying (3) to (27) we obtain (28).
Corollary 4. In the case of q = 9 and n divisible by 4, for the vectorial
function F ∈ P n,2

3 composed of the coordinates of the maximally nonlinear
bent function f ∈ P n/2,1

9 , the relations (25), (26), (27) and (28) are valid.
Remark 3. In a similar way, one can show that in the case of q = 4 and n
divisible by 4, for a Boolean mapping F ∈ P n,2

2 composed of the coordinates
of the bent function f ∈ P n/2,1

4 , the relations NLF = 2n−1 − 2n/2−1, δF ≤

3 · 2−n/2−2, NF ≥ 3 · (2n−2 − 2n/2−2) and ardF ≥
{

3, if n = 4;
4, if n ≥ 8.

are valid.

Remark 4. The classes of mappings presented in Corollary 4 and Remark 3
can be extended by EA-equivalent mappings and by adding coordinate func-
tions. In the latter case, one should keep in mind that the nonlinearity NLF
of the resulting mappings may turn out to be less than the original one.
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In conclusion, using the example of permutation from S4
2 , we show that

for the same value of the nonlinearity in the sense of (2), mappings can have
different nonlinearities in the sense of (1) and differ significantly in resistance
to methods using affine approximations.

Among the highly nonlinear permutations from S4
2 , researchers include

the transformations generated by the power function xd for some integer d,
primarily d = 14, which is equivalent to x−1 for nonzero values of x. The
function x14 generates the permutation S ∈ S4

2 . In accordance with (19),
the permutation S has the maximum possible nonlinearity NLS equal to 4,
the nonlinearity NS equal to 9, and the affinioty order ardS greater than or
equal 3. This value of the nonlinearity in the sense of (1) can be considered
quite high, since most permutations from S4

2 and even most of the vectorial
functions from P 4,4

2 have a nonlinearity greater than or equal to 8.
In [1], taking into account various cryptographic criteria,

"good" permutations from S4
2 were chosen according to the au-

thors. The first among them was the permutation of the form
S ′ = {9, 13, 10, 15, 11, 14, 7, 3, 12, 8, 6, 2, 4, 1, 0, 5}. This permutation S ′

has the maximum possible nonlinearity NLS′ equal to 4, and is really not
inferior in this parameter to the permutation S. Moreover, unlike S, the
permutation S ′ does not keep 0 and 1 in place. However, its nonlinearity in
the sense (1) is less than that of the permutation S and is equal to 8. In this
case, as can be seen from the table below of values for a given permutation S ′

and two affine mappings A1 and A2 from A4,4
2 , the latter can be considered

as paired analogues of S ′ on the entire space F4
2. Thus, the order affinity

ardS ′ is 2, and the system of equations given by the permutation S ′ is easily
solved by the above method.

x S′ A1 A2

0000 1001 1001 1110
0001 1101 1101 1011
0010 1010 0011 1010
0011 1111 0111 1111
0100 1011 1101 1011
0101 1110 1001 1110
0110 0111 0111 1111
0111 0011 0011 1010
1000 1100 1100 0001
1001 1000 1000 0100
1010 0110 0110 0101
1011 0010 0010 0000
1100 0100 1000 0100
1101 0001 1100 0001
1110 0000 0010 0000
1111 0101 0110 0101
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5 Conclusion

In this work, the classical Hamming distance is used as a measure of close-
ness of vector spaces over finite fields. Previously, this approach was applied
in cryptographic studies to functions with a one-dimensional space of values,
primarily to Boolean functions. The need to turn to the classical measure in
the vector case in the presence of other measures used in cryptography is due
to a number of reasons. These include the fact that the Hamming distance
is a metric that allows one to reasonably approach the measurement of prox-
imity to the set of affine mappings over finite fields and avoid identification
with affine vector functions that are not such. This approach creates the basis
for studying the possibility of representing vectorial functions in a piecewise
affine form, and the value of nonlinearity reflects the maximum size of the
affinity region and allows us to estimate the order of affinity of the vectorial
function, which is important when solving systems of nonlinear equations by
methods using affine approximations.

In Section 2, we study the properties of parameters that characterize the
closeness of a vectorial function to affine mappings, find connections between
these parameters and similar parameters of its coordinate functions, and,
based on the latter, draw conclusions about the relationship between the
nonlinearity of a vectorial function and the nonlinearities of its coordinate
functions and their linear combinations. This result is interesting because at
present the definition of the nonlinearity of a vectorial function as minimal
among nonlinearities of all nontrivial linear combinations of coordinate func-
tions has become most widespread. The work compares these two approaches
to nonlinearity. Due to the limited volume, the measures associated with the
difference approach and the nonlinearities arising in this connection are not
considered in this work.

Section 3 is devoted to meaningful estimates of the distribution of the
nonlinearity introduced in the paper for arbitrary mappings, balanced vecto-
rial functions, and permutations. Similar results for alternative nonlinearities
are not known to the author.

In Section 4, we propose a method for constructing vectorial functions
with a high nonlinearity using the coordinates of maximally nonlinear bent
functions (in the Boolean case, any bent functions) given on a field of the same
characteristic, but of a higher order. Here we also give an example of a permu-
tation with the maximum possible nonlinearity for nontrivial combinations
of coordinate functions, but with a relatively low nonlinearity introduced in
this paper, which makes this permutation cryptographically vulnerable.
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Abstract

Bent functions are Boolean functions in even number of variables that have maxi-
mal nonlinearity. They also have a flat Walsh–Hadamard spectrum and are of interest
for their applications in algebra, coding theory and cryptography. A bent function is
called self-dual if it coincides with its dual bent function. In current work we study
the subfunctions of self-dual bent functions. We consider the subfunctions whose
concatenation forms the vector of values of the function.

Based on a spectral characterization, we introduce a notion of self-duality for
near-bent functions in odd number of variables. We describe subfunctions in n− 1
variables of self-dual bent function in n variables and prove that there exists an
one-to-one correspondence between the set of self-dual bent functions in n variables
and the set of self-dual near-bent functions in n− 1 variables.

We deduce the general form of the Gram matrix of sign functions of subfunctions
in n− 2 variables of an arbitrary bent function. Metrical relations between the sub-
functions are obtained. By using the obtained form of the Gram matrix we prove
that if sign functions of subfunctions in n− 2 variables of self-dual bent function
are linearly dependent then all subfunctions are bent functions. We also prove that
for n > 6 the converse does not hold, that is the singularity of the Gram matrix
provides only sufficient condition for subfunctions to be bent.

Three new iterative constructions of self-dual bent functions are proposed. Some
of them for the first time provide self-dual bent functions with bent subfunctions
having nonsingular Gram matrix. One of the constructions allows to build a class
of self-dual bent functions which cannot be decomposed into the concatenation of
four bent functions. Based on the constructions a new iterative lower bound on the
cardinality of the set of self-dual bent functions is obtained.

Functions of the form Fn
2 → Zq, where q > 2 is a positive integer, having flat

generalized Walsh–Hadamard transform spectrum are known as generalized bent
(gbent) functions. We study the open problem of the existence of (anti-)self-dual
gbent functions in odd number of variables. It is known that such functions do
not exist for q = 2, 4. We prove that they exist when q ≡ 0 mod 8, in particular,
for q = 2k with k > 3.

Keywords: Self-dual bent, Rayleigh quotient, Near-bent, Subfunction of a Boolean function

1 Introduction

Bent functions are Boolean functions in even number of variables that
have a maximal nonlinearity. They were firstly published by O.Rothaus
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in [28]. They are mathematical objects of a great interest due to many appli-
cations in discrete mathematics, algebra, coding theory, cryptography. Due to
a property of maximal nonlinearity these functions can be used for obtaining
Boolean and vectorial Boolean functions with good cryptographic properties.
Another applications use the fact that bent functions and only them have flat
Walsh–Hadamard spectrum that is crucial for some approaches within the
signals theory, includig CDMA technology. More information about them one
can find in monographies [32, 26]. For extensive data about cryptographic
properties of Boolean functions and other their applications one can refer
to the books [21, 6]. Despite the long history of study there are many open
problems related to bent functions, in particular, their cardinality is still un-
known, their affine classification is completely studied only for small number
of variables, obtaining of new constructions is also the goal worth pursuing.

For every bent function it is possible to define its dual Boolean function
that defines the signs of its Walsh–Hadamard transform. This functions is
also bent and, in order, its dual coincides with the initial function, so bent
functions come in pairs. More information about the duals and the properties
of the duality mapping one can find in [4, 15].

Among different classes of bent functions the class of self-dual bent func-
tions is emphasized. Self-dual are such bent functions that coincide with their
duals. They are also important from the perspective of obtaining polyphase
sequences with particular properties. The polyphase sequence of self-dual
bent function is the eigenvector of the Sylvester Hadamard matrix that ap-
pears in many areas of discrete mathematics and also in quantum compu-
tation. So the construction and characterization of self-dual bent functions
has strong relation with the problem of description of eigenvectors of the
Sylvester Hadamard matrix [35]. Also self-dual bent functions are the fixed
points of the duality mapping that has great interest in a scope of bent
functions. Also note that on self-dual bent functions and only on them the
Rayleigh quotient of a Boolean function has maximal value for the case of
even number of variables.

Self-dual bent function were firstly studied by Carlet et al. in paper [5],
though more general definition of a self-dual bent function on a finite group
was intriduced by Logachev, Sal’nikov and Yashchenko earlier in [20]. From
that time there were a number of papers devoted to the study and characteri-
zation of self-dual bent functions. In particular, the classification of quadratic
self-dual bent functions was provided by Hou in [9]. The classification of qubic
self-dual bent functions in 8 variables was done in paper [8], while the bounds
for the cardinality of this class were deduced in [10]. New constructions were
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presented in [25, 22, 18]. Metrical properties of self-dual bent functions were
studied in papers [11, 12, 13, 14].

There are known several generalizations of self-duality for the so called
generalized Boolean functions, that is the mappings of the form Fn2 → Zq. For
these functions the definition of a generalized bent function is that the func-
tion has flat Walsh–Hadamard spectrum. It is worth noting that there exist
generalized bent functions in odd number of variables for the case q = 2k [23].
The duality can be defined only for a subset of generalized bent functions
that are called regular, the same holds for self-duality.

It was known that self-dual generalized bent functions exist for n and q
both even. For the case of odd n it was known that for q = 4 self-dual
generalized bent funcions do not exist [30]. The question of their existence
for the case of an odd n for the general case remains an open one.

In current work we concentrate on the subfunctions of self-dual bent
functions obtained by fixing one or two variables. Note that the best known
for today lower and upper bounds on the cardinality of the set of self-dual
bent functions are based on the analysis of its subfunctions. The problem
of the existence of self-dual generalized bent functions in odd number of
variables under some limitations is also considered.

The structure of the work is following. Necessary notation is in Section 2.
In Section 3 we share a concept of self-duality on near-bent functions in odd
number of variables and prove that there is an one-to-one correspondence be-
tween self-dual bent function in n variables and near-bent functions in n− 1
variables having particular value of the Rayleigh quotient (Theorem 1). Note
that this value coincides with the best known fot today bound for the max-
imal value of the Rayleigh quotient for the case of odd number of variables.
Further, in Section 4.2 we study the Gram matrix obtained via sign func-
tions of subfunctions obtained by fixing two variables of bent function. The
general form of this matrix is deduced (Theorem 2). We use it for obtaining
metrical relations between seubfunctions of every bent function (Theorem 3).
The Rayleigh quotients of subfunctions are characterized in Section 4.3 and
their general form is obtained (Proposition 2). The form of the Gram ma-
trix is explicitly used in Section 4.4, where we prove that given a self-dual
bent function with linearly dependent sign functions of subfunctions, all these
functions are neccesarily bent (Theorem 4, Corollary 1). New constructions
and lower bound on the number of self-dual bent functions are presented in
Section 5, whereas the converse of Theorem 4 is considered in Section 5.1.
In Section 6 we study the open problem of the existence of self-dual bent
functions in odd number of variables and prove that such functions exist
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for every q ≡ 0 mod 8 (Theorem 7), in particular q = 2k with k > 3. The
Conclusion is in Section 7.

2 Notation

Let Fn2 be a set of binary vectors of length n. For x, y ∈ Fn2 de-

note 〈x, y〉 =
n⊕
i=1

xiyi, where the sign ⊕ denotes a sum modulo 2.

A Boolean function f in n variables is any map from Fn2 to F2. The
set of Boolean functions in n variables is denoted by Fn. A sign function
(also known as polyphase sequence or {±1}-sequence) of f ∈ Fn is an
integer function F = (−1)f , we will also refer to it as to an integer vec-
tor
(
(−1)f0, (−1)f1, . . . , (−1)f2n−1

)
of length 2n, where (f0, f1, . . . , f2n−1) is a

vector of values (truth table) of the function f .
The Hamming weight wt(x) of the vector x ∈ Fn2 is the number of nonzero

coordinates of x. The Hamming distance dist(f, g) between Boolean func-
tions f, g in n variables is the cardinality of the set {x ∈ Fn2 |f(x) 6= g(x)}.

The Walsh–Hadamard transform of the function f ∈ Fn is the integer
function

Wf(y) =
∑

x∈Fn2

(−1)f(x)⊕〈x,y〉, y ∈ Fn2 .

A Boolean function f in an odd number m of variables is said to be
near-bent if

Wf(y) ∈
{

0,±2(m+1)/2
}
, y ∈ Fm2 .

For the case of an even number of variables, say n, the function f in n of
variables is said to be near-bent if

Wf(y) ∈
{

0,±2(n+2)/2
}
, y ∈ Fn2 .

A Boolean function f in an even number n of variables is said to be bent if

|Wf(y)| = 2n/2, y ∈ Fn2 .

The set of bent functions in n variables is denoted by Bn. The Boolean
function f̃ ∈ Fn such that Wf(y) = (−1)f̃(y)2n/2 for any y ∈ Fn2 is said to
be dual of f . Note that the dual function is uniquely defined for every bent
function, moreover the function f̃ is bent as well. A bent function f is said
to be self-dual if f = f̃ , and anti-self-dual if f = f̃ ⊕ 1. The set of self-dual
bent functions in n variables is denoted by SB+

n .
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The Rayleigh quotient of a Boolean function in n variables is a number

Sf =
∑

x,y∈Fn2

(−1)f(x)⊕f(y)⊕〈x,y〉 =
∑

y∈Fn2

(−1)f(y)Wf(y).

This characteristics of a Boolean function in a scope of bent functions was
studied in [7]. It is interesting for bent functions since it completely charac-
terizes the Hamming distance between the function and its dual. Indeed, for
any bent function f it holds

Sf =
∑

y∈Fn2

(−1)f(y)Wf(y) = 2n/2
∑

y∈Fn2

(−1)f(y)⊕f̃(y) = 23n/2 − 2n/2+1dist
(
f, f̃
)
.

For a Boolean function f in n variables we call the number

Sf =
Sf

2n/2
.

the sub-normalized Rayleigh quotient. In terms of sign functions the Rayleigh
quotient of f has the expression

Sf = 〈F,HnF 〉 ,

where F is its sign function.
Let In be the identity matrix of size n and Hn = H⊗n1 be the n-fold tensor

product of the matrix H1 with itself, where

H1 =

(
1 1
1 −1

)
.

This matrix is known as Sylvester Hadamard matrix. It is known the
Hadamard property of this matrix

HnH
T
n = 2nI2n,

where HT
n is transpose of Hn (it holds HT

n = Hn by symmetricity of Hn).
Denote by Hn = 2−n/2Hn its normalized version. This matrix describes the
Walsh–Hadamard transform in matrix form.

It is clear that sign functions if self-dual bent functions are eigenvec-
tors of the normalized Sylvester Hadamard matrix that correspond to the
eigenvalue 1. At the same time sign functions of anti-self-dual bent functions
are eigenvectors of the normalized Sylvester Hadamard matrix that corre-
spond to the eigenvalue (−1). In terms of subspaces these facts imply that
sign functions belong to the spaces Ker (Hn − I2n) = Ker

(
Hn − 2n/2I2n

)

and Ker (Hn + I2n) = Ker
(
Hn + 2n/2I2n

)
correspondingly.
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3 Subfunctions in n− 1 variables

In this section we study the subfunctions of self-dual bent functions that
are obtained by fixing the first variable. It is known that for any bent function
in n variables such subfunctions are near-bent functions in n − 1 variables
with disjoint Walsh–Hadamard spectrum (see [34], for example).

In [5] and [8] the subfunctions in n − 1 variables were used in proposed
algorithms for the enumeration of all self-dual bent functions of prescribed
degree. These algorithms explicitly exploit the fact that the vector (Y, Z),
where Y, Z ∈ {±1}2n−1, is the sign function of some self-dual bent function
in n variables if and only if

Y = Z +
2Hn−1

2n/2
Z. (1)

It is known [5] that for any Boolean function, say f , in even number n of
variables it holds

|Sf | 6 23n/2

with equality if and only if f is either self-dual
(
+23n/2

)
or anti-self-

dual
(
−23n/2

)
bent. It follows that extremal values are achieved if and only

if
(−1)f(y)Wf(y) = 2n/2 for any y ∈ Fn2

or
(−1)f(y)Wf(y) = −2n/2 for any y ∈ Fn2 .

We are to introduce similar notation for the case of an odd number of
variables based on the spectral characterization. Let m be an odd positive
integer. We call a near-bent function g in m variables a self-dual if

(−1)g(y)Wg(y) > 0 for any y ∈ Fm2 .

In order, g is called an anti-self-dual near-bent if

(−1)g(y)Wg(y) 6 0 for any y ∈ Fm2 .

An example of such function is the concatenation of an (anti-)self-dual bent
function f with itself (f, f).

Finding the exact maximal (minimal) value of the Rayleigh quotient of a
Boolean function in an odd number m of variables is an open problem. Note
that as was shown in [5], it holds

max
f∈Fm

|Sf | > 2(3m−1)/2.
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The authors used the concatenation of two self-dual bent functions in m− 1
variables, so the obtained value is called the bent-concatenation bound. Nev-
ertheless the experiments have shown that this bound is not tight at least
for small values of m.

Proposition 1. Let g be a near-bent function in m variables, then

|Sg| 6 2(3m−1)/2

with equality if and only if g is either self-dual or anti-self-dual near-bent.

Proof. By the definition of the Rayleigh quotient we have

Sg =
∑

y∈Fm2

(−1)g(y)Wg(y). (2)

The multiplicities of Walsh coefficients of any near-bent function in m vari-
ables are well known (see [24], for example), we list them in Table 1.

Table 1: Multiplicities of Walsh coefficients of the near-bent function g

Value Size
0 2m−1

2(m+1)/2 2m−2 + (−1)g(0)2(m−3)/2

−2(m+1)/2 2m−2 − (−1)g(0)2(m−3)/2

Consider two nonnegative integers a1, a2 describing the signs of nonzero
terms in the sum (2):

a1 =
∣∣∣
{
y ∈ Fm2 : (−1)g(y)Wg(y) > 0

}∣∣∣ ,

a2 =
∣∣∣
{
y ∈ Fm2 : (−1)g(y)Wg(y) < 0

}∣∣∣ .

Then we have a following system
{

2(m+1)/2a1 − 2(m+1)/2a2 = Sg,

a1 + a2 = 2m−1.

It is clear that the maximal value of Sg corresponds to the case when a2 = 0.
Then a1 = 2m−1 and

Sg = 2(m+1)/2 · 2m−1 = 2(3m−1)/2.

By the same arguments the minimal value of Sg corresponds to the case
when a1 = 0. Then a2 = 2m−1 and

Sg =
(
−2(m+1)/2

)
· 2m−1 = −2(3m−1)/2.
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Thus, it holds |Sg| 6 2(3m−1)/2 with the equality only when either

(−1)g(y)Wg(y) > 0 for any y ∈ Fm2

or
(−1)g(y)Wg(y) 6 0 for any y ∈ Fm2 ,

that is g is either self-dual or anti-self-dual near-bent.

Thus, the value of the Rayleigh quotient of a self-dual near-bent function
coincides with the bound for its maximal value, which is the best known
one for today. Moreover, on self-dual near-bent functions and only on them
the value of the Rayleigh quoutient is maximal within the set of near-bent
functions. Just the same holds for the minimal value and anti-self-dual near-
bent functions.

Further we show that there exists a bijection between two types of self-
duality with a descent step from even to odd number of variables.

Theorem 1. There exists an one-to-one correspondence between the set of
all self-dual bent functions in n > 4 variables and the set of (anti-)self-dual
near-bent functions in n− 1 variables.

Proof. Put H = Hn−1. Let f be a self-dual bent functions in n variables
and (f0, f1) be its truth table, where fi ∈ Fn−1, i = 1, 2. Denote by Fi the
sign function of fi, i = 1, 2. Then it holds

1√
2

(
H H
H −H

)(
F0

F1

)
=

(
F0

F1

)
,

that is equal to the system
{
HF0 +HF1 =

√
2F0,

HF0 −HF1 =
√

2F1.
(3)

Firstly one can notice that
〈√

2F0,
√

2F0

〉
= 〈HF0 +HF1,HF0 +HF1〉
= 〈HF0,HF0〉+ 2 〈HF0,HF1〉+ 〈HF1,HF1〉
= 〈F0, F0〉+ 2 〈F0, F1〉+ 〈F1, F1〉
= 2n−1 + 2 〈F0, F1〉+ 2n−1

= 2 · 2n−1,
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therefore it holds 〈F0, F1〉 = 0. Now consider the first equation from the
system above:

HF0 = −HF1 +
√

2F0.

Since H2 = In−1, it is the same as

F0 = −F1 +
√

2HF0.

Consider the inner product

〈F0, F0〉 = −〈F0, F1〉+
√

2 〈F0,HF0〉 .
The orthogonality of F0 and F1 implies the condition

√
2 〈F0,HF0〉 = 2n−1.

Under the used notation we have

Sf0 = 〈F0, Hn−1F0〉 = 2
3(n−1)−1

2 .

By considering the second equation from (3) by the same way one can show
that

Sf1 = 〈F1, Hn−1F1〉 = −2
3(n−1)−1

2 .

Since from (1) it immediately follows that function f1 can be character-
ized by f0, there exists an injective mapping from the set of all self-dual
bent functions in n variables to the set of self-dual near-bent Boolean func-
tions in n− 1 variables. This mapping essentially maps every self-dual bent
function to its subfunction obtained by fixing the first coordinate with 0.

Now let f0 be a self-dual near-bent Boolean function in n − 1 variables.
From Proposition 1 it follows that the value of (−1)f0(y) and the sign of the
Walsh coefficient Wf0(y) of f0 are agreed in a sence that their product is
nonnegative for every y ∈ Fn−1

2 . Let F0 be a sign function of f0. Define

F1 =
2Hn−1

2n/2
F0 − F0. (4)

From (1) it follows that if F1 ∈ {±1}2n−1, then the vector (F0, F1) is the sign
function of a self-dual bent function in n variables. Indeed, the relation (1)
for (F0, F1) is

F0 =

(
I2n−1 +

2Hn−1

2n/2

)
F1,

and its multiplication by
(
I2n−1 − 2Hn−1

2n/2

)
from the left yields (4) since

(
I2n−1 +

2Hn−1

2n/2

)(
I2n−1 −

2Hn−1

2n/2

)
= −I2n−1.
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It is clear that Wf0(y) and (−1)f0(y) are being agreed imply that
(

2

2n/2
Wf0(y)− (−1)f0(y)

)
∈ {±1}, y ∈ Fn−1

2 ,

then we can define a Boolean function in n− 1 variables, say f1, which has
a sign function F1 and consider the relation (4) in componentwise form

(−1)f1(y) =
2

2n/2
Wf0(y)− (−1)f0(y), y ∈ Fn−1

2 .

So the vector (F0, F1) is the sign function of a self-dual bent function in n
variables. Note that this self-dual bent function is unique since the pair of
subfunctions of any self-dual bent function is defined uniquely.

Thus, it follows that for any self-dual near-bent Boolean function in n−1
variables there exists a self-dual bent function in n variables, moreover this
function is an unique one.

Finally, we have that the mapping that maps every self-dual bent function
to its subfunction obtained by fixing the first coordinate with 0, is an injective
and surjective one from the set of all self-dual bent functions in n variables
to the set of self-dual near-bent functions in n− 1 variables. Therefore there
exists a bijection between these sets of Boolean functions.

There is an interesting consequence that if we want to obtain Boolean
function in even number n of variables that has the maximal value of the
Rayleigh quotient, by using the concatenation of two Boolean functions
in n− 1 variables, we likely should not take functions that have extremal val-
ues of the Rayleigh quotient. The same holds if we are to construct a Boolean
function in odd number m of variables that also has the maximal value of
the Rayleigh quotient. Since in the first case we will not choose self-dual or
anti-self-dual near-bent functions, therefore the obtained Boolean functions
will not be self-dual bent. In the second case we obtain a bent-concatenation
bound that is likely to be not tight.

The reason of that can be explained by the following. Assume we have
the Boolean function f in k variables (even or odd) with sign function F
which is a concatenation of functions f0 and f1 in k − 1 variables. Then it
holds

Sf = 〈F,HnF 〉 =

〈
(F0, F1) ,

(
Hn−1 Hn−1

Hn−1 −Hn−1

)(
F0

F1

)〉

=

〈
(F0, F1) ,

(
Hn−1 (F0 + F1)
Hn−1 (F0 − F1)

)〉
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= 〈F0, Hn−1F0〉 − 〈F1, Hn−1F1〉+ 〈F0, Hn−1F1〉+ 〈F1, Hn−1F0〉
= Sf0 − Sf1 + 〈F0, Hn−1F1〉+ 〈F1, Hn−1F0〉
= Sf0 − Sf1 + 2 〈F0, Hn−1F1〉 ,

where we have different signs for the Rayleigh quotients of the subfunctions
and also the term comprising both subfunctions, one if which is given in its
Walsh–Hadamard transfrom form.

Thus, the maximization of the Rayleigh quotient of subfunctions may
lead to the “instability” and decrease of the Rayleigh quotient of the whole
function. The maximization of the Rayleigh quotient for the case of an odd
number of variables is a problem of a complex optimization, in particular, of
the values of the Rayleigh quotient of its subfunctions.

4 Properties of subfunctions in n− 2 variables

In this section we study the subfunctions of self-dual bent functions that
are obtained by fixing the first and the second coordinates of the argument.
Metrical properties of subfunctions and interconnections between them are
considered.

Subfunctions of a bent function, in more general form, comprising the re-
striction of a bent function on all subspaces of codimension 2, were extensively
studied in works [2, 3]. The considered sets of subfunctions were referred to
as 4-decompositions of a bent function. In particular, it was shown that such
subfunctions of a bent function in n variables have the same extended Fourier
spectrum: either all of them are bent, all are the three valued almost opti-
mal (these are precisely near-bent functions with the spectrum having three
values 0, ±2n/2), or they have the same extended Fourier spectrum with five
values 0, ±2(n−2)/2, ±2n/2.

Throughout this section given a function f in m variables we will re-
fer to four Boolean functions fi, i = 0, 1, 2, 3, in m − 2 variables as to its
subfunctions obtained by fixing the first and the second coordinates of the
argument with the values {(00), (01), (10), (11)}, correspondingly. In order,
vector of values of f will have the form (f0, f1, f2, f3). The sign function
of fi, i = 0, 1, 2, 3, will be denoted by Fi. Let the notation H states for Hn−2.

4.1 Concatenation of four bent functions

The case when all four subfunctions are bent essentially leads to the idea
of an iterative construction of a bent function in n+ 2 variables through four
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bent functions in n variables. In [27] Preneel et al. proved that given four
bent functions fi, i = 0, 1, 2, 3, in n variables, the concatenation of vectors
of values of fi yields a bent function in n+ 2 variables if and only if

Wf0(y)Wf1(y)Wf2(y)Wf3(y) = −22n for any y ∈ Fn2 .

In terms of duals this condition is equivalent to the following

f̃0(y)⊕ f̃1(y)⊕ f̃2(y)⊕ f̃3(y) = 1 for any y ∈ Fn2 .

Note that the idea of concatenation also appeares in a scope of so
called “bent based” bent sequences, see [1]. The approach allows to obtain a
bent sequence of length 4l through the concatenation of four bent sequences
of length l provided the similar conditions on these sequences are satisfied.

Bent functions in n + 2 variables obtained by the concatenation of four
bent functions in n variables were also studied in [31] from the point of view
of obtaining lower bounds on the cardinality of the set of bent functions.
Such functions were referred to as bent iterative functions.

There are known two constructions of self-dual bent functions in n + 2
variables, based on the concatenation of four bent functions in n variables.
They are

– the construction C1: (
f, f̃ , f̃ , f ⊕ 1

)
,

where f is bent function in n variables [5];

– the construction C2:
(f, g ⊕ 1, g, f) ,

where f is a self-dual bent function, g is an anti-self-dual bent function
both in n variables [12].

It is worth noting that the best known for today lower bound on the cardi-
nality of the set of self-dual bent functions is the sum of cardinalities of C1
and C2.

In [12] the criteria of self-duality of a bent function in n+ 2 variables ob-
tained via concatenation of four bent functions in n variables was presented.

4.2 Metrical characteristics of the subfunctions of a bent function

In this subsection we will study the Gram matrix of vec-
tors Fi, i = 0, 1, 2, 3 which are sign functions of subfunctions of a
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Boolean function f . Recall that elements gij of the Gram matrix of vec-
tors {vk}k∈M ⊂ Rd are inner products between vi and vj, i, j ∈M . The de-
terminant of the Gram matrix is called the Gramian of the corresponding
system of vectors. The basic properties of the Gram matrix are:

– symmetricity;

– positive semi-definiteness;

– the Gramian is zero if and only if the vectors are linearly dependent.

The form of the Gram matrix of bent functions is characterized by the
following

Theorem 2. The Gram matrix of any bent function in n variables has form



2n−2 b b −a
b 2n−2 a −b
b a 2n−2 −b
−a −b −b 2n−2


 ,

for some even integers a, b such that

−2n−2 + 2|b| 6 a 6 2n−2.

Proof. Let f be a bent function in n variables, then

1

2




H H H H
H −H H −H
H H −H −H
H −H −H H







F0

F1

F2

F3


 =




R0

R1

R2

R3




or, equivalently, 



F0 + F1 + F2 + F3 = 2HR0,

F0 − F1 + F2 − F3 = 2HR1,

F0 + F1 − F2 − F3 = 2HR2,

F0 − F1 − F2 + F3 = 2HR3,

where Ri ∈ {±1}2n−2, i = 0, 1, 2, 3.
Denote gij = 〈Fi, Fj〉, i, j = 0, 1, 2, 3, and consider pairwise inner prod-

ucts of right parts of all equations in the system above. The symmetricity
of Gram(f) implies that we have at most six different coefficients outside the
main diagonal in fact.
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1) The 1st equation with itself

〈2HR0, 2HR0〉 = 〈F0 + F1 + F2 + F3, F0 + F1 + F2 + F3〉

=
3∑

i,j=0

gij = 4 · 2n−2 +
3∑

i,j=0,
i 6=j

gij = 2n.

It yields the equation

g01 + g02 + g03 + g12 + g13 + g23 = 0;

2) The 2nd equation with itself yields

g01 − g02 + g03 + g12 − g13 + g23 = 0;

3) The 3d equation with itself yields

g01 − g02 − g03 − g12 − g13 + g23 = 0;

4) The 4th equation with itself yields

g01 + g02 − g03 − g12 + g13 + g23 = 0.

Finally we have the following system of equations that describe necessary
relations betweeen the entries of the Gram matrix





g01 + g02 + g03 + g12 + g13 + g23 = 0,

g01 − g02 + g03 + g12 − g13 + g23 = 0,

g01 − g02 − g03 − g12 − g13 + g23 = 0,

g01 + g02 − g03 − g12 + g13 + g23 = 0.

The system has rank 4, its general solution is

g01 = −g23, g02 = −g23, g03 = −g12,

g12 = g12, g13 = g23,

g23 = g23

for g12 and g23 being free variables. Denote b = −g23 and a = g12, then we
obtain the desired form of the Gram matrix:

Gram(f) =




2n−2 b b −a
b 2n−2 a −b
b a 2n−2 −b
−a −b −b 2n−2


 .
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Now we are to point essential bounds on values of a and b and deduce
some relations between them. In order to do it recall that any Gram matrix
is positive semi-definite, hence all its eigenvalues must be nonnegative. The
matrix Gram(f) has four eigenvalues, they are

λ1,2 = 2n−2 − a,
λ3 = 2n−2 + a− 2b,

λ4 = 2n−2 + a+ 2b.

Note that the eigenvalue 2n−2 − a has algebraic multiplicity 2, also its non-
negativity is obvious. The rest imply that

a > −2n−2 + 2b,

a > −2n−2 − 2b,

that is
a > −2n−2 + max{2b,−2b},

and, consequently,
a > −2n−2 + 2|b|,

where |b| is essentially bounded by 2n−2 from above.

If f is a self-dual bent function in n variables, then we have

1

2




H H H H
H −H H −H
H H −H −H
H −H −H H







F0

F1

F2

F3


 =




F0

F1

F2

F3




or, equivalently, 



F0 + F1 + F2 + F3 = 2HF0,

F0 − F1 + F2 − F3 = 2HF1,

F0 + F1 − F2 − F3 = 2HF2,

F0 − F1 − F2 + F3 = 2HF3.

In this case we can use another inner products between right parts of the
system of equations that describe necessary relations betweeen the elements
of the Gram matrix. Joined with the previous four equations, new equations
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yield the system




g01 + g02 + g03 + g12 + g13 + g23 = 0,

g01 − g02 + g03 + g12 − g13 + g23 = 0,

g01 − g02 − g03 − g12 − g13 + g23 = 0,

g01 + g02 − g03 − g12 + g13 + g23 = 0,

2g01 = g02 − g13,

2g02 = g01 − g23,

g03 = −g12,

2g13 = g23 − g01,

2g23 = g13 − g02.

The system also has rank 4, so we obtain the same form of the Gram matrix
as in Theorem 2.

For example, the constructionsC1 andC2 provide the following matrices:

Gram(C1) =




2n−2 Sf Sf −2n−2

Sf 2n−2 2n−2 −Sf
Sf 2n−2 2n−2 −Sf
−2n−2 −Sf −Sf 2n−2


 ,

which has rank 1 in the case when Sf = 2n−2 that is f is self-dual bent,
and 2 otherwise, and

Gram(C2) =




2n−2 0 0 2n−2

0 2n−2 −2n−2 0
0 −2n−2 2n−2 0

2n−2 0 0 2n−2




with rank equal to 2. It is obvious that for both constructions the sets {Fi}
are linearly dependent.

Inner products between sign functions are interesting since it is easy to
deduce the Hamming distance between two Boolean functions provided the
inner product between their sign functions is known. Indeed,

dist (fi, fj) = 2n−3 − 1

2
〈Fi, Fj〉 = 2n−3 − 1

2
gij, i, j = 0, 1, 2, 3.

Thus, Theorem 2 can be reformulated in terms of Hamming distances
between subfunctions:
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Theorem 3. Let f be a bent function in n variables. The distances be-
tween {fi}3

i=0 are characterized by the matrix

Dist(f) =




0 0 0 2n−2

0 0 0 2n−2

0 0 0 2n−2

2n−2 2n−2 2n−2 0


+




0 d1 d1 −d2

d1 0 d2 −d1

d1 d2 0 −d1

−d2 −d1 −d1 0




for some positive even integers d1, d2 such that

|2n−2 − 2d1| 6 2n−2 − d2.

Proof. The relation between the inner product and the Hamming distance
yields the matrix whereas the inequality

|2n−2 − 2d1| 6 2n−2 − d2

is obtained from
−2n−2 + 2|b| 6 a 6 2n−2

with

b = 2n−2 − 2d1,

a = 2n−2 − 2d2.

4.3 Rayleigh quotients of subfunctions

Let f be a self-dual bent function in n variables. Recall that we have




F0 + F1 + F2 + F3 = 2HF0,

F0 − F1 + F2 − F3 = 2HF1,

F0 + F1 − F2 − F3 = 2HF2,

F0 − F1 − F2 + F3 = 2HF3.

Consider four inner products using the equations above




〈F0, F0〉+ 〈F0, F1〉+ 〈F0, F2〉+ 〈F0, F3〉 = 〈F0, 2HF0〉 ,
〈F1, F0〉 − 〈F1, F1〉+ 〈F1, F2〉 − 〈F1, F3〉 = 〈F1, 2HF1〉 ,
〈F2, F0〉+ 〈F2, F1〉 − 〈F2, F2〉 − 〈F2, F3〉 = 〈F2, 2HF2〉 ,
〈F3, F0〉 − 〈F3, F1〉 − 〈F3, F2〉+ 〈F3, F3〉 = 〈F3, 2HF3〉 .
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The Gram matrix provides the expression of the Rayleigh quotients of the
subfunctions in terms of the coefficients a ans b.




2n−2 + 2b− a = 〈F0, 2HF0〉 ,
−2n−2 + a+ 2b = 〈F1, 2HF1〉 ,
−2n−2 + 2b+ a = 〈F2, 2HF2〉 ,
2n−2 − a+ 2b = 〈F3, 2HF3〉 .

Finally we have expressions

Sf0 = 2n/2−2
(
2n−2 − a+ 2b

)
, Sf1 = 2n/2−2

(
−2n−2 + a+ 2b

)
,

Sf2 = 2n/2−2
(
−2n−2 + a+ 2b

)
, Sf3 = 2n/2−2

(
2n−2 − a+ 2b

)
,

and
Sf0 + Sf1 = Sf2 + Sf3 = 2n/2b.

It follows that the Rayleigh quotients of f0 and f3 coincide, as well as of f1

and f2. The sum of all Rayleigh quotients is equal to

Sf0 + Sf1 + Sf2 + Sf3 = 2n/2+1b.

We collect all this to the following statement

Proposition 2. Let f be a self-dual bent function in n variables with the
Gram matrix

Gram(f) =




2n−2 b b −a
b 2n−2 a −b
b a 2n−2 −b
−a −b −b 2n−2


 ,

then

Sf0 = Sf3 = 2n/2−2
(
2n−2 − a+ 2b

)
,

Sf1 = Sf2 = 2n/2−2
(
−2n−2 + a+ 2b

)
.

4.4 Sufficient condition for the subfunctions of self-dual bent
function to be bent

In this subsection we study the special cases of parameters a, b for which
the Gram matrix is singular.

Recall that the Gramian is equal to the multiplication of the eigenvalues
of the matrix so for a bent function f with the Gram matrix Gram(f) it has
the following expression

det(Gram(f)) =
(
2n−2 − a

)2 (
2n−2 + a− 2b

) (
2n−2 + a+ 2b

)
. (5)
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Further the values such that the Gramian is zero will be considered for a
self-dual case.

But before, we can characterize all self-dual bent functions that pos-
sess a = 2n−2, that is f1 = f2. In order to do it consider the general system





F0 + F1 + F2 + F3 = 2HF0,

F0 − F1 + F2 − F3 = 2HF1,

F0 + F1 − F2 − F3 = 2HF2,

F0 − F1 − F2 + F3 = 2HF3,

which is transformed to




F0 + 2F1 + F3 = 2HF0,

F0 − F3 = 2HF1,

F0 − F3 = 2HF1,

F0 − 2F1 + F3 = 2HF3.

By the triangle inequality we obtain

‖F0 − F3‖ 6 ‖F0‖+ ‖F3‖ = 2 · 2(n−1)/2 = 2(n+1)/2.

From the other side by orthogonality of the matrix H we obtain
that ‖2HF1‖ = 2 · 2(n−1)/2 = 2(n+1)/2. So we have an equality

‖F0 − F3‖ = ‖F0‖+ ‖F3‖ ,

hence F0 and F3 are linearly dependent vectors, that is either F0 = F3

or F0 = −F3. But from the second and third equalities it follows that F0

and F3 can not coincide, therefore F3 = −F0. Finally we obtain F0 = HF1,
that is all subfunctions are bent and f0 and f1 are dual of each other. This
situation is exactly the construction C1.

Proposition 3. If for a self-dual bent function f it holds f1 = f2, then it is
constructed via C1.

In Section 4.2 it was mentioned that sign functions of subfunctions men-
tioned in constructions C1 and C2 are linearly dependent. Also all that
subfunctions are bent. The next results covers all combinations for which the
Gramian is zero.

Theorem 4. If the Gram matrix of a self-dual bent function f is singular
then all subfunctions are bent.
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Proof. At first notice that the condition (1) for the case of subfunctions
in n− 2 variables has the following form

(
F0

F1

)
=

(
F2

F3

)
+

(
H H
H −H

)(
F2

F3

)
. (6)

Also by the condition H2 = I2n−2 we obtain
(
HF0

HF1

)
=

(
HF2

HF3

)
+

(
F2 + F3

F2 − F3

)
. (7)

Both of conditions (6) and (7) allow to characterize all possible combinations
of signs of Fi and HFi, i = 0, 1, 2, 3. As it was mentioned in Section 4.1,
either all of subfunctions are bent, all are near-bent, or they have the same
extended Fourier spectrum with five values 0, ±2(n−2)/2, 2n/2 [2, 3]. It means
that in general case HFi ∈ {0,±1,±2}, i = 0, 1, 2, 3. For every row of the

Table 2: All possible relations between values of subfunctions
i F0(y) F1(y) F2(y) F3(y) HF0(y) HF1(y) HF2(y) HF3(y)
1 +1 +1 +1 +1 +2 0 0 0
2 +1 −1 +1 −1 0 +2 0 0
3 −1 +1 −1 +1 0 −2 0 0
4 −1 −1 −1 −1 −2 0 0 0
5 −1 +1 +1 −1 0 0 0 −2
6 +1 −1 −1 +1 0 0 0 +2
7 +1 +1 −1 −1 0 0 +2 0
8 −1 −1 +1 +1 0 0 −2 0
9 +1 +1 −1 +1 +1 −1 +1 +1
10 +1 −1 −1 −1 −1 +1 +1 +1
11 −1 +1 +1 +1 +1 −1 −1 −1
12 −1 −1 +1 −1 −1 +1 −1 −1
13 +1 +1 +1 −1 +1 +1 +1 −1
14 −1 +1 −1 −1 −1 −1 +1 −1
15 +1 −1 +1 +1 +1 +1 −1 +1
16 −1 −1 −1 +1 −1 −1 −1 +1

table above by ci we denote the number of vectors y ∈ Fn−2
2 for which the

corresponding sequence of values and signs stands. The Gram matrix from
Theorem 2 for the function f gives six equations:

〈F0, F1〉 = c1 − c2 − c3 + c4 − c5 − c6 + c7 + c8 + c9 − c10 − c11 + c12

+ c13 − c14 − c15 + c16 = b,

〈F0, F2〉 = c1 + c2 + c3 + c4 − c5 − c6 − c7 − c8 − c9 − c10 − c11 − c12
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+ c13 + c14 + c15 + c16 = b,

〈F0, F3〉 = c1 − c2 − c3 + c4 + c5 + c6 − c7 − c8 + c9 − c10 − c11 + c12

− c13 + c14 + c15 − c16 = −a,

〈F1, F2〉 = c1 − c2 − c3 + c4 + c5 + c6 − c7 − c8 − c9 + c10 + c11 − c12

+ c13 − c14 − c15 + c16 = a,

〈F1, F3〉 = c1 + c2 + c3 + c4 − c5 − c6 − c7 − c8 + c9 + c10 + c11 + c12

− c13 − c14 − c15 − c16 = −b,

〈F2, F3〉 = c1 − c2 − c3 + c4 − c5 − c6 + c7 + c8 − c9 + c10 + c11 − c12

− c13 + c14 + c15 − c16 = −b.

Finally, taking into account the cardinality of the space Fn−2
2 , we obtain the

system of 7 linear equations




c1 − c2 − c3 + c4 − c5 − c6 + c7 + c8 + c9 − c10 − c11 + c12 + c13 − c14 − c15 + c16 = b

c1 + c2 + c3 + c4 − c5 − c6 − c7 − c8 − c9 − c10 − c11 − c12 + c13 + c14 + c15 + c16 = b

c1 − c2 − c3 + c4 + c5 + c6 − c7 − c8 + c9 − c10 − c11 + c12 − c13 + c14 + c15 − c16 = −a
c1 − c2 − c3 + c4 + c5 + c6 − c7 − c8 − c9 + c10 + c11 − c12 + c13 − c14 − c15 + c16 = a

c1 + c2 + c3 + c4 − c5 − c6 − c7 − c8 + c9 + c10 + c11 + c12 − c13 − c14 − c15 − c16 = −b
c1 − c2 − c3 + c4 − c5 − c6 + c7 + c8 − c9 + c10 + c11 − c12 − c13 + c14 + c15 − c16 = −b
c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8 + c9 + c10 + c11 + c12 + c13 + c14 + c15 + c16 = 2n−2

The system has rank 7, its equations in a row echelon form yield the relations

c1 + c4 + c14 + c15 =
2n−2 − a

4
,

c2 + c3 + c14 + c15 =
2n−2 − a

4
,

c5 + c6 + c14 + c15 =
2n−2 − a

4
,

c7 + c8 + c14 + c15 =
2n−2 − a

4
,

c9 + c12 − c14 − c15 = 0,

c10 + c11 − c14 − c15 =
a− b

2
,

c13 − c14 − c15 + c16 =
a+ b

2
.
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Now we are to consider all combinations of a, b such that the Gramian (5)
is zero. In order to do it we consider ci, i = 1, 2, . . . , 16, as nonnegative in-
teger variables. Before one can note that one of subfunctions is bent (conse-
quently all of them are bent) if and only if ci = 0 for i = 1, 2, . . . , 8. So we
introduce an auxiliary equation

c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8 = k,

where k is nonnegative integer and put it to the system. The rank of the
resulting system of equations is 8. From the nonnegativity of variables it
follows that if for a fixed pair a, b provided by some self-dual bent function,
the system has no solutions with positive k, all subfunctions of this function
are bent.

At first, note that for every eigenvalue of the Gram matrix given in the
general form there exists a self-dual bent function with a, b such that the
eigenvalue is zero. Indeed, for λ1,2 = 2n−2 − a = 0 the construction C1 is
suitable, since it provides a = 2n−2, b = Sf . For λ3 = 2n−2 + a− 2b = 0
and λ4 = 2n−2 + a+ 2b = 0 the contruction C2 meets the desired condition
because it is clear that it admits a = −2n−2, b = 0.

Now consider all pairs of a, b, vanising the corresponding eigenvalue, and
analyze the obtained system:

– 2n−2 − a = 0: in this case

c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 = 0,

that holds if only if k = 0.

– 2n−2 + a− 2b = 0: the relations between variables must satisfy

c1 + c4 =
k

4
, c2 + c3 =

k

4
, c5 + c6 =

k

4
, c7 + c8 =

k

4
, c10 + c11 = −k

4
,

so the solution does not exist if k > 0, therefore k = 0.

– 2n−2 + a+ 2b = 0: we have relations

c1 + c4 =
k

4
, c2 + c3 =

k

4
, c5 + c6 =

k

4
, c7 + c8 =

k

4
, c13 + c16 = −k

4
,

so again the solution does not exist if k > 0, therefore k = 0.

From Theorem 4 and properties of the Gram matrix we conclude that
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Corollary 1. If sign functions of subfunctions of a self-dual bent function
are linearly dependent then all subfunctions are bent.

Thus, we obtain a sufficient condition for bentness of the subfunctions.
The interesting question arises: is it necessary to have linear dependence
for sign functions of subfunctions in order to obtain a self-dual bent function
with bent subfunctions? In particular, the experiments show that

Remark 1. For n = 4 all self-dual bent functions with bent subfunctions
have singular Gram matrices.

We consider this question further in Section 5.1.
From Table 2 we can also deduce an interesting property that can be

useful

Proposition 4. Let f be a self-dual bent function in n variables, then {fi}3
i=0

are bent if and only if

f0(y)⊕ f1(y)⊕ f2(y)⊕ f3(y) = 1 for any y ∈ Fn−2
2 .

This condition does not follows directly from the results of [12] but can be
deduced from [3]. By using it we can clarify the decomposition of a self-dual
bent function with bent subfunctions:

f (y1, y2, x) = (y1 ⊕ 1) (y2 ⊕ 1) f0(x)⊕ (y1 ⊕ 1) y2f1(x)

⊕ y1 (y2 ⊕ 1) f2(x)⊕ y1y2f3(x)

= y1y2 (f0(x)⊕ f1(x)⊕ f2(x)⊕ f3(x))

⊕ y1 (f0(x)⊕ f2(x))⊕ y2 (f0(x)⊕ f1(x))⊕ f0(x)

= f0 ⊕ y1 (f0 ⊕ f2)⊕ y2 (f0 ⊕ f1)⊕ y1y2, y1, y2 ∈ F2, x ∈ Fn−2
2 .

5 New iterative constructions and lower bound for the
cardinality of the set of self-dual bent functions

At first, we propose three new constructions C3, C4 and C5 of self-dual
bent functions. The constructions use a 4-variables step. Let h be a bent
function in n− 4 variables, f be a self-dual bent function in n− 4 variables
and g be an anti-self-dual bent function in n− 4 variables.

– the construction C3:
(
h, g, g ⊕ 1, h, h̃, f, f ⊕ 1, h̃, h̃, f ⊕ 1, f, h̃, h⊕ 1, g, g ⊕ 1, h⊕ 1

)

It is clear that the subfunctions in n− 2 variables are bent;
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– the construction C4:
(
h, g, h̃, f, g ⊕ 1, h, f ⊕ 1, h̃, h̃, f ⊕ 1, h⊕ 1, g, f, h̃, g ⊕ 1, h⊕ 1

)

The subfunctions in n − 2 variables are bent if and only
if h⊕ h̃⊕ f ⊕ g = 0, so in some cases we do not obtain bent decomposi-
tions. Thus, this construction also yields a class of bent functions which
cannot be decomposed into the concatenation of four bent functions;

– the construction C5:
(
h, h⊕ 1, h̃, h̃, h, h, h̃⊕ 1, h̃, h̃, h̃, h⊕ 1, h, h̃⊕ 1, h̃, h⊕ 1, h⊕ 1

)

It is clear that the subfunctions in n− 2 variables are bent.

It is possible to slightly estimate the C4 case related with the (im)possibility
of a bent decomposition:

Proposition 5. The number of self-dual bent functions in n > 8 variables
constructed via C4, which cannot be (can be) decomposed into the concate-
nation of four bent functions, is at least 2

∣∣SB+
n−6

∣∣2.

Proof. Let r1 and r2 be two bent functions in n− 6 variables x7, x8, . . . , xn,
such that the first one is either self-dual or anti-self-dual while the second is
a self-dual one. Define

f (x5, x6, x7, . . . , xn) = x5x6 ⊕ r1 (x7, x8, . . . , xn) ,

g (x5, x6, x7, . . . , xn) = x5x6 ⊕ x5 ⊕ x6 ⊕ r1 (x7, x8, . . . , xn) ,

h (x5, x6, x7, . . . , xn) = x5x6 ⊕ x5 ⊕ r2 (x7, x8, . . . , xn) ,

one can check that

h̃ (x5, x6, x7, . . . , xn) = x5x6 ⊕ x6 ⊕ r2 (x7, x8, . . . , xn) .

Thus, the self-dual bent function constructed via C4, is the concatenation of
four bent functions.

Finally, note that in order to obtain the function which is not the con-
catenation of four bent functions, it is enough to take a negation of the
two-variables part of either f or g, for instance

f (x5, x6, x7, . . . , xn) = x5x6 ⊕ 1⊕ r1 (x7, x8, . . . , xn) .
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The constructions C3, C4 and C5 have the following Gram matrices:

Gram(C3) =




2n−2 2Sh 2Sh 0
2Sh 2n−2 0 −2Sh
2Sh 0 2n−2 −2Sh
0 −2Sh −2Sh 2n−2


 ,

Gram(C4) =




2n−2 0 0 0
0 2n−2 0 0
0 0 2n−2 0
0 0 0 2n−2


 ,

Gram(C5) =




2n−2 0 0 −4Sh
0 2n−2 4Sh 0
0 4Sh 2n−2 0
−4Sh 0 0 2n−2




with parameters a = 0, b = 2Sh, a = b = 0 and a = 4Sh, b = 0, correspond-
ingly. The Gramian of C3 is equal to 24n−8 − 22nS2

h hence it is nonzero be-
sides the case |Sh| = 2n−4, that is when h is either self-dual or anti-self-dual
bent. The Gramian of C4 is equal to 24n−8. The Gramian of C5 is equal
to
(
22n−4 − 16S2

h

)2 that is it is nonzero besides the case |Sh| = 2n−4, that is
again when h is either self-dual or anti-self-dual bent.

Note that the constructions C1, C2, C3 and C4 provide disjoint sets of
self-dual bent functions whereas C5 has clear intersection with C1 and C2.
So we conclude that the sum of the cardinalities of the first four constructions
and the disjoint part of C5 is a lower bound for the cardinality of the set of
self-dual bent functions in n variables.

Theorem 5. The number of self-dual bent functions in n > 6 variables is
at least

|Bn−2|+
∣∣SB+

n−2

∣∣2 + |Bn−4|
(

2
∣∣SB+

n−4

∣∣2 + 1
)
− 2

∣∣SB+
n−4

∣∣ .

Thus, it increases the previous iterative bound |C1|+ |C2| by the sum-
mand that corresponds to the constructions that expoit functions in n− 4
variables.

5.1 Linear independence of sign functions and bentness of the
subfunctions of self-dual bent function

Here we consider the converse of Theorem 4. Now we can give an answer
to the question about necessity of singularity of the Gram matrix for the
subfunctions to be bent:
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Theorem 6. For every even n > 6 there exist self-dual bent functions in n
variables with invertible Gram matrices, such that all their subfunctions are
bent.

Proof. The proof is just the usage of partial cases of the constructions that
we introduce in current work.

From Theorem 6 and properties of the Gram matrix we again conclude
that

Corollary 2. For every even n > 6 there exist self-dual bent functions in n
variables whose subfunctions are bent functions with linearly independent
sign functions.

Thus, the converse of Theorem 4 does not hold for n > 6, that is the
linear dependence of sign functions provides only sufficient condition for
subfunctions in n− 2 variables to be bent.

6 Existence of self-dual generalized bent functions in
odd number of variables

A generalized Boolean function f in n variables is any map from Fn2
to Zq, the integers modulo q. The set of generalized Boolean functions in
n variables is denoted by GF q

n. Let ω = e2πi/q. The (generalized) Walsh–
Hadamard transform of f ∈ GF q

n is the complex valued function

Hf(y) =
∑

x∈Fn2

ωf(x)(−1)〈x,y〉,

where y ∈ Fn2 . A generalized Boolean function f in n variables is said to be
generalized bent (gbent) if |Hf(y)| = 2n/2 for all y ∈ Fn2 [29]. If there exists
such f̃ ∈ GF q

n that Hf(y) = ωf̃(y)2n/2 for any y ∈ Fn2 , the gbent function f
is said to be regular and f̃ is called its dual. Note that f̃ is generalized bent
as well. A regular gbent function f is said to be self-dual if f = f̃ , and
anti-self-dual if f = f̃ + q/2. Consequently, it is the case only for even q.

The problem of the existence of (regular) gbent functions is non-trivial
for different combinations of parities of n and q, see [19, 17]. In particular, it
is known that regular gbent functions exist for n and q both even, and for n
odd and q = 2k, k > 3 [23]. The nonexistence for the case of q = 4 and odd n
follows from [29] (Lemma 3.3) while the Boolean case is a trivial one.

The existence of (anti-)self-dual gbent functions, essentially forming a re-
markable subclass of regular gbent functions, is clear for the case when n, q
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are both even [16]. Some examples of such functions are provided by general-
ized Maiorana–McFarland bent functions and the generalization of Dillon’s
class PSap. It also follows that (anti-)self-dual gbent functions do not exist
for q = 4 and odd n [30]. Other cases comprising odd n remained open.

In current work we consider the problem of the existence of self-dual
gbent functions in n variables for the case of an odd n and even q under
some limitations. Firstly, it is easy to show that self-dual gbent functions in
one variable do not exist, hence the considered problem makes sence only
for n > 3. Our result is the following

Theorem 7. Let q be an even positive integer such that q ≡ 0 mod 8, then
for every odd n > 3 there exist self-dual and anti-self-dual gbent functions
in n variables.

Proof. Denote z = e3πi/4 and consider the vector Z = (z, 1, 1,−z).
Since q = 0 mod 8, we have ±z ∈

{
1, ω, ω2, ω3, . . . , ωq−1

}
. Define vector

Y = Z +
1√
2
H2Z.

In coordinate form we have

Y =




z

1
1
−z


+

1√
2




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1







z

1
1
−z


 =




z

1
1
−z


+

2√
2




1
z

z
−1




=




z +
√

2

1 +
√

2z

1 +
√

2z

−z −
√

2


 =




eπi/4

i

i

−eπi/4


 ,

and it holds ±eπi/4, i ∈
{

1, ω, ω2, ω3, . . . , ωq−1
}
. Based on the decomposi-

tion (1) of sign function of self-dual bent function it is possible to deduce the
analog of this decomposition for self-dual gbent functions at least for the case
of even q. That is the vector (Y, Z) with Y, Z ∈

{
1, ω, ω2, ω3, . . . , ωq−1

}2n−1

is the polyphase sequence of a self-dual gbent function in n variables if and
only if

Y = Z +
2Hn−1

2n/2
Z. (8)

So, by the relation (8) the vector

F = (Y, Z) =
(
eπi/4, i, i, e5πi/4, e3πi/4, 1, 1, e7πi/4

)
,
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is the polyphase sequence of a self-dual gbent function in 3 variables having
vector of values

(q/8, q/4, q/4, 5q/8, 3q/8, 0, 0, 7q/8) .

Then by the construction C1 with f being the mentioned above self-dual
gbent function in 3 variables, we obtain a polyphase sequence

(F, F, F,−F ) ,

which is a polyphase sequence of a self-dual gbent function in 5 variables.
This iterative process with a two-variables step can be continued further

so we obtain the existence of self-dual gbent functions in n variables for every
odd n > 3 provided q is divisible by 8.

In particular, from Theorem 7 it follows that self-dual gbent functions in
both even and odd number of variables exist for q = 2k with integer k > 3.

7 Conclusion

In this work we studied subfunctions of self-dual bent functions in n− 1
and n− 2 variables and intriduced the notation of the Gram matrix of a bent
function. It is interesting to continue the study of this matrix and obtain new
metrical relations between subfunctions of an arbitrary (self-dual) bent func-
tion. The search of the constructions of bent functions with particluar Gram
matrix is also a goal worth pursuing. Regarding generalized bent functions
it is interesting to know if there self-dual gbent functions in odd number of
variables outside the considered case, in particular, for an odd q.

Considering the Gram matrices for the constructions C1 and C3 we can
conclude that the problem of the classification of Gram matrices of self-dual
bent functions (even in the case when all subfunctions are bent) comprises the
problem of finding all values of the Rayleigh quotient that can be achieved
by some of their subfunctions. The last problem has intersection with the
investigation of the Hamming distances spectrum between bent functions
and their duals.
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Abstract

Proper families of functions provide a convenient and memory-efficient method
for specification of large parametric families of quasigroups and d-quasigroups of a
large order. We present a number of examples of proper families, outline the con-
nections between proper families and quasigroups and d-quasigroups, discuss equiv-
alent definitions of properness and various operations on proper families, analyze
the complexity of deciding properness and study possible configurations of essential
dependence inside proper families.

Keywords: proper family of functions, quasigroup, Latin square.

1 Introduction

Quasigroups and their analogues of higher dimensions are attracting at-
tention as a platform for the construction of cryptographic algorithms (see
e.g. the review [1] and an example of an algorithm [2]). In case of quasigroups
of a high order tabular specification is inefficient due to high memory re-
quirements. The situation is even worse for higher-dimensional structures. A
possible way around is to switch from tabular specification to formula-based
specification. In particular large parametric families of quasigroups and d-
quasigroups of a high order can be specified by proper families of functions.
In our paper we present a number of examples of proper families, outline
the connections between proper families and quasigroups and d-quasigroups,
discuss equivalent definitions of properness and various operations on proper
families, analyze the complexity of deciding properness and study possible
configurations of essential dependence inside proper families.
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2 Definitions and examples

2.1 Definition of proper family

The notion of proper family of Boolean functions was introduced in [3] and
investigated further in [4, 5, 6]. A generalization to Abelian groups is given
in [7]. Here we give a more general definition for the case of quasigroups [8].

Definition 1. Let Q be a finite nonempty set. Suppose that we have a collec-
tion of functions F = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)), where fi : Qn →
Q. Then F is called a family of functions on Qn.

Definition 2. A family F of functions on Qn is said to be proper if for any
two unequal elements α, β ∈ Qn it holds that ∃i : αi 6= βi, fi(α) = fi(β).

If |Q| = k, then without loss of generality assume that Q = {0, 1, . . . , k−
1} (this set is denoted by Ek) and fi are functions of k-valued logic.

2.2 Examples of proper families

Example 1 ([7]). Triangular family of size n is a family of functions
F = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) with the property that there exists
an ordering σ ∈ Sn (a consistent renumbering of functions and variables)
such that after reordering the family can be written as:




fσ(1)(·)
fσ(2)(xσ(1))

...
fσ(n)(xσ(1), . . . , xσ(n−1))


 ,

i.e. after reordering each function can depend only on «previous» variables.

It can be easily seen that triangular families are proper: if two dis-
tinct elements α = (α1, . . . , αn) and β = (β1, . . . , βn) are such that
ασ(1) = βσ(1), . . . , ασ(k) = βσ(k), ασ(k+1) 6= βσ(k+1), then the desired index
is σ(k + 1), since fσ(k+1)(α) = fσ(k+1)(β).

A very special case of a triangular family is an assembly of constant
functions (i. e., fi ≡ consti).

It can be shown that in the Boolean case triangular families comprise a
small fraction of all proper families of a given size n:

Theorem 1 ([9]). Let ∆(n) be the number of triangular Boolean families
of size n, T (n) be the number of proper Boolean families of size n. Then it
holds that ∆(n)

T (n) = o
(

1
nD·2n

)
as n→∞, for some D > 0.
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Generalization of Theorem 1 to the case of arbitrary values of |Q| is the
subject of future research.

Example 2 ([5]). Triangular extension. Let F 0 = (g1,0, . . . , gn,0) be a
family of functions depending on (x1,0, . . . , xn,0). Let s1, . . . , sn ∈ N be a
collection of arbitrary natural numbers. Define functions fi,j as follows:

fi,1 = Fi,1(gi,0),
fi,2 = Fi,2(gi,0, xi,1),

...
fi,si = Fi,si(gi,0, xi,1, . . . , xi,si−1),
fi,0 = Fi,0(gi,0, xi,1, . . . , xi,si).

If the family F 0 is proper, then the family F = (fi,j)i=1,...,n,j=0,...,si is also
proper for any functions Fi,j.

Definition 3. Two functions f, g : En
k → Ek are orthogonal, if for any x ∈

En
k it holds that either f(x) = 0 or g(x) = 0.

Example 3 ([5, 10]). Family of orthogonal functions. Let F =
(f1, . . . , fn) be a family of pairwise orthogonal functions such that fi does
not depend essentially on xi. Then F is proper. For instance the family

f1 = x̄2x3 · · · xn−1xn,

f2 = x̄3x4 · · · xnx1,
...

fn = x̄1x2 · · · xn−2xn−1

(1)

consists of pairwise orthogonal Boolean functions, and each fi does not de-
pend essentially on xi. Hence, the family F is proper.

Remark 1. The requirement in Example 3 can be generalized. Namely, the
functions fi should not depend essentially on xi and have the following prop-
erty: there exists q ∈ Q such that for any i 6= j and any x ∈ Qn at least one
of the values fi(x), fj(x) equals q. In particular, for Q = Ek and q = 0 the
second condition means that the vectors of values of functions comprising
orthogonal proper families are orthogonal.

2.3 Special classes of proper families

In this subsection we give some examples of proper families that do not
fall into the categories defined above.
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Example 4 ([5, Theorem 5]). A family F of functions over a prime field Fp
defined by the rule



f1(x1, . . . , xn)

...
fn(x1, . . . , xn)


 =



φ(x2 + 1) · . . . · φ(x2 + p− 1) · φ(x3)

...
φ(x1 + 1) · . . . · φ(x1 + p− 1) · φ(x2)


 ,

where φ is a permutation polynomial, is proper iff n is odd.

Remark 2. A special case of the construction from Example 4 for Boolean
functions is the following example from [13]:



f1(x1, . . . , xn)

...
fn(x1, . . . , xn)


 =



x2 · x3

...
x1 · x2


 . (2)

Example 5 ([9]). The following Boolean family is proper for any n ≥ 1 :



0
x1

x1 ⊕ x2
...

x1 ⊕ x2 ⊕ . . .⊕ xn−1




⊕




⊕n
i<j, i,j 6=1 xixj⊕n
i<j, i,j 6=2 xixj⊕n
i<j, i,j 6=3 xixj

...⊕n
i<j, i,j 6=n xixj




; (3)

The second sum in each fi contains all pairwise products except xi ·xj, i < j.

3 Generation of quasigroups and n-quasigroups

Recall that a finite quasigroup is a pair (Q, g), where Q is a nonempty
finite set, and g : Q × Q → Q is invertible in both variables, i.e. for any
a, b ∈ Q the equations g(x, a) = b and g(a, y) = b are uniquely solvable.
Throughout this paper all objects are finite, thus for the sake of brevity the
word “finite” will be omitted.

Obviously Cayley tables of quasigroups are Latin squares, i.e. elements
in any row and any column are distinct, and vise versa, any Latin square is
the Cayley table of a finite quasigroup.

The notion of a quasigroup can be naturally generalized to the case of
operations of greater arity. Assume that d ∈ N, d ≥ 2, Q is a nonempty
finite set. A pair (Q, g), where g : Qd → Q is invertible in any variable, is a
d-quasigroup. Note that if d = 2, then we obtain the definition of a “regular”
quasigroup. Similar to the case d = 2 Cayley tables of d-quasigroups are
d-dimensional Latin cubes.
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Assume that d, k, n ∈ N, d, k ≥ 2, Q = En
k , (Q, g) is a d-quasigroup.

Then elements of the set Q can be naturally encoded by n-tuples, and g can
be considered as a vector function (g1, . . . , gn), where gi : (En

k )d → Ek are
functions of k-valued logic. In other words the d-quasigroup operation g is
represented in the form

z1 = g1

(
x1

1, . . . , x
1
n, . . . , x

d
1, . . . , x

d
n

)
...

zn = gn
(
x1

1, . . . , x
1
n, . . . , x

d
1, . . . , x

d
n

) (4)

where zi, xij take values in Ek. Further assume that (Ek, h1), . . . , (Ek, hn) are
(d + 1)-quasigroups and consider the following special case of the represen-
tation (4):

z1 = h1

(
x1

1, . . . , x
d
1, f1

(
π1

(
x1

1, . . . , x
d
1

)
, . . . , πn

(
x1
n, . . . , x

d
n

)))
...

zn = hn
(
x1
n, . . . , x

d
n, fn

(
π1

(
x1

1, . . . , x
d
1

)
, . . . , πn

(
x1
n, . . . , x

d
n

))) (5)

where fi are n-ary functions of k-valued logic, πj are d-ary functions of k-
valued logic. It turned out that the representation (5) is tightly connected
with the notion of a proper family. Namely the following assertion holds.

Theorem 2. Representation (5) specifies a d-quasigroup operation for any
choice of the functions π1, . . . , πn iff the family (f1, . . . , fn) is proper.

Theorem 2 was originally proved for the case k = 2, d = 2, hi(x, y, z) =
x⊕y⊕z in [4], then the result was extended to the case of an arbitrary k ≥ 2
and hi = x+ y + z (here + is the addition operation in some Abelian group
(Ek,+)) in [7], and the final form for the case d = 2 was established in [8].
Transition from Abelian groups to quasigroups was proved to be essential: in
the group case all quasigroups generated by proper families contain a fixed
point, i.e. an element a such that g(a, a) = a.

The d-quasigroup form of Theorem 2 was originally proposed for
hi(x1, . . . , xd+1) = x1 + . . .+xd+1 in [14] by I. A. Plaksina and further gener-
alized in [15]. Note that the condition on hi can not be relaxed, since the fact
that hi is not invertibe in some variable directly implies that for any family
(f1, . . . , fn) there exists a fixation of the functions π1, . . . , πn such that the
operation specified by the relations (5) is not a d-quasigroup one.

Reducing the representation (4) to the form (5) leads to the loss of gener-
ality: if the operations h1, . . . , hn are fixed, then not all d-quasigroups oper-
ations can be represented in the form (5). For example, in [16] it was shown
that in the case k = n = 2 only 60 out of 576 quasigroups of the order 4
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can be specified by proper families. On the other hand if the value of n
is essentially large, then the representation (5) provides a memory-efficient
way of specifying large families of d-quasigroups. Indeed, the Cayley table
of a d-quasigroup of the order kn consists of (kn)d elements, whereas tabu-
lar specification of a proper family consists of d · kn elements, the tables for
the functions hi require at most n · kd+1 elements, and the functions πj can
be defined by n tables consisting of kd elements. Variation of the internal
functions πj in the representation (5) generates

(
kk

d
)n

d-quasigroups, some
of which may coincide (e.g. if all functions comprising a proper family are
constants, then all d-quasigroups generated are the same). The number of
distinct d-quasigroups generated satisfies the following assertion.

Theorem 3. The number of distinct d-quasigroups specified by a proper

family of order n in k-valued logic is at most
(
kk

d
)n−1

; this bound is sharp.

The upper bound is a direct corollary of the definition of a proper family,
since the range of a proper family does not contain tuples that differ in all
positions. The lower bound is achieved e.g. on the triangular family f1 =
const, f2 = x1, . . ., fn = xn−1.

Let (Q, g1) and (Q, g2) be d-quasigroups, α1, . . . , αd, β be permutations
on Q such that the identity g1 (x1, . . . , xd) = β−1 (g2 (α1(x1), . . . , αd(xd)))
holds. Then the d-quasigroups (Q, g1) and (Q, g2) are said to be isotopic,
and the transformation that maps (Q, g1) to (Q, g2) is referred to as an
isotopy. It can be easily noticed that permuting indices of the variables in
the representation (5) is an isotopy, so the following assertion holds.

Theorem 4. Assume that d, k, n ∈ N, k, d ≥ 2, (Ek, h1), . . . , (Ek, hn) are
(d+ 1)-quasigroups, σ1, . . . , σd, σ̃ ∈ Sn are some permutations, g : (En

k )d →
En
k , g = (g1, . . . , gn), is specified by the relations

gσ̃(i)

(
x1

1, . . . , x
1
n, . . . , x

d
1, . . . , x

d
n

)
=

hi

(
x1
σ1(i), . . . , x

d
σd(i)

, fi

(
π1

(
x1
σ1(1), . . . , x

d
σd(1)

)
, . . . , πn

(
x1
σ1(n), . . . , x

d
σd(n)

)))
, (6)

where fi are n-ary functions of k-valued logic, πj are d-ary functions of k-
valued logic. Then (En

k , g) is a d-quasigroup for any choice of the functions
π1, . . . , πn if and only if the family (f1, . . . , fn) is proper.

The construction was originally proposed for the case k = 2 in [16]
and then generalized in [15]. Besides increasing the cardinality of the sets
of d-quasigroups generated, permuting variable indices improves such d-
quasigroup properties as simplicity, non-affinity and polynomial complete-
ness; e.g. in [16] it was shown that all 60 quasigroups of the order 4 specified
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by proper families of Boolean functions are non-simple, whereas applying
permutation construction yields 240 distinct quasigroups including 112 sim-
ple and non-affine (and thus polynomially complete) ones. Note that d + 1
permutations can be stored using just (d+ 1) ·n · dlog2 ne bits, so additional
memory load is negligible.

Another generalization consists in using different internal functions in the
representation (5). In general it may lead to non-quasigroup operations, but
for the case of triangular families the following assertion holds.

Theorem 5. Suppose that (f1, . . . , fn) is a triangular proper family,
(Ek, h1), . . . , (Ek, Hn) are (d+ 1)-quasigroups. Then the representation

zi = hi(x
1
i , . . . , x

d
i , fi

(
πi,1
(
x1

1, . . . , x
d
1

)
, . . . , πi,n

(
x1
n, . . . , x

d
n

))
(7)

specifies a d-quasigroup operation for any choice of the functions πi,j.

The proof of this theorem is similar to the poof of Theorem 2 in [13].
Further investigations of the connection between proper families and

d-quasigroups include generation of d-quasigroups with additional proper-
ties (degrees of polynomials in algebraic normal form of the functions gi in
representation (4), e.g. to produce so-called multivariate quadratic quasi-
groups [17]; simplicity, non-affinity and polynomial completeness; various
forms of non-linearity, etc.), thorough study of the construction with respect
to variation of the functions fi and/or hj, and efficiency of implementing the
construction in hardware and/or software. Some results connected to gener-
ation of multivariate quadratic quasigroups are discussed in Section 8; other
problems are the subject of future research.

4 Equivalent definitions of properness

There are a number of equivalent definitions of proper families.
In paper [7] the regularity criteria was proved.

Theorem 6 ([7, Theorem 2]). A family F of functions over Q = Gn, where
G is an Abelian group, is proper iff for any collection of arbitrary mappings
ψi : G→ G the following mapping is a bijection Gn → Gn:



x1
...
xn


→



x1 + ψ1(f1(x1, . . . , xn))

...
xn + ψn(fn(x1, . . . , xn))


 , xi ∈ G.

In the special case of p-valued logic, i.e. when G = Fp, p is prime, Theo-
rem 6 can be strengthened in the following way.
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Theorem 7 ([5, Theorem 3]). A family F of functions over Q = Fnp , where
Fp is a field, p is prime, is proper iff for any elements ai ∈ Fp the mapping



x1
...
xn


→



x1 + a1 · f1(x1, . . . , xn)

...
xn + an · fn(x1, . . . , xn)


 , xi ∈ Fp

is a bijection Fnp → Fnp .

A number of equivalent definitions can be obtained for the Boolean case.
The first one uses generalization of the concept of an essential variable.

Definition 4. Let I = {i1, . . . , is} ⊆ {1, . . . , n} be a subset of indices.
A collection of variables xI = (xi1, . . . , xis) is called essential for Boolean
function f(x1, . . . , xn), if
∑

αi1 ,...,αis

f(x1, . . . , xi1−1, αi1, xi1+1, . . . , xis−1, αis, xis+1, . . . , xn) 6≡ 0 mod 2.

Theorem 8 ([3]). A family of Boolean functions F = (f1, . . . , fn) is proper
iff for any I ⊆ {1, . . . , n} the collection xI is not essential for the function
f =

∏
i∈I fi.

Remark 3. From Theorem 8 (as well as from the definition of properness)
it follows that fi can not depend essentially on xi.

In the Boolean case there also exists another (more geometric) character-
ization. Let us introduce some auxiliary definitions.

Definition 5. The graph of the Boolean cube En of dimension n is a graph
with 2n vertices labelled by (α1, . . . , αn), αi ∈ {0, 1}, two vertices α, β of
which are adjacent iff the Hamming distance between α and β is 1.

Definition 6. The subcube of En of dimension n −m is a subgraph of En
induced by the vertices with fixed coordinates i1, . . . , im ∈ {1, . . . , n}.
Definition 7 ([18]). Unique sink orientation (USO) of En is an orientation
of the edges of En such that in every subcube of En there is exactly one vertex
for which all adjoining edges are oriented inward (i.e. towards that vertex).

Definition 8. For a given Boolean family F of size n we introduce the
following directed graph (the family graph ΓF ). Vertices of ΓF are all binary
n-tuples: V = {(α1, . . . , αn) | αi ∈ {0, 1}}. Suppose α, β ∈ V such that the
Hamming distance between them is 1: αi 6= βi. If fi(α) = αi, then we have
an oriented edge (β, α) ∈ E.

A. Galatenko, V. Nosov, A. Pankratiev, and K. Tsaregorodtsev 247



Proper Families of Functions and Their Applications

Now we are ready to give a following geometrical characterization of
Boolean proper families.

Theorem 9 ([19]). Graph ΓF of a family F is USO iff F is proper.

The criterion above can be viewed more algebraically using the notion of
fixed point.

Definition 9. A family F on Qn is said to have a fixed point α ∈ Qn if
F (α) = α, i.e., if fi(α1, . . . , αn) = αi for any i = 1, . . . , n.

As it was shown in [20], the geometrical characterization from Theorem 9
can be reformulated in the following way:

Corollary 1 ([20]). Let F be a family of Boolean functions. Then F is proper
if and only if for F and any of its projections (in the sense of theorem 13,
see below) there exists a unique fixed point.

In [20] Corollary 1 was generalized to the case of k-valued logic.

Definition 10 ([20]). Let F be a family of functions on En
k , σi, τi ∈ SEk

be permutations on Ek. Then the family F̂ = (f̂1, . . . , f̂n) defined as
f̂i(x1, . . . , xn) = τi(fi(σ1(x1), . . . , σn(xn))) is a reencoding of the family F.

Theorem 10 ([20]). A family F on En
k is proper iff every reencoding of F

and every reencoding of any projection of F has a unique fixed point.

5 Operations on proper families

Let us consider the following situation. Given a proper family F of size
n, how one can generate new proper families out of the old one?

Theorem 11 ([7, Remark 3]). Let σ ∈ Sn be a permutation. Define σ(F )
as the family obtained from F by a simultaneous permutation of the indices
of variables and functions: fi(x1, . . . , xn) → fσ(i)(xσ(1), . . . , xσ(n)). If F is a
proper family, then σ(F ) is also proper.

Theorem 12 ([7, Remark 1]). For any n-tuple A = (a1, . . . , an) ∈ Gn let us
consider the following family F̂ :

F̂ = F + A =



f1(x1, . . . , xn) + a1

...
fn(x1, . . . , xn) + an


 .

A family F on Gn, where G is a group, is proper if and only if the family
F̂ = F + A is proper.
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Theorem 13 ([8, Lemma 1]). For any i ∈ {1, . . . , n} and any constant a ∈
Q the family F ′ obtained from F by substituting the value a for the variable xi
and cancelling the function fi is a proper family of the order (n− 1):

F ′(x1, . . . , xi−1, xi+1, . . . , xn) =




f1(x1, . . . , xi−1, a, xi+1, . . . , xn)
...

fi−1(x1, . . . , xi−1, a, xi+1, . . . , xn)
fi+1(x1, . . . , xi−1, a, xi+1, . . . , xn)

...
fn(x1, . . . , xi−1, a, xi+1, . . . , xn)



.

As we see, shifts, «consistent» permutations and «projections» preserves
properness of a family.

As an inverse to the operation of projection, we can expand a collection of
families of size n to the family of size n+ 1 using the following construction.

Example 6 ([21, Lemma 2]). Suppose that Fm : En
k → En

k , m ∈ Ek is a
collection of proper families in k-valued logic. Denote by Ir(x) a function of
the following form: Im(x) = k − 1 if x = m, otherwise Im(x) = 0. Let

F (x1, . . . , xn, xn+1) =
∨

m∈Ek

(
Im(xn+1)

∧
Fm(x1, . . . , xn)

)
, (8)

where
∨

is the maximum,
∧

is the minimum. Define fn+1(x1, . . . , xn+1) ≡
const ∈ Ek. Then the family (F, fn+1) : En+1

k → En+1
k is proper.

Using the construction from Example 6 one can create new families out
of old ones. However, we note that fn+1 is constant in the construction, hence
there are proper families of size n+ 1 that cannot be generated in this way.

The following approach generalizing the Example 6 can be used to con-
struct any family of size n+ 1 out of families of size n.

Theorem 14 ([21, Theorem 3]). Suppose that k proper families F0, . . . , Fk−1

on En
k of size n are given.

1. Let us construct an undirected graph G = (V,E), where V = En
k , and

two vertices u, v ∈ V are adjacent iff the following condition holds:

∃i, j : Fi(u) and Fj(v) are differ in all positions where u and v differ,

i.e. for these two u, v ∈ V the properness condition does not hold.

2. Find all components of the graph G.
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3. Define a function fn+1(x1, . . . , xn+1) = fn+1(x1, . . . , xn) (variable xn+1

is dummy for fn+1) in such a way that fn+1 is a constant value on each
of the components of G.

Then the family (F, fn+1) : En+1
k → En+1

k is proper, where F is defined by
formula (8), and any family of size n + 1 can be obtained using this con-
struction by selecting suitable Fm.

A possible application of Theorem 14 is the construction of all proper
families of the order n+ 1 by exhausting all possible combinations of proper
families F0, . . . , Fk−1 of the order n and adding all possible functions fn+1.
Another application is specifying the transformation of proper families that
consists in selection of a variable xi, construction of projections defined by
the equalities xi = j and restoration of the “new” function fi based on the
projections. It can be shown that equiprobable selection of the index i and
the new function generates the Markov chain that converges to uniform dis-
tribution of the set of all proper families of the given order.

6 Recognition of properness

It was shown earlier that for the Boolean case [3] and (as a consequence)
for the case of k-valued logic [22] the problem of recognizing whether the
family is proper is coNP-complete. Hence, it seems that no efficient algorithm
for the general case is possible.

As it was shown in [21], the number of proper families among all families
of size n over En

k with the property that xi is dummy for fi tends to 0
as n → ∞. Hence, generating random family and checking whether it is
proper or not (using the basic definition or any of the equivalent definitions
of properness listed in Section 4) is rather inefficient.

Restricting the class of functions to a more specific allows one to use
more effective criteria for checking properness. For instance, the graph of es-
sential dependence (see Definition 11 below) in some cases (linear functions,
g-functions, monotonic Boolean functions [23]) can provide enough informa-
tion for significant speedup of checking the properness condition.

7 Graphs and matrices of essential dependence

The intrinsic structure of families of functions can be visualized using the
constructions of their graphs and matrices of essential dependence.
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Definition 11. Let F = (fi)
n
i=1, fi = fi(z1, z2, . . . , zn), be a family of n func-

tions, each in n variables. The graph of essential dependence of the family F
is the directed graph GF = (V,E) on the set of vertices V = {1, 2, . . . , n}
whose edges are defined by the condition that (i, j) ∈ F if and only if fj
essentially depends on zi.

It is known [7] that a linear family is proper if and only if its graph of
essential dependence contains no directed cycles.

The class of functions for which the properness of a family is equivalent
to the absence of directed cycles in the graph can be extended to the so-
called g-functions. Namely, given an element g = (g1, g2, . . . , gn) we say that
a function f = f(x1, . . . , xn) is a g-function if for any its essential variable xi
the unary function f ′(xi) = f(g1, . . . , gi−1, xi, gi+1, . . . , gn) is not a constant.
It can be shown [12] that for a fixed g = (g1, g2, . . . , gn) a family of g-functions
is proper iff its graph of essential dependence is free of directed cycles.

On the other hand, the graph of a proper family of functions may be rather
rich in cycles. For instance, it is easily seen that the proper family of pairwise
orthogonal functions (1) has a complete graph of essential dependence.

It has been already mentioned that in a proper family F = (fi)
n
i=1 each

function fi = fi(z1, z2, . . . , zn) does not essentially depend on zi. At the same
time, with this necessary condition being fulfilled, any family of functions can
be extended to a proper family of size n′ ≤ n+ dlog2 ne. In terms of graphs
this result is formulated as follows.

Theorem 15 ([11, Theorem 7]). Let G(V,E) be an arbitrary directed graph
without loops and multiple edges on n vertices V = {1, 2, . . . , n}. Then there
exists a graph G′(V ′, E ′) on n′ ≤ n + dlog2 ne vertices V = {1, 2, . . . , n′}
that can be treated as the graph of essential dependence of a proper family of
functions and such that its subgraph induced by the subset V ⊆ V ′ coincides
with G(V,E). Moreover, for any family of functions F = (fi)

n
i=1 realizing the

original graph G(V,E) one can find a proper family of functions F ′ = (f ′i)
n′

i=1

that realizes the graph G′(V ′, E ′) and such that for every i, 1 ≤ i ≤ n, there
exists an evaluation of arguments xn+1, . . . , xn′ such that f ′i as a function of
n arguments x1, . . . , xn coincides with fi.

Remark 4 ([11]). If the set V of vertices of the graph G(V,E) can be par-
titioned into two subsets V = V0 t V1 in such a way that any directed cycle
of the graph G(V,E) contains vertices of both subsets V0, V1, then the graph
G′(V ′, E ′) mentioned in Theorem 15 needs only one additional vertex.

Various properties of families of functions can also be formulated in terms
of their matrices of essential dependence.
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Definition 12. The matrix of essential dependence of a family F = (fi)
n
i=1

of functions fi = fi(z1, z2, . . . , zn) is a square (0, 1)-matrix A of size n whose
entry Aij equals one if and only if fj essentially depends on zi.

Examples of results on the matrices of essential dependence of proper
families of functions can be found in the paper [11].

8 Quadratic and strongly quadratic proper families

Assume that d = 2 (we consider quasigroups) and k in representation (4)
is a prime power. Then the functions gi can be represented in algebraic normal
form, i.e. by polynomials (see e.g. [24, Theorem 1.4.3]). If the degrees of all
polynomials are at most 2 and there exists at least one quadratic polynomial,
then the quasigroup is referred to as a multivariate quadratic quasigroup
(MQQ). If additionally all non-trivial linear combinations of the functions gi
are quadratic, then the quasigroup is said to be strongly quadratic. MQQ can
be used to design public-key cryptographic algorithms (see e.g. [17]); strongly
quadratic quasigroups guarantee that the order of a system of equations on
key bits can not be reduced by computing linear combinations of equations.
A number of methods for generation of MQQ are proposed in [25].

Proper families of functions are a convenient apparatus to specify large
families of MQQs of a large order [13]. Representation (5) suggests two strate-
gies: use a proper family specified by linear polynomials and substitute ar-
bitrary internal functions πj so that at least one of the functions gi in the
representation (4) is quadratic, or use a quadratic proper family and linear
internal functions πj. In the former case it is known that all linear proper
families are triangular [7], thus strongly quadratic MQQs can not be gener-
ated by this construction. Possible direct enhancements include switching to
the representation (7) and/or considering quadratic triangular families. For
the case k = 2 the cardinality of the set of MQQs generated by this con-
struction is 2n

3/6+o(n), n→∞ [13]. All of these MQQ can also be generated
by the t-construction described e.g. in [25], however a proper family-based
representation consumes less memory.

Another possibility is using a proper family such that all functions are
quadratic. An example for k = 2 and n ≥ 3 is the family (3). This family
is not strongly quadratic in a sense that a non-trivial linear combination is
admitted. A strongly quadratic example is the family (2) which is proper
for k = 2 and odd n ≥ 3. Combining the family (2), a triangular exten-
sion and a generalization of Theorem 5 to the case of triangular extensions
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allows one to generate 2n
3/6+o(n), n → ∞, strongy quadratic MQQs of the

order 2n [13], some of which can not be generated by methods from [25].
Generalization of the first construction to the case of k equal to an ar-

bitrary prime power is straightforward. Generalization of the second con-
struction requires a strongly quadratic proper family. Construction of such a
family for k 6= 2 is the subject of future research.

9 Concluding remarks

Proper families of functions are a promising apparatus for memory-
efficient specification of large parametric families of quasigroups and d-
quasigroups of a high order, possibly with additional constraints, e.g. the
degrees of polynomials in ANF. Quasigroups and 3-quasigroups are cur-
rently extensively used to construct various cryptographic primitives such
as symmetric and public-key ciphers, hash functions, digital signatures, etc.
(see e.g. the review [1]); proper families of functions can be used to select
quasigroup-based parameters for future solutions providing a number of cryp-
tographically beneficial properties (for example high cardinality of the key
space ensured by variation of internal functions). There exist proper family-
based methods for constructing quasigroups and d-quasigroups with addi-
tional properties, e.g. MQQ [13] suitable for multivariate quadratic cryptog-
raphy. Other important properties such as simplicity, non-affinity and absence
of proper subquasigroups can be decided after generation using one of the
existing decision algorithms (see e.g. [26]); selection of generation parameters
that guarantee one of these properties is the subject of future research.
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Abstract

In the current paper we investigate the possibility of designing secure blind sig-
nature scheme based on ElGamal signature equation. We define the generalized
construction and analyze its security. We consider two types of schemes with the pro-
posed construction, that cover all existing schemes. For schemes of the first type we
provide generic ROS-style attack that violates unforgeability in the parallel setting.
For schemes of the second type we prove that they do not provide either blindness,
or unforgeability. As the result, we prove that all known ElGamal blind signature
schemes are not secure. Moreover, these results show that the existence of secure El-
Gamal blind signature scheme is potentially possible only for small set of signature
equations and requires the non-standard way of generating the first component of
the signature.

Keywords: ElGamal signature scheme, blind signature scheme, ROS attack.

1 Introduction

Blind signature schemes are widely used in many applications that guar-
antee user anonymity, e.g. e-voting [8] and e-cash [4] systems. They allow the
Requester to obtain a signature for an arbitrary message after interacting
with the Signer in such a way that the Signer does not receive any informa-
tion about either the message or the signature value (blindness property) and
the Requester can compute only one single signature per interaction with the
Signer (unforgeability property).

ElGamal signature scheme [6] is one of the most well-studied and widely-
deployed signature schemes. Thus, development of blind signature scheme
based on it is a relevant task. And sure enough, there exists a variety of blind
signature schemes based on ElGamal signature equation [5, 10, 12, 13, 14, 17,
19, 20, 21, 24]. However, the unforgeability of these schemes was not formally
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proven under some relevant assumptions. At the same time, no attacks on
these schemes were proposed. So, their security remains an open question.
The only exception is the scheme introduced in [24], which additionally uses
homomorphic encryption and non-interactive zero-knowledge proof (NIZK)
for providing blindness. Its unforgeability was proven in [16] in the so-called
algebraic bijective random oracle model. However, this scheme is not nearly
as interesting for us since it uses the additional cryptographic mechanisms.

In the current paper we examine the possibility of constructing secure
blind signature scheme based only on ElGamal signature equation. We in-
troduce generalized ElGamal blind signature scheme called GenEG-BS. The
signing protocol in this scheme is fixed only on the Signer side, where the
ElGamal signature generation algorithm is performed for masked hash-value
e generated on the Requester side in an arbitrary way. GenEG-BS construc-
tion covers all existing blind signature schemes based on ElGamal equation
except for the scheme [24], in which the Signer side involves, in particular,
verifying the NIZK proof.

We study the security of the GenEG-BS schemes. It turned out that the
ROS attack [3], that breaks the security of blind Schnorr signature [18],
can be adapted to break several GenEG-BS schemes. We provide the generic
ROS-style attack on these schemes violating unforgeability in the parallel
setting and the necessary condition for its applicability. Further we con-
sider the schemes that are not vulnerable to the ROS-style attack. More
specifically, we study the particular case of these schemes for which the
way of generating the first component of the signature on the Requester
side is fixed. We prove that such schemes do not provide either unforgeabil-
ity, or blindness. As the consequence, we show that all existing GenEG-BS
schemes [5, 10, 12, 13, 14, 17, 19, 20, 21] are not secure. Moreover, we identify
the form of ElGamal signature equation that can potentially lie in the heart
of the secure GenEG-BS scheme. However, the construction of such scheme
requires the radically new method of generating the first component of the
signature.

2 Basic notations and definitions

By {0, 1}∗ we denote the set of all bit strings of finite length including
the empty string. If p is a prime number then the set Zp is a finite field with
characteristic p. We assume the canonic representation of the elements in Zp

as integers in the interval [0 . . . p− 1]. Each non-zero element x in Zp has an
inverse 1/x. We define Z∗p as the set Zp without zero element.
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We denote the group of points of elliptic curve over the field Zp as G, the
order of the prime subgroup of G as q and elliptic curve point of order q as
P . We denote by H the hash function that maps binary strings to elements
from Zq and assume that all field operations are performed modulo q.

If the value s is chosen from a set S uniformly at random, then we denote
s
U←− S. If the variable x gets the value val then we denote x←− val. Similarly,

if the variable x gets the value of the variable y then we denote x ←− y. If
the variable x gets the result of an algorithm A we denote x←− A.

The blind signature scheme is determined by three algorithms:

– (sk, pk)← KGen: a key generation algorithm that outputs a secret key
sk and a public key pk;

– (b, σ)← 〈Signer(sk),Requester(pk,m)〉: an interactive signing protocol
that is run between a Signer with a secret key sk and a Requester
with a public key pk and a message m; the Signer outputs b = 1 if
the interaction completes successfully and b = 0 otherwise, while the
Requester outputs a signature σ if it terminates correctly, and a fail
indicator ⊥ otherwise.

– b ← Vf(pk,m, σ): a (deterministic) verification algorithm that takes a
public key pk, a message m, and a signature σ, and returns 1 if σ is
valid on m under pk and 0 otherwise.

3 ElGamal blind signature scheme

Standard ElGamal signature scheme. The generalised ElGamal type sig-
nature scheme was introduced in [11] and further extended in [7]. A key
generation algorithm involves picking random d uniformly from Z∗q (secret
signing key) and defining Q = dP (public verifying key).

A signing algorithm for message m involves computing hash-value
e = H(m), picking random k uniformly from Z∗q and defining r value as
kP.x mod q. To ensure functionality and security, certain such values need
to be excluded. The s value is determined from the ElGamal signature equa-
tion. According to [11], ElGamal signature equation is defined as follows:

Gd(r, e, s) · d+Gk(r, e, s) · k +G0(r, e, s) = 0, (1)

where Gd, Gk, G0 are the functions Z3
q → Z∗q that are affine by z or z−1

for all z ∈ {r, e, s}. If there exists a unique s such that the equation (1) is
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satisfied, then the signing algorithm returns (r, s) pair as the signature value,
otherwise it returns the fail indicator.

For example, GOST [25] signature equation refers to ElGamal signature
equations, where s is calculated as ke + dr, i.e. Gd(r, e, s) = r,Gk(r, e, s) =
e,G0(r, e, s) = −s. In [11] all possible ElGamal signature equations are listed
(here the difference between +z and −z and the difference between z and
z−1 is neglected, where z ∈ {r, e, s, k, d}):

1 : ed = rk + s

2 : ed = sk + r

3 : rd = ek + s

4 : rd = sk + e

5 : sd = rk + e

6 : sd = ek + r

7 : red = k + s

8 : d = rek + s

9 : sd = k + re

10 : d = sk + re

11 : red = sk + 1

12 : sd = rek + 1

13 : (r + e)d = k + s

14 : d = (r + e)k + s

15 : sd = k + (r + e)

16 : d = sk + (r + e)

17 : (r + e)d = sk + 1

18 : sd = (r + e)k + 1

Figure 1: ElGamal signature equations

In the current paper we rely on this list and do not consider its complete-
ness.

The verify procedure for the message m and the signature (r, s) assumes
verifying the equality

r = R.x mod q,

where R = − 1

Gk(r, e, s)
(Gd(r, e, s) ·Q+G0(r, e, s) · P ) , e = H(m).

ElGamal blind signature scheme. We define the general ElGamal blind
signature scheme. A key generation algorithm is the same as in the standard
ElGamal signature scheme.

The signing protocol is defined at Figure 2. The value e is always gener-
ated on the Requester side and forwarded to the Signer. The Signer performs
ElGamal signature generating algorithm.

The verify procedure is the same as in the standard ElGamal signature
scheme. We denote all blind signature schemes of this type as GenEG-BS
schemes.

4 Security notions

Blind signature schemes should provide two security properties: unforge-
ability and blindness. In the current section we introduce the corresponding
security notions by defining the threat and the adversary capabilities in each
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The signing protocol

Signer(d) Requester(Q,m)

k
U←− Z∗q

R← kP

R

. . .

e

r ← R.x mod q

if ∃! s : Gd(r, e, s) · d+Gk(r, e, s) · k +G0(r, e, s) = 0

find s

else : return 0

s

. . .

return 1 return (r′, s′)

Figure 2: GenEG-BS scheme: the signing protocol

case. The formal definitions of these notions for two-round blind signature
schemes are introduced, for example, in [9].

Unforgeability. An adversary acts as a malicious Requester and is powered
to run the signing protocol with the Signer, scheduling and interleaving the
sessions in any arbitrary way. In particular, it can open many parallel sessions
with the Signer. It is assumed that the Signer behaves correctly (according
to the protocol).

An adversary’s task (threat), after interacting arbitrary many times with
the Signer and l of these interactions were considered successful by the Signer,
is to produce more than l valid (message, signature) pairs. The threat is
considered strong if all messages should be distinct and weak if all (message,
signature) pairs should be distinct.

In some cases the weak notion, in which the adversary is powered to open
only the sequential sessions with the Signer, is considered.

Blindness. Informally, the blind signature scheme provides blindness if
there is no way to link a (message, signature) pair to the certain execution of
the signing protocol. In other words, the blindness is broken if the particular
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protocol execution for some fixed message leads to fixing the signature value
in an unambiguous way or at least to significant narrowing the set of possible
signature values.

Here an adversary acts as a malicious Signer and is powered to run the
signing protocol with the Requester twice. It is assumed that the Requester
behaves correctly (according to the protocol). After two successful interac-
tions the Requester outputs two (message, signature) pairs simultaneously.
If at least one of the interactions failed, the Requester outputs fail indicator.

An adversary’s task (threat) is to link the transcription of the protocol to
the corresponding (message, signature) pair with success probability signif-
icantly greater than 1/2. The unlinkability can be either computational, in
which case we talk about computational blindness, or information-theoretical,
we then talk about perfect blindness.

5 Security of the GenEG-BS schemes

We study the possibility of constructing secure ElGamal blind signature
scheme GenEG-BS. Note that all existing GenEG-BS schemes were introduced
without formal unforgeability proof, the blindness proof is presented only for
some of them. Therefore, the security of these schemes remains an open
question.

Well in our research, we identified two types of GenEG-BS schemes. They
cover all existing schemes of such type [5, 10, 13, 14, 17, 19, 20, 21]. We
show that schemes of both types are not secure and do not provide either
unforgeability, or blindness.

The starting point for distinguishing two types of the GenEG-BS schemes
was the study of the possibility of applying the ROS attack [3] to such
schemes. ROS (Random inhomogeneities in an Overdetermined, Solvable sys-
tem of linear equations) problem was introduced by Schnorr [18] and was
considered intractable for some time. However, later it was reduced to the
(l+1)-sum problem, for which Wagner’s [23] generalized birthday algorithm
(with sub-exponential complexity) can be used. Finally, polynomial-time at-
tack against ROS problem (ROS-attack) was proposed in 2020 in [3], that
implies polynomial-time attack against blind Schnorr signature scheme in
case an adversary is able to open l > dlog qe parallel sessions with the Signer.
In fact, not only the Schnorr scheme [15] was broken, but also the Okamoto-
Schnorr scheme [15] and the partially blind Abe scheme [1]. Therefore, the
question of the applicability of the attack to the GenEG-BS schemes is quite
natural.
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First type. It turned out that the modification of the ROS attack is appli-
cable to a significant number of existing schemes [5, 12, 13, 14, 17, 19, 21].
We provide the necessary condition for its applicability as the restrictions on
the signature equation.

Condition 1: at least one of the function
1

Gk(r, e, s)
· Gd(r, e, s) or

1

Gk(r, e, s)
·G0(r, e, s) does not significantly depend on s.

All GenEG-BS schemes with signature equation satisfying the Condition 1
will be called the schemes of Type I. For such schemes we construct generic
ROS-style attack, violating unforgeability, thereby proving the following the-
orem.

Theorem 1. If GenEG-BS scheme satisfies the Condition 1, then it does not
provide unforgeability when the number of parallel sessions l > dlog qe.

See Section 5.1 for attack description and discussion on Condition 1. Note
that these attack is applicable in the standard model in which the adversary
can open parallel sessions with the Signer. The security of such schemes
relative to the weak adversary that can open only sequential sessions is the
open question.

Second type. Consider ElGamal signature equations for which the Condi-
tion 1 is not satisfied. These are equations 2, 4, 10, 11, 16 at Figure 1, all of
them have the following form:

sk = F1(r, e)d+ F2(r, e) (2)

or
s−1k = F1(r, e)d+ F2(r, e), (3)

where F1 and F2 functions are affine functions by z or z−1 for all z ∈ {r, e}.
Moreover, only one of the functions F1 and F2 significantly depends on r.

We obtain the result for the particular case of the GenEG-BS schemes
based on these equations, in which the r′ component of the signature is
generated on the Requester side in the following way:

R′ ← αR + βQ+ γP, r′ ← R′.x mod q, (4)

where each of the α, β, γ values (called blinding factors) are chosen uniformly
from Z∗q by the Requester or are equal to zero. We consider exactly uniform
distribution on the blinding factor values, since other distributions seem not
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to allow to reach perfect blindness. All existing schemes known to the authors
assume exactly this way of generation of the r′ component (regardless of
the signature equation type). Thus, these results are important in terms of
practice.

Finally, we call GenEG-BS scheme a scheme of Type II, if:

– the signature equation has the form (2) or (3);

– the r′ component is generated according to (4).

The only known blind signature scheme of Type II is the scheme, intro-
duced in [10]. However, the attack, violating blindness, on this scheme was
presented in [2]. This attack leads us to consider the following condition.

Let (R, e, s) be the transcription of the signing protocol execution and
r = R.x mod q. Let (r′, s′) be the signature value produced by the Requester
for some message m with hash-value e′ = H(m) after that execution.

Condition 2: for all possible key pairs (d,Q) the equation F1(r, e) ·
F2(r

′, e′) = F1(r
′, e′) · F2(r, e) holds with the overwhelming probability.

Here the probability space consists of all values representing random
choices made by the Signer and the Requester randomized algorithms.

It turned out that this condition provides the criteria to link the given
protocol transcription and the (message, signature) pair. We state the fol-
lowing theorem, see Section 5.2 for its proof.

Theorem 2. If GenEG-BS scheme of Type II satisfies the Condition 2, then
it does not provide blindness.

To the best of our knowledge, there exist no GenEG-BS schemes of Type
II, for which the Condition 2 is not satisfied. This observation allowed us
to prove the following theorem, justifying the impossibility of constructing a
secure blind signature scheme of this type.

Theorem 3. If there exists GenEG-BS scheme of Type II that does not satisfy
the Condition 2, then it does not provide unforgeability.

The main idea of the proof is to show that the existence of such scheme
leads either to the secret signing key recovering from the protocol transcrip-
tion and the signature value obtained after the protocol execution, or to the
ability to make valid signatures without secret key knowledge. See Section 5.3
for the full proof.

Summing up, we show that GenEG-BS schemes of Types I and II are
not secure. Which means that if the secure GenEG-BS scheme exists, then
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it is based on the equations (2) or (3) and assumes radically new way of
generating the r′ component, not according to (4).

5.1 ROS-style attack

Consider the general ElGamal signature equation (1). According to the

Condition 1, at least one of the function
Gd(r, e, s)

Gk(r, e, s)
or

G0(r, e, s)

Gk(r, e, s)
does not

significantly depend on s. We denote the function that does not depend
on s by Y1(r, e) and the another one function by Y2(r, e, s). Therefore, the
signature equation can be represented in the following way:

k + Y1(r, e) ·G1(d) + Y2(r, e, s) ·G2(d) = 0, (5)

where G1 and G2 functions are equal to tautology or identity function, and
G1(d) · G2(d) = d. Note that Y1 function significantly depends on e and r
values in all signature equations listed at Figure 1 and satisfied the above
representation.

Verify procedure for messagem and signature (r, s) assumes verifying the
equality

r = R.x mod q,

where R = −Y1(r, e) · G1(d)P − Y2(r, e, s) · G2(d)P, e = H(m). Note that
Gz(d)P = P or Gz(d)P = Q for z ∈ {1, 2}.

The attack, presented below, allows an adversary to construct (l + 1)
valid (message, signature) pairs after l > dlog qe successful interactions with
the Signer. The adversary acts as follows:

1. Selects message ml ∈ {0, 1}∗ for which a signature will be forged, let
el = H(ml).

2. Opens l parallel sessions, querying the Signer, and receives correspond-
ing points R0, . . . , Rl−1.

3. Calculates ri = Ri.x mod q, 0 6 i 6 l − 1.

4. Selects m0
i ,m

1
i ∈ {0, 1}∗, 0 6 i 6 l − 1, such that r′i0 = Y1(ri, e

0
i ) 6=

Y1(ri, e
1
i ) = r′i1, where e0i = H(m0

i ), e
1
i = H(m1

i ).

5. Defines (ρ0, ρ1, . . . , ρl) as the vector of coefficients placed before xi in the

function f : Zl
q → Zq; f(x0, . . . , xl−1) =

l−1∑

i=0

2i
xi − r′i0
r′i1 − r′i0︸ ︷︷ ︸

b′i

=
l−1∑

i=0

ρixi + ρl.

Note that if xi = r′i0 then b′i = 0, if xi = r′i1 then b′i = 1 .
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6. Defines Rl =
l−1∑

i=0

ρiRi − ρlG1(d)P .

7. Defines rl = Rl.x mod q.

8. Defines b0, . . . , bl−1 from the following equation: Y1(rl, el) =
l−1∑
i=0

2ibi.

9. Defines r′i = r′ibi, ei = ebii ,mi = mbi
i , 0 6 i 6 l − 1; therefore, according

to step 5, Y1(rl, el) =
l−1∑
i=0

ρir
′
i + ρl =

l−1∑
i=0

ρiY1(ri, ei) + ρl.

10. Sends e0, . . . , el−1 values to the Signer in the corresponding sessions;

11. Obtains responses s0, . . . , sl−1 such that:

Ri + Y1(ri, ei) ·G1(d)P + Y2(ri, ei, si) ·G2(d)P = 0, 0 6 i 6 l − 1.

12. Defines sl in such a way that the following equality is satisfied:

l−1∑

i=0

ρiY2(ri, ei, si) = Y2(rl, el, sl).

According to our notations, the Y2(rl, el, sl) function is equal to
Gz(rl, el, sl)

Gk(rl, el, sl)
, where z ∈ {0, d}. Thus, the above equation is equiva-

lent to the following:
l−1∑

i=0

ρiY2(ri, ei, si)Gk(rl, el, sl) = Gz(rl, el, sl), and

is affine by sl since Gk, Gz functions are affine by sl. It can be rep-
resented as a1sl + a2 = 0, where a1, a2 are the fixed values from Zq

that depend on d, el, Ri, e
0
i , e

1
i , 0 6 i 6 l − 1, values. Thus, if a1 6= 0,

it is possible to efficiently find the sl value such that the equation is
satisfied. If a1 = 0, the adversary returns to step 1. For all ElGamal
equations listed at Figure 1, for any fixed signing key d and for any
values el, e0i , e1i , 0 6 i 6 l − 1, selected by the adversary, the condition
a1 = 0 holds with the negligible probability over the random choice of
Ri values by the Signer algorithm.

13. Outputs {mi, (ri, si)}li=0.

Indeed, for 0 6 i 6 l − 1 signature (ri, si) is valid for mi by attack
construction, see step 11. Consider the case i = l. Summarize the equations
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obtained at step 11 with the corresponding coefficients:

l−1∑

i=0

ρiRi +
l−1∑

i=0

ρiY1(ri, ei) ·G1(d)P +
l−1∑

i=0

ρiY2(ri, ei, si) ·G2(d)P = 0.

Subtract and add the term ρlG1(d)P in the left part of the equation:

l−1∑

i=0

ρiRi − ρlG1(d)P

︸ ︷︷ ︸
=Rl

+

(
l−1∑

i=0

ρiY1(ri, ei) + ρl

)

︸ ︷︷ ︸
=Y1(rl,el)

·G1(d)P+

+
l−1∑

i=0

ρiY2(ri, ei, si)

︸ ︷︷ ︸
=Y2(rl,el,sl)

·G2(d)P = 0.

According to the steps 6, 9, 12, this equation is equivalent to the following
equation:

Rl = −Y1(rl, el) ·G1(d)P − Y2(rl, el, sl) ·G2(d)P,

and Rl.x mod q = rl by construction at step 7. Hence, the signature (rl, sl)
is valid for ml.

The condition l > dlog qe is needed to make possible the field element
binary representation (see step 8) of length l.

The attack works due to the ability of varying Y1(ri, ei) values by message
changing on step 4. This, in turn, is possible because of the summand, that
does not depend on s value, in the equation (5). That explains the form of
the Condition 1.

5.2 Attack on blindness

Consider GenEG-BS schemes of Type 2. Remind that for such schemes
the Condition 2 is satisfied, i.e. the equation

F1(r, e) · F2(r
′, e′) = F1(r

′, e′) · F2(r, e) (6)

holds with the overwhelming probability.
We claim that such schemes do not provide blindness. Namely, we show

that for fixed protocol transcription and message there exists only the small
set of valid signature values that could be produced during the given protocol
execution. Indeed, if the protocol transcription (R, e, s) and message m are
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fixed, then the r = R.x mod q and e′ = H(m) values are also fixed. The
equation (6) is affine by r′ since F1(r

′, e′) and F2(r
′, e′) functions are affine

by r′ and only one of them significantly depends on r′. Thus, r′ component of
the signature is defined unambiguously from equation (6). Note that α, β, γ
are equal to zero or chosen uniformly at random from Z∗q. The probability
to choose α, β, γ during several protocol executions such that (αR + βQ +
γP ).x mod q = r′ is negligible. Therefore, with overwhelming probability
there exists the unique signature that could be produced for message m
during the given protocol transcription.

5.3 Unforgeability attack

Suppose, that there exists GenEG-BS scheme of Type II, for which the
Condition 2 does not hold. It means that there exists an algorithm User,
that works on the Requester side as follows. For arbitrary public key pk, out-
puted by key generation algorithm, arbitrary message m, point R and α, β, γ
values, generated according to the distributions specified by the scheme, it
outputs some value e. Then, after receiving the s value, generated according
to (2) or (3), algorithm User outputs a valid signature (r′, s′) for message m
with the overwhelming probability. Here the probability space consists of all
values representing random choices made by the User randomized algorithm.
Otherwise, it returns the fail indicator.

We construct an adversary A for such GenEG-BS scheme that violates
unforgeability and uses algorithm User. It can interact with the Signer in the
way described in Section 4. The adversary A knows the public key Q and
acts as follows:

1. Selects message m and computes e′ = H(m).

2. Selects α, β, γ values uniformly from Z∗q or defines them equal to zero
(depending on the User algorithm).

3. Opens the session, querying the Signer, and receives point R as the
response, computes r = R.x mod q.

4. Computes r′ = (αR + βQ+ γP ).x mod q.

5. Runs algorithm User, giving it public key Q, point R, message m and
α, β, γ values.

6. Receives e value from the User.
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7. If γF1(r, e)− βF2(r, e) = 0, goes to the next step.

If γF1(r, e)− βF2(r, e) 6= 0, computes

s∗ = (γF1(r, e)− βF2(r, e))
−1(F1(r, e)F2(r

′, e′)− F2(r, e)F1(r
′, e′))

and checks if the signature is valid, computing b =
GenEG-BS.Vf(Q,m, (r′, s∗)). If b = 1, the adversary A outputs
(m, (r′, s∗)) pair as the forgery and stops.

8. Sends e value to the Signer and forwards the obtained s value to the
User.

9. Receives the signature (r′, s′) from the User. This signature must be
valid for message m under public key Q, thus s′ 6= s∗. If User outputs
the fail indicator, the adversary A stops its work with the fail indicator.

10. If the equation (6) is not fulfilled, computes secret signing key d using
the Algorithm 1 described below. After that, it computes valid signature
(r′1, s

′
1) for arbitrary message m1 6= m, using the knowledge of d, and

outputs two pairs (m, (r′, s′)) and (m1, (r
′
1, s
′
1)). If the equation (6) holds

true, the adversary A stops its work with the fail indicator.

This attack is shown schematically in the Figure 3.

𝒜(Q) UserSigner

R
Q,R,m,α,β,γ 

e

select m,α,β,γ 

compute r', 

e

s
s

if (r',   ) is valid: 

     return m,(r',   )

else:

s'

compute d

return (m,(r', s')),

𝑠∗ 

𝑠∗ 
𝑠∗ 

(𝑚1,  𝑟1
′ , 𝑠1

′  ) 

Figure 3: Attack on the GenEG-BS scheme of Type II

If the adversary A finishes the work on step 7, it completes successfully 0
interactions with the Signer and outputs 1 forgery. Otherwise, the adversary
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A makes 1 successful interaction with the Signer and outputs 2 forgeries,
if User outputs a valid signature and the equation (6) holds true. Accord-
ing to the assumptions of Theorem 3, the probability of Condition 2 (and,
thus, equation (6)) fulfillment and returning the fail indicator by User is neg-
ligible. Thus, the adversary A violates unforgeability with the overhelming
probability.

Algorithm 1. We consider the case when GenEG-BS scheme of Type II is
based on the equation (2), the case of the equation (3) is proved analogously.

Having a valid signature (r′, s′) for message m with hash-value e′ and
protocol transcription (R, e, s), the adversary A can construct the following
system of linear equations with respect to unknown k and d:

{
sk = F1(r, e)d+ F2(r, e),

s′(αk + βd+ γ) = F1(r
′, e′)d+ F2(r

′, e′),
(7)

where r = R.x mod q. The first equation follows from the procedure of s
value computation according to the equation (2). The second equation follows
from the fact, that r′ = R′.x mod q = (αR + βQ + γP ).x mod q and the
signature (r′, s′) is valid, i.e. s′R′ = F1(r

′, e′)Q+ F2(r
′, e′)P .

Due to the construction of the scheme the system (7) must have a solution
relative to k and d. According to the Kronecker-Capelli theorem [22], a system
has a solution iff the rank of its coefficient matrix A is equal to the rank of
its augmented matrix A′. We write out these matrices for system (7):

A =

(
s −F1(r, e)
s′α s′β − F1(r

′, e′)

)
,

A′ =

(
s −F1(r, e) F2(r, e)
s′α s′β − F1(r

′, e′) F2(r
′, e′)− s′γ

)
.

Further we show that rank(A) = rank(A′) = 2. Then the solution of the
system is unique, and A finds secret key d by solving the system.

Suppose the opposite. Let rank(A) = rank(A′) 6 1. Then any two
columns of matrix A′, in particular, second and third columns, are linearly
dependent. This means that the determinant of the square submatrix formed
by these columns is equal to zero. We write out this condition:

0 =

∣∣∣∣
−F1(r, e) F2(r, e)

s′β − F1(r
′, e′) F2(r

′, e′)− s′γ

∣∣∣∣ =

= F1(r, e)(s
′γ − F2(r

′, e′))− (s′β − F1(r
′, e′))F2(r, e) =

= s′ (γF1(r, e)− βF2(r, e))− (F1(r, e)F2(r
′, e′)− F2(r, e)F1(r

′, e′)) .
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Since the equation (6) is not fulfilled, F1(r, e)F2(r
′, e′)−F2(r, e)F1(r

′, e′) 6= 0.
Then if γF1(r, e)− βF2(r, e) = 0, the determinant can not be equal to zero
and we come to the contradiction, from where rank(A) = rank(A′) = 2. Let
γF1(r, e)− βF2(r, e) 6= 0, then we have the following condition on s′:

s′ = (γF1(r, e)− βF2(r, e))
−1(F1(r, e)F2(r

′, e′)− F2(r, e)F1(r
′, e′)) = s∗.

However, s′ 6= s∗ according to the adversary A construction (see step 9), so
we come to the contradiction and rank(A) = rank(A′) = 2.

6 Conclusion

The obtained results show that the development of secure ElGamal blind
signature scheme is non-trivial task. There exist no such schemes to date.
If such a scheme potentially exists, then either its Signer side differs from
the one defined in the GenEG-BS scheme, or the method of generating the
first component of the signature on the Requester side is entirely new and
signature equation necessarily has the form (2) or (3).

Therefore, the direction for further research is the analysis of more gen-
eral blind signature constructions based on ElGamal signature equations and
providing either the attacks on them, or their formal security proof.
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Abstract

In this paper we study closest vector problem (CVP) and bounded distance
decoding problem (BDD) which arise in cryptanalysis of lattice-based cryptosystems.
We propose an algorithm for solving bounded distance decoding (BDD) problem
using quantum annealing. We provide estimates for number of qubits required to
run this algorithm. We also estimate number of qubits required for lattices that
have Hermite normal form with a single pivot element not equal to 1, and lattices
defined by the public keys of NTRUEncrypt cryptosystem.

Keywords: closest vector problem, bounded distance decoding, NTRUEncrypt, quantum
annealing.

1 Introduction

It is widely known that in quantum computation model there exist al-
gorithms for solving hard mathematical problems which provide a speedup
compared to classical classical computational model. Algorithms for solving
integer factorization and discrete logarithm problems are examples of those
[18]. The security of most modern asymmetric cryptographic schemes (like
RSA [17], El Gamal [5] and etc.) is based on the assumption of hardness of
this two problems.

The model of quantum computations for a long time remained purely
theoretical, but different prototypes of quantum computers have been cre-
ated recently. The performance of these prototypes does not allow to attack
existing cryptosystems, but many researchers believe that computers with
enough computational power to do it may appear in the next few years. In
this regard, synthesis of asymmetric schemes that are resistant to attacks
with use of a quantum computer, or the so called post-quantum schemes,
becomes very important.
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There are different computational models based on the principles of quan-
tum mechanics. In this paper we consider quantum annealing. It is believed
that quantum annealer would be able to effectively solve a number of opti-
mization problems over discrete sets.

It is assumed that the family of cryptographic schemes, which security is
based on problems from the lattice theory, is resistant to attacks with the
use of quantum computer. The closest vector problem (CVP) is often used
as such problem. However, it is not always necessary to solve it for breaking
the system. Sometimes it is enough to solve an easier problem - the problem
of bounded distance decoding (BDD).

1.1 Related work

Quantum computer and quantum annealer are two different devices that
work with their own computational models. Therefore below we represent
results for both of them.

Quantum gate model SVP and CVP are assumed to be in some analogue of
NP class for quantum gate model [2]. This makes it possible for us to consider
them hard to solve on quantum computer.

The vast majority of quantum algorithms for solving SVP and CVP is
based on Grover’s algorithm for searching unsorted list [7] which offers poly-
nomial speed-up. In this regard, it is not expected to gain any significant
benefits from using a quantum computer.

Lattice enumeration is a classical method for solving SVP. It was proposed
in the first half of 1980’s in [6], [12] and [16]. This algorithm runs 2O(n log n)

in time and O(n) in space on classic computer, where n - lattice size [11].
Usage of Grover’s algorithm hardly improves these estimates.

Many probabilistic algorithms are based on lattice sieving technique
which was introduced in 2001 in [1]. These algorithms are known to be the
fastest for solving SVP as they run 2O(n) in time. But at the same time, this
comes with a cost of space, as sieving requires 2O(n) of memory [11]. Grover’s
algorithm can be applied to sieving algorithms. It helps to speed up running
time, but not enough to get out of 2O(n) [11].

For solving CVP the Voronoi cell may be computed [13]. In both classic
and quantum gate models the time complexity of it is equal to 22n+o(n), and
it requires 2n+o(n) space [11].
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Quantum annealers Two algorithms for solving SVP were introduced in [10].
In this paper, the authors reduced SVP to the Ising problem which is suppos-
edly can be solved fast enough by quantum anneler [8]. Estimates on qubits
number also were given. For the first algorithm to work with lattices, which
has Hermite normal form with only one pivot element not equal to one, it
requires O(n log n+ logD) qubits, where n - lattice dimension and D - it’s
absolute value of determinant. At the same time, the second algorithm re-
quires O(n5/2D1/n) qubits for the same type of matrices, but it is much more
resistant to quantum noise.

1.2 Our contribution

In this paper we research the possibilities of solving CVP and BDD with
quantum annealers. Approach proposed by us is a generalization of shortest
vector problem (SVP) solving algorithm in paper [10]. We present an algo-
rithm that allows to solve these problems and estimate the required number
of qubits. We also provide estimates for number of qubits required to make
it work with matrices, used in NIST PQC candidates like NTRU.

2 Preliminaries

2.1 Lattices

Definition 1. Let b1, . . .bn ∈ Zm be a set of lineary independent vectors.
The set Λ = {∑n

i=1 zi bi | zi ∈ Z} is called a lattice. The matrix B composed
of column vectors bi is called the lattice basis.

Statement 1. [3] The bases B1 and B2 specify the same lattice if and only
if B1 = U B1, where U is an unimodular matrix.

From the previous statement, the following definition is correct:

Definition 2. For a given lattice Λ define its determinant as |Λ| =√
det(BT B).

Each lattice is an additive abelian subgroup of (Rm,+). Hence, it contains
a vector with minimal Euclidean norm. The length (Euclidean norm) of such
a vector for the lattice Λ is called the first minimum of the lattice.

λ1(Λ) = min{‖v‖ v ∈ Λ, v 6= 0}

Statement 2. (Minkowski’s theorem) [9] For a lattice Λ of full rank and
dimension N , it holds λ1(Λ) ≤

√
N · |Λ|1/N .
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Definition 3. A matrix H = {hi,j}1≤i,j≤n is an Hermite normal form (HNF)
of matrix B if there is a unimodular matrix U such that H = B U and H
has the following restrictions:

1. H is upper triangular (hi,j = 0 for i > j).

2. The pivot element of any nonzero row is always positive and is strictly
to the right of the pivot element of the row above it.

3. elements below the pivot element are 0, and the elements above it are
positive and strictly smaller than it.

If a matrix H has only one pivot element not equal to 1, then it is called the
optimal Hermite normal form of matrix B.

We will say that the lattice Λ defined by the basis B, has an optimal
HNF if for BT there exists an optimal Hermite normal form.

Statement 3. [3] Every matrix B ∈ Zn×n has HNF.

Next, let us introduce several difficult problems from lattice theory.

Definition 4. The Shortest Vector Problem (SVP): for a given lattice Λ find
a vector v ∈ Λ such that ‖v‖ = λ1(Λ).

Definition 5. The Closest Vector Problem (CVP): For a given point t /∈ Λ
find a vector v ∈ Λ such that ‖v − t‖ → min.

Definition 6. Bounded Distance Decoding problem (BDDγ): For a given
point t /∈ Λ, find the closest vector v ∈ Λ provided that ‖v − t‖ ≤ γ · λ1(Λ).

The SVP problem can be reduced to the minimization problem of a pos-
itively defined quadratic form.

Denote by G = {gij} the Gram matrix for the lattice basis B. Then for
any vector v ∈ Λ:

‖v‖2 = ‖B x‖2 = ‖
n∑

i=1

xi bi‖2 =

(
n∑

i=1

xi bi,
n∑

i=1

xi bi) =
n∑

i=1

n∑

j=1

(bi,bj)xi xj =
n∑

i,j=1

gij xi xj.

Thus, to solve the SVP problem it is sufficient to minimize the following
quadratic form on the set of all nonzero integer vectors.

f(x) =
n∑

i,j=1

gij xi xj = xT Gx = xT BT B x.
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Similarly, to solve CVP and BDD problems it is sufficient to find the mini-
mum of the quadratic form presented below

g(x) = ‖B x−t‖2 = ‖B x‖2−(B x, t)+‖t‖2 = xT BT B x−2 xT BTt+tT t.

2.2 Ising and QUBO problems and quantum annealing

Quantum annealing is an optimization process based on quantum me-
chanics that is used for finding global minimum of a given objective function.
The objective function is defined over a descrete space. Quantum annealer
starts from a superposition of all possible states in the search space. Then
the annealer’s state evolves following the quantum-mechanical evolution. At
the end of evolution, the state will correspond to a solution of the initial
problem.

Consider and example of objective function:

Eising(s) =
N∑

p=1

hp sp +
N∑

i=1

N∑

j=i+1

Ji,j si sj,

hp ∈ R, p = 1, N, Ji,j ∈ R, i = 1, N, i < j ≤ N

sk ∈ {−1, 1}, k = 1, N.

Annealer’s qubits correspond to the values of variables sk, k = 1, N . The
problem of minimizing Eising is called the Ising problem.

With a change of variables in the function Eising: sk = 2xk−1, k = 1, N
up to a constant we get the following:

EQUBO(x) =
∑

i=1

Qi,i xi +
∑

i<j

Qi,j xi xj, xi ∈ {0, 1}, i = 1, N,

Qi,j ∈ R, i, j = 1, N.

The problem of minimization of the function EQUBO over the set {0, 1}N is
called Quadratic unconstrained binary optimization problem (QUBO).

It is assumed that a quantum annealer would be able to solve the Ising
and QUBO problems more efficiently than a classical computer.

3 Solving CVP and BDD with quantum annealing

In this section we describe an algorithm for solving the SVP problem
with quantum annealing method proposed in [10]. Next we generalize this
approach and propose an algorithm for solving CVP and BDD problems
with quantum annealing.
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3.1 SVP to QUBO reduction

Let the lattice Λ defined by the basis B = {b}Ni=1. and |Λ| = D. The
lattice Λ corresponds to a positively determined quadratic form:

f(x) =
N∑

i,j=1

gij xi xj, gij = (bi,bj).

Then to solve the SVP problem it will be enough to find the vector on which
f(x) reaches it’s minimum among all nonzero integer vectors.

To reduce the problem of minimization of positively determined quadratic
form to the QUBO problem it is necessary to replace the set of variables
x ∈ ZN to the set q ∈ {0, 1}L respectively.

In [10] the following method of reducing the functional f(x) to the func-
tional used in the QUBO problem is presented.

Suppose that |xj| ≤ 2k, j = 1, N . Let us make next substitution of
variables:

xj =
k∑

p=0

2p qpj − 2k, qpj ∈ {0, 1}.

This will reduce the given quadratic form to the QUBO problem.
As shown in [10], if the matrix B is an optimal HNF, then the parameter

k can be chosen as 1 + 3
2 logN + 1

N logD. So the following theorem holds:

Theorem 1. [10] For a lattice Λ of dimension N with an optimal HNF and
|Λ| = D there is a quantum algorithm for solving the SVP problem, that
requires at most

(
3N
2 logN +N + logD

)
qubits.

3.2 CVP and BDD to QUBO reduction

For a given point t ∈ Zn, that does not belong to the lattice Λ, in order
to solve the BDD or CVP problem, it is enough to find z ∈ ZN such that

z = argmin
x∈ZN

(
xT BT B x− 2 xT BT t + tT t

)
= argmin

x∈ZN
(g(x)) .

Similarly to the case of reducing SVP to QUBO, we will encode each
vector coordinate of x by its binary representation. Thus we replace the
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variables:

x =




1 2 . . . 2k 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 2 . . . 2k 0 0 . . . 0
... ... . . . ... ... ... . . . ... ... ... . . . 0
0 0 . . . 0 0 0 . . . 0 1 2 . . . 2k




︸ ︷︷ ︸
N×(N ·(k+1))

·

(N ·(k+1))×1︷ ︸︸ ︷


x0,1
...
xk,1
...

x0,N
...

xk,N




−




2k
...

2k




︸ ︷︷ ︸
N×1

.

Let us rewrite it in other terms: x = Tx′ − d.
After the change of variables, the function g(x) will take the following

form:

g(x′) = x′Qx′ + Lx′ + c,

Q = T T BT B T, L = −2 dT BT B T − 2 tT B T,

c = dT BT B d + 2 dT BT t + tTt,

x′ ∈ {0, 1}N ·(k+1).

The obtained functional is a QUBO problem and can be fed to quantum
annealer.

Theorem 2. For a lattice Λ of dimension N with an optimal HNF and
|Λ| = D there exists a quantum algorithm for solving BDDγ problem that
requires at most N log(2 γ N 3/2D1/N + ‖|t‖L1

) qubits.

Proof. Let it is required to solve BDDγ problem for the lattice Λ given by
it’s basis B in optimal HNF, and the point t.

Since BT is an optimal HNF, then

BT =




1 0 . . . 0 b1

0 1 . . . 0 b2
... ... . . . ... ...
0 0 . . . 1 bN−1

0 0 . . . 0 D



.

Then for any vector x ∈ ZN :

t−B x = [t1− x1, . . . , tN−1− xN−1, tN − (x1 b1 + . . . xN−1 bN−1 + xN D)]T .
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If x is a solution to the BDDγ, then, using the Minkowski’s theorem, we
obtain ‖t−B x‖ ≤ γ

√
N D1/N . It follows that:

|ti − xi| ≤ γ
√
N D1/N , i = 1, . . . , N − 1,

|tN − (x1 b1 + . . . xN−1 bN−1 + xN D)| ≤ γ
√
N D1/N .

Since ∀x, y ∈ R is true |x− y| ≥ |x| − |y|, let us rewrite these inequalities:

|xi| ≤ γ
√
N D1/N + |ti|, i = 1, . . . , N − 1, (1)

|xN D| ≤ γ
√
N D1/N + |tN − (x1 b1 + . . . xN−1 bN−1)|. (2)

With the triangle inequality it follows:

|xN D| ≤ γ
√
N D1/N + |tN |+

N−1∑

i=1

|xi bi|.

Since B is an optimal HNF, then bi < D for i = 1, . . . , N − 1. Therefore

|xN D| ≤ γ
√
N D1/N +D

N−1∑

i=1

|xi|+D tN .

Using the inequalities (1) we obtain:

|xN D| ≤ γ
√
N D1/N + γ (N − 1)

√
N D1/N+1 +D

N∑

i=1

|ti| ≤

γ N 3/2D1/N+1 +D ‖t‖L1
.

Thus, the values of the last coordinate are in the interval from
−γ N 3/2D1/N − ‖t‖L1

to γ N 3/2D1/N + ‖|t‖L1
. Therefore, its binary repre-

sentation will require at most log(2 γ N 3/2D1/N + ‖|t‖L1
) qubits.

4 NTRUEncrypt

The NTRUEncrypt [15] cryptosystem is one of the candidates, participat-
ing NIST PQC [14] effort. The main goal of NIST PQC is to select assymet-
ric cryptographic algorightms that are resistant to attacks that use quantum
computers. This section explores the capabilities of the algorithm presented
above when dealing with lattices, providing security for this scheme.
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Next, we will consider lattices of dimension 2N × 2N of the following
kind:

L =




1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
... ... . . . ... ... ... . . . ...
0 0 . . . 1 0 0 . . . 0

h0 h1 . . . hN−1 q 0 . . . 0
hN−1 h0 . . . hN−2 0 q . . . 0
... ... . . . ... ... ... . . . ...
h1 h2 . . . h0 0 0 . . . q




Here N and q are defined by the cryptosystem parameters, and the coeffi-
cients hi, i = 0, . . . , N − 1 are defined by its public key.

Let us estimate how many qubits are needed to solve BDDγ for this
lattice. For any vector x ∈ ZN and a point t 6∈ L it holds:

t− Lx = [t0 − x0, . . . , tN−1 − xN−1, tN − (x0 h0 + . . . xN−1 hN−1 + xN q),

. . . , t2N−1 − (x0 h1 + . . . xN−1 h0 + x2N−1 q)]
T .

If x is a solution of BDDγ, then, using the Minkowski theorem, we obtain
‖t− Lx‖ ≤ γ

√
q N . From this it follows that

|ti − xi| ≤ γ
√

2 q N, i = 0, . . . , N − 1,

|tN − (x0 h0 + . . . xN−1 hN−1 + xN q)| ≤ γ
√

2 q N,

. . .

|t2N−1 − (x0 h1 + . . . xN−1 h0 + x2N−1 q)| ≤ γ
√

2 q N.

Since ∀x, y ∈ R it holds |x− y| ≥ |x| − |y|, let us rewrite these inequalities:

|xi| ≤ γ
√

2 q N + |ti|, i = 0, . . . , N − 1,

|xN q| ≤ γ
√

2 q N + |tN − (x0 h0 + . . . xN−1 hN−1)|,
. . .

|x2N−1 q| ≤ γ
√

2 q N + |t2N−1 − (x0 h1 + . . . xN−1 h0)|.
Let’s transform the inequality for |xN q| using the triangle inequality:

|xN q| ≤ γ
√

2 q N + |tN |+
N−1∑

i=0

|xi hi|.

From the key generation procedure [15] it follows that |hi| ≤ q, i = 0, . . . N−
1, then

|xN q| ≤ γ
√

2 q N + q
N−1∑

i=0

|xi|+ q tN .

I. Lysakov 280



Solving some cryptanalytic problems for lattice-based cryptosystems with quantum annealing
method

Using the inequalities |xi| ≤ γ
√
q N + |ti|, i = 0, . . . , N − 1 we get:

|xN q| ≤ γ
√

2 q N + γ
√

2N 3/2 q3/2 + q
2N−1∑

i=0

|ti| ≤

γ
√

2N 3/2 q3/2 + q ‖t‖L1
.

Thus, the coordinate values with the index N are in the interval from
−γ
√

2N 3/2√q − ‖t‖L1
to γ
√

2N 3/2√q + ‖|t‖L1
. Therefore, to its binary

representation will require log(2 γ
√

2N 3/2√q + ‖t‖L1
) qubits.

With similar reasoning for coordinates with an index from N to 2N − 1
the algorithm will require 2N log(2 γ

√
2N 3/2√q + ‖t‖L1

) qubits.
As a point t let’s take one of the possible ciphertexts in the NTRUEncrypt

cryptosystem. Then, according to the encryption procedure in [15], we’ll get
that ‖t‖L1

≤ N q. As a result, we obtain the following estimation on the
number of qubits:

2N log(2 γ
√

2N 3/2√q +N q).

To achieve a 128-bit security level, the crytosystem designers suggested to
choose N = 509 and q = 2048. This means that to solve the BDDγ problem
in such lattice with γ = 1 it is required about 21,000 qubits.

As proposed algorithm is intended to run on quantum annealer it is quite
difficult to compare it with algorithms in quantum gate model. But it is
possible to analyze result taking into account possibilities of existing today
prototypes of quantum annelers.

D-Wave [4] is a company constructing computers which exploit quantum
effects in their operation. It is claimed that this machines are using quantum
annealing to solve optimization problem.

In 2020 D-Wave Advantage was introduced. This machine contains more
then 5000 qubits. Company also announced D-Wave Advantage 2 with ap-
proximatly 7000 qubits. This numbers means that appearance of computer
which will have enough space to run suggested algorithm is the matter of
near feature.

5 Discussion

The paper gives an estimate on the number of qubits required to solve
problems from lattice theory in a theoretical model of quantum computation.
But in practical implementations quantum noises will play a significant role.
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This means that a real quantum computer might need a lot more qubits than
the estimate suggests.

We should also note that in this paper we do not provide any estimates for
the running time of the algorithm. This problem requires additional study.
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