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Dear colleagues!

This year the Workshop “Current Trends in Cryptology” will open its doors
for information protection specialists and everyone interested in the subject for
the 8th time.

This time the unbiased international program committee reviewed 37 papers
submitted by representatives of 6 countries. Coming in second in the Workshop
history, this number is almost twice as much as it was last year. The increase
indicates the growth of the academic community understanding of information
security importance, that happened including on the ground of Russian govern-
ment course for digitalization in all aspects of life and activities of individuals,
society and the state. 22 papers selected after the reviewing will be presented
to you at the Workshop. There are different kind of topics to cover including
analysis and design of classical block and stream cryptographical mechanisms as
well as widely discussed post-quantum cryptographic protocols which can save
their cryptographic characteristics even if an appropriate quantum computer
is created. Practical applications of cryptography also will not be left out of
attention. A wide range of subjects affirms that each of 128 participants from 8
countries will find something interesting and worth to be used in scientific and
practical activity.

This year the program committee decided to carry out an experiment and
added the scientific program with cryptography lectures for information security
specialists and high-schoolers. In the former case the lectures will be delivered by
leading experts of cryptographic devices developers and technical committee for
standardization “Cryptography and security mechanisms” (TC 026), in the latter
case – by the professors of a leading Russian university graduating cryptography
specialists. Two panel discussions are to be held during the Workshop. The
first one will be dedicated to the first one in Russian Federation brand new
cryptography museum, particularly to the ideas and plans its founders as well
as the issues will have to be solved by them. The second one will deal with the
work of the Academy of Cryptography of the Russian Federation laboratory
on standardization problems in cryptography and information security which
was created as a part of national program “Digital Economy of the Russian
Federation”.

Covering the trends in cryptology and contributions in them by outstanding
academia community representatives is one of distinguished characteristics of
the Workshop that is also highlighted in its title. This is achieved including
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by enlarging the program with invited talks by leading Russian and foreign
specialists. This year there will be three such talks. The first one by Andrey
Pichkur and Alexey Tarasov will be devoted to the Mikhail M. Glukhov passed
away last year who was an academician of the Academy of Cryptography of
the Russian Federation and is justifiably regarded as one of the founders of the
Russian algebraic cryptographic school. We will also listen to Luca de Feo, one
of the leading specialists in elliptical curves isogeny post-quantum cryptography,
and Kenneth Paterson who will talk on a new version of TLS protocol. Dear
colleagues, we are facing four days of effective work which in result, I hope, will
let us expand the horizons of our knowledge and apply achieved information in
scientific researches and projects.

Thereon I would like to declare the workshop “Current Trends in Cryptog-
raphy” (CTCrypt 2019) open.

President of the Academy of Cryptography of the Russian Federation
Aleksandr Shoitov
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Invited Talks



Introducing TLS 1.3

Kenneth Paterson

Applied Cryptography Group, Switzerland
kenny.paterson@inf.ethz.ch

Abstract

After a long gestation in the IETF TLS Working Group, work on TLS 1.3 was finally
completed in 2018 with the publication of RFC 8446. In this talk, I’ll explain how TLS
1.3 works, how it differs from earlier protocol versions, and why. I’ll also reflect on the
standardisation process which resulted in TLS 1.3.

Keywords: cryptographic protocol, standardisation, TLS 1.3.
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How to prove a secret isogeny

Luca De Feo

Université de Versailles, France
luca.de-feo@uvsq.fr

Abstract

Isogenies of elliptic curves have proven to be a powerful tool to construct crypto-
graphic protocols, in particular quantum-resistant ones.

The key encapsulation protocol SIKE is currently being considered for standardi-
sation in the NIST post-quantum competition, while the younger primitive CSIDH is
likely to find useful applications in more advanced protocols where a static-static key
exchange is needed.

At present, the picture of isogeny-based signature protocols is much less bright.
While it is known how to derive various identification schemes and signatures from both
SIKE and CSIDH, they are all inefficient in some regard.

In this talk I will review the different protocols, both quantum-resistant and not,
that have been devised to prove knowledge of a secret isogeny. I will explain their uses
and limitations, report on ongoing work, and present some open questions.

Keywords: isogenies of elliptic curves, post-quantum cryptography, quantum-resistance,
cryptographic protocol.
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Algebraic and Probabilistic Aspects



On Isometric Mappings of the Set of All Boolean
Functions into Itself Which Preserve Self-Duality

and the Rayleigh Quotient
Aleksandr Kutsenko

Novosibirsk State University, Russia
alexandrkutsenko@bk.ru

Abstract

A bent functions is called self-dual if it equals to its dual. It is called anti-self-dual if
it is equal to its complement. A mapping of the set of all Boolean functions in n variables
into itself is said to be isometric if it preserves the Hamming distance. In this paper we
study isometric mappings which preserve self-duality and anti-self-duality. The complete
characterization of these mappings is obtained. Based on this result, the set of isometric
mappings which preserve the Rayleigh quotient of a Boolean function is obtained. As
a corollary all isometric mappings which preserve bentness and the Hamming distance
between bent function and its dual are given.

Keywords: self-dual bent, Hamming distance, Isometric mapping, Rayleigh quotient.
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1 Introduction

The term “bent function” was introduced by Oscar Rothaus in the 1960s
in [13]. At the same time the maximally nonlinear Boolean functions were also
under study in the Soviet Union. In 1962 the term minimal function which is in
fact an analog of a bent function, was proposed by the Soviet scientists Eliseev
and Stepchenkov, see [14].

Bent functions have applications in many domains, such as error correcting
codes, spreading sequences for CDMA, and cryptology. In symmetric cryptog-
raphy, due to maximal nonlinearity, these functions can be used as building
blocks of stream and block ciphers in order to make them more resistant to
main statistical methods of cryptanalysis among which are linear and differ-
ential cryptanalyses. Extensive information concerning bent functions can be
found in monography of Tokareva [14].

A bent function that coincides with its dual is called self-dual. Open ques-
tions which are relevant to the class of bent functions are also relevant for the
self-dual bent functions. A difficult problem is the complete characterization
and description of the class of self-dual bent functions and estimation of its
cardinality. There are a number of articles which are devoted to these and other
problems. In particular, in the article [2] Carlet et al. explored self-dual bent
functions: some symmetries, which preserve self-duality were given; it has been
proved that the Hamming distance between a self-dual bent function and an
anti-self-dual bent function in n variables is exactly 2n´1. In [6] the classifica-
tion of all quadratic self-dual bent functions is presented by Hou. Feulner et
al. in [4] gave some new mappings which preserve self-duality. Some new con-
structions of bent functions both with their duals one can find in [12]. The
upper bound for the cardinality of the set of self-dual bent functions which fol-
lows from the exact number of formally self-dual bent functions is presented
by Hyun and Lee in [7]. The complete Hamming distance spectrum between
self-dual Maiorana–McFarland bent functions was obtained in [8].

In current paper we study isometric mappings of the set of all Boolean
functions in n ě 4 variables into itself which preserve self-duality and anti-self-
duality. The complete characterization of these mappings is obtained (Theo-
rem 1). We also completely study isometric mappings which bijections between
self-dual and anti-self-dual bent functions (Theorem 2). Based on this result,
the set of isometric mappings which preserve the Rayleigh quotient of a Boolean
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function is obtained (Corollary 1). All isometric mappings which preserve bent-
ness and the Hamming distance between bent function and its dual are given.

2 Notations and definitions

Let Fn2 be a set of binary vectors of length n.
A Boolean function f in n variables is any map from Fn2 to F2. Its sign func-

tion is F pxq “ p´1qfpxq, x P Fn2 . Obviously we have p´1qfpxq “ 1 ´ 2fpxq
for any x P Fn2 . We will also refer to a sign function as to a vector from
the set t˘1u2n: F “ p´1qf “

`

p´1qf0, p´1qf1, ..., p´1qf2n´1
˘

P t˘1u2n, where
pf0, f1, ..., f2n´1q P F2n

2 is a truth-table representation of f with arguments given
in the lexicographic order. The set of Boolean functions in n variables is denoted
by Fn.

The Hamming weight wtpxq of the vector x P Fn2 is the number of nonzero
coordinates of x. The Hamming weight wtpfq of the function f P Fn is the
Hamming weight of its vector of values. The sign‘ denotes a sum modulo 2. The
Hamming distance distpf, gq between Boolean functions f, g in n variables is a
cardinality of the set tx P Fn2 : fpxq ‘ gpxq “ 1u. For x, y P Fn2 denote xx, yy “
n
À

i“1

xiyi. The Walsh-Hadamard transform (WHT) of the Boolean function f in

n variables is an integer function Wf : Fn2 Ñ Z, defined as

Wfpyq “
ÿ

xPFn2

p´1qfpxq‘xx,yy, y P Fn2 .

Let In be an identity matrix of size n and Hn “ Hbn
1 be the n-fold tensor

product of the matrix H1 with itself, where

H1 “

ˆ

1 1
1 ´1

˙

.

It is known the Hadamard property of this matrix

HnH
T
n “ 2nI2n.

In [2] an orthogonal decomposition of R2n in eigenspaces of Hn was given:

R2n
“ Ker

´

Hn ` 2n{2I2n

¯

‘ Ker
´

Hn ´ 2n{2I2n

¯

,
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where the symbol ‘ denotes a direct sum of subspaces.
Denote Hn “ 2´n{2Hn.
A Boolean function f in an even number n of variables is said to be bent if

|Wfpyq| “ 2n{2

for all y P Fn2 . The set of bent functions in n variables is denoted by Bn.
In other words, the function f is bent if and only if for its sign function F

it holds HnF P t˘1u2n. From the definition above it follows that for any y P Fn2
we have

Wfpyq “ p´1q
rfpyq2n{2

for some rf P Fn.
The Boolean function rf defined above is called the dual function of the bent

function f .
If bent function f coincides with its dual it is said to be self-dual bent. A bent

function which coincides with the negation of its dual is called an anti-self-dual
bent. In [9] it was proved that within the set of sign functions of self-dual bent
functions in n ě 4 variables there exist a basis of the eigenspace of the matrix
Hn attached to the eigenvalue 2n{2. The set of (anti-)self-dual bent functions in
n variables, according to [6], is denoted by SB`pnq

`

SB´pnq
˘

.
A mapping ϕ of the set of all Boolean functions in n variables into itself

is called an isometric mapping if it preserves the Hamming distance between
functions, that is

distpϕpfq, ϕpgqq “ distpf, gq,

for any f, g P Fn. The set of all isometric mappings of the set of all Boolean
functions in n variables into itself is denoted by In.

The general form of isometric mappings is

fpxq ÝÑ fpπpxqq ‘ gpxq,

where π is a permutation on the set Fn2 and g P Fn [11].
It is known [15] that every isometric mapping of the set of all Boolean

functions into itself that transforms bent functions into bent functions is a com-
bination of an affine transform of coordinates and an affine shift. The mapping
f ÝÑ rf defined on the set of bent functions, preserves the Hamming distance [1]
that is it is an isometric mapping of the set Bn.

There is a one-to-one correspondence between In and the set of matrices of
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order 2nˆ2n with elements from the set t0,˘1u such that in every row (column)
there is exactly one nonzero element. Indeed, let ϕ : fpxq ÝÑ fpπpxqq ‘ gpxq,
where π is a permutation on the set Fn2 and g P Fn. Then for any f P Fn and
its sign function F P t˘1u2n the sign function F 1 P t˘1u2n of ϕ pfq can be
expressed as F 1 “ AF , where A is a 2n ˆ 2n matrix

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

π pviq

0
...
0

vi 0 . . . 0 p´1qgpviq 0 . . . 0
0
...
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

in which in the row with number pi` 1q P t1, 2, ..., 2nu a nonzero element is in
the pj`1q-th column, where j is a number with binary representation π pviq. The
vector vk P Fn2 is a binary representation of the number k P t0, 1, ..., 2n ´ 1u.

Denote, according to [5], the orthogonal group of index n over the field F2

as
On “

 

L P GLpn, 2q|LLT “ In
(

,

where LT denotes the transpose of L and In is an identical matrix of order n
over the field F2.

3 Isometric mappings preserving self-duality

In [4] (Theorem 1) it was shown that the mapping

fpxq ÝÑ f pL px‘ cqq ‘ xc, xy ‘ d,

where L P On, c P Fn2 , wtpcq is even, d P F2, preserves self-duality of a bent
function. It is obvious that this mapping is an element from In.

In this section we generalize this result within isometric mappings.

Proposition 1. Let n ě 4. Isometric mapping ϕ P In with matrix A:

— preserves self-duality if and only if it preserves anti-self-duality;

— preserves self-duality if and only if AHn “ HnA.
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Proof. In [9] it has been proved that for n ě 4 within the set SB`pnq there exist
a subset tfiu

2n´1

i“1 Ă SB`pnq with linearly independent sign functions tFiu
2n´1

i“1 Ă

Ker pHn ´ I2nq and a subset tgiu
2n´1

i“1 Ă SB´pnq with linearly independent sign
functions tGiu

2n´1

i“1 Ă Ker pHn ` I2nq.
Prove the first statement. Let A preserves self-duality. Since the matrix A is

invertible one, the vectors tAFiu
2n´1

i“1 are also linearly independent sign functions
of self-dual bent functions. Then for any sign functionsG of g P SB´pnq we have:

xAG,AFiy “
@

ATAG,Fi
D

“ xG,Fiy “ 0

for i “ 1, 2, ..., 2n´1. That is, for every anti-self-dual bent function g its image
ϕpgq is also an anti-self-dual bent function. By the same arguments one can
show that the statement is true in opposite direction as well.

Now prove the second assertion. If AHn “ HnA, then for any sign functions
F of f P SB`pnq it holds:

Hn pAF q “ A pHnF q “ AF,

hence the mapping preserves self-duality.
Denote B “ HnA ´ AHn and assume that the mapping with matrix A

preserves self-duality and, as mentioned in the first assertion, anti-self-duality.
In particular, for i “ 1, 2, ..., 2n´1 it holds

Hn pAFiq “ AFi

and
Hn pAGiq “ ´AGi.

For i “ 1, 2, ..., 2n´1 we have:

pHnA´ AHnqFi “ Hn pAFiq ´ A pHnFiq “ Hn pAFiq ´ AFi “ BFi.

Then BFi “ 0 P R2n for every i “ 1, 2, ..., 2n´1. Since the set tFiu
2n´1

i“1 forms
a basis of the subspace Ker pHn ´ I2nq it can be deduced that all rows of the
matrix B are vectors from the subspace pKer pHn ´ I2nqq

K
“ Ker pHn ` I2nq.

For i “ 1, 2, ..., 2n´1 we also have:

pHnA´ AHnqGi “ Hn pAGiq ´ A pHnGiq “ Hn pAGiq ` AGi “ BGi.
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In this case BGi “ 0 P R2n for every i “ 1, 2, ..., 2n´1. Since the set tGiu
2n´1

i“1

forms a basis of the subspace Ker pHn ` I2nq we can conclude that all rows of the
matrix B are vectors from the subspace pKer pHn ` I2nqq

K
“ Ker pHn ´ I2nq.

Thus we have proved that all rows of the matrix B lie in Ker pHn ` I2nq X

Ker pHn ´ I2nq but the intersection of orthogonal subspaces consists only of the
zero element of the space Rn. Therefore the matrix B is zero matrix.

Theorem 1. An isometric mapping fpxq ÝÑ f pπpxqq ‘ gpxq of the set of all
Boolean functions in n ě 4 variables into itself preserves (anti-)self-duality if
and only if

πpxq “ L px‘ cq

and
gpxq “ xc, xy ‘ d,

where L P On, c P Fn2 , wtpcq is even, d P F2.

Proof. The opposite direction immediately comes from [4] (Theorem 1).
Assume that A is a matrix of the mapping fpxq ÝÑ f pπpxqq ‘ gpxq of the

set of all Boolean functions in n variables into itself and this mapping preserves
(anti-)self-duality. Let Ta,r be a sign function of an affine function xa, xy ‘ r,
where a P Fn2 , r P F2. In other words Ta,r is equal to some row (column) of the
matrix Hn or ´Hn. From Proposition 1 it follows that AHn “ HnA hence

Hn pATa,rq “ A pHnTa,rq “ 2n{2σ ¨ Aek “ 2n{2σ1 ¨ ek1,

where k, k1 P t1, 2, ..., 2nu , σ, σ1 P t˘1u. Then

ATa,r “ 2n{2σ1 ¨Hnek1 “ Ta1,r1

for some a1 P Fn2 , r1 P F2.
Thus the considered mapping transforms the set of all affine functions in n

variables into itself hence it has form

fpxq ÝÑ f pLx‘ bq ‘ xc, xy ‘ d,

where L is a n ˆ n invertible binary matrix, b, c P Fn2 , d P F2, see [10], for
example.

Now consider the relation AHn “ HnA in details. Denote, N “ 2n and let,
as before, vk P Fn2 be a binary representation of the number k P t0, 1, ..., 2n´1u.
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Then

Hn “

¨

˚

˚

˚

˝

p´1qxv0,v0y p´1qxv0,v1y . . . p´1qxv0,vN´1y

p´1qxv1,v0y p´1qxv1,v1y . . . p´1qxv1,vN´1y

... ... . . . ...
p´1qxvN´1,v0y p´1qxvN´1,v1y . . . p´1qxvN´1,vN´1y

˛

‹

‹

‹

‚

and A is the matrix

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Lvi ‘ b

0
...
0

vi 0 . . . 0 p´1qxc,viy‘d 0 . . . 0
0
...
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

in which in the row with number pi` 1q P t1, 2, ..., Nu a nonzero element is in
the pj ` 1q-th column, where j is a number with binary representation Lvi‘ b.

Fix arbitrary i, j P t0, 1, ..., N ´ 1u. Write explicitly

pAHnqi`1,j`1 “ p´1qxc,viy‘xLvi‘b,vjy‘d.

In order to obtain pHnAqi`1,j`1 rewrite matrix A in the following form

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

vj
0
...
0

L´1 pvj ‘ bq 0 . . . 0 p´1qxc,L
´1pvj‘bqy‘d 0 . . . 0
0
...
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Then it clear that

pHnAqi`1,j`1 “ p´1qxvi,L
´1pvj‘bqy‘xc,L´1pvj‘bqy‘d.

Since AHn “ HnA implies pAHnqi`1,j`1 “ pHnAqi`1,j`1 for any i, j P
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t0, 1, ..., N ´ 1u, the following relation must hold

p´1qxc,viy‘xLvi‘b,vjy‘d “ p´1qxvi,L
´1pvj‘bqy‘xc,L´1pvj‘bqy‘d,

or equivalently

xc, xy ‘ xLx‘ b, yy ‘ d “
@

x, L´1
py ‘ bq

D

‘

‘
@

c, L´1
py ‘ bq

D

‘ d. (1)

for any x, y P Fn2 .

Put y P Fn2 with wtpyq “ 0 in p1q. Then

xc, xy “
@

x, L´1b
D

‘
@

c, L´1b
D

,

@

x, L´1b‘ c
D

“
@

c, L´1b
D

for any x P Fn2 . Then
#

L´1b‘ c “ 0,
@

c, L´1b
D

“ 0,
#

b “ Lc,

wt pcq is even.
(2)

Return to p1q and take p2q into account:

xc, xy ‘ xLx‘ Lc, yy “
@

x, L´1
py ‘ Lcq

D

‘
@

c, L´1
py ‘ Lcq

D

,

xc, xy ‘ xLx, yy ‘ xLc, yy “
@

x, L´1y
D

‘ xx, cy ‘
@

c, L´1y
D

‘ xc, cy ,

xLx, yy ‘ xLc, yy “
@

x, L´1y
D

‘
@

c, L´1y
D

,

xL px‘ cq , yy “
A

`

L´1
˘T
px‘ cq , y

E

.

for any x, y P Fn2 . In this case

L px‘ cq “
`

L´1
˘T
px‘ cq

for any x P Fn2 that is
Lpzq “

`

L´1
˘T
pzq
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for any z P Fn2 . It holds if and only if

L “
`

L´1
˘T
. (3)

Thus, combining p2q and p3q we obtain
$

’

&

’

%

L´1 “ LT ,

b “ Lc,

wt pcq is even.

4 Isometric bijections between self-dual and anti-self-
dual bent functions

It is known [2] (Theorems 5.1, 5.3) that there exists a bijection between
SB`pnq and SB´pnq, based on the decomposition of sign functions of (anti-
)self-dual bent functions. Namely, let pY, Zq P t˘1u2n, where Y, Z P t˘1u2n´1

,
be a sign function for some f P SB`pnq. Then a vector pZ,´Y q P t˘1u2n is a
sign function for some function from SB´pnq. In terms of isometric mappings
the mentioned transform can be represented as

fpxq ÝÑ f px‘ cq ‘ xc, xy ,

where c “ p1, 0, 0, ..., 0q P Fn2 .
In paper [6] it was mentioned that the more general form of this mapping

fpxq ÝÑ f px‘ cq ‘ xc, xy ,

where c P Fn2 , wtpcq is odd, is a bijection between SB`pnq and SB´pnq. It is
obvious that this mapping is an element from In.

In this section we generalize these results within isometric mappings.

Proposition 2. Let n ě 4. Isometric mapping ϕ P In with matrix A is a
bijection between SB`pnq and SB´pnq if and only if AHn “ ´HnA.

Proof. If HnA “ ´AHn, then for any sign functions F,G of f P SB`pnq and
g P SB´pnq respectively it holds:

Hn pAF q “ ´A pHnF q “ ´AF,
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Hn pAGq “ ´A pHnGq “ AG,

hence the mapping is a bijection between SB`pnq and SB´pnq.
Take tfiu

2n´1

i“1 Ă SB`pnq with linearly independent sign functions tFiu
2n´1

i“1 Ă

Ker pHn ´ I2nq and tgiu
2n´1

i“1 Ă SB´pnq with linearly independent sign functions
tGiu

2n´1

i“1 Ă Ker pHn ` I2nq from the proof of the Proposition 1. Denote B “

HnA`AHn and assume that the mapping with matrix A is a bijection between
SB`pnq and SB´pnq. In particular, for i “ 1, 2, ..., 2n´1 it holds

Hn pAFiq “ ´AFi

and
Hn pAGiq “ AGi.

For i “ 1, 2, ..., 2n´1 we have:

pHnA` AHnqFi “ Hn pAFiq ` A pHnFiq “ Hn pAFiq ` AFi “ BFi.

Then BFi “ 0 P R2n for every i “ 1, 2, ..., 2n´1. Since the set tFiu
2n´1

i“1 forms
a basis of the subspace Ker pHn ´ I2nq it can be deduced that all rows of the
matrix B are vectors from the subspace pKer pHn ´ I2nqq

K
“ Ker pHn ` I2nq.

For i “ 1, 2, ..., 2n´1 we also have:

pHnA` AHnqGi “ Hn pAFiq ` A pHnGiq “ Hn pAGiq ´ AGi “ BGi.

In this case BGi “ 0 P R2n for every i “ 1, 2, ..., 2n´1. Since the set tGiu
2n´1

i“1

forms a basis of the subspace Ker pHn ` I2nq we can conclude that all rows of the
matrix B are vectors from the subspace pKer pHn ` I2nqq

K
“ Ker pHn ´ I2nq.

Thus we have proved that all rows of the matrix B lie in Ker pHn ` I2nq X

Ker pHn ´ I2nq but the intersection of orthogonal subspaces consists only of the
zero element of the space Rn. Therefore the matrix B is zero matrix.

Theorem 2. An isometric mapping fpxq ÝÑ f pπpxqq ‘ gpxq of the set of all
Boolean functions in n ě 4 variables into itself is a bijection between SB`pnq
and SB´pnq if and only if

πpxq “ L px‘ cq

and
gpxq “ xc, xy ‘ d,
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where L P On, c P Fn2 , wtpcq is odd, d P F2.

Proof. Let f P Bn and rf “ f ‘ ε for some ε P F2. Consider a function gpxq “
f pL px‘ cqq ‘ xc, xy ‘ d, where L P On, c P Fn2 , wtpcq is odd, d P F2:

Wgpyq “
ÿ

xPFn2

p´1qxx,yy‘gpxq “
ÿ

xPFn2

p´1qxx,yy‘fpLpx‘cqq‘xc,xy‘d “

“ p´1qd
ÿ

xPFn2

p´1qxx,y‘cy‘fpLpx‘cqq “

“ p´1qd
ÿ

zPFn2

p´1qxL
´1z‘c,y‘cy‘fpzq “

“ p´1qd‘xc,yy‘xc,cy
ÿ

zPFn2

p´1qxz,Lpy‘cqy‘fpzq “

“ p´1qd‘xc,yy‘12n{2p´1q
rfpLpy‘cqq

“ 2n{2p´1qfpLpy‘cqq‘xc,yy‘d‘ε‘1
“

“ 2n{2p´1qgpyq‘ε‘1
“ 2n{2p´1qrgpyq.

The opposite direction has been proved.

By using the same considerations as in the proof of the Theorem 1 it has
form

fpxq ÝÑ f pLx‘ bq ‘ xc, xy ‘ d,

where L is a nˆ n invertible binary matrix, , b, c P Fn2 , d P F2.

From Proposition 2 it follows that AHn “ ´HnA. Let, as before, vk P Fn2
be a binary representation of the number k P t0, 1, ..., 2n ´ 1u.

Recall from the proof of the Theorem 1 that

pAHnqi`1,j`1 “ p´1qxc,viy‘xLvi‘b,vjy‘d,

pHnAqi`1,j`1 “ p´1qxvi,L
´1pvj‘bqy‘xc,L´1pvj‘bqy‘d

for any i, j P t0, 1, ..., 2n ´ 1u.

Since AHn “ ´HnA implies pAHnqi`1,j`1 “ ´pHnAqi`1,j`1 for any i, j P
t0, 1, ..., 2n ´ 1u, the following relation must hold

p´1qxc,viy‘xLvi‘b,vjy‘d “ p´1qxvi,L
´1pvj‘bqy‘xc,L´1pvj‘bqy‘d‘1,
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or equivalently

xc, xy ‘ xLx‘ b, yy ‘ d “
@

x, L´1
py ‘ bq

D

‘

‘
@

c, L´1
py ‘ bq

D

‘ d‘ 1 (4)

for any x, y P Fn2 .

Put y P Fn2 with wtpyq “ 0 in p4q. Then

xc, xy “
@

x, L´1b
D

‘
@

c, L´1b
D

‘ 1,

@

x, L´1b‘ c
D

“
@

c, L´1b
D

‘ 1

for any x P Fn2 . Then
#

L´1b‘ c “ 0,
@

c, L´1b
D

“ 1,
#

b “ Lc,

wt pcq is odd.
(5)

Return to p4q and take p5q into account:

xc, xy ‘ xLx‘ Lc, yy “
@

x, L´1
py ‘ Lcq

D

‘
@

c, L´1
py ‘ Lcq

D

‘ 1,

xc, xy ‘ xLx, yy ‘ xLc, yy “
@

x, L´1y
D

‘ xx, cy ‘
@

c, L´1y
D

‘ xc, cy ‘ 1,

xLx, yy ‘ xLc, yy “
@

x, L´1y
D

‘
@

c, L´1y
D

,

xL px‘ cq , yy “
A

`

L´1
˘T
px‘ cq , y

E

.

for any x, y P Fn2 . It holds if and only if

L “
`

L´1
˘T
. (6)

Thus, combining p5q and p6q we obtain
$

’

&

’

%

L´1 “ LT ,

b “ Lc,

wt pcq is odd.
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5 Isometric mappings preserving the
Rayleigh quotient

In [2] the Rayleigh quotient Sf of a Boolean function f P Fn was defined as

Sf “
ÿ

x,yPFn2

p´1qfpxq‘fpyq‘xx,yy “
ÿ

yPFn2

p´1qfpyqWfpyq.

For any f P Bn the normalized Rayleigh quotient Nf is a number

Nf “
ÿ

xPFn2

p´1qfpxq‘
rfpxq

“ 2´n{2Sf .

In [2] (Theorem 3.1) it was proved that for any f P Fn the absolute value of
Sf is at most 23n{2 with equality if and only if f is self-dual

`

`23n{2
˘

and anti-
self-dual

`

´23n{2
˘

bent function. In the article [3] the operations on Boolean
functions that preserve bentness and the Rayleigh quotient were given. Namely,
it was proven that for any f P Bn, L P On, c P Fn2 , d P F2 the functions g, h P Bn
defined as gpxq “ f pLxq ‘ d and hpxq “ f px‘ cq ‘ xc, xy provide Ng “ Nf

and Nh “ p´1qxc,cyNf .
One can notice that the mentioned operations are isometric mappings from

In. In this section we generalize these results within isometric mappings.

Theorem 3. An isometric mapping ϕ P In of the set of all Boolean functions
in n ě 4 variables into itself preserves the Rayleigh quotient if and only if it
preserves self-duality.

Proof. For straight direction it is enough to mention that Sf “ `23n{2 if and
only if f P SB`pnq ([2], Theorem 3.1).

Assume that the mapping ϕ preserves self-duality. Let A be its matrix. Then
by Proposition 1 we have AHn “ HnA. Rewrite the Rayleigh quotient in the
following form:

Sf “
ÿ

x,yPFn2

p´1qfpxq‘fpyq‘xx,yy “ xF,HnF y ,

where F is a sign function. The mapping preserves the Rayleigh quotient if

Sϕpfq “ xAF,Hn pAF qy “ xF,HnF y “ Sf .
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for any sign function F . Consider

xAF,Hn pAF qy “ xAF,A pHnF qy “
@

ATAF,HnF
D

“ xF,HnF y ,

therefore it preserves the Rayleigh quotient.

Corollary 1. An isometric mapping fpxq ÝÑ f pπpxqq ‘ gpxq of the set of all
Boolean functions in n ě 4 variables into itself preserves the Rayleigh quotient
if and only if

πpxq “ L px‘ cq ,

and
gpxq “ xc, xy ‘ d,

where L P On, c P Fn2 , wtpcq is even, d P F2.

Theorem 4. An isometric mapping ϕ P In of the set of all Boolean functions
in n ě 4 variables into itself changes the sign of the Rayleigh quotient if and
only if it is a bijection between SB`pnq and SB´pnq.

Proof. For straight direction it is enough to mention that Sf “ `23n{2 if and
only if f P SB`pnq and Sf “ ´23n{2 if and only if f P SB´pnq ([2], Theorem 3.1).

Assume that the mapping ϕ is a bijection between SB`pnq and SB´pnq. Let
A be its matrix. Then by Proposition 2 we have AHn `HnA “ 0. Rewrite the
Rayleigh quotient in the following form:

Sf “
ÿ

x,yPFn2

p´1qfpxq‘fpyq‘xx,yy “ xF,HnF y ,

where F is a sign function. The mapping changes the sign of the Rayleight
quotient if

Sϕpfq “ xAF,Hn pAF qy “ ´ xF,HnF y “ ´Sf .

for any sign function F . Consider

xAF,Hn pAF qy “ xAF,´A pHnF qy “

“ ´
@

ATAF,HnF
D

“ ´xF,HnF y ,

therefore it changes the sign of the Rayleigh quotient.

Corollary 2. An isometric mapping fpxq ÝÑ f pπpxqq ‘ gpxq of the set of all
Boolean functions in n ě 4 variables into itself changes the sign of the Rayleigh
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quotient if and only if
πpxq “ L px‘ cq ,

and
gpxq “ xc, xy ‘ d,

where L P On, c P Fn2 , wtpcq is odd, d P F2.

The following corollary can be deduced:

Corollary 3. Any isometric mapping of the set of all Boolean functions in
n ě 4 variables into itself which preserves the Rayleigh quotient or changes the
sign of the Rayleigh quotient also preserves bentness.

The Rayleigh quotient characterizes the Hamming distance between a bent-
function and its dual. Indeed, let f P Bn, then

dist
´

f, rf
¯

“ 2n´1
´

1

2n{2`1
Sf “ 2n´1

´
1

2
Nf .

Thus from Proposition 1, Theorem 1 it follows that the isometric mapping
preserves bentness and the Hamming distance between any bent function in
n ě 4 variables and its dual if and only if it preserves self-duality and its form
is described by the Theorem 1.

Let us summarize the main results from this paper. Let ϕ be an isometric
mapping of the set of all Boolean functions in n ě 4 variables into itself with
matrix A, namely

ϕ : fpxq ÝÑ f pπpxqq ‘ gpxq,

where π is a permutation in Fn2 and g P Fn.

Theorem 5. The following conditions are equivalent:

– ϕ preserves self-duality;

– ϕ preserves anti-self-duality;

– ϕ preserves the Rayleigh quotient;

– ϕ preserves bentness and the Hamming distance between any bent function
and its dual;

– πpxq “ L px‘ cq and gpxq “ xc, xy ‘ d, where L P On, c P Fn2 , wtpcq is
even, d P F2;
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– AHn “ HnA.

Theorem 6. The following conditions are equivalent:

– ϕ is a bijection between SB`pnq and SB´pnq;

– ϕ changes sign of the Rayleigh quotient;

– πpxq “ L px‘ cq and gpxq “ xc, xy ‘ d, where L P On, c P Fn2 , wtpcq is
odd, d P F2;

– AHn “ ´HnA.

It follows that the way of classifying self-dual bent functions given in [2, 4]
is the most general within isometric mappings.
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Abstract

This study examines the properties of Boolean functions related to ensuring the
resistance of the filter generator to the key recovery method, based on the so-called
planar approximations. The problem of the existence of an «ideal» function, balanced
on all possible planes, is considered. The weight distribution of Boolean functions on
planes of different dimensions is studied: the number of planes on which the function is
not balanced and the weight of the function on planes of a given dimension are estimated.
In particular, the study presents all possible sets of values of the specified parameters
for functions of 5 variables.

Keywords: filter generator, Boolean function, stream cipher.

1 Introduction

The filter generator is one of the elements often used in the construction of
stream ciphers ([8, 14, 15]). The internal state of such a generator, which is a
binary string of a fixed length, initially filled with the key bits, is transformed
from cycle to cycle using a certain fixed linear transformation. The output of
each clock cycle is the value of the fixed Boolean function (which is usually
called the filter function) of the current state of the generator. Several key re-
covery methods are proposed for this scheme (see, for example, [10, 9, 11]). Such
methods are effective if the elements of the generator satisfy some negative prop-
erties (for example, the filter function is close to the function of a small number
of variables or the shift register that specifies the linear transformation has a
small number of feedbacks). Accordingly, to ensure resistance to these methods,
generator elements must satisfy certain properties. Examples of such properties
for the filter function are balancedness, nonlinearity, correlation, and algebraic
immunity. Typically, these properties are called cryptographic, and a deeper
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understanding of their nature and interrelationships is of particular interest (a
review of the results on this subject is contained in the monograph [6]).

In [1], a key recovery method for a filter generator is proposed. It uses a
planar approximation, a concept introduced in the same reference. This is the
name of a set of sequences of planes (cosets in some linear subspaces). In this
case, the planes included in the same sequence should be the images of a certain
single plane with respect to different degrees of the linear transformation used in
the generator. The key can be recovered the more effectively, the closer the filter
function to the constant on those planes that are included in the approximation.
The problem of constructing such approximations is generally nontrivial (some
special cases are considered in [1] and [5]).

As far as the authors know, the properties that generator elements must
possess to achieve the generator resistance to the method described in [1] have
not been previously studied. In this study, such properties are examined exclu-
sively in the context of the filter function. That is, the study examines whether
it is possible to ensure generator resistance only by choosing such a function.
This problem statement may seem unnatural. Indeed, the filter generator will
be resistant to the specified method if it is unable to build a sufficiently accurate
planar approximation. The possibility of its construction in the general case es-
sentially depends on the properties of not only the filter function, but also the
linear transformation. In this case, resistance can still be ensured regardless of
the linear transformation, for example, with the help of a hypothetical «ideal
function», which is balanced on all possible planes of all dimensions. However,
this study shows (see Section 4) that there is not only such a function, but also
a function balanced on all planes of at least one arbitrary dimension.

Because of the lack of a specified «ideal», this study examines how Boolean
functions can be close to it. The number of planes of various dimensions on which
the Boolean function is not balanced is estimated (see Section 5.2). We also
obtained weight estimates of a Boolean function on planes of a fixed dimension
for fixed values of its nonlinearity and weight (see Section 5.3). Therefore, an
inequality relating the degree of algebraic degeneracy of a Boolean function and
its nonlinearity was obtained. It is also proved that the number of planes on
which the weight of the function differs from half the power of the plane by
an arbitrary fixed value does not change when the function is affected by the
elements of the group GUpVnqH0 — a certain generalization of the full affine
group (inversion of the function values is additionally allowed). Regarding this
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group, a classification of Boolean functions of 5 variables has been compiled, and
for each class, the above values are given, which are related to the weight of the
function on the planes (see Section 6). The study also presents (see Section 7)
the results of estimation of these parameters for some specific Boolean functions
(for example, for the filter function used in the LILI-128 cipher [8] and bent
functions of 6 variables).

The results obtained in this work can be used to refine the estimates of
the complexity of the preliminary stage of the key recovery method, during
which planar approximations are constructed. In [4], the problem of construct-
ing «good» planar approximations is studied under the conditions of fairly
strong model assumptions: only the weight of the Boolean function is considered.
Within the framework of this model, it is impossible to compare the resistance
of generators built based on different filter functions. If the number of planes
with different weights of the function on them is known for the studied Boolean
function, then the estimate of the probability of adding a new plane to the
trajectory can be refined (for example, using the sample model without return).

The following Section 2 outlines the basic concepts and definitions that are
necessary for further discussion, and Section 3 briefly describes the method
from [1] and related concepts. The following sections describe the main results
of this work and the issues that remain open.

The proofs of all theorems and propositions are presented in Appendix.

2 Basic concepts and definitions

Let F2 be a field of 2 elements. Let Vn “ Fn2 be a linear space of dimension
n on the field F2. The set supppxq “ ti P t0, . . . , n ´ 1u |xi “ 1u is called the
carrier of vector x “ px0, . . . , xn´1q P Vn. The fact that L Ď Vn is a subspace
of space Vn shall be denoted as follows: L ă Vn. Let us denote the linear shell
of vectors vp1q, . . . , vpkq of Vn by Lpvp1q, . . . , vpkqq [12]. A coset in the subspace
of this space shall be called the plane plane in the space Vn, and its dimension
shall be the dimension of this subspace. Planes in the space Vn, the dimension
of which is equal to n´ 1, are called hyperplanes.

The Boolean function f of n variables is the mapping f : Vn Ñ F2. The
set of all Boolean functions of n variables shall be denoted by Fn. The carrier
of the function f P Fn is the set 1f “ tx P Vn | fpxq “ 1u. The weight wt pfq
of a Boolean function f P Fn is the power of its carrier. The function f P Fn
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is balanced if wt pfq “ 2n´1 [6]. For u P Vn and a P F2 let lu,a be an affine
function lu,apxq “ xx, uy‘a of n variables, where xx, uy is the scalar product of
vectors x and u. Let lu be the linear function lu,0n. For S Ă Vn and f P Fn f |S
shall denote the restriction of the function f on the set S, that is, a function
f |S : S Ñ F2, such that f |Spxq “ fpxq.

Let N0 be the set N Y t0u. A filtering generator shall mean a mapping
from N0 ˆ Vn to F2, which is determined by a non-degenerate linear mapping
A : Vn Ñ Vn and a balanced Boolean function f P Fn which assigns the number
i and the vector u˚ P Vn to the bit zi “ fpAipu˚qq. The vector u˚ shall be called
the key or the initial content of the filter generator, and the sequence of bits
z0, z1, . . . — the output sequence of the filter generator. The result of encrypting
plaintext x P VN based on the key u˚ P Vn using a stream cipher based on
the filtering generator is the vector y P VN , such that yi “ xi ‘ zi for any
i P t0, . . . , N ´1u. In other words, y “ x‘z, where z “ pz0, z1, . . . , zN´1q P VN
is the initial segment of length N of the output sequence of the filter generator.

The Walsh-Hadamard transform is often used to analyze the cryptographic
properties of Boolean functions. The Walsh-Hadamard transform of the Boolean
function f P Fn Fn is the function Wf : Vn Ñ Z, such that Wfpuq “
ř

xPVn
p´1qfpxq‘xu,xy. The values Wfpuq are called Walsh-Hadamard coefficients

(or, in short, Walsh coefficients). The following relations are valid (see, for ex-
ample, [6]):

Wfpuq “ 2n ´ 2 ¨ dist pf, luq , (1)
ÿ

uPVn

W 2
f puq “ 22n (Parseval equality). (2)

3 Key recovery method and planar approximations

In [1], a method for recovering the filter generator key was proposed, the
main idea of which is as follows. The membership of a key in a certain plane is
determined as a result of only one check of the equality of some bits of the output
sequence by previously calculated fixed values. To improve the efficiency of the
method, it is necessary to be able to perform such a check for a set of planes
that almost completely cover the entire space of keys Vn. A detailed description
of the method, evaluation of its characteristics and application examples are
given in [1].

For the present study, the necessary condition for the efficiency of this
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method is important. It consists in the existence for the filter generator of an
approximation of a special type, which was called planar in [1]. The following
are the relevant definitions from this reference.

Here and below, A is a linear mapping from Vn to Vn, and f is a function
from Fn.

Let m P N, L “ pL0, . . . , Lmq, where all Li are planes in Vn, and
T “ pt0, t1, . . . , tmq, where t0 “ 0, t0 ď t1 ă . . . ă tm are positive inte-
gers. A triple Traj “ pm,L,Tq is called a trajectory for A if the relations
Li “ Ati´ti´1pLi´1q, i “ 1, . . . ,m are valid. In this case, the value m is called
trajectory length, and L0 is an initial plane.

Let Traj “ pm,L,Tq be the trajectory for some linear transformation. Let
also B “ pb1, . . . , bmq, where all bi P F2, and P “ pp1, . . . , pmq, where all
pi P r0; 1s. A couple pB,Pq is called a characteristic of the Traj trajectory
with respect to function f P Fn, if pi is the probability that with a random
equiprobable choice of a vector v from Li the value of fpvq coincides with the
constant bi.

Each trajectory of length m corresponds to 2m characteristics, among which
there is at most one characteristic that has all pi ą 1

2 . A characteristic with
such a property is called positive with respect to f . The trajectory for which
there is a positive characteristic is called a suitable trajectory. In this case, for
any trajectory there is a characteristic in which pi ě 1

2 for all i.
The finite set of trajectories Trajp1q, . . . ,Trajpsq for A, which are suitable

with respect to the function f , with pairwise different starting planes shall be
called the planar approximation of the function f with respect to the mapping
A.

The following section deals with the existence of a function for which no
suitable trajectory exists, and therefore, there is no planar approximation for
any A.

4 Non-existence of an «ideal» function

The method described in the previous section is not applicable for a function
balanced on all planes of all dimensions. Indeed, there is no suitable trajectory
for such a function. However, the following theorem says about the non-existence
of even such a function, which is balanced on all planes of at least one dimension.

Further we will say that a certain plane of the space Vn is f -balanced (f -
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unbalanced)) if the function f is balanced (unbalanced) on this plane. If specify-
ing a particular function f is not important or it is clear from the context which
function f is in question, we will simply say about a balanced (unbalanced)
plane.

Theorem 1. For any function f P Fn and for any k, 1 ď k ď n ´ 1, there
exists a plane of space Vn of dimension k such that the weight of the function
f on it is different from 2k´1.

Even though the requirement of balancedness on all planes of at least one di-
mension, the impossibility of fulfilling which has been proved above, guarantees
the absence of suitable trajectories, it can still be weakened. This is explained
by the fact that the efficiency of the method depends not on the presence of
unbalanced planes, but on their number and on how close the function f on
such planes is to a constant. Further, we study these two parameters of Boolean
functions: number of unbalanced planes and weight of functions on planes of
different dimensions.

5 The weight of a Boolean function on planes

5.1 Planes of the space Vn

For convenience of presentation and perception of further material, let us
define the following directed graph. Let G “ pV,Eq, where V is the set of all
planes of the space Vn of dimension k, 1 ď k ď n, and E Ă tpu, vq|u, v P V u is
the set of ordered couples of vertices such that dim v “ dimu ´ 1 and v Ă u.
Next, let us identify the vertex of the graph with the plane that corresponds to
it.

Note that vertex Vn has only outgoing arcs and planes of dimension 1have
only incoming arcs. Let us call the set of planes of one dimension equal to k,
the k-th tier, 1 ď k ď n. Let us also note that if two planes corresponding to
vertices v1, v2 of one tier do not intersect, then the subgraphs formed by the
vertices to which there is a directed path from v1 and v2, respectively, do not
have common vertices.
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2n - 1 \cdot (2n - 1  - 1)

Vn

2n - k  - 1

2k+1  - 2

1

Figure 1: The properties of G.

Let us note some properties of the specified graph following from the stan-
dard linear algebra statements.

Statement 1. The number of vertices on the k-th (k “ 1, . . . , n) tier of the
graph is equal to

2n´k ¨
k
ź

i“1

2n ´ 2i´1

2k ´ 2i´1
.

Statement 2. The number of outgoing arcs for any vertex on the k-th (k “
2, . . . , n) tier of the graph is 2k`1 ´ 2.

Statement 3. The number of incoming arcs for any vertex on the k-th (k “
1, . . . , n´ 1) tier of the graph is 2n´k ´ 1.

Statement 4. . For any two vertices u1, u2 on the k-th (k “ 2, . . . , n ´ 1)
tier, there is at most one vertex v on the k ´ 1 tier such that there exist arcs
pu1, vq P E and pu2, vq P E.

For convenience, these properties are summarized in Figure 1.
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5.2 The number of unbalanced planes

Throughout this section, for the Boolean function f P Fn let Sfpkq be the
number of planes of dimension 1 ď k ď n on which the weight of the function
is different from 2k´1, that is, on which the function is unbalanced.

Theorem 2. For a balanced Boolean function f P Fn, the number of unbal-
anced hyperplanes is equal to twice a number of non-zero Walsh-Hadamard co-
efficients. In other words,

Sfpn´ 1q “ 2 ¨ |tu P Vn|Wfpuq ‰ 0u|.

Theorem 3. For a Boolean function f P Fn of the weight w, the number of
unbalanced planes of dimension 1 is equal to

Sfp1q “
wpw ´ 1q

2
`
p2n ´ wqp2n ´ w ´ 1q

2
.

Theorem 4. Let f P Fn. If for some k, 2 ď k ď n ´ 1, Sfpkq “ N ą 1, then
the number of unbalanced planes of dimension k ´ 1 satisfies the inequality

Sfpk ´ 1q ě t ¨ p2k ´ 1q ´
t ¨ pt` 1q

2
,

where t “ minp2k ´ 1, N ´ 1q.

Knowing the value of the number of unbalanced planes of dimension n ´ 1
for a balanced function (see Theorem 2), applying Theorem 4 recursively, we
can obtain non-degenerate estimates of the number of unbalanced planes on the
k-th tier, 1 ď k ď n´ 2.

Thus, according to Theorem 2, for the balanced function f “ 00017FFF,
the number of unbalanced planes of dimension n´ 1 is 8. Applying Theorem 4
recursively, we obtain the following estimates (values in parentheses are the real
values that can be found in Appendix 1): there are at least 105 p270q unbalanced
planes of dimension 3, 21 p490q unbalanced planes of dimension 2 and 3 p240q
planes of dimension 1.

5.3 Some estimates of the function weight on planes

Definition 1. The plane weight characteristic pwcd pfq of a function f of order
d, 1 ď d ď n, is a vector of length 2d´1 ` 1, the w-th component of which is
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equal to the number of planes of dimension d on which the weight of function
f is equal to either 2d´1 ´ w or 2d´1 ` w (0 ď w ď 2d´1).

For example, for functions of 5 variables identically equal to 0 and 1, planar
weight characteristics of order 3 are the same and equal p0, 0, 0, 0, 620q. For the
function fpx1, x2, x3, x4q “ x2x3`x1x3`x1x2, the planar weight characteristic
of order 2 is p70, 64, 6q, and of order 3 is p22, 0, 8, 0, 0q.

The following statement holds.

Theorem 5. [6] Let f P Fn, L Ď Vn be an arbitrary subspace and a, b P Vn be
arbitrary vectors. Then,

ÿ

xPa‘L

p´1qfpxq‘xb,xy “ 2dimL´n
¨ p´1qxa,by ¨

ÿ

uPb‘LK

Wfpuqp´1qxu,ay. (3)

Given that p´1qfpxq “ 1 ´ 2fpxq, from Theorem 5 we obtain a relation for
the weight of the function f on the plane a ‘ L (in relation (3) we assume
b “ 0n):

wt pf |a‘Lq “ 2dimL´1
´

1

2n´dimL`1
¨
ÿ

uPLK

Wfpuqp´1qxu,ay. (4)

Theorem 6. Let natural n and k be such that n ě 2 and 1 ď k ď n´ 1. Then
for any Boolean function f of n variables, any subspace L of the space Vn of
dimension k and any vector a P Vn, the following inequality is valid

ˇ

ˇ

ˇ

ˇ

wt pf |a‘Lq ´
wt pfq

2n´k

ˇ

ˇ

ˇ

ˇ

ď

ˆ

1´
1

2n´k

˙

¨ p2n´1
´ nl pfqq. (5)

Let us note that for a balanced Boolean function f , inequality (5) allows
to estimate the deviation of the weight of the function f on an arbitrary plane
a‘ L from half of its power |a‘ L| {2 “ 2k´1.

A corollary of the Theorem 6 is the following statement on the relation
between nonlinearity and the order of algebraic degeneracy (see [7, 3]) of the
Boolean functions.

For a Boolean function f P Fn the order of algebraic degeneracy AD pfq is
the maximum value of k, for which there exist a subspace L ă Vn of dimension
k, such that the function f is constant on each coset of L.

42



Corollary 1. For Boolean function f P Fn, such that wt pfq ď 2n´1, the
following inequality holds:

AD pfq ď n´ log2

ˆ

wt pfq

2n´1 ´ nl pfq
` 1

˙

.

This estimation is achieved, for example, for non constant linear functions
(then wt pfq “ 2n´1, nl pfq “ 0 and AD pfq “ n´ 1).

Now consider properties of the affine functions related to planar approxima-
tions. For natural n ě 2 and k, 1 ď k ď n´ 1, let Pn,k be the number of planes
of dimension k of the space Vn. That is

Pn,k “ 2n´k ¨
k
ź

i“1

2n ´ 2i´1

2k ´ 2i´1
.

For affine functions, the properties of planar weight characteristics are described
by the following statement.

Theorem 7. Any non-constant affine function f P Fn Fn on any plane is
either balanced or constant. Also

pwcn´1pfq “ p2
n`1

´ 4, 0, . . . , 0, 2q,

for any k, 2 ď k ď n ´ 2, the following ratio is true

pwckpfq “ pPn,k ´ 2 ¨ Pn´1,k, 0, 0, . . . , 0, 2 ¨ Pn´1,kq.

6 Numerical characteristics of Boolean functions of 5

variables

This section presents the numerical results of an analysis of the weight dis-
tribution of Boolean functions of 5 variables over planes of various dimensions.

This problem has been resolved exhaustively in the sense that the Appendix
contains all possible values of the number of unbalanced planes for functions
of 5 variables. And for balanced functions, the most interesting in terms of
cryptography, all possible values of planar weight characteristics are given. It
was possible to obtain and present the indicated results in a form convenient
for analysis because the planar weight characteristic is invariant relative to
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some generalization of the complete affine group, namely, the group GUpVnqH0.
Problems related to transformation groups of a set of Boolean functions and
classifications, are discussed in detail in [6].

Let GUpVnqHd be a set of triples pA, b, hq, where A is a nondegenerate nˆn-
matrix over the field F2, b P Vn, and h is a function from Fn such that deg h ď d.
If α “ pA, b, hq P GUpVnqHd, and f P Fn, then let fα be a function of Fn, such
that fαpxq “ fpAx‘ bq ‘ hpxq. Thus, each element of GUpVnqHd corresponds
to some transformation of the set Fn. The set of such transformations is a group
with respect to the superposition operation.

Theorem 8. For any function f P Fn, any natural d, 1 ď d ď n, , and any
element α P GUpVnqH0 the planar weight characteristic pwcd pfq and pwcd pf

αq

coincide.

It is easy to see that the set Fn is split into non-overlapping sets tfα |α P
GUpVnqHdu called equivalence classes with respect to GUpVnqHd and denoted
by tfuGUpVnqHd. Any function from such a set is called a representative of this
equivalence class (the entire equivalence class can be obtained using the action
of the elements of the group GUpVnqHd on this function). The compilation of the
classification of the set Fn with respect to a group GUpVnqHd is understood as
the compilation of a list that includes one representative of each of the existing
equivalence classes. An example of such classification can be found in [13, 2].

The Appendix provides a classification of Boolean functions of 5 variables
with respect to the group GUpV5qH0. For each of these functions, the values of
parameters are given, which coincide for all functions from the corresponding
equivalence class. Namely, the power of the equivalence class, the algebraic
degree, the nonlinearity and the number of unbalanced planes of dimensions
4, 3, 2, 1. . From the definition of a group GUpVnqH0 it follows that the same
equivalence class contains the same number of functions of weight w and 2n ´
w. Therefore, the entire classification is divided into 17 tables, each of which
includes equivalence classes containing weight functions w and 25 ´ w for w “
0, 1, . . . , 16. The tables show global and local numbering. The minimum and
maximum values in the columns containing the numbers of unbalanced planes
of various dimensions are in bold. The representative function itself is specified
in the form of a truth table written in hexadecimal notation, and the function
values written in the lexicographical order of its input arguments from left to
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right:

fp00000qfp00001qfp00010q . . . fp11101qfp11110qfp11111q.

For example, the function f “ 80018003 takes on a value 1 only on vectors
p00000q, p01111q, p10000q, p11110q, p11111q.

Let us note some features of the obtained classification. It contains 210
functions, 38 of which are balanced. Among the balanced functions for the
function 0000FFFF, which is a representative of the class of affine functions,
the minimum number of unbalanced planes is achieved at the same time for all
dimensions under consideration. In this case, for any affine function, if the plane
is unbalanced, then the function is a constant on it. The function for which the
number of unbalanced planes is maximal for each dimension does not exist (for
the function 011F37BC, the maximum is reached for dimensions 4, 2 and 1).

7 Numerical Characteristics of Some Boolean Functions

7.1 Numerical characteristics of Bent functions of 6 variables

In [16] the classification of Bent functions of 6 variables under the group
GUpV6qH1 was proposed. The classification consists of 4 equivalence classes,
for each of which below are the quantity of unbalanced planes of dimensions
5, 4, 3, 2, 1.

№ f deg f nl pfq 5 4 3 2 1

1 111E111E111EEEE1 2 28 63 1659 5175 6636 1008
2 005533660F5A3C96 3 28 63 1659 7415 6636 1008
3 033055660C3FA569 3 28 63 1659 7975 6636 1008
4 066A503C09655FCC 3 28 63 1659 8255 6636 1008

Note that for these Bent functions, the addition of arbitrary linear functions
does not change the number of unbalanced planes of any dimension. However,
an arbitrary Boolean function does not have this property.

7.2 Numerical Characteristics of filter function of LILI-128

Let n “ 10, fd P Fn be the filter function of LILI-128 cipher [8]. This
function is balanced pwt pfdq “ 512q and the nonlinearity nl pfdq is equal to
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480.
The series of practical experiments of random planes of various dimensions

generation and calculation the weight of the function on them for the function
fd were carried out. The results are shown in the following table. The first
column contains the dimension of the plane, the second column contains the
theoretical boundaries of the function weight on the planes of the corresponding
dimension, according to Theorem 6. The third column contains the boundaries
of the function weight on the planes obtained as a result of direct counting for
specific planes generated during the experiment, the fourth column shows the
number of experiments.

dim theoretical wt pfd|L‘aq experimental wt pfd|L‘aq number of tests
9 256˘ 16 256˘ 16 210

8 128˘ 24 128˘ 24 218

7 64˘ 28 64˘ 20 218

6 32˘ 30 32˘ 20 222

5 16˘ 16 16˘ 16 222

The results given in the table show that the inequality from the Theorem 6 is
best possible in the general case (the boundaries are reached for the dimensions
9 and 8).

8 Conclusion

The results obtained in this study mainly relate to the properties of Boolean
functions, and not the cryptographic properties of filter generators. The clear
need for the results obtained from cryptanalysis was explained in detail in Sec-
tion 1. At the same time, this study does not demonstrate the application of
these results to obtain applied cryptographic conclusions about the resistance
of the filter generator. This is the main unresolved issue that the authors intend
to make the main topic of further research.

However, there are problems concerning the specific features of the structure
of Boolean functions in terms of the location of their units on the planes of the
space Vn. Here are some of them.

– The issue of whether affine functions attain the minimum number of un-
balanced planes for all dimensions k, 2 ď k ď n´ 1 remains open.
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– Refinement of the inequality from Theorem 4, which is required to obtain
more accurate estimates of the number of unbalanced planes for dimensions
that are not available for complete enumeration, is of considerable interest.

– In addition, there are interesting relations connecting the weight of a func-
tion on planes or the number of unbalanced planes with various crypto-
graphic parameters of Boolean functions, for example, with an algebraic
degree.
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A Appendix 1. Quantities of unbalanced planes of func-
tions of 5 variables

Function of the weight of 0 and 32

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

1 1 00000000 2 0 0 62 620 1240 496

Function of the weight of 1 and 31

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

2 1 00000001 64 5 1 62 620 1240 465

Function of the weight of 2 and 30

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

3 1 00000003 992 4 2 62 620 1225 436

Function of the weight of 3 and 29

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

4 1 00000007 9920 5 3 62 620 1198 409

Function of the weight of 4 and 28

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

5 1 0000000F 2480 3 4 62 613 1156 384
6 2 00000017 69440 4 4 62 619 1162 384

Function of the weight of 5 and 27

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

7 1 0000001F 69440 5 5 62 614 1114 361
8 2 00000117 333312 5 5 62 615 1120 361
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Function of the weight of 6 and 26

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

9 1 0000003F 34720 4 6 62 602 1057 340
10 2 0000011F 833280 4 6 62 609 1069 340
11 3 00000356 55552 3 6 62 605 1075 340
12 4 00010117 888832 4 6 62 605 1075 340

Function of the weight of 7 and 25

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

13 1 0000007F 9920 5 7 62 578 988 321
14 2 0000013F 833280 5 7 62 597 1012 321
15 3 00000357 555520 5 7 62 603 1018 321
16 4 0001011F 4444160 5 7 62 594 1024 321
17 5 00010356 888832 5 7 62 585 1030 321

Function of the weight of 8 and 24

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

18 1 000000FF 1240 2 8 59 536 904 304
19 2 0000017F 238080 4 8 61 578 946 304
20 3 0000033F 104160 3 8 61 574 952 304
21 4 0000035F 1249920 4 8 61 590 958 304
22 5 0001013F 6666240 4 8 62 577 970 304
23 6 00010357 8888320 4 8 62 578 976 304
24 7 00030355 555520 3 8 62 578 976 304
25 8 00030356 3333120 4 8 62 564 982 304

Function of the weight of 9 and 23

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

26 1 000001FF 29760 5 7 60 550 868 289
27 2 0000037F 833280 5 7 62 569 892 289
28 3 00000777 555520 5 7 62 575 898 289
29 4 0001017F 1904640 5 9 60 557 910 289
30 5 0001033F 1666560 5 9 61 548 916 289
31 6 0001035F 19998720 5 9 61 559 922 289

Continued on the next page
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Function of the weight of 9 and 23

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

32 7 00030357 13332480 5 9 62 555 928 289
33 8 00030567 13332480 5 9 62 551 934 289
34 9 00031556 4444160 5 9 62 536 934 289
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Function of the weight of 10 and 22

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

35 1 000003FF 104160 4 6 60 542 817 276
36 2 0000077F 833280 4 6 62 549 829 276
37 3 0000177E 55552 3 6 62 545 835 276
38 4 000101FF 238080 4 8 61 536 841 276
39 5 0001037F 13332480 4 8 61 535 865 276
40 6 00010777 8888320 4 8 62 536 871 276
41 7 0003033F 166656 4 10 57 500 865 276
42 8 0003035F 9999360 4 10 59 527 877 276
43 9 0003056F 3333120 3 10 59 533 883 276
44 10 00030577 39997440 4 10 60 533 883 276
45 11 00031557 4444160 4 10 59 532 877 276
46 12 0003155B 39997440 4 10 61 524 889 276
47 13 00035556 634880 3 10 59 508 883 276
48 14 0003555A 1666560 4 10 61 494 889 276
49 15 00071356 5332992 4 10 62 530 895 276

Function of the weight of 11 and 21

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

50 1 000007FF 208320 5 5 60 514 754 265
51 2 0000177F 333312 5 5 62 515 760 265
52 3 000103FF 1666560 5 7 61 512 802 265
53 4 0001077F 13332480 5 7 60 509 814 265
54 5 0001177E 888832 5 7 62 500 820 265
55 6 0003037F 3333120 5 9 59 491 826 265
56 7 0003057F 19998720 5 9 61 507 832 265
57 8 00030777 26664960 5 9 58 503 838 265
58 9 0003155F 39997440 5 9 58 508 838 265
59 10 0003156F 39997440 5 9 60 504 844 265
60 11 00035557 634880 5 9 62 515 820 265
61 12 0003555B 13332480 5 9 60 494 844 265
62 13 0007133D 19998720 5 11 57 490 850 265
63 14 00071357 63995904 5 11 57 505 850 265

Continued on the next page
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Function of the weight of 11 and 21

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

64 15 0007333C 333312 5 11 57 430 850 265
65 16 00073356 13332480 5 11 59 506 856 265
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Function of the weight of 12 and 20

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

66 1 00000FFF 17360 3 4 56 461 676 256
67 2 000017FF 208320 4 4 60 467 682 256
68 3 000107FF 3333120 4 6 59 479 754 256
69 4 0001177F 5332992 4 6 57 475 760 256
70 5 000303FF 416640 3 8 55 457 772 256
71 6 000305FF 2499840 4 8 59 483 778 256
72 7 0003077F 19998720 4 8 59 470 790 256
73 8 0003157F 53329920 4 8 57 481 796 256
74 9 0003177D 6666240 3 8 51 481 796 256
75 10 0003177E 6666240 4 8 55 467 802 256
76 11 0003555F 6666240 4 8 59 490 790 256
77 12 0003556F 19998720 4 8 55 477 802 256
78 13 00070777 4444160 4 10 59 467 802 256
79 14 0007133F 9999360 4 10 59 477 802 256
80 15 0007135F 79994880 4 10 57 483 808 256
81 16 0007137D 79994880 4 10 55 474 814 256
82 17 0007333D 6666240 4 10 55 449 814 256
83 18 00073357 79994880 4 10 55 479 814 256
84 19 00073567 53329920 4 10 53 485 820 256
85 20 000F333C 27776 2 12 47 335 820 256
86 21 000F3355 1666560 3 12 47 455 820 256
87 22 000F3356 4999680 4 12 51 481 826 256
88 23 00171B56 5332992 3 12 47 485 820 256
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Function of the weight of 13 and 19

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

89 1 00001FFF 69440 5 3 56 400 598 249
90 2 00010FFF 277760 5 5 59 436 694 249
91 3 000117FF 3333120 5 5 53 437 700 249
92 4 000307FF 4999680 5 7 57 434 742 249
93 5 000315FF 6666240 5 7 51 455 748 249
94 6 0003177F 26664960 5 7 54 446 754 249
95 7 0003557F 13332480 5 7 54 461 754 249
96 8 0003567F 13332480 5 7 48 452 760 249
97 9 0007077F 4444160 5 9 56 427 760 249
98 10 0007137F 79994880 5 9 53 454 772 249
99 11 00071777 53329920 5 9 56 455 778 249
100 12 0007177E 17776640 5 9 50 436 784 249
101 13 0007333F 3333120 5 9 59 453 766 249
102 14 0007335F 39997440 5 9 56 460 778 249
103 15 00073377 19998720 5 9 53 469 772 249
104 16 0007337D 39997440 5 9 50 446 784 249
105 17 0007356F 13332480 5 9 50 456 784 249
106 18 00073577 159989760 5 9 50 461 784 249
107 19 000F333D 555520 5 11 53 392 790 249
108 20 000F3357 19998720 5 11 53 452 790 249
109 21 000F3567 13332480 5 11 47 468 796 249
110 22 0017173D 13332480 5 11 53 442 790 249
111 23 00171B3D 39997440 5 11 47 463 796 249
112 24 00171B57 106659840 5 11 53 462 790 249
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Function of the weight of 14 and 18

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

113 1 00003FFF 14880 4 2 48 312 505 244
114 2 00011FFF 1111040 4 4 47 389 637 244
115 3 00030FFF 416640 4 6 51 384 697 244
116 4 000317FF 9999360 4 6 49 411 709 244
117 5 000355FF 1666560 4 6 49 431 709 244
118 6 000356FF 1666560 3 6 33 427 715 244
119 7 0003577F 13332480 4 6 48 427 715 244
120 8 000707FF 1666560 4 8 49 378 721 244
121 9 000713FF 9999360 4 8 47 425 733 244
122 10 0007177F 53329920 4 8 49 422 745 244
123 11 0007337F 39997440 4 8 49 437 745 244
124 12 0007357F 79994880 4 8 48 438 751 244
125 13 00073777 53329920 4 8 48 448 751 244
126 14 0007377D 53329920 4 8 47 434 757 244
127 15 000F1777 13332480 4 10 51 434 757 244
128 16 000F177E 4444160 3 10 35 410 763 244
129 17 000F333F 277760 4 10 53 422 745 244
130 18 000F335F 9999360 4 10 51 449 757 244
131 19 000F337D 4999680 4 10 49 416 769 244
132 20 000F356F 3333120 3 10 35 455 763 244
133 21 000F3577 39997440 4 10 49 446 769 244
134 22 0017173F 19998720 4 10 51 429 757 244
135 23 0017177E 6666240 4 10 49 396 769 244
136 24 00171B3F 19998720 3 10 35 445 763 244
137 25 00171B5F 159989760 4 10 50 445 763 244
138 26 00171B7D 79994880 4 10 49 436 769 244
139 27 00171F3D 159989760 4 10 49 441 769 244
140 28 00173D3D 13332480 4 10 50 455 763 244
141 29 00173D5B 79994880 4 10 48 452 775 244
142 30 011717BC 6666240 4 12 47 443 781 244
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Function of the weight of 15 and 17

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

143 1 00007FFF 1984 5 1 32 200 400 241
144 2 00013FFF 238080 5 3 39 333 568 241
145 3 00031FFF 1666560 5 5 39 369 664 241
146 4 000357FF 6666240 5 5 43 395 670 241
147 5 00070FFF 277760 5 7 35 308 688 241
148 6 000717FF 13332480 5 7 41 387 712 241
149 7 000733FF 4999680 5 7 41 407 712 241
150 8 000735FF 9999360 5 7 45 413 718 241
151 9 0007377F 79994880 5 7 44 419 724 241
152 10 00077777 4444160 5 7 44 434 724 241
153 11 0007777B 13332480 5 7 48 425 730 241
154 12 000F177F 13332480 5 9 42 405 730 241
155 13 000F337F 4999680 5 9 41 426 736 241
156 14 000F357F 19998720 5 9 45 437 742 241
157 15 000F3777 13332480 5 9 44 443 748 241
158 16 000F377D 13332480 5 9 48 424 754 241
159 17 0017177F 13332480 5 9 41 396 736 241
160 18 00171B7F 79994880 5 9 45 422 742 241
161 19 00171F3F 79994880 5 9 45 432 742 241
162 20 00171F77 159989760 5 9 44 428 748 241
163 21 00171F7E 53329920 5 9 48 414 754 241
164 22 00173D3F 79994880 5 9 44 438 748 241
165 23 00173D5F 159989760 5 9 48 434 754 241
166 24 00173D7E 39997440 5 9 48 439 754 241
167 25 001F373D 13332480 5 11 47 425 760 241
168 26 001F3757 106659840 5 11 47 440 760 241
169 27 0117177E 888832 5 11 47 335 760 241
170 28 011717BD 39997440 5 11 47 415 760 241
171 29 01171BD7 63995904 5 11 47 435 760 241
172 30 01171BFC 39997440 5 11 51 441 766 241
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Function of the weight of 16

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

173 1 0000FFFF 62 1 0 2 60 280 240
174 2 00017FFF 15872 4 2 32 270 490 240
175 3 00033FFF 59520 3 4 16 326 616 240
176 4 00035FFF 833280 4 4 40 362 622 240
177 5 00071FFF 555520 4 6 32 342 682 240
178 6 000737FF 9999360 4 6 40 394 694 240
179 7 0007777F 8888320 4 6 44 410 700 240
180 8 000F0FFF 8680 2 8 8 204 664 240
181 9 000F17FF 1666560 4 8 36 366 706 240
182 10 000F33FF 312480 3 8 20 402 712 240
183 11 000F35FF 1249920 4 8 44 418 718 240
184 12 000F377F 9999360 4 8 42 425 730 240
185 13 000F7777 555520 3 8 26 446 736 240
186 14 000F777B 1666560 4 8 50 432 742 240
187 15 001717FF 833280 3 8 20 362 712 240
188 16 00171BFF 4999680 4 8 44 398 718 240
189 17 00171F7F 53329920 4 8 42 410 730 240
190 18 00173D7F 39997440 4 8 46 426 736 240
191 19 00173F3F 9999360 4 8 42 425 730 240
192 20 00173F5F 39997440 4 8 46 426 736 240
193 21 00173F7D 9999360 3 8 26 426 736 240
194 22 00173F7E 19998720 4 8 50 422 742 240
195 23 00177E7E 1666560 4 8 50 432 742 240
196 24 001F1F77 13332480 4 10 40 422 742 240
197 25 001F373F 9999360 4 10 40 432 742 240
198 26 001F375F 79994880 4 10 44 438 748 240
199 27 001F377D 39997440 4 10 48 429 754 240
200 28 0117177F 444416 4 10 32 360 730 240
201 29 011717BF 19998720 4 10 40 412 742 240
202 30 011717FE 6666240 4 10 48 384 754 240
203 31 01171BDF 53329920 4 10 44 428 748 240
204 32 01171BFD 79994880 4 10 48 424 754 240

Continued on the next page
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Function of the weight of 16

№ №local f |tfuGUpV5qH0
| deg f nl pfq 4 3 2 1

205 33 01171FF6 39997440 4 10 48 429 754 240
206 34 01173DED 31997952 4 10 52 440 760 240
207 35 011F377C 1666560 3 12 32 400 760 240
208 36 011F37BC 1666560 4 12 56 436 766 240
209 37 011F37D6 5332992 3 12 32 440 760 240
210 38 033F566A 27776 2 12 32 240 760 240

B Appendix 2. Plane weight characteristics of function
of 5 variables

Function of the weight of 16 with plane weight characteristic
№ f dim 0 1 2 3 4 5 6 7 8

1 0000FFFF 1 256 240 - - - - - - -
2 960 0 280 - - - - - -
3 560 0 0 0 60 - - - -
4 60 0 0 0 0 0 0 0 2

2 00017FFF 1 256 240 - - - - - - -
2 750 280 210 - - - - - -
3 350 210 0 30 30 - - - -
4 30 30 0 0 0 0 0 2 0

3 00033FFF 1 256 240 - - - - - - -
2 624 448 168 - - - - - -
3 294 224 56 32 14 - - - -
4 46 0 14 0 0 0 2 0 0

4 00035FFF 1 256 240 - - - - - - -
2 618 456 166 - - - - - -
3 258 272 44 32 14 - - - -
4 22 32 6 0 0 0 2 0 0

5 00071FFF 1 256 240 - - - - - - -
2 558 536 146 - - - - - -
3 278 210 96 30 6 - - - -
4 30 24 0 6 0 2 0 0 0

Continued on the next page
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Function of the weight of 16 with plane weight characteristic
№ f dim 0 1 2 3 4 5 6 7 8

6 000737FF 1 256 240 - - - - - - -
2 546 552 142 - - - - - -
3 226 276 84 28 6 - - - -
4 22 28 8 2 0 2 0 0 0

7 0007777F 1 256 240 - - - - - - -
2 540 560 140 - - - - - -
3 210 294 84 26 6 - - - -
4 18 30 12 0 0 2 0 0 0

8 000F0FFF 1 256 240 - - - - - - -
2 576 512 152 - - - - - -
3 416 0 192 0 12 - - - -
4 54 0 0 0 8 0 0 0 0

9 000F17FF 1 256 240 - - - - - - -
2 534 568 138 - - - - - -
3 254 222 120 18 6 - - - -
4 26 28 0 4 4 0 0 0 0

10 000F33FF 1 256 240 - - - - - - -
2 528 576 136 - - - - - -
3 218 256 136 0 10 - - - -
4 42 0 16 0 4 0 0 0 0

11 000F35FF 1 256 240 - - - - - - -
2 522 584 134 - - - - - -
3 202 288 108 16 6 - - - -
4 18 32 8 0 4 0 0 0 0

12 000F377F 1 256 240 - - - - - - -
2 510 600 130 - - - - - -
3 195 290 116 14 5 - - - -
4 20 28 8 4 2 0 0 0 0

13 000F7777 1 256 240 - - - - - - -
2 504 608 128 - - - - - -
3 174 312 120 8 6 - - - -
4 36 0 24 0 2 0 0 0 0

14 000F777B 1 256 240 - - - - - - -
Continued on the next page
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Function of the weight of 16 with plane weight characteristic
№ f dim 0 1 2 3 4 5 6 7 8

2 498 616 126 - - - - - -
3 188 292 124 12 4 - - - -
4 12 32 16 0 2 0 0 0 0

15 001717FF 1 256 240 - - - - - - -
2 528 576 136 - - - - - -
3 258 224 104 32 2 - - - -
4 42 0 16 0 4 0 0 0 0

16 00171BFF 1 256 240 - - - - - - -
2 522 584 134 - - - - - -
3 222 272 92 32 2 - - - -
4 18 32 8 0 4 0 0 0 0

17 00171F7F 1 256 240 - - - - - - -
2 510 600 130 - - - - - -
3 210 278 104 26 2 - - - -
4 20 28 8 4 2 0 0 0 0

18 00173D7F 1 256 240 - - - - - - -
2 504 608 128 - - - - - -
3 194 296 104 24 2 - - - -
4 16 30 12 2 2 0 0 0 0

19 00173F3F 1 256 240 - - - - - - -
2 510 600 130 - - - - - -
3 195 290 116 14 5 - - - -
4 20 28 8 4 2 0 0 0 0

20 00173F5F 1 256 240 - - - - - - -
2 504 608 128 - - - - - -
3 194 296 104 24 2 - - - -
4 16 30 12 2 2 0 0 0 0

21 00173F7D 1 256 240 - - - - - - -
2 504 608 128 - - - - - -
3 194 296 104 24 2 - - - -
4 36 0 24 0 2 0 0 0 0

22 00173F7E 1 256 240 - - - - - - -
2 498 616 126 - - - - - -
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Function of the weight of 16 with plane weight characteristic
№ f dim 0 1 2 3 4 5 6 7 8

3 198 284 116 20 2 - - - -
4 12 32 16 0 2 0 0 0 0

23 00177E7E 1 256 240 - - - - - - -
2 498 616 126 - - - - - -
3 188 292 124 12 4 - - - -
4 12 32 16 0 2 0 0 0 0

24 001F1F77 1 256 240 - - - - - - -
2 498 616 126 - - - - - -
3 198 284 116 20 2 - - - -
4 22 24 8 8 0 0 0 0 0

25 001F373F 1 256 240 - - - - - - -
2 498 616 126 - - - - - -
3 188 292 124 12 4 - - - -
4 22 24 8 8 0 0 0 0 0

26 001F375F 1 256 240 - - - - - - -
2 492 624 124 - - - - - -
3 182 302 116 18 2 - - - -
4 18 26 12 6 0 0 0 0 0

27 001F377D 1 256 240 - - - - - - -
2 486 632 122 - - - - - -
3 191 286 124 18 1 - - - -
4 14 28 16 4 0 0 0 0 0

28 0117177F 1 256 240 - - - - - - -
2 510 600 130 - - - - - -
3 260 210 120 30 0 - - - -
4 30 20 12 0 0 0 0 0 0

29 011717BF 1 256 240 - - - - - - -
2 498 616 126 - - - - - -
3 208 276 108 28 0 - - - -
4 22 24 8 8 0 0 0 0 0

30 011717FE 1 256 240 - - - - - - -
2 486 632 122 - - - - - -
3 236 122 144 18 0 - - - -

Continued on the next page
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Function of the weight of 16 with plane weight characteristic
№ f dim 0 1 2 3 4 5 6 7 8

4 14 28 16 4 0 0 0 0 0
31 01171BDF 1 256 240 - - - - - - -

2 492 624 124 - - - - - -
3 192 294 108 26 0 - - - -
4 18 26 12 6 0 0 0 0 0

32 01171BFD 1 256 240 - - - - - - -
2 486 632 122 - - - - - -
3 196 282 120 22 0 - - - -
4 14 28 16 4 0 0 0 0 0

33 01171FF6 1 256 240 - - - - - - -
2 486 632 122 - - - - - -
3 191 286 124 18 1 - - - -
4 14 28 16 4 0 0 0 0 0

34 01173DED 1 256 240 - - - - - - -
2 480 640 120 - - - - - -
3 180 300 120 20 0 - - - -
4 10 30 20 2 0 0 0 0 0

35 011F377C 1 256 240 - - - - - - -
2 480 640 120 - - - - - -
3 220 240 144 16 0 - - - -
4 30 32 0 0 0 0 0 0 0

36 011F37BC 1 256 240 - - - - - - -
2 474 648 118 - - - - - -
3 184 288 132 16 0 - - - -
4 6 32 24 0 0 0 0 0 0

37 011F37D6 1 256 240 - - - - - - -
2 480 640 120 - - - - - -
3 180 300 120 20 0 - - - -
4 30 32 0 0 0 0 0 0 0

38 033F566A 1 256 240 - - - - - - -
2 480 640 120 - - - - - -
3 380 240 0 0 0 - - - -
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Function of the weight of 16 with plane weight characteristic
№ f dim 0 1 2 3 4 5 6 7 8

4 30 32 0 0 0 0 0 0 0

C Appendix 3. Proofs of the propositions

C.1 Proof of the Theorem 1

Proof. All further reasonings are given for an arbitrary fixed function f .
First, let us prove that if there is an unbalanced plane of dimension k ą 1,

then there are unbalanced planes of all smaller dimensions. It is enough to show
that there is an unbalanced plane of dimension k ´ 1. For an arbitrary plane
L‘a of dimension k, let us consider an arbitrary subspace L1 ă L of dimension
k´ 1. Then L‘ a “ pL1‘ aq Y pL1‘ a‘ bq, where b P LzL1. Since the function
f is unbalanced on the plane L ‘ a, then at least on one of the planes L1 ‘ a

and L1‘ a‘ b having dimensions k´ 1, the function f will also be unbalanced.
Let us show that for any Boolean function f there is a hyperplane on

which the weight of the function is different from 2n´2. Each linear func-
tion lu corresponds to a partition of the space Vn into two hyperplanes:
L0
u “ tx P Vn|xx, uy “ 0u and L1

u “ tx P Vn|xx, uy “ 1u. Let w0
u “ wt

`

f |L0
u

˘

and w1
u “ wt

`

f |L1
u

˘

. Then dist pf, luq “ w0
u ` p2

n´1 ´ w1
uq “ 2n´1 ` w0

u ´ w1
u.

Considering that Wfpuq “ 2n´ 2 ¨ dist pf, luq (see. (1)), Wfpuq “ 2 ¨ pw0
u´w

1
uq.

). It follows from Parseval equality (2) that there exists a vector u P Vn such
that Wfpuq “ 2 ¨ pw0

u ´ w1
uq ‰ 0. It follows that w0

u ‰ w1
u, i.e. w0

u ‰ 2n´2 or
w1
u ‰ 2n´2. Thus, there is at least one hyperplane on which the function f is

unbalanced.
Since for any function f f there is a hyperplane, i.e. a plane of dimension

n´1, on which the function is unbalanced, then, as shown above, there are also
unbalanced planes of all smaller dimensions for it.

C.2 Proof of the Theorem 1

Proof. . The number of vertices on the k-th tier of the graph G G is equal
to the number of different planes of dimension k of the space Vn. There are
śk

i“1
2n´2i´1

2k´2i´1 different subspaces of dimension k of the space Vn. For any two
subspaces, their adjacent classes do not coincide. In this case, for any subspace
there are exactly 2n´k distinct adjacent classes.
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C.3 Proof of the Theorem 2

Proof. Let u u be a vertex on k-th, k “ 2, . . . , n, , tier of the graph G, which
corresponds to the plane L‘ a, dimL “ k. Vertices v entering into arcs pu, vq,
are in one-to-one correspondence with the hyperplanes of the space L. According
to Statement 1 the number of such hyperplanes is

k´1
ź

i“1

2k ´ 2i´1

2k´1 ´ 2i´1
“ 2k`1

´ 2.

C.4 Proof of the Theorem 3

Proof. Let us estimate the number of incoming arcs to the vertex v P V on
the k-th tier, k “ 1, . . . , n ´ 1, which corresponds to the plane L ‘ a, where
dimL “ k, a P Vn. Let tv1, . . . vku is a basis of the subspace L.

If there is an arc pu, vq P E, then, by definition of the graph, the vertex u
corresponds to the planeM‘b, where dimM “ k`1, b P Vn and L‘a ĂM‘b.
Let us note that if L‘ a ĂM ‘ b, then a PM ‘ b, hence M ‘ b “M ‘ a and
L ĂM . Since L ĂM , the subspaceM could be represented as: LYtL‘vk`1u.
Hence, one of the bases of the subspaceM M is the union of the basis tv1, . . . vku

and the vector vk`1.
The number of different vectors vk`1 R L is 2n ´ 2k, and addition of any

vector from L‘ vk`1 to the basis of the subspace L leads to the same subspace
M . Hence, the number of different ways to define subspaceM is 2n´2k

2k
“ 2n´k´

1.

C.5 Proof of the Theorem 4

Proof. To prove this statement, it should only be noted that the intersection
of two planes is a plane. Therefore, the maximum intersection of two planes of
dimension k can be a plane of dimension k´ 1, which will be a vertex adjacent
to both vertices on the k-the tier.
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C.6 Proof of the Theorem 2

Proof. As already noted in Theorem 1,Wfpuq “ 2n´2¨dist pf, lu,0q “ 2¨pwu,0´
wu,1q, where w0

u “ wt
`

f |L0
u

˘

and w1
u “ wt

`

f |L1
u

˘

, while Lbu “ tx P Vn|xx, uy “
bu, b P t0, 1u. Since the function f is balanced, then w0

u ` w
1
u “ 2n´1.

If Wfpuq “ 0, then w0
u “ w1

u “ 2n´2, that is, the function is balanced on
hyperplanes. If Wfpuq ‰ 0, then w0

u ‰ w1
u. Without limiting generality, let

w0
u “ 2n´2 ` d, 0 ă d ď 2n´2. Then w1

u “ 2n´2 ´ d, since w0
u ` w1

u “ 2n´1.
Therefore, on both hyperplanes, the weight of the function f differs from 2n´2

by an amount equal to d.

C.7 Proof of the Theorem 3

Proof. To prove this statement, it is sufficient to note that any pair of vectors
from the carrier of the function f P Fn or from the set Vnz1f forms a plane of
dimension 1, on which the function takes the value 1 or 0 respectively, that is,
is constant. Since under hypothesis |1f | “ w, the number of such pairs is

ˆ

w

2

˙

`

ˆ

2n ´ w

2

˙

“
wpw ´ 1q

2
`
p2n ´ wqp2n ´ w ´ 1q

2
.

C.8 Proof of the Theorem 4

Proof. According to Statemt 2, the number of outgoing arcs from the vertex on
the k-th tier is 2¨p2k´1q. Let us note the following two facts. When partitioning
an unbalanced plane of dimension k into two subplanes of dimension k ´ 1, at
least one of them is unbalanced. Two vertices on the k-th level can have at most
one vertex on the k ´ 1-th level adjacent to each of them (Theorem 4).

Let the number of vertices corresponding to unbalanced planes on the k-th
tier be equal to N . Let us consistently estimate the «contribution» of each such
vertex to the total number of unbalanced planes of dimension k ´ 1. When
considering one such vertex, we can say that there are at least 2k ´ 1 vertices
on the k´ 1-th tier, which correspond to unbalanced planes. When considering
each next vertex, it is necessary to take into account that the unbalanced planes
on the k ´ 1-th tier being added have already been taken into account when
considering the previous vertices. Thus, consideration of vertex vi, 1 ď i ď N ,
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increases the total number of unbalanced planes on k´1-th tier by no less than
p2k ´ 1q ´ pi ´ 1q (in the worst case, one intersection occurs with each vertex
taken into account when considering each of the previous i ´ 1 vertices). Let
t “ minp2k ´ 1, N ´ 1q. Then, after considering all N vertices on the k-th tier
for the value Sfpk ´ 1q, the following estimate is valid:

Sfpk ´ 1q ě p2k ´ 1q ` p2k ´ 1q ´ 1` p2k ´ 1q ´ 2` . . .` p2k ´ 1q ´ t “

“ t ¨ p2k ´ 1q ´
t
ÿ

i“1

i “ t ¨ p2k ´ 1q ´
t ¨ pt` 1q

2
.

C.9 Proof of the Corollary 1

Proof. For a Boolean function f , such that wt pfq ď 2n´1, the inequality (5)
does not contradict that f can be constant on planes of dimension k if

wt pfq

2n´k
ď

ˆ

1´
1

2n´k

˙

¨ p2n´k ´ nl pfqq.

This holds for k, such that k ď n ´ log2

´

wtpfq
2n´1´nlpfq ` 1

¯

. Exactly such values
of k the parameter AD pfq can take.

C.10 Proof of the Theorem 6

Proof. Let’s use the ratio (4). Given thatWfpuq “ 2n´2 ¨dist pf, luq, we obtain
the equality

wt pf |a‘Lq “

“ 2k´1
´

1

2n´k`1
¨

˜

2n ¨
ÿ

uPLK

p´1qxu,ay ´ 2 ¨
ÿ

uPLK

dist pf, luq p´1qxu,ay

¸

.

With a R L,
ř

uPLKp´1qxu,ay “ 0 is valid, and with a P L,
ř

uPLKp´1qxu,ay “
2n´k is valid (see. [6]). Hence

wt pf |a‘Lq “ 2k´1
`

1

2n´k
¨
ÿ

uPLK

dist pf, luq p´1qxu,ay,with a R L, and
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wt pf |Lq “ ´2n´1
` 2k´1

`
1

2n´k

ÿ

uPLK

dist pf, luq ,with a P L.

Let us consider the case of a P L. Let us note that ´2n´1 ` 2k´1 “ ´2n´1 ¨

p1´ 1{2n´kq. Since dist pf, luq ě nl pfq, the following inequality is valid

wt pf |Lq ě 2k´1
´ 2n´1

`
wt pfq

2n´k
`

2n´k ´ 1

2n´k
¨ nl pfq “

“
wt pfq

2n´k
´

ˆ

1´
1

2n´k

˙

¨ p2n´1
´ nl pfqq.

Given that dist pf, luq ď 2n ´ nl pfq, we obtain an inequality

wt pf |Lq ď 2k´1
´ 2n´1

`
wt pfq

2n´k
`

ˆ

1´
1

2n´k

˙

¨ p2n ´ nl pfqq “

“
wt pfq

2n´k
`

ˆ

1´
1

2n´k

˙

¨ p2n´1
´ nl pfqq.

Thus, the following inequality holds true
ˇ

ˇ

ˇ

ˇ

wt pf |Lq ´
wt pfq

2n´k

ˇ

ˇ

ˇ

ˇ

ď

ˆ

1´
1

2n´k

˙

¨ p2n´1
´ nl pfqq. (6)

Let us consider the case of a R L. The following relations are valid

wt pf |a‘Lq “

“ 2k´1
`

wt pfq

2n´k
`

1

2n´k
¨

2n´k´1´1
ÿ

i“1

dist pf, luiq ´
1

2n´k
¨

2n´k´1
ÿ

j“1

dist
`

f, luj
˘

ď

ď 2k´1
`

wt pfq

2n´k
`

2n´k´1 ´ 1

2n´k
¨ p2n ´ nl pfqq ´

2n´k´1

2n´k
¨ nl pfq “

“
wt pfq

2n´k
`

ˆ

1´
1

2n´k

˙

p2n´1
´ nl pfqq.

Similarly, the lower estimate wt pf |a‘Lq is obtained, which coincides with the
estimate obtained for wt pf |Lq.

Thus, the required estimate is proved for an arbitrary a P Vn.
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C.11 Proof of the Theorem 8

Proof. Multiplication by a nondegenerate matrix and addition of an arbitrary
vector from Vn takes an arbitrary plane of the space Vn to some plane of the
same space, and the dimensions of these planes coincide. Thus, the number of
planes on which the weight of the function f has a given value does not change.

Adding a function h of degree not greater than 0 means either adding zero,
which does not change the value of the function on any of the arguments, or
adding a function identically equal to 1, which leads to the inversion of all
values of the function. At the same time, the planar weight characteristic of
the function does not change, since it depends on the absolute value of the
deviation of the weight of the function on the plane from the half cardinality of
the plane.

C.12 Proof of the Theorem 7

Proof. Any non-constant affine function f “ lu,a P Fn takes the value a on
the subspace L “ t0n, uuK of dimension n ´ 1 and its opposite value a ‘ 1 on
the plane L1 “ VnzL. Since the intersection of the planes is a plane, any other
planes of dimension n´1 intersect with L and L1 exactly on half of the vectors,
therefore the function f on these planes is balanced. Thus, it is proved that
pwcn´1pfq “ p2

n`1 ´ 4, 0, . . . , 0, 2q.
Let us prove a statement for dimensions k, 2 ď k ď n ´ 2. Since L and

L1 do not intersect, the planes of smaller dimensions contained in them also do
not intersect (in terms of the graph introduced in Section 5.1, this means that
the sets of vertices that can be reached from vertices corresponding to L and
L1, do not intersect). The numbers of planes of dimensions n ´ 2, n ´ 3, . . . , 2,
contained in L and L1, coincide and are equal to Pn´1,n´2,Pn´1,n´3, . . . ,Pn´1,2

respectively. And the function f is constant on all these planes. Moreover, any
plane on which the function f is constant is a subset of either L or L1.

To complete the proof, it remains to show that for the function f there is
no plane on which f is non-constant and unbalanced. Indeed, if such a plane
exists, then the cardinality of at least one of its intersections with the planes
L and L1 will be different from the cardinality of two (intersection powers are
2k´1 ´ w and 2k´1 ` w, where w ‰ 0), which is contrary to the fact that these
intersections are planes.
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Abstract

In this paper we study the MOR cryptosystem with finite Chevalley groups. There
are four infinite families of finite classical Chevalley groups. These are: special linear
groups SLpd, qq, orthogonal groups Opd, qq and symplectic groups Sppd, qq. The MOR
cryptosystem over SLpd, qq was studied by the first author, “A simple generalization of
the ElGamal cryptosystem to non-abelian groups II, Communications in Algebra 40
(2012), no. 9, 3583–3596”. In that case, the hardness of the MOR cryptosystem was
found to be equivalent to the discrete logarithm problem in Fqd . In this paper, we show
that the MOR cryptosystem over Sppd, qq has the security of the discrete logarithm
problem in Fqd . However, it seems likely that the security of the MOR cryptosystem for
the family of orthogonal groups is F

qd2
.

Keywords: MOR cryptosystem, Chevalley groups, public-key cryptography.

1 Introduction

This paper is a study of the MOR cryptosystem using the orthogonal and
symplectic groups over finite fields of odd characteristic. We only study
split orthogonal groups in this paper and refer to it as orthogonal groups. This
paper follows a paper by the first author [13] and uses a Gaussian elimination
algorithm developed by Bhunia et. al. [3]. It is recommended that the reader
reads [3, Sections 4] or [2, Appendix A] before reading this paper. In an earlier
paper [13], we saw that the security of the MOR cryptosystem over SLpd, qq rests
on the discrete logarithm problem in Fqd. Though this information is useful,
however it says that there is no point in using the MOR cryptosystem over
SLpd, qq – one might as well use the ElGamal cryptosystem over matrices of size
d over Fq. We would refer to this situation as an unusable MOR cryptosystem.
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In this paper, we show that the MOR cryptosystem over symplectic groups is
unusable. However, the MOR cryptosystem over orthogonal groups have good
potential. This paper was published as a part of a book chapter [2].

This paper is in the direction of generalizing the ElGamal cryptosystem
with the hope that something practical and useful will come out of this gen-
eralization. This line of research is relevant today in the light of Joux’s attack
on the discrete logarithm problem in finite fields of small characteristic [1, 10]
and recent developments in building quantum computers. Several attempts to-
wards non-abelian cryptography were made by many eminent mathematicians.
To name a few, Maze et. al. [7, 8] developed SAP and Shpilrain and Zapata
developed CAKE [18], both work with non-abelian structures. There is an in-
teresting cryptosystem in the work of Climent et. al. [5] and an interesting key
exchange protocol in Kahrobaei et. al. [11] and Glukhov [9].

1.1 Notations and terminology

We have used TX to denote the transpose of the matrixX. This was necessary
to avoid any confusion that might arise when using X´1 and TX simultaneously.
In this paper, we use K and Fq interchangeably, while each of them is a finite
field of odd characteristic. The matrix teij is used to denote the matrix unit
with t in the pi, jqth place and zero everywhere else. All other notations used
are standard.

2 The MOR Cryptosystem

This section provides a brief introduction to MOR cryptosystem. For further
details a reader can consult [14, Section 3].

2.1 The MOR cryptosystem

Let G “ xg1, g2, . . . , gsy be a finite group. Let φ be a non-identity automor-
phism.

– Public-key: Let tφpgiqusi“1 and tφmpgiqusi“1 is public.

– Private-key: The integer m is private.

Encryption:
To encrypt a plaintext M P G, get an arbitrary integer r P r1, |φ|s compute φr
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and φrm. The ciphertext is pφr, φrm pMqq.
Decryption:
After receiving the ciphertext pφr, φrm pMqq, the user knows the private key m.
So she computes φmr from φr and then computes M. It is known [14, Theorem 3]
that the hardness to break a MOR cryptosystem depends on the Diffie-Hellman
problem in the automorphism group. In a practical implementation of a MOR
cryptosystem there are two things that matter the most.

a The number of generators. As we saw, the automorphism φ is presented as
action on generators. Larger the number of generators bigger is the public-
key.

b Efficient algorithm to solve the word problem. This means, given G “

xg1, g2, . . . , gsy and g P G, is there an efficient algorithm to write g as
word in g1, g2, . . . , gs? The reason of this importance is immediate – the
automorphisms are presented as action on generators and if one has to
compute φpgq, then the word problem must be solved.

The obvious question is: what are the right groups for the MOR cryptosys-
tem? In this paper, we pursue a study of the MOR cryptosystem using finite
Chevalley groups of classical type; in particular, orthogonal and symplectic
groups.

3 Description of automorphisms of classical groups

This paper studies the MOR cryptosystem for split orthogonal and sym-
plectic groups over a field of odd characteristics. As we discussed before, MOR
cryptosystem is presented as action on generators of the group. Then to use an
automorphism on an arbitrary element, one has to solve the word problem in
that group with respect to that set of generators.

The generators and the Gaussian elimination algorithm to solve the word
problem is described in Bhunia et. al. [3, Section 5]. We will be very brief here.

Let V be a vector space of dimension d over a field K of odd characteristic.
Let β : V ˆV Ñ K be a bilinear form. By fixing a basis of V we can associate a
matrix to β. We shall abuse the notation slightly and denote the matrix of the
bilinear form by β itself. Thus βpx, yq “ Txβy where x, y are column vectors.
We will work with non-degenerate bilinear forms and that means det β ‰ 0.
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A symmetric or skew-symmetric bilinear form β satisfies β “ Tβ or β “ ´Tβ
respectively.

Definition 1 (Orthogonal Groups). A square matrix X of size d is called or-
thogonal if TXβX “ β where β is symmetric. It is well known that the orthog-
onal matrices form a group known as the orthogonal group.

Definition 2 (Symplectic Group). A square matrix of size d is called symplectic
if TXβX “ β where β is skew-symmetric. And the set of symplectic matrices
form a symplectic group.

We write the dimension of V as d “ 2l ` 1 or d “ 2l for l ě 1. We
fix a basis and index it by 0, 1, 2, . . . , l,´1,´2, . . . ,´l in the odd dimension
and by 1, 2, . . . , l,´1,´2, . . . ,´l in the even dimension. We consider the non-
degenerate bilinear forms β on V given by the following matrices:

a: The odd orthogonal group: The form β is symmetric with d “ 2l ` 1 and

β “

¨

˝

2 0 0
0 0 Il
0 Il 0

˛

‚.

b: The symplectic group: The form β is skew-symmetric with d “ 2l and

β “

ˆ

0 Il
´Il 0

˙

.

c: The even orthogonal group of classical type: The form β is symmetric with

d “ 2l and β “
ˆ

0 Il
Il 0

˙

.

where Il is the identity matrix of size l over K.
We now describe the automorphism group of the orthogonal and symplectic

groups. This helps us in picking the right set of automorphisms for the MOR
cryptosystem.

Definition 3 (Orthogonal similitude group). The orthogonal similitude group
is defined as the set of matrices X of size d as follows: GOpd, qq “
 

X P GLpd, qq | TXβX “ µβ, µ P Fˆq
(

where d “ 2l ` 1 or 2l and β is of type
a and c respectively.

Definition 4 (Symplectic similitude group). The symplectic similitude group
is denoted by GSpp2l, qq “

 

X P GLp2l, qq | TXβX “ µβ, µ P Fˆq
(

where β is
of type b.
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Here µ depends on the matrix X and is called the similitude factor. The
similitude factor µ defines a group homomorphism from the similitude group
to Fˆq and the kernel is the orthogonal group Opd, qq when β is symmetric and
symplectic group Spp2l, qq when β is skew-symmetric respectively [12, Section
12]. Note that scalar matrices λI for λ P Fˆq belong to the center of similitude
groups. The similitude groups are analog of what GLpd, qq is for SLpd, qq. For
a discussion of the diagonal automorphisms of Chevalley groups we need the
diagonal subgroups of the similitude groups.

Definition 5 (Diagonal group). The diagonal groups are defined to be the group
of non-singular diagonal matrices in the corresponding similitude group and are
as follows: in the case of GOp2l ` 1, qq it is

 

diagpα, λ1, ¨ ¨ ¨ , λl, µλ
´1
1 , ¨ ¨ ¨ , µλ´1

l q | λ1, . . . , λl, α
2
“ µ P Fˆq

(

and in the case of GOp2l, qq and GSpp2l, qq it is
 

diagpλ1, ¨ ¨ ¨ , λl, µλ
´1
1 , ¨ ¨ ¨ , µλ´1

l q | λ1, . . . , λl, µ P Fˆq
(

.

Conjugation by these diagonal elements produce diagonal automorphisms in
the respective Chevalley groups.

To build a MOR cryptosystem we need to work with the automorphism
group of Chevalley groups. In this section we describe the automorphism group
of classical groups following Dieudonne [6].

Conjugation Automorphisms: For t P G the map given by g ÞÑ tgt´1 is
an automorphism of G, called an inner automorphism. More generally if N
is a normal subgroup of G then the conjugation maps n ÞÑ gng´1 for n P N are
called conjugation automorphisms of G.

Central Automorphisms: Let χ : GÑ ZpGq be a homomorphism to the
center of the group. Then the map g ÞÑ χpgqg is an automorphism of G, known
as the central automorphism. There are no non-trivial central automorphisms
for perfect groups, for example, the adjoint Chevalley groups SLpl ` 1, Kq and
Spp2l,Kq, |K| ě 4 and l ě 2. In case of orthogonal group, the center is of two
elements tI,´Iu. Any map χ maps ΩdpKq to identity. This implies that there
are at most four central automorphisms in this case.

Field Automorphisms: Let f P AutpKq. In terms of matrices, field au-
tomorphisms amount to replacing each term of the matrix by its image under
f .
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Graph Automorphisms: A symmetry of Dynkin diagram induces such
automorphisms. This way we get automorphisms of order 2 for SLpl ` 1, Kq,
l ě 2 and O`p2l,Kq, l ě 4. We also get an automorphisms of order 3 for
O`p4, Kq.

In the case of SLpd, qq for d ě 3, the map x ÞÑ A´1Tx´1A where

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 ¨ ¨ ¨ 0 0 0 1
0 ¨ ¨ ¨ 0 0 ´1 0
0 ¨ ¨ ¨ 0 1 0 0
0 ¨ ¨ ¨ ´1 0 0 0
... . . . ... ... ... ...

p´1ql´1 ¨ ¨ ¨ 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

explicitly describes the graph automorphism.
In the case of Op2l, qq for l ě 5, the graph automorphism is given by x ÞÑ

B´1xB where B is a permutation matrix obtained from identity matrix of size
2lˆ2l by switching the lth row and´lth row. This automorphism is a conjugating
automorphism.

Theorem 1 (Dieudonne). Let K be a field of odd characteristic and l ě 2.

1. For the group SLpl ` 1, Kq any automorphism is of the form ιγθ where ι
is a conjugation automorphism defined by elements of GLpl` 1, Kq and γ
is a graph automorphism for the special linear group.

2. For the group Opd,Kq any automorphism is of the form cχιθ where cχ is
a central automorphism, ι a conjugation automorphism by GOpd,Kq ele-
ments (this includes the graph automorphism of even orthogonal groups).

3. For the group Spp2l,Kq any automorphism is of the form ιθ where ι is a
conjugation automorphism by GSpp2l,Kq elements.

In all cases θ denotes a field automorphism.

In the above theorem, conjugation automorphisms are given by conjugation
by elements of a larger group and it includes the group of inner automorphisms.
We introduce diagonal automorphisms to make it more precise. The conjugation
automorphisms ι can be written as a product of ιg and δ where ιg is an inner
automorphism and δ is a diagonal automorphism.
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Diagonal Automorphisms: The adjoint Chevalley group LpKq is nor-
malized by Ĥ which is a subgroup of AutpLKq. Thus for hpχq P Ĥ which is
not in H gives an automorphism g Ñ hpχqghpχq´1 (which is not an inner
automorphism). Such automorphisms are called diagonal automorphism. The
explicit action on generators is as follows: hpχqxrptqhpχq´1 “ xrpχprqtq. The
group Ĝ is identified in [17, Chapter III, Section 6] with corresponding simil-
itude group. In the case of special linear groups, diagonal automorphisms are
given by conjugation by diagonal elements of PGLpl` 1, qq on PSLpl` 1, qq. In
the case of symplectic and orthogonal groups, diagonal automorphisms are given
by conjugation by corresponding diagonal group elements defined in Section 5.

Let K be a finite field and G “ LpKq be an adjoint Chevalley group over K.
Steinberg described the automorphisms of these groups. We have the following
theorem [4, Theorem 12.5.1] and [19],

Theorem 2 (Steinberg). Let G “ LpKq where L is a simple Lie algebra and
Kp“ Fqq is a finite field. Let φ P AutpGq. Then there exist inner, diagonal,
graph and field automorphisms, denoted by ι, δ, γ and θ respectively, such that
φ “ ιδγθ.

4 Security of the proposed MOR cryptosystem

The purpose of this section is to show that for a secure MOR cryptosystem
over the classical Chevalley groups we have to look at automorphisms that act
by conjugation, like the inner automorphisms. There are other automorphisms
that also act by conjugation, like the diagonal automorphism and the graph
automorphism for odd-order orthogonal groups. Then we argue what is the
hardness of our security assumptions.

Let φ be an automorphism of one of the classical Chevalley groups G:
SLpl ` 1, qq,Op2l ` 1, qq, Spp2l, qq, or Op2l, qq. The automorphisms of these
groups are described in Section 3. From Theorem 1 we know that φ “ cχιδγθ
where cχ is a central automorphism, ι is an inner automorphism, δ is a diagonal
automorphism, γ is a graph automorphism and θ is a field automorphism.

The group of central automorphisms are too small and the field automor-
phisms reduce to a discrete logarithm in the field Fq. So there is no benefit
of using these in a MOR cryptosystem. Also there are not many graph auto-
morphisms in classical Chevalley groups other than special linear groups and
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odd-order orthogonal groups. In the odd-order orthogonal groups these auto-
morphisms act by conjugation. Recall here that, our automorphisms are pre-
sented as action on generators. It is clear [13, Section 7] that if we can recover
the conjugating matrix from the action on generators, the security is a discrete
logarithm problem in Fqd or else the security is a discrete logarithm problem in
Fqd2 .

So from these we conclude that for a secure MOR cryptosystem we must look
at automorphisms that act by conjugation, like the inner automorphisms. Inner
automorphisms form a normal subgroup of AutpGq and usually constitute the
bulk of automorphisms. If φ is an inner automorphism, say ιg : x ÞÑ gxg´1, we
would like to determine the conjugating element g. For the special linear group,
it was done in [13]. We will follow the steps there for the present situation too.
However, before we do that, let us digress briefly to observe that G Ñ InnpGq
given by g ÞÑ ιg is a surjective group homomorphism. Thus if G is generated
by g1, g2, . . . , gs then InnpGq is generated by ιg1, . . . , ιgs. Let φ P InnpGq. If we

can find gj, j “ 1, 2, . . . , r, generators, such that φ “
r
ś

j“1

ιgj then φ “ ιg where

g “
r
ś

j“1

gj. This implies that our problem is equivalent to solving the word

problem in InnpGq. Note that solving word problem depends on how the group
is represented and it is not invariant under group homomorphisms. Thus the
algorithm described earlier to solve the word problem in the classical Chevalley
groups does not help us in the present case.

4.1 Reduction of security

In this subsection, we show that for special linear and symplectic groups,
the security of the MOR cryptosystem is the hardness of the discrete logarithm
problem in Fqd. This is the same as saying that we can find the conjugating
matrix up to a scalar multiple. We further show that the method that works for
special linear and symplectic groups does not work for orthogonal groups. Let φ
be an automorphism that works by conjugation, i.e., φ “ ιg for some g and we
try to determine g. For a description of the generators (elementary matrices)
we refer to [3, Section 5].

Step 1: The automorphism φ is presented as action on generators xrptq “
I ` ter where r “ pi, jq; i ‰ j, 1 ď i, j ď d for the special linear group. For
symplectic group r “ pi, jq; i, j P t˘1,˘2, . . . ,˘lu. For the even orthogonal
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group, r “ pi, jq; i, j P t˘1,˘2, . . . ,˘lu ; ˘i ‰ ˘j. For the odd orthogonal
group r “ pi, jq;´l ď i ď l and j P t˘1,˘2, . . .˘ lu ; ˘i ‰ ˘j.

Thus φ pxr ptqq “ gpI ` terqg
´1 “ I ` tgerg

´1. This implies that we know
gerg

´1 for all possible r. We first claim that we can determine N “ gD where
D is sparse, in fact, diagonal in the case of special linear and symplectic groups.

In the case of special linear groups, write g “ rG1, . . . , Gi, . . . , Gds, where Gi

are column vectors of g. Then gei,j “ rG1, . . . , Gds ei,j “ r0, . . . , 0, Gi, 0 . . . , 0s
where Gi is at the jth place. Multiplying this with g´1 on the right, i.e., com-
puting gei,jg´1 determines Gi up to a scalar multiple di (say). Thus, we know
N “ gD where D “ diagpd1, . . . , dl`1q.

For the symplectic groups, we do the similar computation with the
generators I ` tei,´i and I ` te´i,i. Write g in the column form as
rG1, . . . Gl, G´1, . . . , G´ls. Now,

1. rG1, . . . Gl, G´1, . . . , G´ls ei,´i “ r0, . . . , 0, Gi, 0, . . . , 0s where Gi is at ´ith

place. Multiplying this further with g´1 gives us scalar multiple of Gi, say
diGi.

2. rG1, . . . Gl, G´1, . . . , G´ls e´i,i “ r0, . . . , 0, G´i, 0, . . . , 0s where G´i is at
ith place. Multiplying this with g´1 gives us scalar multiple of G´i, say
d´iGi.

Thus we getN “ gD whereD is a diagonal matrix diagpd1, . . . , dl, d´1, . . . , d´lq.
For the even orthogonal, write g “ rG1, . . . Gl, G´1, . . . , G´ls. Now comput-

ing gerg´1 gives the following equations:

1. rG1, . . . Gl, G´1, . . . , G´ls pei,j ´ e´j,´iqg
´1 “

r0, . . . , 0, Gi, 0 . . . , 0, G´j, 0, . . .s g
´1 where Gi is at jth place and G´j

is at ´ith place. This gives us a linear combination of the columns Gi and
G´j.

2. rG1, . . . Gl, G´1, . . . , G´ls pei,´j ´ ej,´iqg
´1 “

r0, . . . , 0, Gi, 0 . . . , 0, Gj, 0, . . .s g
´1 where Gi is at ´jth place and Gj

is at ´ith place. This will give us a linear combination of the columns Gi

and Gj.

3. rG1, . . . Gl, G´1, . . . , G´ls pe´i,j ´ e´j,iqg
´1 “

r0, . . . , 0, G´i, 0 . . . , 0, G´j, 0, . . .s g
´1 where G´i is at jth place and

G´j is at ith place. This will give us a linear combination of the columns
G´i and G´j.
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Thus we get N “ gD where D is of the form
ˆ

W X
Y Z

˙

with W a diagonal

matrix, Y anti-diagonal, X has first column nonzero and Z has the last column
nonzero. This is not a diagonal matrix. One can do a similar computation for
the odd-orthogonal group.

Step 2: Compute N´1φpxrptqqN “ D´1g´1pgxrptqg
´1qgD “ I ` D´1erD

which is equivalent to computing D´1erD for r P Φ.
In the case of special linear groups we have D a diagonal. Thus by

computing D´1ei,jD we determine d´1
i dj for i ‰ j and form a matrix

diagp1, d´1
2 d1, . . . , d

´1
l d1q and multiply this to N we get d1g. Hence we can

determine g up to a scalar matrix.
For symplectic groups, we can do similar computation asD is diagonal. First

compute D´1pei,j ´ e´j,´iqD to get d´1
i dj and d´1

´id´j for i ‰ j. Now compute
D´1ei,´iD,D

´1e´i,iD to get did´1
´i , d´id

´1
i . We form a matrix

diagp1, d´1
2 d1, . . . , d

´1
l d1, d

´1
´1d´2.d

´1
´2d2.d

´1
2 d1, . . . , d

´1
´l d´1.d

´1
´1d1q

and multiply it to N “ gD to get d1g. Thus we can determine g up to a scalar
multiple and then the attack follows [13, Section 7.1.1].

However, in the case of orthogonal groups, the matrix D is not a diagonal
matrix and the above method to determine g does not work.

Remark 1. An observant reader would ask the question: why does this attack
works for the special linear and symplectic groups but not for orthogonal groups?
The answer lies in a closer look at the generators (elementary matrices) for
these groups.

In the special linear groups the generators are the elementary transvections
of the form I`tei,j where i ‰ j and t P Fq. Then the attack goes on smoothly as
we saw earlier. However, when we look at generators of the form I`tei,j´te´j,´i,
where t P Fq and i ‰ j; conjugating by them gets us a linear sum of the ith and
jth column, not scalar multiple of one particular column. This stops the attack
from going forward. However in the symplectic groups there are generators of
the form I ` ei,´i and I ` e´i,i for 1 ď i ď l. These generators make the attack
possible for the symplectic groups. However there are no such generators for the
orthogonal groups and so this attack turns out to be impossible for orthogonal
groups.
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5 The case for 2-generators and prime fields

One serious objection against a MOR cryptosystem is the size of the key [15,
Section 7]. The reason is simple: we saw that in a MOR cryptosystem the
automorphisms are presented as action on generators. Now bigger the number
of generators, larger the key-size.

On the other hand, many of the finite simple groups can be generated by two
elements. However, a set of generators is not enough. We must be able to com-
pute the image of an arbitrary element. When the automorphism is presented
as action on generators, we need an efficient solution to the word problem in
order to do that. We have demonstrated [3, Section 5] that we have one set of
generators, the elementary matrices, for which the word problem is easy.

The theme of this section is that for symplectic and even-orthogonal groups,
there are two generators and for the odd-orthogonal group there are three gen-
erators. Over the prime field of odd characteristic one can easily compute
the word corresponding to the elementary matrices over these generators.

So one can present the automorphisms φ and φm as action on these few
generators and then compute the action of these automorphisms on the ele-
mentary matrices later. This substantially reduces the key-size. To do this we
use the technique of straight line programs, which is popular in computational
group theory. These are programs, but in practice are actually easy to use for-
mulas. Say for example, we want to compute xi,jptq for some t P Fq. We have
loaded matrices wi´1x1,2p¨qw

pi´1q in memory in such a way that this formula
takes as input t and put it in the p1, 2q position of the matrix x1,2p¨q and do the
matrix multiplication. This is one straight line program. Since these programs
are loaded in memory, computation is much faster. This is somewhat similar
to a time-memory trade-off. We have built a series of these straight line pro-
grams, where one straight line program can use other straight line programs
and have written down the length of these programs. The length is nothing but
the number of matrices in the formula.

Using the symplectic group in the MOR cryptosystem is straightforward.
However, using orthogonal groups is little tricky because of the presence of λ in
the output of the Gaussian elimination algorithm [3, Section 5]. It is well-known
that the elementary matrices without wi – the row interchange matrices, gen-
erate Ω the commutator subgroup of a orthogonal group. However in between
the commutator and the whole group there is another important subgroup,

79



WΩ “ xΩ, wiy for some i. From the algorithm point of view, it is the subgroup
of all the matrices for which the λ is a square. Now once the λ is a square,
and we can efficiently compute the square root, we can write this matrix down
as product of elementary matrices and it is easy to implement the MOR cryp-
tosystem. It is well known that if p ” 3 pmod 4q, then it is easy to compute
the square root. Only for this reason, in the latter part of this section and for
orthogonal groups we concentrate on p ” 3 pmod 4q.

5.1 Symplectic group Spp2l, pq

Let p be an odd prime. It is known [20] that the group Spp2l, pq is generated
by two elements:

x “ x1,2p1q (1)

w “

ˆ

0 1
´I2l´1 0

˙

(2)

We will refer these two elements as Steinberg generators. However in the
context of the MOR cryptosystem we need to know how to go back and forth
between these two generating sets – Steinberg generators and elementary ma-
trices [3, Section 5]. To write w as a product of elementary matrices is easy,
just put this generator through our Gaussian elimination algorithm. Here we
demonstrate the other way round, that is, how to write elementary matrices as
a product of x and w. In what follows, we denote the length of SLP’s by Lpn, iq,
where n “ j ´ i and 1 ď i ă j ď l.

n “ 1, xi,jptq “ wi´1x1,2ptqw
´pi´1q,

n “ 2, xi,jptq “ rxi,j´1ptq, xj´1,jp1qs,

n “ 3, xi,jptq “ rxi,j´1ptq, xj´1,jp1qs,
... ... ...

n “ l ´ 1, xi,jptq “ rxi,j´1ptq, xj´1,jp1qs.

Here

Lpn, iq “

"

2i´ 1 for n “ 1,
2Lpn´ 1q ` 4pi` nq ´ 6 for n “ 2, 3, . . . l ´ 1.

80



Now wl “ p´1ql´1

ˆ

0 Il
´Il 0

˙

and xj,iptq “ wlxi,jp´tqw
´l, so length of this SLP

is Lpn, iq ` 2l. Hence we get all xi,jptq for 1 ď i ‰ j ď l. Number of SLP is l.
Next observe that,

elements indices equation length
x1,´lptq wxl´1,lptqw

´1 2l ´ 1

x1,´iptq 2 ď i ď l ´ 1 rxi,lptq, x1,´lp1qs 2pLpl ´ i, iq ` 2l ´ 1q

xi,´jptq 2 ď i ď l ´ 1 rxi,1ptq, x1,´jp1qs 2pLpi´ 1, 1q ` 4l ´ 1q j “ l
pi` 1 ď j ď lq 2pLpi´ 1, 1q ` 2Lpl ´ j, jq

`6l ´ 2q j ‰ l

xi,´iptq i “ 1, 2, . . . , l ´ 1 rxi,i`1p
t
2q, xi,´pi`1qp1qs 2p2Lpl ´ 2, 1q ` 10l ´ 5q i “ l ´ 1

2 pLp1, iq ` 2Lpi´ 1, 1q` i ‰ l ´ 1
4Lpl ´ pi` 1q, i` 1q
`12l ´ 4q

xl,´lptq rxl,l´1p
t
2q, xl´1,´lp1qs 2p2Lpl ´ 2, 1q ` 12l ´ 5q

So we generate all xi,´jptq for 1 ď i ă j ď l and xi,´iptq for 1 ď i ď l.
Now wlxi,´jptqw

´l “ x´i,jptq for 1 ď i ă j ď l and wlxi,´iptqw
´l “ x´i,iptq

for 1 ď i ď l, then we get x´i,jptq and x´i,iptq. Total number of SLPs is
l ` p3 ` 1q ` p2 ` 1q “ l ` 7. Hence we generate all the elementary matrices
[3, Section 5] using only two generators x and w. It is shown in Ree [16] that
elementary matrices generate the symplectic group Spp2l, pq. Hence Spp2l, pq is
generated by only two generators x and w.

5.2 Orthogonal group Op2l, pq

Let p ” 3 pmod 4q be a prime. It is known [20] that the group Op2l, pq is
generated by two elements:

x “ x1,2p1q, (3)

w “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 1
´1 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0
... . . . ... ... . . . ...
¨ ¨ ¨ ´1 0 0 ¨ ¨ ¨ 0

0 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0
0 ¨ ¨ ¨ 0 ´1 ¨ ¨ ¨ 0
... . . . ... ... . . . ...
0 ¨ ¨ ¨ 0 ¨ ¨ ¨ ´1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (4)
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We will refer these two elements as Steinberg generators. As we discussed
earlier, in context of the MOR cryptosystem we need to know how to go back
and forth between two generating sets – Steinberg generators and elementary
matrices [3, Section 5]. To write w as a product of elementary matrices is easy,
just put this generator through our Gaussian elimination algorithm. Here we
demonstrate the other way round, that is, how to write elementary matrices as
a product of x and w. In what follows, we denote the length of SLP’s by Lpn, iq,
where n “ j ´ i and 1 ď i ă j ď l.

n “ 1, xi,jptq “ wi´1x1,2ptqw
´pi´1q,

n “ 2, xi,jptq “ rxi,j´1ptq, xj´1,jp1qs,

n “ 3, xi,jptq “ rxi,j´1ptq, xj´1,jp1qs,
... ... ...

n “ l ´ 1, xi,jptq “ rxi,j´1ptq, xj´1,jp1qs.

Here

Lpn, iq “

"

2i´ 1 for n “ 1,
2Lpn´ 1q ` 4pi` nq ´ 6 for n “ 2, 3, . . . l ´ 1.

Now wl “ p´1ql´1

ˆ

0 ´Il
´Il 0

˙

and xj,iptq “ wlxi,jp´tqw
´l, so length of this

SLP is Lpn, iq ` 2l. Hence we get all xi,jptq for 1 ď i ‰ j ď l. The number of
SLPs is l. Next observe the following:

elements indices equation length
x1,´lptq wxl´1,lptqw

´1 2l ´ 1

x1,´iptq 2 ď i ď l ´ 1 rxi,lptq, x1,´lp1qs 2pLpl ´ i, iq ` 2l ´ 1q

xi,´jptq 2 ď i ď l ´ 1 rxi,1ptq, x1,´jp1qs 2pLpi´ 1, 1q ` 2Lpl ´ j, jq
`6l ´ 2q j ‰ l

pi` 1 ď j ď lq 2pLpi´ 1, 1q ` 4l ´ 1q j “ l

So we generate all xi,´jptq for i ă j. Now wlxi,´jptqw
´l “ x´i,jptq, and

we get x´i,jptq and the total number of SLPs is l ` 4. It is shown by
Ree [16] that elementary matrices xi,jptq generate Ωp2l, pq, the commuta-
tor subgroup of Op2l, pq. Hence we generate Ωp2l, pq, using only two ele-
ments x and w. Since we generate xi,jptq and wi,j as a product of xi,jptq
and w “ w1,2p1qw2,3p1q . . . wl´1,lp1qwl, so we are able to generate wl. Here
wi,jptq “ xi,jptqxj,ip´t

´1qxi,jptq for i ‰ j and wl “ I´ el,l´ e´l,´l` el,´l` e´l,l.
Now we know wl´1 “ wlwl,l´1p1qwl´1,´lp1q, so we generate wl´1. Hence by
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induction, we generate wi “ wi`1wi`1,ip1qwi,´pi`1qp1q for i “ l ´ 1, . . . , 1.
Here wi,´jptq “ xi,´jptqp1qx´i,jpt

´1qxi,´jptq, for i ă j. Hence we generate
all the elementary matrices defined earlier [3, Section 5] using only two gen-
erators x and w. So we generate a new subgroup WΩp2l, pq of Op2l, pq,
which is a normal subgroup of Op2l, pq. In our algorithm output matrix is
dpλq “ diag p1, 1, ¨ ¨ ¨ , λ, 1, 1, ¨ ¨ ¨ , λ´1q. If λ P Fˆ2

p , say λ ” t2 pmod pq, then
t ” λ

p`1
4 pmod pq, since p ” 3 pmod 4q. Then

dpλq “ diag p1, ¨ ¨ ¨ , t2, 1, ¨ ¨ ¨ , t´2
q

“ wl´1,lp1qdiag p1, ¨ ¨ ¨ , t2, 1, 1, ¨ ¨ ¨ , t´2, 1qwl´1,lp´1q

“ wl´1,lp1qwl´1,lptqwl´1,lp´1qwl´1,´lptqwl´1,´lp´1qwl´1,lp´1q.

Hence we generate WΩp2l, pq using only two generators x and w.

5.3 Orthogonal group Op2l ` 1, pq

Let p ” 3 pmod 4q be a prime. It is known [20] that the group Op2l` 1, pq
is generated by these elements:

x “ x0,1p1q, (5)

w “

¨

˝

´1 0 0
0 0 ´1
0 ´I2l´1 0

˛

‚, (6)

wl “ I ´ el,l ´ e´l,´l ` el,´l ` e´l,l. (7)

We will refer these two elements as Steinberg generators. However in context
of the MOR cryptosystem we need to know how to go back and forth between
these two generating sets – Steinberg generators and elementary matrices de-
fined earlier [3, Section 5]. To write w as a product of elementary matrices is
easy, just put this generator through our Gaussian elimination algorithm. Here
we demonstrate the other way round, that is, how to write elementary matrices
as a product of w and x. First we compute, x0,iptq “ wi´1x0,1p1qw

´pi´1q which
is of length 2i´ 1 for 1 ď i ď l. Now

wl
“ p´1ql

¨

˝

1 0 0
0 0 Il
0 Il 0

˛

‚
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and xi,0ptq “ wlx0,ip´tqw
´l for 1 ď i ď l and length of this SLP is 2l ` 2i ´

1. So we get xi,0ptq and x0,iptq for i “ 1, 2, . . . , l. Again we have x1,2ptq “
rx1,0p

t
2q, x0,2p1qs and length of this SLP is 4l`8. In what follows, we denote the

length of SLP’s by Lpn, iq, where n “ j ´ i and 1 ď i ă j ď l.

n “ 1, xi,jptq “ wi´1x1,2ptqw
´pi´1q,

n “ 2, xi,jptq “ rxi,j´1ptq, xj´1,jp1qs,

n “ 3, xi,jptq “ rxi,j´1ptq, xj´1,jp1qs,
... ... ...

n “ l ´ 1, xi,jptq “ rxi,j´1ptq, xj´1,jp1qs.

Here

Lpn, iq “

"

2i` 4l ` 6 for n “ 1,
2Lpn´ 1, iq ` 4pi` n` 2l ` 2q for n “ 2, 3, . . . l ´ 1.

As xj,iptq “ wlxi,jp´tqw
´l, so the length of this SLP is Lpn, iq ` 2l. Hence we

generate all xi,jptq for 1 ď i ‰ j ď l and the number of SLPs is 3`pl´1q`1 “
l ` 3. Next observe that,

elements indices equation (SLP) length
x1,´lptq wxl´1,lptqw

´1 6l ` 6

x1,´iptq 2 ď i ď l ´ 1 rxi,lptq, x1,´lp1qs 24l ` 20 i “ l ´ 1
2Lpl ´ i, iq ` 12pl ` 1q i ‰ l ´ 1

xi,´jptq 2 ď i ď l ´ 1 rxi,1ptq, x1,´jp1qs 2Lpi´ 1, 1q ` 4Lpl ´ j ´ n, j ´ nq j ă l ´ 1
`4p7l ` 6q

pi` 1 ď j ď lq 2Lpi´ 1, 1q ` 4p7l ` 5q j “ l ´ 1
2Lpi´ 1, 1q ` 10l ` 6 j “ l

So we generate all xi,´jptq for i ă j. Now wlxi,´jptqw
´l “ x´i,jptq, and we

have x´i,jptq. The total number of SLPs is l ` 7. It is shown in Ree [16] that
elementary matrices xi,jptq’s generate Ωp2l ` 1, pq, the commutator subgroup
of Op2l ` 1, pq which is of index 4. So we generate Ωp2l ` 1, pq, using only
two generators x and h. Now we know wl´1 “ wlwl,l´1p1qwl´1,´lp1q, so we gen-
erate wl´1. Hence inductively we can generate wi “ wi`1wi`1,ip1qwi,´pi`1qp1q
for i “ l ´ 1, . . . , 1. Here wi,jptq “ xi,jptqxj,ip´t

´1qxi,jptq for i ‰ j and
wi,´jptq “ xi,´jptqx´i,jpt

´1qxi,´jptq for i ă j. Hence we generate all the ele-
mentary matrices defined earlier [3, Section 5] using only two generators x and
w and an extra element wl. Hence we generate a new subgroup WΩp2l ` 1, pq
of the orthogonal group Op2l ` 1, pq, containing Ω, which is indeed a nor-
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mal subgroup of Op2l ` 1, pq. In our algorithm the output matrix is dpλq “
diag p1, 1, ¨ ¨ ¨ , λ, 1, ¨ ¨ ¨ , λ´1q. If λ P Fˆ2

p , say λ ” t2 pmod pq, here t ” λ
p`1
4

pmod pq, since p ” 3 pmod 4q. Then

dpλq “ diag p1, 1, ¨ ¨ ¨ , t2, 1, ¨ ¨ ¨ , t´2
q

“ wl´1,lp1qdiag p1, 1, ¨ ¨ ¨ , t2, 1, 1, ¨ ¨ ¨ , t´2, 1qwl´1,lp´1q

“ wl´1,lp1qwl´1,lptqwl´1,lp´1qwl´1,´lptqwl´1,´lp´1qwl´1,lp´1q.

Hence we generate WΩp2l ` 1, pq using x,w and wl.

Remark 2. Let dpζq “ diag p1, 1, ¨ ¨ ¨ , ζ, 1, ¨ ¨ ¨ , ζ´1q, where ζ is non-square in
Fˆp . Then the group xWΩ, dpζqy is the orthogonal group.

6 Conclusion

This section is similar to [13, Section 8]. An useful public-key cryptosystem
is a delicate dance between speed and the security. So one must talk about speed
along with security.

The implementation of the MOR cryptosystem that we have in mind uses
the row-column operations. Let xg1, g2, . . . , gsy be a set of generators for the
orthogonal or symplectic group as described before. As is the custom with a
MOR cryptosystem, the automorphisms φ and φm are presented as action on
generators, i.e., we have φpgiq and φmpgiq as matrices for i “ 1, 2, . . . , s.

To encrypt a message in this MOR cryptosystem, we compute φr. We do that
by square-and-multiply algorithm. For this implementation, squaring and mul-
tiplying is almost the same. So we will refer to both squaring and multiplication
as multiplication. Note that multiplication is composing of automorphisms.

The implementation that we describe in this paper, can work in parallel.
Each instance computes φrpgiq for i “ 1, 2, . . . , s. First thing that we do is
write the matrix of φpgiq as a word in generators. So essentially the map φ
becomes a map gi ÞÑ wi where wi is a word in generators of some fixed length.
Then multiplication becomes essentially a replacement, replace all instances of
gi by wi. This can be done very fast. However, the length of the replaced word
can become very large. The obvious question is, how soon are we going to write
this word as a matrix. This is a difficult question to answer at this stage and
depends on available computational resources.

Once we decide how often we change back to matrices, how are we going
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to change back to matrices? There can be a fairly easy time-memory trade-
offs. Write all words up to a fixed length and the corresponding matrix as a
pre-computed table and use this table to compute the matrices. Once we have
matrices, we can multiply them together to generate the final output. There are
also many obvious relations among the generators of these groups. One can just
store and use them. The best strategy for an efficient implementation is yet to
be determined. It is clear now that there are many interesting and novel choices.

The benefits of this MOR cryptosystem are:

This can be implemented in parallel easily.

This implementation doesn’t depend on the size of the characteristic of the
field. This is an important property in light of Joux’s recent improvement
of the index-calculus attacks [1].

For parameters and complexity analysis of this cryptosystem, we refer to [13,
Section 8]. Assume that we take a prime of size 2160, and we are using two
generators presentation of φ for the even-orthogonal group. Then the security is
the discrete logarithm problem in Fpd2 . Now if we take d “ 4, then the security
better than F22560. Our key size is about 8000 bits. Comparing with Monico [15,
Section 7], where he says an ElGamal will have about 6080 bits, our system is
quite comparable. Moreover, the MOR cryptosystem is better suited to handle
large primes and can be easily parallelized.
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Random Number Generators Based on
Permutations Can Pass the Collision Test
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Abstract

In this paper, we investigate pseudorandom number generators based on random
permutations which in cryptographic applications are modeled by block ciphers with
random keys. We give a simple method to calculate upper and lower bounds on the
probability to observe a collision in an output sequence of finite length given the re-
spective bounds on conditional probability of the next symbol to appear given a prefix.
We found that the difference between the upper and lower bounds on collision proba-
bility can be made extremely small for any practical parameters of interest. Moreover
the collision probability for a true random number generator (RNG) always lies within
these bounds. This implies that the investigated generators will pass the collision test,
i.e. they are indistinguishable by this test from a true RNG.

Keywords: pseudorandom number generator, permutation, unpredictability, collision, block
cipher.

1 Introduction

Random numbers are of crucial importance for cryptographic applications.
True randomness is obtained from some nondeterministic physical processes.
However, it could be a problem to find a true source of randomness, which is
fast enough, without memory, and with uniform output distribution. So typically
deterministic pseudorandom number generators (PRNG) are used in applica-
tions to generate randomly looking numbers. It is assumed that they produce
sequences which are indistinguishable from truly random ones by any polyno-
mial statistical test. In practice they must at least pass batteries of particular
statistical tests.

There are different techniques for designing PRNGs [1]. One of the most
widely spread is to use a block cipher in counter mode of operation — the well-
known CTR_DRBG generator [1]. In fact, a block cipher with random key just
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models a random permutation. In this paper, a PRNG based on two permuta-
tions is considered. To generate an output symbol the outputs of two permuta-
tions are XORed together.

We will show that using two permutations allows the PRNG to pass the
collision test for output sequences of practical lengths. If only one permutation
is used and the output symbol is a half of the permutation output we get similar
results.

2 PRNG Description

Let Vn be the set of all binary strings (vectors) of length n with the bitwise
eXclusive OR addition defined on it. To every string zn´1||zn´2|| . . . ||z0 from Vn
we put into one-to-one correspondence the integer 2n´1zn´1 ` 2n´2zn´2 ` . . .`

2z1 ` z0, which is an element of the residue ring ZN “ t0, . . . , N ´ 1u, where
N “ 2n.

A permutation σ on Vn is a one-to-one mapping of ZN to itself.
Consider the following PRNG, call it G2I, which is based on two permu-

tations. For this PRNG the counter count is initialized by a randomly and
uniformly chosen IV P Vn, and as an input an integer s and 2 independent and
randomly chosen permutations σ1 and σ2 are given. The output will be n-bit
symbols x0, x1, . . . , xs´1.

G2I: for i from 0 to s´ 1 do:

count :“ pIV ` iq mod 2n;

xi :“ σ1pcountq ‘ σ2pcountq.

The output sequences of G2I are periodic with period of N “ 2n. In the
following, we consider output sequences of length at most N . So we neither
consider practical details of initializing (seeding) the generator, nor the details
of reseeding it.

This type of a generator was partially investigated in [2]. It was shown that
for G2I the value of IV is not important when security is concerned, found
the number of different output sequences and the conditional probability of the
next output symbol to appear given a prefix. In this research, we go further and
investigate collisions in output sequences.
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3 Collision Test

In [2] it was established the following lemma.

Lemma 1. In case s ă N{2 for G2I the conditional probability
P pxs|xs´1, . . . , x0q of the next output symbol xs to appear given a prefix
pxs´1, xs´2, . . . , x0q is bounded as

P1ps` 1q “
N ´ 2s

pN ´ sq2
ď P pxs|xs´1, . . . , x0q ď

N ´ s

pN ´ sq2
“ P2ps` 1q. (1)

From Lemma 1 it follows that for s{N ! 1 this conditional probability is
close to P0 “ 1{N , which is the probability for the next symbol to appear for a
true RNG.

Moreover, for a generalized variant of the generator based on R ą 2 permu-
tations it was shown [3] that the difference between the conditional probabilities
for the investigated generator and for a true RNG decreases exponentially fast
with R for a prefix of fixed length. So the construction of a PRNG, where
outputs of multiple permutations are XORed together, is effective concerning
unpredictability. However, the smaller R we could take, the more computation-
ally efficient will be the generator. So the most interesting case is R “ 2.

Usually, in practice, PRNGs are assessed through a battery of statistical
tests. They try to distinguish the RNG under investigation from a true RNG.
And each particular test tries to highlight a certain flavor of nonrandomness.
One of the most known statistical tests for RNGs is the so called collision test.
The collision test counts the number of occurrences of identical symbols in the
output sequence. An RNG fails the test if the number of collisions falls outside
a predefined interval.

However, for quite a good RNG with output symbols from a large alpha-
bet it would require a huge amount of data to store or handle before at least
once a collision could be found. So more typical approach is to estimate the
critical length of output sequences when the investigated RNG might become
distinguishable from a true RNG. Having collision test in mind, a common dis-
tinguishing criterion is the difference between the collision probabilities, i.e. the
probability to find at least two identical symbols in a sequence of finite length,
for the investigated generator and a true one. The critical length is when this
difference become large enough, say compared to 1. This could be qualitatively
explained as follows. Suppose we observe output sequences of length exactly s
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of the generator. And the collision probability is PCpsq. After observing the se-
quence we re-initialize the generator randomly. We can consider different starts
to be independent. Then every start is a Bernoulli trial in which the probability
of success is PCpsq. We expect that after m trials we observe mPCpsq sequences
with collisions. With some degree of certainty we could distinguish this gener-
ator from a true RNG if mPCpsq ´ mPIpsq „ 1, where PIpsq is the collision
probability for a true RNG. If PCpsq´PIpsq ă δpsq for some security parameter
δpsq “ 1{m, then the adversary cannot distinguish the generators after process-
ing s{δpsq symbols or sn{δpsq bits. So if we allow only one start, here m “ 1,
the critical length s˚ is determined as a length when PCps˚q ´ PIps˚q „ 1.

For any particular instance of the RNG the length of output sequences is
deliberately limited far before the critical length is reached. The larger this crit-
ical length, the better the RNG. The exact value of the admissible probabilities
difference highly depends on the application or system’s security requirements.
More important, however, the functional dependence of the probability on the
output length.

We are going to estimate the collision probability for G2I.
In [4], using provable security approach, it was proven that the sum of R ran-

dom permutations XORed together gives a pseudorandom function, essentially
a PRNG, when s ! OpN

R
R`1 q queries to the oracle are allowed. In our paper

we describe a simple computational technique to estimate a bound for collision
probability having a bound for conditional probability for the next symbol to
appear and whenever the latter is expressed as 1`fpsq

N , where fpsq ! 1 is a poly-
nomial with zero constant term. Compared to [4], where only a lower bound
for collision probability is given, we were able to obtain both lower and upper
bounds.

In [5], using probabilistic and combinatorial arguments, it was shown that
G2I is secure when s ! OpN

9
10 q, and even s ! OpNq. Our results are obtained

much easier, they are much simpler to follow, and can easily be used to have a
particular security treatment. In a sense they are close to [5] concerning security,
see further Section 6.

Evidently, our results are valid under collision test setting only, while the
above mentioned ones are valid against arbitrary distinguisher. Nevertheless
we think that they might be generalized to provable security setting. They are
essentially based on double-sided estimations of conditional probability for the
next symbol to appear which does not depend on particular test. However, a
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discussion on this topic would go far beyond the scope of this paper.

4 Collision probability

Bounds (1) give us the conditional probability P pxs|xs´1, . . . , x0q for the
s ` 1-th symbol xs to appear provided we observed a prefix pxs´1, . . . , x0q of
length s. Suppose now that all s symbols of the prefix are different. Let us
estimate the probability Pdps` 1q that the s` 1-th symbol is different from all
the previous ones:

Pdps` 1q “ P
`

xs R txs´1, . . . , x0u
ˇ

ˇxi ‰ xj; i ‰ j; i, j “ 0, s´ 1
˘

.

Proposition 1. The probability Pdps ` 1q to have all different elements in a
prefix of length s` 1 for G2I is bounded as

1´
spN ´ sq

pN ´ sq2
ď Pdps` 1q ď 1´

spN ´ 2sq

pN ´ sq2
. (2)

Proof. The possible outcomes for xs are that it is either equal to a particular
symbol in the prefix or differs from all of them. All these outcomes are mutually
exclusive. Evidently

Pdps` 1q `
s´1
ÿ

i“0

P pxs “ xi|xs´1, . . . , x0q “ 1.

Since estimation (1) is valid for any prefix, including the one with
xi ‰ xj; i ‰ j; i, j “ 0, s´ 1, and any next expected symbol xs, we obtain that
for any i P 0, . . . , s´ 1

N ´ 2s

pN ´ sq2
ď P pxs “ xi|xs´1, xs´2, . . . , x0q ď

N ´ s

pN ´ sq2
.

Hence 1 ´ sP2ps ` 1q ď Pdps ` 1q ď 1 ´ sP1ps ` 1q which leads immediately
to (2).

Using the general formula for the probability of joint events through condi-
tional probabilities, it is easy to see that the probability PDps`1q that all s`1
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output symbols are different is

PDps` 1q “ P pxi ‰ xj; i ‰ j; i, j “ 0, sq “
s
ź

i“0

Pdpi` 1q. (3)

The probability PCps ` 1q to encounter a collision after observing s ` 1
output symbols of the generator is

PCps` 1q “ 1´ PDps` 1q. (4)

Using (2), (3) and (4) we get

1´
s
ź

i“0

˜

1´
ipN ´ 2iq

pN ´ iq2

¸

ď PCps` 1q ď 1´
s
ź

i“0

˜

1´
ipN ´ iq

pN ´ iq2

¸

. (5)

Using the Taylor series expansion of the exponential function ez “ 1 ` z `
z2

2 `opz
2q, we take the first-order approximation: ez « 1`z for z ! 1. Consider

now i ď s ! N{2. In this case both
ipN ´ iq

pN ´ iq2
and

ipN ´ 2iq

pN ´ iq2
are much smaller

than 1. Therefore,

1´
ipN ´ iq

pN ´ iq2
« e

´

ipN ´ iq

pN ´ iq2 and 1´
ipN ´ 2iq

pN ´ iq2
« e

´

ipN ´ 2iq

pN ´ iq2 .

Now from (5) we obtain

1´ exp

˜

´

s
ÿ

i“0

ipN ´ 2iq

pN ´ iq2

¸

ď PCps` 1q ď 1´ exp

˜

´

s
ÿ

i“0

ipN ´ iq

pN ´ iq2

¸

.

Let us compute the sums. Using the Taylor series expansion for the function
p1` zqα “ 1` αz ` αpα´1q

2 z2 ` opz2q we get

s
ÿ

i“0

ipN ´ iq

pN ´ iq2
“

s
ÿ

i“0

i

N

˜

1`
i

N
`

ˆ

i

N

˙2

` o
´

`

i
N

˘2
¯

¸

,

s
ÿ

i“0

ipN ´ 2iq

pN ´ iq2
“

s
ÿ

i“0

i

N

˜

1´

ˆ

i

N

˙2

` o
´

`

i
N

˘2
¯

¸

.
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We take the known formulas for the sums
s
ÿ

i“0

i “
sps` 1q

2
,

s
ÿ

i“0

i2 “
sps` 1qp2s` 1q

6
,

s
ÿ

i“0

i3 “
s2ps` 1q2

4
,

to obtain
s
ÿ

i“0

ipN ´ iq

pN ´ iq2
“
sps` 1q

2N
`
sps` 1qp2s` 1q

6N 2
`
s2ps` 1q2

4N 3
` ops4

{N 3
q,

s
ÿ

i“0

ipN ´ 2iq

pN ´ iq2
“
sps` 1q

2N
´
s2ps` 1q2

4N 3
` ops4

{N 3
q

Assuming that s is large we come to the following lemma.

Lemma 2. For G2I the probability PCps ` 1q to find a collision in an output
of length s` 1 is bounded as

1´ exp

˜

´
sps` 1q

2N
`

s4

4N 3

¸

ď

ď PCps` 1q ď

ď 1´ exp

˜

´
sps` 1q

2N
´

s3

3N 2
´

s4

4N 3

¸

, (6)

provided s ! N{2.

Recall that for a true RNG the collision probability after observing s ` 1
symbols is estimated as

PIps` 1q » 1´ exp

˜

´
sps` 1q

2N

¸

.

We see that PIps` 1q lies within bounds (6).
It is clear, that the described technique for calculating bounds on the colli-

sion probability is easily applicable when the conditional probability P pxs| . . .q
is expressed as 1`fpsq

N , where fpsq ! 1 is a polynomial with zero constant term.
For instance, the collision probability bounds for a generator based on R per-
mutations [3] can be straightforwardly calculated.
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5 A PRNG on a Single Truncated Permutation

As we mentioned earlier, the collision probability for CTR_DRBG is strictly 0.
Can this PRNG can be improved concerning collisions? Fortunately, the answer
is yes.

Let us consider permutations Σ on V2n. And we build a PRNG G1LI on a
single permutation Σ by selecting some t bits out of 2n in every output, and
discarding the other 2n´ t bits by the function Ttpq:

G1LI: for i from 0 to s´ 1 do:

count :“ pIV ` iq mod 22n;

xi :“ TtpΣpcountqq.

The output sequences of G1LI are periodic with period of N 2 “ 22n.

Lemma 3. The conditional probability P pxs|xs´1, . . . , x0q of the next output
symbol xs to appear given a prefix pxs´1, xs´2, . . . , x0q for G1LI is bounded as

N 2{2t ´ s

N 2 ´ s
ď P pxs|xs´1, xs´2, . . . , x0q ď

N 2{2t

N 2 ´ s
. (7)

Proof. It is easy to see that the operation of G1LI corresponds to a random
sampling without replacement from a multiset of cardinality 22n which consists
of all elements of Vt each repeated 22n´t times. Hence it is evident that we may
select any t bits by Tt.

Clearly the random sampling gives us bounds (7) on the conditional proba-
bility.

Consider the case t “ n. In this case we discard half of the permutation
output. As a result we will have n-bit symbols in the output. We get the corollary
of Lemma 3

Corollary 1. If t “ n, for G1LI the conditional probability is bounded as

N ´ s

N 2 ´ s
ď P pxs|xs´1, xs´2, . . . , x0q ď

N

N 2 ´ s
. (8)

It is interestingly to note that G1LI with t “ n is exactly the same gen-
erator as the one on a single random permutation, where the output symbol is
computed by XORing two n-bit halves of Σ.
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Both bounds in Corollary 1 are tight. The lower bound is attained when the
expected symbol and all the symbols in the prefix are the same, while the upper
bound is attained when the expected symbol differs from any symbol in the
prefix. In Lemma 1 only the upper bound in definitely tight, and this happens
when the expected symbol and all the symbols in the prefix are the same.

Evidently, for G2I the lower bound in (1) turns to 0 when s “ N{2, while
for G1LI the lower bound in (8) turns to 0 when s “ N . Consequently one
may assume that G2I is worse than G1LI. It seems, however, that the lower
bound (1) is not tight. In [2] it was proven that forG2I any first N´1 elements
in the output are possible. In other words, for any prefix of length N there is
at least one pair of permutations that give that prefix being XORed together.
This means that P pxs|xs´1, . . . , x0q ą 0 for any s ď N´2. Furthermore, this in
particular means that recursive computation xs “ Fpxs´1, . . . , xs´1´pq for G2I
is only possible for p “ N ´ 1, and the function F is just XORing of all N ´ 1
output symbols. This does not contradict the lower bound in (1). The way the
lower bound is obtained just shows that there are pairs of permutations which
being XORed together give prefixes of length N{2 such that certain elements
of Vn cannot be observed after those prefixes.

By applying the technique from section 4 to bounds (8) it is quite straight-
forward to obtain the bounds on collision probability for G1LI.

Lemma 4. In case t “ n for G1LI the probability PCps`1q to find a collision
in an output of length s` 1 is bounded as

1´ exp

˜

´
s2

2N
`

s3

2N 2

¸

ď PCps` 1q ď 1´ exp

˜

´
s2

2N
´

s3

3N 3

¸

. (9)

From Lemma 4 it is clear that G1LI has got a similar to G2I behavior
concerning collisions. This is defined by the term s3

2N2 in the exponents. If we
assume that computing Σ of 2n bits is as twice as more expensive as σ of n bits,
we will see that bothG1LI andG2I have the same performance. However, while
increasing length of internal values twice, computing the output will typically
require 4 times more operations. The last assumption could be justified if Σ is
implemented as a 2n-bit cipher, and σ — as an n-bit cipher. In this case G2I
looks a bit more preferable.
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6 Security Discussion

Now we estimate when the difference between the upper and lower bounds
in Lemma 2 is negligible. Evidently it is true for the range s2 ă 2N . So we are
interested what happens for s2 ą 2N . In this case the difference of the bounds
is estimated as exp

´

´ s2

2N

¯´

exp
´

s4

4N3

¯

´ exp
´

´ s3

3N2 ´
s4

4N3

¯¯

. If

s4
ď 4N 3,

then the value in brackets does not exceed e, so the difference is no greater than
exp

´

´ s2

2N

¯

.

The difference δpsq “ |PCps` 1q ´ PIps` 1q| is no greater than the differ-
ence between the upper and the lower bounds. In particular, one can estimate
that for s “ 3

?
N we get δ ď Op1{Nq, for s “

?
N : δ ď O

`

1{
?
N
˘

, for

s “
3
?
N 2: δ ď O

´

e´
3?N
2

¯

, and for s “ 4
?
N 3: δ ď O

´

e´
?
N
2

¯

.

As we discussed, if δpsq came close to 1, then a distinguisher could be built.
Therefore, it is hardly possible to construct a distinguisher which for any fixed
ratio s{N , provided s ! N and s ă 4

?
4N 3, could tell the difference between

G2I and a true random number generator by looking for collisions. In other
words, the G2I, an idealized version of the PRNG on two block ciphers, will
surely pass the collision test.

This result contrasts greatly with CTR_DRBG generator, for which the collision
probability is exactly 0 whatever s is. Indeed δps1q “ PIps1q for CTR_DRBG
and δps2q ď exp

´

´
s22
2N

¯´

exp
´

s42
4N3

¯

´ exp
´

´
s32

3N2 ´
s42

4N3

¯¯

for G2I. If we fix
security conditions by δps1q “ δps2q ! 0, then s1 and s2 will be connected by
the following equation

s2
1

2N
»

ˆ

s4
2

2N 3
`

s3
2

3N 2

˙

exp

ˆ

´
s2

2

2N

˙

provided s21
N ! 1 and s32

N2 ! 1.
Consider two examples. Let N “ 264, δ “ 2´34. Then for CTR_DRBG we

obtain admissible s1 » 215, while for G2I we get s2 ą 235

Let N “ 2128, δ “ 2´68. Then for CTR_DRBG we obtain admissible s1 » 230,
while for G2I we get s2 ą 263
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7 Conclusion

In this paper, we investigated pseudorandom number generators based on
random permutations. We estimated upper and lower bounds for the probability
to find at least two identical elements is an output sequence of a finite length.
The difference between the upper and lower bounds is extremely small, and
the collision probability for a true RNG always lies within these bounds. We
showed that the PRNG on two n-bit permutations could pass the collision test
for output sequences of lengths far beyond the birthday bound. Similar security
and performance is achieved when a single 2n-bit random permutation is used
and only a half of bits is used as output.
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Abstract

We studied the applicability of differential cryptanalysis to cryptosystems based on
operation of addition modulo 2n. We obtained an estimate (accurate up to an additive
constant) of expected value of entropy Hn in rows of DDT of corresponding mapping.
Moreover, the k-th moments of 2Hn are explored. In particular, asymptotic inequalities
that describe the behavior of values E2Hn and D2Hn as nÑ8 were obtained.

Keywords: modular addition, differential cryptanalysis, entropy of distribution.

1 Introduction

A number of cryptographic schemes use the operation of addition modulo
2n for some n ą 1. Denote ZN the ring modulo N . The first function under
consideration is f : Z2

2n Ñ Z2n defined by fpx, yq “ x ‘n y, where ‘n denotes
addition in ring Z2n, i.e. modulo 2n, and ‘ is bitwise exclusive-OR. We are
interested in study of the function Pnp∆x,∆fq : Z2

2n Ñ N0:

Pnp∆x,∆fq “
1

22n

ˇ

ˇ

ˇ
tpx, yq P Z2

2n : ∆f “ fpx‘∆x, yq ‘ fpx, yqu
ˇ

ˇ

ˇ
.

(it is analogous to a special case of the differential probability of addition modulo
2n studied in [1]).

In this work we study the properties of this operation through the concept
of entropy. The article [2] investigated the function 2n ¨Pnp∆x,∆fq, but all the
results are similar in these two cases, therefore we will briefly describe what is
already known.

The table of values of the function Pnp∆x,∆fq is called a difference distri-
bution table (DDT). The rows of this table are indexed by ∆x and columns by
∆f . In [2] it has been shown that this table has a special form: the table for
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addition modulo 2n`1 is naturally expressed through a similar table for addition
modulo 2n. That is, if the matrix for Pnp∆x,∆fq has the form

Pn “

„

A B

C D



then matrix Pn`1 has form

Pn`1 “
1

2

»

—

—

–

2A B 0 B
C D C D

0 B 2A B
C D C D

fi

ffi

ffi

fl

It was also shown that A “ D andB “ C. This led to the following recurrent
representation for the matrix Pn:

Pn “

„

An Bn

Bn An



, (1)

where

An “
1

2

„

2An´1 Bn´1

Bn´1 An´1



, Bn “
1

2

„

0 Bn´1

Bn´1 An´1



. (2)

When considering Pnp∆x,∆fq as a part of a cryptosystem from the point
of view of differential cryptanalysis the following problem arises: for a given (or
randomly chosen) ∆x it is necessary to determine the minimum cardinality Kc

of the set of numbers t∆f1, . . . ,∆fKc
u such that

Kc
ÿ

i“1

Pnp∆x,∆fiq ě c,

where c, 0 ă c ď 1, is some fixed constant. The value of Kc corresponds to the
“degree of branching”, that is, the coefficient by which the number of considered
variants is multiplied when moving to the next round of the cryptosystem. In
practice, it was found that for the distributions in DDT rows the described value
K 1

2
does not exceed 2H , where H is the entropy of this distribution (this is not

true in the general case, for arbitrary distributions, it is enough to consider an
example distribution t1

4 ,
1
2n , . . . ,

1
2nu for sufficiently large n).

Therefore in this article we research the quantities H and 2H since analysis
of Kc seems much less trivial.
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2 Main results

By definition the entropy in the i-th row of matrix Pn may be found accord-
ing to the formula

H i
n “ ´

2n´1
ÿ

j“0

Pnpi, jq log2 Pnpi, jq, i “ 0, . . . , 2n ´ 1.

For convenience we denote

αin “
2n´1´1
ÿ

j“0

Anpi, jq, βin “
2n´1´1
ÿ

j“0

Bnpi, jq

and

αn “
2n´1´1
ÿ

i“0

αin, βn “
2n´1´1
ÿ

i“0

βin.

Lemma 1.

H i
n`1 “

#

H imod 2n
n ` 1, if i P r2n´1, 2n ´ 1s Y r3 ¨ 2n´1, 2n`1 ´ 1s,

H imod 2n
n ` βimod 2n

n , if i P r0, 2n´1 ´ 1s Y r2n, 3 ¨ 2n´1 ´ 1s.

Proof. From (1) and (2) it is clear that for i P r2n´1, 2n´1sYr3 ¨2n´1, 2n`1´1s
the i-th row has the form 1

2

“

a b a b
‰

and thus the entropy can be written as

H i
n`1 “ ´2 ¨

2n´1
ÿ

j“0

Pnpi, jq

2
log2

Pnpi, jq

2
“ ´

2n´1
ÿ

j“0

Pnpi, jqi,j log2

Pnpi, jq

2
“

“ ´

2n´1
ÿ

j“0

Pnpi, jq log2 Pnpi, jq `
2n´1
ÿ

j“0

Pnpi, jq log2 2 “ H imod 2n

n ` 1.

On the other hand, for i P r0, 2n´1 ´ 1s Y r2n, 3 ¨ 2n´1 ´ 1s we have the row of
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form 1
2

“

2a b 0 b
‰

and thus

H i
n`1 “ ´

2n´1´1
ÿ

j“0

Pnpi, jq log2 Pnpi, jq ´ 2 ¨
2n´1
ÿ

j“2n´1

Pnpi, jq

2
log2

Pnpi, jq

2
“

“ ´

2n´1´1
ÿ

j“0

Pnpi, jq log2 Pnpi, jq ´
2n´1
ÿ

j“2n´1

Pnpi, jq log2 Pnpi, jq `
2n´1
ÿ

j“2n´1

Pnpi, jq “

“ H imod 2n

n ` βimod 2n

n .

Lemma 2. For every n ě 1

EHn`1 “
n

2
`
βn
2n
` ¨ ¨ ¨ `

β3

8
`
β2

4
.

Proof. Taking into account the previous lemma, we can write:

EHn`1 “
1

2n`1

2n`1´1
ÿ

i“0

H i
n`1 “

1

2n

2n´1´1
ÿ

i“0

pH i
n ` β

i
nq `

1

2n

2n´1
ÿ

i“2n´1

pH i
n ` 1q “

“
1

2n

2n´1
ÿ

i“0

H i
n `

1

2n

2n´1´1
ÿ

i“0

βjn `
1

2
“ EHn `

βn
2n
`

1

2
.

It remains to “unroll” this equality and note that H1 “ 0 and β1 “ 0.

Lemma 3. For every n ě 1

βn “
1

3
¨ 2n´1

p1´ 41´n
q.

Proof. Obviously, αin ` βin “ 1, so αn ` βn “ 2n´1. From (2) it follows that

βn`1 “ βn `
αn
2
.

From the last two equalities it follows that

βn`1 “ 2n´2
`
βn
2
.
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Unrolling this equality we come to

βn`1 “ 2n´2
`
βn
2
“ 2n´2

`
1

2

´

βn´1 `
αn´1

2

¯

“ 2n´2
` 2n´4

`
βn´1

4
“

“ 2n´2
` 2n´4

` ¨ ¨ ¨ ` 2´n “
2n´2

`

1´
`

2´2
˘n˘

1´ 2´2
“

1

3
¨ 2np1´ 4´nq.

Theorem 1. EHn “
2
3n`Op1q as nÑ 8.

Proof. Let us substitute values obtained in Lemma 3 into the representation of
EHn`1 obtained in Lemma 2:

EHn`1 “
n

2
`

1

6
p1´41´n

q`¨ ¨ ¨`
1

6
p1´4´1

q “
n

2
`
n

6
`

1

3
p1´41´n

q “
2

3
n`Op1q.

So EHn “
2
3pn´ 1q `Op1q “ 2

3n`Op1q.

Now we will consider the q-th moment of a random variable 2Hn:

E
`

2Hn
˘q
“ E2qHn “

1

2n

2n´1
ÿ

i“0

2qen,i “
1

2n

2n´1
ÿ

i“0

Qen,i,

where en,i is the entropy in i-th row of matrix Pn and Q denotes 2q. To avoid
multilevel exponentiation we will use the notation Qpxq “ Qx.

Corollary 1. E2qHn “ Ω
´

Q
2
3n
¯

.

Proof. It is sufficient to use the inequality of arithmetic and geometric means
and the result of Theorem 1:

E2qHn “
1

2n

2n´1
ÿ

i“0

2qen,i ě 2n

g

f

f

e

2n
ź

k“1

2qen,i “ 2EpqHnq “ 2
2
3qn ¨ Ωp1q “ Ω

´

Q
2
3n
¯

.

Lemma 4. For i “ 0, . . . , 2n´1 ´ 1

βin “

#

0, if i “ 0,

2´pn´1´tlog2 iuq, otherwise.
(3)
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Proof. Let us prove by induction. For n “ 1 the proposition is obvious as
B1 “

“

0
‰

. Now let’s suppose that it is also true for βin´1, i “ 0, . . . , 2n´2 ´ 1
and let us prove it for βin.

For 2n´2 ď i ď 2n´1 ´ 1 from (2) we get βin “
1
2 as the sum in any row of

matrix
“

Bn´1 An´1

‰

is 1. This agrees with (3) as tlog2 iu “ n´ 2.
For 0 ď i ď 2n´2 ´ 1 from (2) we have

βin “
1

2
βin´1.

and by the inductive hypothesis we come to (3).

Remark. The vector of values βin has the following form:
„

0,
1

2n´1
loomoon

1

,
1

2n´2
,

1

2n´2
loooomoooon

2

, . . . ,
1

8
, . . . ,

1

8
looomooon

2n´4

,
1

4
, . . . ,

1

4
looomooon

2n´3

,
1

2
, . . . ,

1

2
looomooon

2n´2



.

For convenience we extend the definition (3) for 2n´1 ď i ď 2n ´ 1. Then
according to Lemma 1,

en,i “ βi mod 2n´1

n´1 ` βi mod 2n´2

n´2 ` ¨ ¨ ¨ ` βi mod 4
2 .

Moreover, obviously, e1,0 “ e1,1 “ 0. For k P t0, . . . , n´ 2u let us introduce sets

Zk “
 

i P Z : 2n´k´1
ď i ď 2n´k ´ 1

(

.

The set Zk consists of integers which binary representation has the form
0 . . . 0
loomoon

k

1 ˚ ¨ ¨ ¨ ˚
loomoon

n´k´1

. Let us denote ωn “
ř2n´1
i“0 Qpen,iq. Then

ωn “
2n´1
ÿ

i“0

Qpen,iq “
n´1
ÿ

k“0

ÿ

i1PZk

Q
˜

k
ÿ

c“1

βi
1 mod 2n´c

n´c ` en´k,i1

¸

` 1 “

“

n´1
ÿ

k“0

ÿ

i1PZk

Q
˜

k
ÿ

c“1

βi
1 mod 2n´c

n´c

¸

Qpen´k,i1q ` 1

“

n´1
ÿ

k“0

Q
˜

k´1
ÿ

c“0

2´c

¸

ÿ

i1PZk

Qpen´k,i1q ` 1 “
n´1
ÿ

k“0

Q
`

2´ 2´k`1
˘ ωn´k

2
` 1.
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Obviously,
E
`

2Hn
˘q
“
ωn
2n
. (4)

Thus we need to investigate the following recurrence relation:

f 1pnq “
n´1
ÿ

`“1

f 1p`q ¨Qp2´ 2´n```1
q ` 2, (5)

First, we compare it with the similar relation:

fpnq “
n´1
ÿ

`“1

fp`q ¨Qp2´ 2´n```1
q, n ě 2

fp1q “ 2.

(6)

Let us denote ∆pnq “ f 1pnq ´ fpnq.

Lemma 5. ∆pnq ď fpnq.

Proof. Let us prove by induction. Obviously,

0 “ ∆p1q ď fp1q “ 2.

Suppose the proposition is true for all ` ď n (i.e. ∆p`q ď fp`q) and write down

fpn` 1q “
n
ÿ

`“2

fp`q `Qp2´ 2´n```1
qfp1q,

∆pn` 1q “
n
ÿ

`“2

∆p`q `Qp2´ 2´n```1
q∆p1q ` 2.

For n ě 2 we have Qp2´ 2´n`3q ě 1, from which and the inductive hypothesis
follows:

∆pn` 1q ď
n
ÿ

`“2

fp`q `Qp2´ 2´n```1
q∆p1q ` 2 ď

ď

n
ÿ

`“2

fp`q ` 0` 2 ď
n
ÿ

`“2

fp`q `Qp2´ 2´n```1
qfp1q “ fpn` 1q,

and it is the required inequality.
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With the use of Lemma 5 we estimate f 1pnq as

fpnq ď f 1pnq “ fpnq `∆pnq ď 2fpnq,

and will work with homogeneous equation (6).

Let us note that coefficients Qp2´ 2´n```1q “ Q2´2´n```1 are bounded from
above by the number Qp2q. Then let us consider the next family of recurrence
relations:

pfkpnq “
n´1
ÿ

`“n´k

Qp2´ 2´n```1
q pfkp`q `Qp2q

n´k´1
ÿ

`“1

pfkp`q,

pfkp1q “ 2,

solutions to which bound fpnq from above. Denote

pFkpnq “
n´1
ÿ

`“1

pfkp`q. (7)

Then

pFkpnq ´ pFkpn´ 1q “

“

n´1
ÿ

`“n´k

Qp2´ 2´n```1
q
`

pFkp`q ´ pFkp`´ 1q
˘

`Qp2q pFkpn´ k ´ 1q,

pFkp1q “ 2. (8)

Note that this recurrence relation has constant “length” and can be solved using
well-known methods. Let us first find the form of the characteristic polynomial
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corresponding to this relation:

λk`1
´ λk “

“

n´1
ÿ

`“n´k

pλ`´n`k`1
´ λ`´n`kqQp2´ 2´n```1

q `Qp2q “

“

n´1
ÿ

`“n´k

λ`´n`k`1Qp2´ 2´n```1
q ´

n´1
ÿ

`“n´k

λ`´n`kQp2´ 2´n```1
q `Qp2q “

“

n´1
ÿ

`“n´k

λ`´n`k`1Qp2´ 2´n```1
q ´

n´2
ÿ

`“n´k´1

λ`´n`k`1Qp2´ 2´n```2
q `Qp2q “

“ Qp1qλk`1´1
´Qp2´ 2´k´1`2

q`

`

n´2
ÿ

`“n´k

λ`´n`k`1
`

Qp2´ 2´n```1
q ´Qp2´ 2´n```2

q
˘

`Qp2q.

Thus the final form of the characteristic polynomial is

pHkpλq “

“ λk`1
´ p1`Qp1qqλk ´

k´2
ÿ

`“0

Qp2q
`

Qp´2´k```1
q ´Qp´2´k```2

q
˘

λ``1
´

´Qp2q
`

1´Qp´2´k`1
q
˘

.

We will denote pϕs the coefficient of λs. Let y1, . . . , yk`1 be the roots of this
polynomial. It is known [3] that the solution to the equation (8) has form

pFkpnq “ pγ1y
n
1 ` ¨ ¨ ¨ ` pγk`1y

n
k`1 (9)

for some constant pγi.
On the other hand, coefficients Qp2 ´ 2´n```1q decrease with growth of `

and reach the minimum value on the interval ` P r1, n ´ k ´ 1s at the point
` “ n´ k´ 1, where the coefficient is Qp2´ 2´kq. From this considerations we
obtain a new family of recurrences limiting the original one from below :

qfkpnq “
n´1
ÿ

`“n´k

Qp2´ 2´n```1
q qfkp`q `Qp2´ 2´kq

n´k´1
ÿ

`“1

qfkp`q,

qfkp1q “ 2.
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Just as it was done above we introduce

qFkpnq “
n´1
ÿ

`“1

qfkp`q. (10)

Thus

qFkpnq ´ qFkpn´ 1q “
n´1
ÿ

`“n´k

Qp2´ 2´n```1
q
`

qFkp`q ´ qFkp`´ 1q
˘

`Qp2´ 2´kq qFkpn´ k ´ 1q,

qFkp1q “ 2. (11)

In this case the characteristic polynomial has the following form:

qHkpλq “

λk`1
´ p1`Qp1qqλk ´

k´2
ÿ

`“0

Qp2q
`

Qp´2´k```1
q ´Qp´2´k```2

q
˘

λ``1
´

´Qp2q
`

Qp´2´kq ´Qp´2´k`1
q
˘

. (12)

We will denote qϕs the coefficient of λs. The solution to the equation (11) has
the following form:

qFkpnq “ qγ1y
n
1 ` ¨ ¨ ¨ ` qγk`1y

n
k`1, (13)

where y1, . . . , yk`1 are the roots of qHkpλq and qγi are some constants.
Consider the following family of polynomials (t P r0, 1s):

putpλq “ λk`1
´ p1`Qqλk ´ t ¨ pϕk´1λ

k´1
´ ¨ ¨ ¨ ´ t ¨ pϕ0 (14)

and the similar one for qϕi (denote it qutpλq). We will prove the following lemmas
describing these families (note that qϕi “ pϕi for i ě 1).

Lemma 6. For every t P r0, 1s the polynomials putpλq and qutpλq:

(a) have no root in the annulus 1 ă |λ| ď 2, if Q “ 2;

(b) have no root λ such that |λ| “ Q
2 ` 1, if Q ą 2.

Proof. We prove the case (a) by contradiction. Assume that putpλq has a root λ
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such that 1 ă |λ| ď 2. Then taking absolute values in both parts in the equality

λk`1
´ t ¨ pϕk´1λ

k´1
´ ¨ ¨ ¨ ´ t ¨ pϕ0 “ 3λk

and applying the triangle inequality, we get

|λ|k`1
` t ¨ pϕk´1|λ|

k´1
` ¨ ¨ ¨ ` t ¨ pϕ0 ě 3|λ|k.

Then

|λ|k´1
`

|λ|2 ´ 3|λ| ` t ¨ pϕk´1

˘

ě ´t ¨ pϕk´2|λ|
k´2

´ ¨ ¨ ¨ ´ t ¨ pϕ0.

Since the branches of the parabola yp|λ|q “ |λ|2 ´ 3|λ| ` t ¨ pϕk´1 are directed
upwards, it reaches its maximum on one of the boundaries of the considered
segment. In our case

yp1q “ yp2q “ ´2` t ¨ pϕk´1.

That is,
|λ|k´1

p´2` t ¨ pϕk´1q ě ´t ¨ pϕk´2|λ|
k´2

´ ¨ ¨ ¨ ´ t ¨ pϕ0.

Dividing by |λ|k´1 we get

´2 ě ´t ¨ pϕk´1 ´ t ¨ pϕk´2|λ|
´1
´ ¨ ¨ ¨ ´ t ¨ pϕ0|λ|

´k`1.

Noting that simultaneously t ď 1 by premise and |λ|´1 ă 1 in the considered
annulus, we arrive at:

2 ă pϕk´1 ` pϕk´2 ` ¨ ¨ ¨ ` pϕ0. (15)

At the same time it is easy to prove that for Q “ 2

pϕk´1 ` pϕk´2 ` ¨ ¨ ¨ ` pϕ0 “ 2,

so we have come the contradiction with (15). The same line of reasoning works
for qutpλq except that instead of the last equality we get strict inequality.

We turn to the case (b): Q ě 4. If under this condition there is a root such
that |λ| “ Q

2 ` 1, then
ˆ

Q

2
` 1

˙k`1

`

ˆ

Q

2
` 1

˙k´1

¨ t ¨ pϕk´1 ` ¨ ¨ ¨ ` t ¨ pϕ0 ě pQ` 1q ¨

ˆ

Q

2
` 1

˙k

.
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As far as max
i

pϕi “ pϕk´1 “ Q
3
2 ´Q and t ď 1 then

ˆ

Q

2
` 1

˙k`1

´ pQ` 1q

ˆ

Q

2
` 1

˙k

`
2

Q

´

Q
3
2 ´Q

¯

ˆ

Q

2
` 1

˙k

ą 0

or
p
a

Q´ 2q2 ă 0,

which contradicts Q ě 4. Absolutely the same arguments work for qutpλq.

Lemma 7. None of the derivatives of putpλq and qutpλq have a root λ such that
|λ| “ Q

2 ` 1.

Proof. We firstly note that polynomials putpλq and qutpλq differ only in the con-
stant term, which implies equality of derivatives

pu
psq
t pλq “ qu

psq
t pλq for all s ě 1. (16)

So we will prove the lemma only for putpλq.

Suppose that there exists λ, |λ| “ Q
2 ` 1, such that pu

psq
t pλq “ 0. Then

similarly to Lemma 6 we get:

pk ` 1qs ¨

ˆ

Q

2
` 1

˙k`1´s

`

` pk ´ 1qs ¨

ˆ

Q

2
` 1

˙k´1´s

¨ tpϕk´1 ` ¨ ¨ ¨ ` 0s ¨

ˆ

Q

2
` 1

˙´s

¨ tpϕ0 ě

ě pQ` 1qks ¨

ˆ

Q

2
` 1

˙k´s

(here xs denotes xpx´1q . . . px´ s`1q). As noted above, max
i

pϕi “ Q
3
2 ´Q, so

pk ´ 1qspQ
3
2 ´Qq ¨

2

Q

ˆ

Q

2
` 1

˙k´s

ě

ě pQ` 1qks ¨

ˆ

Q

2
` 1

˙k´s

´ pk ` 1qs ¨

ˆ

Q

2
` 1

˙k`1´s

,
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therefore,

pk ´ sqpk ´ s` 1qpQ
3
2 ´Qq ¨

2

Q
ě kpk ´ s` 1qpQ` 1q ´ kpk ` 1q

ˆ

Q

2
` 1

˙

.

This inequality can be viewed as

apQ, sqk2
` bpQ, sqk ` cpQ, sq ě 0.

But
#

apQ, sq ă 0, if Q ‰ 4,

apQ, sq “ 0, otherwise.

Moreover, in the case of Q “ 4, it is true that bpQ, sq ă 0. Thus, there exists a
certain number k starting from which this inequality will not be satisfied.

Lemma 8. The polynomials putpλq and qutpλq have exactly one root λ such that
|λ| ą Q

2 ` 1.

Proof. For the considered polynomials it is known [4] that their roots are con-
tinuous functions of variable t. As

pu0pλq “ qu0pλq “ λk`1
´ p1`Qqλk,

these two polynomials have 0 as a root of multiplicity k and p1`Qq as a root
of multiplicity one.

By Lemma 6, putpλq and qutpλq do not have roots in the annulus 1 ă |λ| ď 2
(forQ “ 2) or the circle |λ| “ Q

2 ` 1 (forQ ě 4). Thus, all curves corresponding
to the first k roots do not leave the circle |λ| ď 1 (for Q “ 2) and the circle
|λ| ă Q

2 ` 1 (for Q ě 4). The curve corresponding to the last root does not
leave the sets |λ| ą 2 and |λ| ą Q

2 ` 1 respectively.

Note that pHkpQ` 1q ă 0 since

pHkpQ` 1q “ pQ` 1qk`1
´ pQ` 1q ¨ pQ` 1qk ´ pϕk´1 ¨ pQ` 1qk´1

´ ¨ ¨ ¨ ´ pϕ0,
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and pϕi ą 0, i P r0, k´ 1s. On the other hand, pϕi ă Q
3
2 ´Q for i P r0, k´ 1s, so

pHkp3Qq “ p3Qq
k`1

´ pQ` 1qp3Qqk ´ pϕk´1 ¨ p3Qq
k´1

´ ¨ ¨ ¨ ´ pϕ0 ą

ą p3Qqk`1
´ pQ` 1qp3Qqk ´ pQ

3
2 ´Qq

p3Qqk

3Q´ 1
ą

ą
p3Qqk

3Q´ 1

´

6Q2
´Q

3
2 ´ 4Q´ 1

¯

ą
p3Qqk

3Q´ 1
p5Q2

´ 4Q´ 1q ą 0,

for Q ě 2. Absolutely similar statements are true for qHkpQ` 1q and qHkp3Qq.

Hence by the intermediate value theorem both functions pHkpλq and qHkpλq

have a real root on the segment rQ ` 1, 3Qs which can be found by halving
the segment. In this case, for n steps the root can be found with an accuracy
Op2´nq.

Then equalities (9) and (13) take form:

pFkpnq “ pγkpy
n
k ` pρkpnq, (17)

qFkpnq “ qγkqy
n
k ` qρkpnq, (18)

where pyk, qyk are maximum (by the absolute value) roots of polynomials pHkpλq
and qHkpλq respectively (they are real, positive and lie inside rQ` 1, 3Qs as we
have proved). pγk and qγk are some real positive constants. Next, we note that if
Q “ 2 then pρkpnq “ Op1q and qρkpnq “ Op1q as nÑ 8. If Q ě 4 then

pρkpnq “ O

ˆˆ

Q

2
` 1

˙n˙

, qρkpnq “ O

ˆˆ

Q

2
` 1

˙n˙

The case Q “ 2 is illustrated on Fig. 1.
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Figure 1: Trajectories traversed by roots of pH5pλq with t from 0 to 1; the round mark corre-
sponds to t “ 0, the square mark corresponds to t “ 1

Lemma 9. The difference pyk ´ qyk tends to zero as k Ñ 8.

Proof. Using Lemma 7, similarly to the proof of Lemma 8, it can be shown
that the first and second derivatives of the functions pHkpλq and qHkpλq have
exactly one root, whose module exceeds Q

2 ` 1. We denote them by y1k and y2k
respectively (by (16) these values are the same for pHk and qHk).

Since the function qHkpλq can take negative values, min qHkpλq ă 0 and
arg min qHkpλq ă qyk. At the same time arg min qHkpλq “ y1k. Thus y

1
k ă qyk.

Carrying out similar reasoning, but considering qH 1
kpλq instead of qHkpλq, it

is easy to show that y2k ă y1k. Then starting with some number k the following
inequalities are held (see Fig. 2 for Q “ 2):

Q

2
` 1 ď y2k ă y1k ă qyk ă pyk ď 3Q.

Therefore functions pHkpλq and qHkpλq are convex functions on ry1k, pyks, so
for any δ P r0, 1s holds the convexity inequality:

pHk

`

δy1k ` p1´ δqpyk
˘

ď δ pHkpy
1
kq ` p1´ δq pHkppykq.
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Note that
qyk “ δy1k ` p1´ δqpyk for δ “

pyk ´ qyk
pyk ´ y1k

,

therefore, finally we get the following chain of inequalities:

pHkpqykq ď δ pHpy1kq ` p1´ δq pHppykq
loomoon

“0

“
pyk ´ qyk
pyk ´ y1k

pHkpy
1
kq ď

ď
pyk ´ qyk
5Q
2 ´ 1

pHk

ˆ

Q

2
` 1

˙

,

where at the last inequality we used the fact that pHkpy
1
kq is the minimum value

of function pHk on the ray
“

Q
2 ` 1,`8

˘

and also that pyk ´ y1k ď
5Q
2 ´ 1. For

function νk introduced in Lemma 7 the equality pHkpqykq “ ´νk obviously holds.
Then we finally get:

pyk ´ qyk ď
p´

5Q
2 ` 1qνk

pHkp
Q
2 ` 1q

.

It remains to show that the right part of the last inequality tends to zero

Figure 2: The plot of the function pH5pλq
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at k Ñ 8. This follows from the tendency of νk to zero and also from the fact
that

pHk

ˆ

Q

2
` 1

˙

“

“

ˆ

Q

2
` 1

˙k`1

´ p1`Qq

ˆ

Q

2
` 1

˙k

´ ϕk´1

ˆ

Q

2
` 1

˙k

´ ¨ ¨ ¨ ´ ϕ0 “

“ ´
Q

2

ˆ

Q

2
` 1

˙k

´ ϕk´1

ˆ

Q

2
` 1

˙k

´ ¨ ¨ ¨ ´ ϕ0 Ñ ´8 as k Ñ 8.

Now we can estimate the value of E2Hn.

Theorem 2. For all ε ą 0 and all q P N there exist real positive numbers pz, qz,
c1 and c2 such that |pz ´ qz| ď ε and

c1qz
n
À E2qHn À c2pz

n as nÑ 8.

Proof. According to Lemma 8 polynomials pHkpλq and qHkpλq have exactly one
root greater than

`

Q
2 ` 1

˘

. From (7) and (17)
`

also (10) and (18)
˘

it follows
that

pfkpnq “ pFkpnq ´ pFkpn´ 1q „ pγkppyk ´ 1qpyn´1
k “ pγ1kpy

n
k ,

qfkpnq “ qFkpnq ´ qFkpn´ 1q „ qγkpqyk ´ 1qqyn´1
k “ qγ1kqy

n
k .

At the same time,
qfkpnq ď fpnq ď pfkpnq,

so
qγ1kqy

n
k À fpnq À pγ1kpy

n
k ,

qγ1kqy
n
k À f 1pnq À 2pγ1kpy

n
k “ pγ2kpy

n
k .

Finally,

c1qz
n
“ qγ1k ¨

qynk
2n
À E2qHn À pγ2k ¨

pynk
2n
“ c2pz

n,

moreover, Lemma 9 guarantees that pz and qz can be made arbitrarily close.

Let us use the result of Theorem 2. Chose ε “ 10´20, Then such pyk and
qyk exist that |pyk ´ qyk| ă ε, that is they are both equal to ry with the specified
accuracy. This value will correspond to rz “ ry

2 . Moreover, value log2 ry ´ 1 is
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interesting as

c12
n¨plog2 ry´1´εq

À E2qHn À c2 ¨ 2
n¨plog2 ry´1`εq.

Q ry rz log2 ry ´ 1
2 3.30921306134212177240 1.65460653067106088620 0.72648818154049951037
4 5.80027271324371478340 2.90013635662185739172 1.53612073348070167305
8 10.53733221939675028493 5.26866610969837514246 2.39743775493525848727
16 19.61999911051941379160 9.80999955525970689580 3.29425307103935297681
32 37.19179236569642652549 18.59589618284821326274 4.21691237160283720288
64 71.45569997172021204310 35.72784998586010602155 5.15897719358341460680
128 138.69767829225482267831 69.34883914612741133915 6.11579982787398693748
256 271.32073664755570805747 135.66036832377785402874 7.08385550468282259524
512 533.89365096936984102274 266.94682548468492051137 8.06040858243800754807

Table 1: Approximate values associated with EQHn for different values of Q

Now we can evaluate the variance of the value 2Hn:

D2Hn “ E
`

2Hn
˘2
´
`

E2Hn
˘2
“ E22Hn ´

`

E2Hn
˘2
.

It is easy to observe from this table that
`

E2Hn
˘2
“ o

`

E22Hn
˘

. Thus, the
variance D2Hn can be estimated by the second moment:

c11 ¨ 2
p1.5361´εqn

À D2Hn À c12 ¨ 2
p1.5361`εqn.

Finally we estimate the probability of deviating from the expectation E2Hn.
We use Chebyshev’s inequality:

P
´

ˇ

ˇ2Hn ´ E2Hn| ě a
¯

ď
D2Hn

a2
.

Choose a “ vn
?
D2Hn, v ą 1 then

P
´

ˇ

ˇ2Hn ´ E2Hn| ě vn
?
D2Hn

¯

ď
1

v2n
Ñ 0 as nÑ 8.

Thus with probability tending to one

2Hn ď E2Hn ` vn
?
D2Hn

or, for example,
2Hn “ o

`

20.76807n
˘

as nÑ 8.
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Abstract
This work presents a generalisation of some known ways to construct 2n-bit permu-

tations using n-bit ones. Some new ways of constructing permutations on the basis of
two well-known constructions will be proposed. Some new approaches presented in the
work give a way to build permutations with low differential uniformity, high algebraic
degree and high nonlinearity.

Keywords: S-box, permutation, boolean function, bent function.

1 Introduction

Permutations (or S-boxes) are core part of a huge class of modern crypto-
graphic primitives such as block ciphers, hash functions and some stream ci-
phers. In recent years new ways of constructing permutations with low differen-
tial uniformity, high algebraic degree and high nonlinearity have been published
[1, 2, 3, 15, 15]. Most of these works are devoted to the methods of constructing
new classes of permutations on the basis of existing ones.

There are a lot of ways to build permutations from smaller one: constructions
based on Feistel network [4, 5, 6], Misty network [7, 4, 8], SPN network [9, 10, 11]
and some other constructions [12, 13, 15]. The first approach for constructing
permutations is based on the so-called TU -decomposition [13, 14], which in
can be considered as a generalisation of the Feistel network. Permutations built
on this principle will be called “F -constructions” (Feistel-like constructions).
The second approach is based on a way of representing an arbitrary permu-
tation as a composition of transformations over spaces of smaller dimension.
Permutations built on this principle will be called “G-constructions” (Gener-
alised constructions). We will study some new ways to build permutations with
low differential uniformity, high algebraic degree and high nonlinearity using
these two approaches.
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2 Definitions and Notations.

We will use the following notations and definitions. Let F2n be a finite field
of size 2n and Vn be the Boolean vector space of n elements.

Remark 1. Every a P F2n could be presented as a n-bit vector a “

pa0, a1, . . . , an´1q, ai P F2, i P 0, n´ 1. In this work we suppose that there
is a bijective mapping from the field F2n to the vector space Vn.

For any a, b P F2n operation xa, by is a dot product:
řn´1
i“0 ai ¨bi. For a boolean

function f : Vn Ñ V1 we can define the value ||f || “ #tx P Vn : fpxq “ 1u.
Let S be any function S : F2n ÞÑ F2m. The security of the cryptographic

functions strongly depends on the cryptographic properties of the used permu-
tations, and properties of a permutation are the measures of resistance against
known methods of cryptanalysis.

Definition 1. The Walsh-Hadamard Transform (WHT) W S
a,b of a function S

for fixed values a P F2n, b P F2m is defined as follows:

W S
a,b “

ÿ

xPF2n

p´1qxa,xy`xb,Spxqy.

Definition 2. The nonlinearity of a function S is denoted by NS and defined
by:

NS “ 2n´1
´

1

2
max
a,b‰0

|WSpa, bq| .

The linearity LS of a S is defined as follows:

LS “
1

2
max
a,b‰0

|WSpa, bq| .

Definition 3. A function S : F2n ÞÑ F2m is called a bent function when its
nonlinearity is equal to 2n´1 ´ 2n{2´1.

Let n “ 2m, x, y P F2m. The Maiorana–McFarland construction [13] is
the way to construct 2n bit bent-function from n bit functions and finite field
multiplication: every function g : Vm ˆ Vm ÞÑ Vn that has the following form is
a bent function:

gpx, yq “ πpxq ¨ lpyq ` fpxq,

where π : F2m ÞÑ F2m is a permutation, l : F2m ÞÑ F2m is a linear permutation
and f : F2m ÞÑ F2m is a function.
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Definition 4. The algebraic degree degpSq of a function S is the minimum
among all maximum numbers of variables of the terms in the algebraic normal
form (ANF) of xa, Spxqy for all possible values x and a ‰ 0:

degpSq “ min
aPF2mz0

deg pxa, Spxqyq .

For any permutation on F2n the maximum value of the algebraic degree is
n´ 1.

Definition 5. For a given a P F2nz0, b P F2m we consider

δSpa, bq “ # tx P F2n|Spx` aq ` Spxq “ bu .

The differential uniformity of a function S is

δS “ max
aPF2nz0,b

δSpa, bq.

We will say that two permutations S1 and S2 are linear equivalent if there
exist two linear permutations L1 and L2: S1 “ L1˝S2˝L2. We will also say that
two permutations are affine equivalent if there exist two affine permutations A1

and A2: S1 “ A1 ˝ S2 ˝ A2.

3 Chosen constructions and their properties

In this work we will build permutations over F2m and in our notation (see
remark 1) it is equivalent to build permutation over V2m. We can represent V2m

as a product: Vm ˆ Vm as follows: x P V2m, x “ px0, . . . , xm´1, xm, . . . , x2m´1q,
x “ px1, x2q, where x1 “ px0, . . . , xm´1q, x2 “ pxm, . . . , x2m´1q. Moreover we
will suppose that xi is a representation of an element of the field F2m.

3.1 Base constructions

In this work we will study two kinds of construction. The first one is based
on the well-known TU-decomposition [13, 14]. Let F be a mapping VmˆVm ÞÑ
Vm ˆ Vm and F1, F2 : Vm ˆ Vm ÞÑ Vm be the functions with the property:
for any fixed value v2 the function Fipv1, v2q, i P 1, 2 is a bijection. Then the
definition F´1

2 px2, y2q “ y1 is correct and the following equations define the
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Figure 1: F construction

x2

y
1
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G2

2

Figure 2: G construction

mapping F px1, x2q “ py1, y2q (see fig. 1):
#

y2 “ F1px1, x2q

x2 “ F2py1, y2q
(1)

It’s easy to show that the mapping F is correctly defined and F is a bijection
[13, 15].

Proposition 1. The amount of permutations that can be build by using the
F -construction (see eq. (1)) is equal to p2m!q2

m`1

.

As we can see we can only build a limited number of permutations using
F -construction. That’s why we will also study the second type of construction.

Len G px1, x2q “ py1, y2q – be a permutation. Then we can define the map-
pings G1 and G2 as follows:

#

y1 “ G1px1, x2q

y2 “ G2py1, y2q
(2)

Obviously, by defining mappings Gi, i P 1, 2 in a special way we can construct
any permutation over Vm ˆ Vm (see fig. 2).
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3.2 Cryptographic properties of the chosen constructions

In this work we will study the ways to choose functions Fi and Gi, i P 1, 2
to build a permutations with high nonlinearity and low differential uniformity
and high algebraic degree. Cryptographic properties of a permutation depends
on it’s sub-functions Fi and Gi, i P 1, 2.

Let s1px, yq be a function Vm ˆ Vm ÞÑ Vm. We will call a punctured set of
function s1px, yq the set of y such that s1px, yq is not a permutation of x P Vm:

9Y “ t 9y |# ts1px, 9yq, x P Vmu ă 2mu .

The value 9y P 9Y we will call a punctured value of a function s1.
If function s1 have punctured values we can redefine it and construct a new

function spx, yq such as s is a permutation of x P Vm for every fixed value
y P Vm:

spx, yq “

#

s1px, yq, y R 9Y ;

pπypxq, y P 9Y ;
, (3)

where pπypxq are permutations over Vm.
In this work we will focus on functions s1 with only one punctured value

9y. The general case can be examined similarly. Let’s consider the following
construction:

spx, yq “

#

s1px, yq, πpyq ‰ 0;

pπpxq, πpyq “ 0;
, (4)

where π, pπ are permutations over Vm, s1px, yq : V2m Ñ Vm is a bijection for all
fixed y ‰ π´1p0q. Let gpxq be the function that is equal to the function spx, 9yq.

3.2.1 Nonlinearity

Proposition 2. Let spx, yq “

#

s1px, yq, πpyq ‰ 0;

pπpxq, πpyq “ 0;
, where π, pπ are the per-

mutations over Vm, s1px, yq : V2m Ñ Vm is a bijection for any fixed y, y ‰ 9y, 9y
is an punctured value of the function spx, yq.

Let s px, 9yq “ gpxq. Then the Walsh-Haramard Transform of the function
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spx, yq can be calculated as follows:

W s
α}β,γ “

$

’

’

&

’

’

%

W s1

α}β,γ ` p´1q〈β, 9y〉
`

W pπ
α,γ ´W

g
α,γ

˘

, α ‰ 0;

W s1

0}β,γ ` p´1q〈β, 9y〉 p2 }〈γ, gpxq〉} ´ 2mq , α “ 0, γ ‰ 0;

W s1

0}β,0, α “ 0, γ “ 0.

(5)

Proof. To prove the proposition we’ll use the definition of the WHT:

W s
α}β,γ “

ÿ

x,yPVm

p´1q〈α,x〉`〈β,y〉`〈γ,spx,yq〉 “

“
ÿ

x,yPVm
y‰ 9y

p´1q〈α,x〉`〈β,y〉`〈γ,s
1px,yq〉

`
ÿ

xPVm

p´1q〈α,x〉`〈β, 9y〉`〈γ,pπpxq〉 “

“
ÿ

x,yPVm
y‰ 9y

p´1q〈α,x〉`〈β,y〉`〈γ,s
1px,yq〉

` p´1q〈β, 9y〉
ÿ

xPVm

p´1q〈α,x〉`〈γ,pπpxq〉˘

˘ p´1q〈β, 9y〉
ÿ

xPVm

p´1q〈α,x〉`〈γ,gpxq〉 “ W s1

α}β,γ ` p´1q〈β, 9y〉
`

W pπ
α,γ ´W

g
α,γ

˘

.

If both α and γ are equal to 0 then W s
0}β,0 “ W s1

0}β,0.

Let’s consider the case when α “ 0 and γ ‰ 0:

W s
0}β,γ “ W s1

0}β,γ ` p´1q〈β, 9y〉 p2 ¨ }〈γ, gpxq〉} ´ 2mq .

Remark 2. We can get the upper bound for the WHT of spx, yq. If α ‰ 0 then
ˇ

ˇ

ˇ
W s

α}β,γ

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
W s1

α}β,γ

ˇ

ˇ

ˇ
`
ˇ

ˇW pπ
α,γ

ˇ

ˇ`
ˇ

ˇW g
α,γ

ˇ

ˇ .

And if α “ 0 and γ ‰ 0:
ˇ

ˇ

ˇ
W s

0}β,γ

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
W s1

0}β,γ

ˇ

ˇ

ˇ
` |2m ´ 2 ¨ }gpxq}| .

According to the equations above we can suppose that more punctured val-
ues potentially lead to lower nonlinearity.

Let’s consider the case when the function gpxq is equal to 0.

Corollary 1. Let spx, yq “

#

s1px, yq, πpyq ‰ 0;

pπpxq, πpyq “ 0;
, where π, pπ P S pVmq,
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s1px, yq : V2m Ñ Vm is a bijection for all y, πpyq ‰ 0. Let 9y “ π´1p0q be
the punctured value of the function s and s1 px, 9yq “ 0. Then the WHT of the
function spx, yq can be calculated as follows:

W s
α}β,γ “

$

’

’

&

’

’

%

W s1

α}β,γ ` p´1q〈β, 9y〉 ¨W pπ
α,γ, α ‰ 0;

0, α “ 0, γ ‰ 0;

W s1

0}β,0, α “ 0, γ “ 0.

(6)

Proof. To prove it we can construct the similar reasoning as in the proposition 2:

W s
α}β,γ “

ÿ

x,yPVm

p´1q〈α,x〉`〈β,y〉`〈γ,spx,yq〉 “

“ W s1

α}β,γ ` p´1q〈β, 9y〉
˜

W pπ
α,γ ´

ÿ

xPVm

p´1q〈α,x〉
¸

.

Let’s notice that

ÿ

xPVm

p´1q〈α,x〉 “

#

2m, if α “ 0

0, otherwise.
,

and it that case
W pπ

α,γ “ 0, if α “ 0, γ ‰ 0,

W pπ
α,γ “ 2m, if α “ 0, γ “ 0.

Let’s show that if γ ‰ 0 then W s1

0}β,γ “ 2m ¨ p´1q〈β, 9y〉:

W s1

0}β,γ “
ÿ

x,yPVm

p´1q〈β,y〉`〈s
1px,yq,γ〉

“

“
ÿ

yPVm

p´1q〈β,y〉
ÿ

xPVm

p´1q〈s
1px,yq,γ〉

“ 2m ¨ p´1q〈β, 9y〉.

Remark 3. Without loss of generality we’ll suppose that 9y “ 0. According to
equations (1),(2) we can choose Fi (or Gi), i “ 1, 2 independently that’s why if
we have a function spx, yq with one punctured value 9y ‰ 0 then we can consider
an affine-equivalent function with punctured value 9y “ 0.
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Remark 4. If Ns1 is a bent function then Ns1 ď Ns ď Ns1 ` L
pπ, otherwise

Ns1 ´ Lpπ ď Ns ď Ns1 ` Lpπ.

3.2.2 Differential uniformity

According to the equations (1),(2) we choose two functions. We can choose
both functions to be equal to the following two functions s1, s2 : VmˆVm ÞÑ Vm
and si has one punctured value that is defined by permutations πi:

s1px, yq “

#

s11px, yq, π1pyq ‰ 0;

pπ1pxq, π1pyq “ 0;
,

s2px, yq “

#

s12 py, s1px, yqq , π2 ps1px, yqq ‰ 0;

pπ2pyq, π2ps1px, yqq “ 0;
,

where for all i P 1, 2 πi, pπi P S pVmq, s1ipx, yq : V2m Ñ Vm is a bijection for all
y ‰ π´1

i p0q.
It is still an open question how to calculate WHT for a linear combinations

of functions s1px, yq and s2px, yq but we can proof the proposition that will
help us to build permutation Spx, yq “ s1px, yq}s2px, yq with low differential
uniformity.

Proposition 3. Let a1, a2, b1, b2 P Vm, then the number of solutions of the
following system of equations (number of pairs x, y P Vm):

#

s1px, yq ‘ s1px‘ a1, y ‘ a2q “ b1

s2px, yq ‘ s2px‘ a1, y ‘ a2q “ b2

greater or equal to the number of solutions of the following system:

1. a2 ‰ 0:
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

π1pyq ‰ 0

π1py ‘ a2q ‰ 0

π2ps
1
1px, yqq ‰ 0

π2ps
1
1px‘ a1, y ‘ a2qq ‰ 0

s11px, yq ‘ s
1
1px‘ a1, y ‘ a2q “ b1

s12py, s
1
1px, yqq ‘ s

1
2py ‘ a2, s

1
1px‘ a1, y ‘ a2qq “ b2

(7)
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2. a1 ‰ 0, a2 “ 0 the number of solutions of the system (7) and the number
of solutions of the following system:

#

π1pyq “ 0

s12py, pπ1pxqq ‘ s
1
2py, pπ1px‘ a1qq “ b2

(8)

The proof of the proposition is quite obvious.
In fact the equations (7) give us the way of choosing functions s11pxi, yiq

and s12pyi, yoq and (as we can see later) help to reduce the number of possible
constructions. The equation (8) gives us the limitations to the permutation pπ2

for the fixed function s12pyi, yoq. If we consider the permutation S´1 we can try
to make the same limitations for the permutation pπ2 for the fixed function s11.

3.2.3 Algebraic degree

Let us consider the algebraic degree of the function (4).

〈a, spx, yq〉 “
〈
a, s1px, yq ¨ I0pyq ` πpxq ¨ I0pyq

〉
,

where I0pyq is a function that is equal to 1 only when πpyq “ 0, and equal to 0
otherwise, and function I0pyq is equal to 0 only when πpyq “ 0 and 1 otherwise.

It’s quite easy to show that deg pI0q “ m because πpyq is a permutation. At
the same time 1 ď deg pπq ď m´ 1. In fact that I0pyq depends only on y, and
πpxq depends only on x and if deg pπq “ m ´ 1 then deg psq “ 2m ´ 1. This
property specifies the way of constructing functions with high algebraic degree.

3.3 One way to choose coordinate functions

As we described above the cryptographic properties of permutations F and
G that are defined by the equations (1) and (2) respectively depend on crypto-
graphic properties of coordinate functions Fi and Gi, i P 1, 2. In this work we
decided to consider only coordinate functions with one punctured value.

The corollary 1 says that we should choose function s1px, yq : VmˆVm ÞÑ Vm
and permutation π with highest possible nonlinearity. The section 3.2.3 says that
such a coordinate function will have a high algebraic degree. The proposition 3
says how to choose a couple of coordinate function for constructing permutation
to have smaller differential uniformity. Without loss of generality we suppose
that πp0q “ 0.
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In this work we will focus on the constructions that are similar to the well
known Maiorana–McFarland construction: s1px, yq “ ψpxq¨φpyq, where ψ, φ are
the permutations over Vm and ‘’¨” is a multiplicative operator of the finite field
F2m. If either ψ or φ is a linear permutation, then s1 is a bent-function.

4 Some examples of constructions and their crypto-
graphic properties

This section provide some ways to build permutations based on equations
(1) and (2). There is not a full list of possible constructions. We will lead the
following plan:

– study their cryptographic properties but focus on the differential uniformity
of the constructions;

– consider the monomial choice of some parameters to simplify the construc-
tion;

– find some parameters that provide a way to build permutation with rather
good cryptographic properties in some special cases;

– focus on the most interesting way m “ 4.

4.1 Construction “0”

Let us consider the F -construction (see eq. (1)). Let’s choose the functions
F1 px1, x2q, F2 py1, y2q on the following way:

F1 px1, x2q “

#

π1 px1q ¨ x2, x2 ‰ 0;

pπ1 px1q , x2 “ 0.
;

F2 py1, y2q “

#

π2 py1q ¨ y2, y2 ‰ 0;

pπ2 py1q , y2 “ 0.
.

Then according to the equation (1) y2 “ F1 px1, x2q, x2 “ F2 py1, y2q. As we
can see both F1 and F2 are bent functions and could have rather high nonlin-
earity (with the proper choice of pπi).
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Let’s find how to calculate y1 using x1, x2. First, we consider the case:
x2 ‰ 0, y2 ‰ 0, then

x2 “ π2 py1q ¨ y2 “ π2 py1q ¨ π1 px1q ¨ x2 ñ y1 “ π´1
2

´

π1 px1q
´1
¯

.

As we can see the value y1 does not depend on x2 and be a function of x1.
It means that such a construction certainly has far from optimal cryptographic
properties.

This example shows us that even the best choice (in terms of nonlinearity)
of coordinate functions Fi, i P 1, 2 can make the whole construction have far
from good cryptographic properties.

4.2 Construction “A”

Let’s consider functions F1 px1, x2q, F2 py1, y2q in the following way (“AA”
construction in [15]):

F1 px1, x2q “

#

π1 px1q ¨ x2, x2 ‰ 0;

pπ1 px1q , x2 “ 0.
;

F2 py1, y2q “

#

π´1
2 py1q ¨ y

´1
2 , y2 ‰ 0;

pπ´1
2 py1q , y2 “ 0.

.

Let’s find the formula to calculate y1. First we consider the case y2 ‰ 0:

x2 “ π´1
2 py1q ¨ y

´1
2 ñ x2 ¨ y2 “ π´1

2 py1q ñ y1 “ π2 px2 ¨ y2q .

If y2 “ 0 then y1 “ pπ2 px2q.
Now we can denote the permutation SA : VmˆVm ÞÑ VmˆVm, SA px1, x2q “

py1, y2q by the following equations:

y2 “

#

π1 px1q ¨ x2, x2 ‰ 0;

pπ1 px1q , x2 “ 0.
;

y1 “

#

π2 px2 ¨ y2q , y2 ‰ 0;

pπ2 px2q , y2 “ 0.
.

We can correctly define the function y1 “ F´1
2 px2, y2q. According to the remark
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4 and the fact that π1 px1q ¨ x2 is a bent function:

22m´1
´ 2m´1

ď NF1
ď Nπ1px1q¨x2 ` Lpπ1.

Let’s consider the value y1 as a function of two variables x1, x2:

y1 “

$

’

’

’

’

&

’

’

’

’

%

π2

´

px2q
2
¨ π1 px1q

¯

, x2 ‰ 0, x1 ‰ π´1
1 p0q;

π2 px2 ¨ pπ1 px1qq , x2 “ 0, x1 ‰ pπ´1
1 p0q;

pπ2 px2q , x2 ‰ 0, x1 “ π´1
1 p0q;

pπ2 px2q , x2 “ 0, x1 “ pπ´1
1 p0q.

“

“

$

’

’

’

’

&

’

’

’

’

%

π2

´

px2q
2
¨ π1 px1q

¯

, x2 ‰ 0, x1 ‰ π´1
1 p0q;

π2 p0q , x2 “ 0, x1 ‰ pπ´1
1 p0q;

pπ2 px2q , x2 ‰ 0, x1 “ π´1
1 p0q;

pπ2 p0q , x2 “ 0, x1 “ pπ´1
1 p0q.

(9)

And the last cases means that y1 as a function of two variables F´1
2 px1, x2q has

two punctured values. As we mentioned earlier more punctured values poten-
tially leads to lower nonlinearity. If π1p0q ‰ pπ1p0q then y1 is equal to a constant
pπ2 p0qq for 2m´1 values x1 ‰ pπ´1

1 p0q. That fact says that differential uniformity
is rather high:

δF´1
2
p0}a2, π2p0qq ě 2m ´ 2.

So later to simplicity we will consider that π´1
1 p0q “ pπ´1

1 p0q “ 0 in that
case:

1. equation (9) has a simple representation:

y1 “

#

π2

´

px2q
2
¨ π1 px1q

¯

, x1 ‰ 0;

pπ2 px2q , x1 “ 0.
;

2. using remark 4:

Nπ2ppx2q
2
¨π1px1qq

´ L
pπ2 ď NF´1

2
ď Nπ2ppx2q

2
¨π1px1qq

` L
pπ2.

According to our suppositions we denote that 0 is a fixed point of the all
permutations πi, pπi, i P 1, 2
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Definition 6. Let x1, x2 P Vm then the permutation SA “ py1, y2q, where

y1 “

#

π2

´

px2q
2
¨ π1 px1q

¯

, x1 ‰ 0;

pπ2 px2q , x1 “ 0.
(10)

y2 “

#

π1 px1q ¨ x2, x2 ‰ 0;

pπ1 px1q , x2 “ 0.
(11)

we will call “A”-type permutation.

Proposition 4. Let the permutation π2 from equation (10) is a linear permu-
tation. Then it has differential uniformity larger than 2m ´ 2.

Proof. Let’s x2 ‰ 0, x2 ‰ a2. x1 ‰ 0, x1 ‰ a1 in the equations (10), (11):
#

π1 px1 ` a1q ¨ px2 ` a2q ` π1 px1q ¨ x2 “ β2

π2

´

px2 ` a2q
2
¨ π1 px1 ` a1q

¯

` π2

`

x2
2 ¨ π1 px1q

˘

“ β1

.

Let’s consider the case a1 “ 0, a2 ‰ 0. We know that π2 is a permutation and
a2 ‰ 0:
#

π1 px1q ¨ px2 ` a2q ` π1 px1q ¨ x2 “ β2

π2

´

px2 ` a2q
2
¨ π1 px1q

¯

` π2

`

x2
2 ¨ π1 px1q

˘

“ β1

ñ

#

π1 px1q “ β2 ¨ a
´1
2

π2

``

x2
2 ` a

2
2

˘

¨ π1 px1q ` x
2
2 ¨ π1 px1q

˘

“ β1

ñ

#

π1 px1q “ β2 ¨ a
´1
2

π2

`

a2
2π1 px1q

˘

“ β1

ñ

#

π1 px1q “ β2 ¨ a
´1
2

π2 pa2 ¨ β2q “ β1

The value x1 is not equal to two values: x1 ‰ 0, x1 ‰ a1 that’s why the
differential uniformity is greater than 2m ´ 2.

As in the case of “0”-construction if π2 is a linear permutation than
π2

´

px2q
2
¨ π1 px1q

¯

is a bent function and F´1
2 potentially has larger nonlin-

earity in comparison with the case when π2 is a nonlinear permutation. At the
same time if π2 is a linear permutation than the whole “A”-type permutation
has rather large differential uniformity.
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There is still an open question how to choose πi, pπi, i P 1, 2. Let’s consider a
monomial choice of permutations πi, i P 1, 2 and focus on the most interesting
case m “ 4.

We will study permutations x ÞÑ xd, GCD pd, 2m ´ 2q “ 1 and following
the Fermat’s little theorem d ă 2m ´ 2. Equations (10), (11) has the following
representation:

y2 “

#

xα1 ¨ x2, x2 ‰ 0;

pπ1 px1q , x2 “ 0.
;

y1 “

#

`

x2
2 ¨ x

α
1

˘β
, x1 ‰ 0;

pπ2 px2q , x1 “ 0.
“

#

x2β
2 ¨ xαβ1 , x1 ‰ 0;

pπ2 px2q , x1 “ 0.
.

The proposition 4 says that permutation xβ should not be a linear one. There
are only 8 d such as GCD

`

d, 24 ´ 2
˘

“ 1: d P t1, 2, 4, 7, 8, 11, 13, 14u and if
d P t1, 2, 4, 8u then xd is a linear permutation.

Let’s α P t1, 2, 4, 7, 8, 11, 13, 14u and β P t7, 11, 13, 14u. For any α the func-
tion xα1 ¨ x2 is a bent function and f.

8 ď LF1
ď 8` L

pπ1 “ 12,

because for any pπi it’s linearity is equal to or greater than 4. And similarly
for F´1

2 . The considered function
`

x2
2 ¨ x

α
1

˘β is not a bent function and it’s
nonlinearity is equal to 16 and

12 ď LF´1
2
ď 20.

We’ve implemented such a construction to build a permutation SA and
founded out that for α P t1, 2, 4, 7, 8, 11, 13, 14u and β P t7, 11, 13, 14u we can
find pπi, i P 1, 2 such as the permutation SA has:

– LF1
“ 12,

– LF´1
2
“ 20,

– LSA “ 20,

– δSA “ 6,

– deg pSAq “ 7.
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We also experimentally founded out that pπi could be any nonlinear monomial
permutation.

We know that NSA ě max
!

NF1
, NF´1

2

)

so we’ve found permutations that
have the best nonlinearity among all that have NF´1

2
“ 20.

It must be noted that πi, pπi, i P 1, 2 may not be monomial permutations
and using a personal computer and proposition 3 permutations with the same
cryptographic properties could be easily found (an example can be found in
[15]).

4.3 Construction “B”

Let’s the functions F1 px1, x2q, F2 py1, y2q from the equation (1) are equal
to:

F1 px1, x2q “

#

x1 ¨ π1 px2q , π1 px2q ‰ 0;

pπ1 px1q , π1 px2q “ 0.
;

F2 py1, y2q “

#

y1 ¨ π2 py2q
´1 , π2 py2q ‰ 0;

pπ´1
2 py1q , π2 py2q “ 0.

.

According to equations above both F1 and F2 are bent functions.

Definition 7. Let x1, x2 P Vm then the permutation SB “ py1, y2q that is
defined as follows

y1 “

#

x2 ¨ π2 py2q , π2 py2q ‰ 0;

pπ2 px2q , π2 py2q “ 0.
; (12)

y2 “

#

x1 ¨ π1 px2q , π1 px2q ‰ 0;

pπ1 px1q , π1 px2q “ 0.
. (13)

we will call “B”-type permutation.

It’s easy to show that an inverse permutation for an “B”-type permutation
is a “B”-type permutation:

x2 “

#

y1 ¨ π2 py2q
´1 , π2 py2q ‰ 0;

pπ´1
2 py1q , π2 py2q “ 0.

. (14)
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x1 “

#

y2 ¨ π1 px2q
´1 , π1 px2q ‰ 0;

pπ´1
1 py2q , π1 px2q “ 0.

; (15)

As earlier we will suppose that πip0q “ 0, pπip0q “ 0, i P 1, 2.

Proposition 5. Let H ă S pVmq — be the group of linear permutations. Than
if π2 P H or π1 P x

´1H then δSB ě 2m ´ 2.

Proof. First, we consider the case π2 P H. Let a1, b1, b2 P Vm and x2 ‰ 0,
x1 ‰ a1, x1 ‰ 0. Let’s find the number of solutions of the following system:

#

x1 ¨ π1 px2q ` px1 ` a1q ¨ π1 px2q “ b1

x2 ¨ π2 px1 ¨ π1 px2qq ` x2 ¨ π2 ppx1 ` a1q ¨ π1 px2qq “ b2

Using the fact that π2 is a linear permutation:
#

x1 ¨ π1 px2q ` px1 ` a1q ¨ π1 px2q “ b1

x2 ¨ π2 px1 ¨ π1 px2qq ` x2 ¨ π2 ppx1 ` a1q ¨ π1 px2qq “ b2

ñ

ñ

#

a1 ¨ π1 px2q “ b1

π2 pb1q “ b2 ¨ x
´1
2

And if we set any value to x2 ‰ 0 and if a1 “ b1 ¨ π1 px2q
´1, π2 pb1q ¨ b

´1
2 “ x´1

2

than the system above is true for any x1 ‰ a1, x1 ‰ 0.
The case π2 P x

´1H can be considering similar using equations (15), (14).

Let’s π1 and π2 be monomial permutations: π1 “ xα, π2 “ xβ where α, β:
GCD

`

α, 24 ´ 2
˘

“ 1, GCD
`

β, 24 ´ 2
˘

“ 1. Then

y2 “

#

x1 ¨ x
α
2 , x2 ‰ 0;

pπ1 px1q , x2 “ 0.
;

y1 “

#

x2 ¨ px1 ¨ x
α
2 q
β , x1 ‰ 0;

pπ2 px2q , x1 “ 0.
“

#

xβ1 ¨ x
αβ`1
2 , x1 ‰ 0;

pπ2 px2q , x1 “ 0.
.

And we will focus on the most interesting case m “ 4. According to the
proposition 5 α P t1, 2, 4, 8u, β P t7, 11, 13, 14u.

Proposition 6. Let m “ 4 and π1 “ xα, π2 “ xβ where α, β:
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GCD
`

α, 24 ´ 2
˘

“ 1, GCD
`

β, 24 ´ 2
˘

“ 1. Than if αβ ` 1 ‰ 14 then
δSB ě 2m ´ 2.

Proof. The value αβ`1 could be equal to 0, 8, 12 or 14. We’ll consider αβ`1 “
12 (if αβ`1 is equal to 0 or 8 the proof is similar to the proof of the proposition
5).

Let xi ‰ 1, xi ‰ 0, i P 1, 2. Let’s find the number of solutions of the following
system:
#

x1 ¨ x
α
2 ` px1 ` 1q ¨ px2 ` 1qα “ 1

xβ1 ¨ x
12
2 ` px1 ` 1qβ ¨ px2 ` 1q12 “ 1

ñ

ñ

#

x1 “ xα2

xβα2 ¨ x12
2 ` px

β
2 ` 1βqα ¨ px2 ` 1q12 “ 1

ñ

ñ

#

x1 ` 1 “ px2 ` 1qα

xβα2 ¨ x12
2 ` px2 ` 1qαβ ¨ px2 ` 1q12 “ 1

ñ

ñ

#

x1 ` 1 “ px2 ` 1qα

x8
2 ` px2 ` 1q8 “ 1

ñ

#

x1 ` 1 “ px2 ` 1qα

1 “ 1

It’s easy to show that if x1 is any possible value then x2 is not equal to 0 and 1.

The proposition 6 gives us only 4 possible constructions:

1. π1pxq “ x, π2pxq “ x13,

2. π1pxq “ x2, π2pxq “ x14,

3. π1pxq “ x4, π2pxq “ x7,

4. π1pxq “ x8, π2pxq “ x11.

We’ve implemented such a construction to build a permutation SB and
founded out that for all possible constructions we can find pπi, i P 1, 2 such
as the permutation SB has:

– LSA “ 20,

– δSA “ 6,

– deg pSAq “ 7.
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We also founded out that pπi could be any nonlinear monomial permutation.
It must be noted that by analogy with “A”-type permutation πi, pπi, i P

1, 2 may not be monomial permutations and using a personal computer and
proposition 3 permutations with the same cryptographic properties could be
easily found.

4.4 Construction “G”

Let’s consider the construction that is defined by the equation (2). Let’s show
that using such a construction and propositions 1, 3 we can find a permutations
with rather good cryptographic properties.

Let G1 and G2 be defined as follows (originally proposed in [16]):

G1 px1, x2q “ y1 “

#

π1 pψ1 px1q ¨ φ1 px2qq , φ1 px2q ‰ 0;

pπ1 px1q , φ1 px2q “ 0.

G2 px1, x2q “ y2 “

#

π2 pψ2 px1q ¨ φ2 px2qq , ψ2 px1q ‰ 0;

pπ2 px2q , ψ2 px1q “ 0.

(16)

where πi, pπi, φi, ψi, i P t1, 2u are permutations.
Let’s consider the most simple case, when πi, φi, ψi, i P t1, 2u are monomial

permutations:

G1 px1, x2q “ y1 “

#

xα1 ¨ x
β
2 , x2 ‰ 0;

pπ1 px1q , x2 “ 0.

G2 px1, x2q “ y2 “

#

xγ1 ¨ x
δ
2, x1 ‰ 0;

pπ2 px2q , x1 “ 0.

(17)

It’s easy to show that (17) is not always a permutation. The equation is defined
a permutation (17) then and only then when

#

G1 px1, x2q “ a1

G2 px1, x2q “ a2

has a solution for any a1, a2 P Vm.
Let’s consider the most interesting case m “ 4. There are 84 sets of

pα, β, γ, δq but using equation (7) we can cut this list to 748 possible con-
structions.
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It’s easy to show that set pα, β, γ, δq is linear equivalent to the following
sets:

– pα ¨ d pmod 2m ´ 1q, β ¨ d pmod 2m ´ 1q, γ ¨ d pmod 2m ´ 1q,
δ ¨ d pmod 2m ´ 1qq for any d P t1, 2, 4, 8u;

– pα, β, γ, δq, pγ, δ, α, βq, pβ, α, δ, γq, pδ, γ, β, αq.

And using linear equality we can enumerate the following 48 classes of permu-
tations:

α β γ δ α β γ δ α β γ δ α β γ δ

1 1 7 11 1 4 7 11 1 11 7 13 1 14 7 7
1 1 7 14 1 4 7 14 1 11 11 14 1 14 11 11
1 1 11 13 1 4 11 7 1 11 13 7 1 14 13 13
1 1 13 14 1 4 13 11 1 11 14 11 1 14 14 14
1 2 7 7 1 7 7 2 1 13 7 8 7 7 7 11
1 2 7 13 1 7 7 11 1 13 7 14 7 7 7 14
1 2 11 11 1 7 11 1 1 13 11 4 7 7 11 13
1 2 11 14 1 7 11 13 1 13 11 7 7 7 13 14
1 2 13 7 1 7 13 8 1 13 13 2 7 11 7 13
1 2 13 13 1 7 13 14 1 13 13 11 7 11 11 14
1 2 14 11 1 7 14 4 1 13 14 1 7 11 13 7
1 2 14 14 1 7 14 7 1 13 14 13 7 11 14 11

We’ve implemented such a construction to build a permutation and founded
out that for all possible constructions we can find pπi, i P 1, 2 the permutation
has:

– LSA “ 20,

– δSA “ 6,

– deg pSAq “ 7.

We also founded out that pπi could be any nonlinear monomial permutation.
It must be noted that by analogy with “A”-type and “B”-type permutation

that πi, φi, ψi, i P t1, 2u may not be monomial permutations and using a
personal computer and proposition 3 permutations with the same cryptographic
properties could be easily found.
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As example, ifm “ 3 then if (17) is a permutation then the equation (7) has
too many solutions. But if we try to make a permutation G using the equation
(16) we can build a permutation that has NG “ 10, δG “ 4 and deg pGq “ 5.

Conclusion

In this work we theoretically proved the cryptographic properties of the per-
mutations that was originally proposed in [15]. It became possible to construct
a new class of permutations using new results and theoretically proved their
cryptographic properties.
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Abstract

Let f be a transformation on a space Pn over a finite field P , n ą 1, and f is given by
the functions f0, . . . , fn´1. We define the ternary matrix of nonlinearityMΘpfq “ pmi,jq,
0 ď i ă n, 0 ď j ă n, the element mi,j is equal to 0, or 1, or 2, if fj depends on
xi fictitiously, or linearly, or nonlinearly. For any transformations f p1q, . . . , f ptq on Pn,
t ě 1, we prove the following inequality:MΘpf

p1q ¨ . . . ¨ f ptqq ďMΘpf
p1qq ¨ . . . ¨MΘpf

ptqq.
So the right side is the estimation of nonlinearity characteristics for the transformation
f p1q ¨ . . . ¨f ptq. The ternary matrixM is called x2y-primitive, if each element inM t equals
2, t P N, the smallest t is called x2y-exponent of matrix M (x2y expM). The criterion
is proved: ternary matrix M is x2y-primitive if and only if M is primitive and contains
the element “2”, thereby, 0 ď x2y expM ´ expM ď n. We obtain the universal bound
x2y expM ď n2 ´ n` 2, and bounds for x2y-primitive digraphs with circuit of length l,
and also with loops.

Keywords: x2y-primitive matrix (digraph), x2y-exponent of matrix (digraph), cryptographic
transformations, matrix of nonlinearity.

1 Introduction

Nonlinearity properties are necessary for the functions applied to protection
of the data in information security systems. Differently the confidential param-
eters of the system (for ex., the keys) can be opened by the adversary by means
of the quite simple decision of the system of linear equations.

Due to the wide usage of the composition of nonlinear functions in crypto-
graphic algorithms, the task of calculating or evaluating the characteristics of
the composition is relevant. Matrix-graph approach (MGA) is actively used for
the estimation of the essential variables sets for the composition of nonlinear
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transformations on the vector spaces. Mathematical basis of the MGA is made
by the criteria of primitivity and local primitivity of sets of 0,1-matrices (or
digraphs) and estimation of its exponents. The main results of this scientific
direction, the history of which dates back to 1912 with the formulation of the
problem by Frobenius, are presented in the review [1].

In this paper, the MGA is generalized and developed for estimation the
characteristics of nonlinearity for the composition of transformations on the n-
dimensional vector space. The proposed approach is based on the properties of
ternary matrices of size n ˆ n over the multiplicative semigroup t0, 1, 2u, and
the properties of corresponding n-vertex digraphs, which arcs are labelled by
the elements of the semigroup.

In this paper, we use the following notation:

N – the set of positive integers;

expMpexp Γq – exponent of the matrix M (of the digraph Γ);

pi, jq – arc in digraph Γ, which incident at the vertices i and j;

lenw plen cq – length of the path w (of the circuit c) that equals to the number
of the arcs in w (in c);

w ‚w1 – concatenation of the paths w and w1, where the last vertex of the path
w coincides the first vertex of the path w1;

0 ď i, j ă n means that 0 ď i ă n and 0 ď j ă n;

ðñ – ”if and only if“.

2 Multiplicative monoids of ternary matrices and corre-
sponding labelled digraphs

Let us consider a commutative semigroup G “ t0, 1, 2u, where τ0 “ 0
for any τ P G, τσ “ maxtτ, σu for any τ, σ ‰ 0. A matrix of any size over
G is called the ternary matrix. We denote p2qn the matrix of size n ˆ n, in
which each element equals 2. Call the ternary matrix singular if it contains
all-zero row or all-zero column. Define the multiplication for ternary matrices
A “ pai,jq and B “ pbi,jq: AB “ C “ pci,jq, where C is a matrix of size
nˆn, ci,j “ maxtai,1b1,j, . . . , ai,nbn,ju, and the multiplication is performed over
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the semigroup G for any admissible i, j. Hence, Ap2qn “ p2qnA “ p2qn for the
non-singular matrix A (the matrix without all-zero rows and all-zero columns).

Denote Mn the monoid of all non-singular matrices of size n ˆ n, n ą 1
(the multiplication in Mn is associative, the identity matrix is neutral by the
multiplication). Define a partial order over the set of ternary matrices: A ď

B ðñ ai,j ď bi,j for any admissible pairs pi, jq. Let A ă B if A ď B and
ai,j ă bi,j for some admissible pair pi, jq. For t P N, A,A1, B,B1 PMn, it follows
from the rule of multiplication of ternary matrices that if A ď B and A1 ď B1,
then AA1 ď BB1, hence At ď Bt.

For n ą 1, 0 ď i, j ă n, there is the bijective correspondence between the
ternary matrix M “ pmi,jq of size n ˆ n and the labelled n-vertex digraph Γ,
which arc pi, jq is assigned by the label “mi,j”. The label “0” is equivalent to
the absence of an arc in the digraph. The matrix M over the semigroup G is
called the matrix of labels of the digraph Γ and denoted by MpΓq. The non-
singular matrix corresponds to the digraph, in which each vertex has non-zero
in-degrees and non-zero out-degrees. We denote

L
n the multiplicative monoid

of all labelled digraphs with the set of vertices t0, . . . , n´ 1u. The digraph with
n isolated vertices with loops is the identity (neutral) element in

L
n.

In Γ P
L
n we denote pi,mi,j, jq the arc pi, jq with the label mi,j P t0, 1, 2u.

The semigroup multiplication operation for the digraphs Γ and Γ1 is defined as
follows: if there is the arc pi,mi,r, rq in Γ and there is the arc pr, µr,j, jq in Γ1,
then there is the arc pi,mi,rµr,j, jq in ΓΓ1, where the multiplication of the labels
is performed over G.

Due to the bijection
L
n Ø Mn, the arc pi,mi,j, jq in Γ corresponds to the

element mi,j in M , where mi,j is placed in the ith row and jth column. The
path pv0, . . . , vtq of length t from the vertex v0 to the vertex vt is labelled by
the word pm1, . . . ,mtq, where ms is the label of the arc pvs´1, vsq, s “ 1, . . . , t.
The product mptq “ m1 ¨ . . . ¨ mt (which is calculated in the semigroup G) is
called the value of label of the path pv0, . . . , vtq. So, any path in Γ corresponds
uniquely to the value of the label equals to 1 or 2. The path in Γ does not exist
ðñ the label of the path contains “0”, i.e. the value of the label equals to 0.

Theorem 1. Let Γ P
L
n, MpΓq “M “ pmi,jq, t P N, then

MpΓtq “M t “ pm
ptq
i,jq, where m

ptq
i,j — the greatest value of the labels of all paths

of length t from i to j.

Proof. Use the inductive proof. For any pair pi, jq and t “ 1, the proposition is
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obvious, and mp1q
i,j “ mi,j.

Suppose the proposition is true for k ă t, where t ě 2, and show that it is
true for k “ t.

Denote Epjq the set of all vertices from which the arcs go to the vertex
j “ 1, . . . , n. Without restricting the generality, let Epjq “ t1, . . . , ru for any
fixed j, then mi,j “ 0 as i ą r. It follows from the equation M t “M t´1M that

m
ptq
i,j “ maxtm

pt´1q
i,1 m1,j, . . . ,m

pt´1q
i,n mn,ju “

“ maxtm
pt´1q
i,1 m1,j, . . . ,m

pt´1q
i,r mr,ju.

In accordance with the inductive hypothesis, mpt´1q
i,s is equal to the greatest

value of the labels of all paths from i to s of length t ´ 1. This means that
the product mpt´1q

i,s ¨ms,j is equal to the greatest value of the labels of all paths
from i to j of length t provided that the vertex j is preceded by the vertex
s, s “ 1, . . . , r. Then mptq

i,j is the greatest value of the labels of all paths from i
to j of length t.

Corollary 1. In Γt the arc pi, jq has the label with the value:

1. “0” ðñ in Γ the vertex j is not reachable from the vertex i in t steps;

2. “1” ðñ in Γ the label of any existing path from i to j of length t consists
of t units;

3. “2” ðñ in Γ the label of some path from i to j of length t contains the
symbol “2”.

3 Nonlinear properties of transformations on the vector
spaces

We denote tfjpx0, . . . , xn´1q, j “ 0, . . . , n ´ 1u the set of the coordi-
nate polynomials of the transformation f : P n Ñ P n . Let us associate the
nonlinearity property with the characteristics of the coordinate functions. For
0 ď i, j ă n, we construct the ternary matrix MΘpfq “ pmi,jq of size n ˆ n,
where the element mi,j in MΘpfq equals 0, or 1, or 2 ðñ fjpx0, . . . , xn´1q de-
pends on xi fictitiously, or linearly, or nonlinearly . The corresponding labelled
digraph ΓΘpfq with the set of vertices t0, . . . , n ´ 1u is called the digraph of
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nonlinearity of the transformation f . The function f is called quite nonlinear if
MΘpfq “ p2qn. Note, that any function satisfying the strict avalanche criterion
is quite nonlinear [2, p.182].

For 0 ď i, j ă n, s “ 1, . . . , t, we denote f psq the transformation on
P n; tf psqj px0, . . . , xn´1qu and tf

rss
j px0, . . . , xn´1qu – the sets of coordinate poly-

nomials of the transformations f psq and f p1q ¨ . . . ¨ f psq; MΘpf
psqq “ pm

psq
i,j q;

MΘpf
p1q ¨ . . . ¨ f psqq “ pµ

rss
i,j q; MΘpf

p1qq ¨ . . . ¨MΘpf
psqq “ pm

rss
i,j q.

Theorem 2. For any transformations f p1q, . . . , f ptq on P n, t ě 1, the following
inequality is true

MΘpf
p1q
¨ . . . ¨ f ptqq ďMΘpf

p1q
q ¨ . . . ¨MΘpf

ptq
q.

Proof. Use the inductive proof. For s “ 1, . . . , t, 0 ď i, j ă n, in the given
notations, prove that µrssi,j ď m

rss
i,j .

For t “ 1 the theorem is obvious. For t “ 2 by the rule of multiplication of
ternary matrices we get

m
r2s
i,j “ maxtm

p1q
i,0 ¨m

p2q
0,j , . . . ,m

p1q
i,n´1 ¨m

p2q
n´1,ju, (1)

and by the rule of multiplication of transformations we get

f
r2s
j px0, . . . , xn´1q “ f

p2q
j pf

p1q
0 px0, . . . , xn´1q, . . . , f

p1q
n´1px0, . . . , xn´1qq. (2)

Let f p2qj px0, . . . , xn´1q be a constant function, then due to (2) the function
f
r2s
j px0, . . . , xn´1q is a constant too. Hence, µr2si,j “ 0, i.e. the theorem is correct.

Let f p2qj px0, . . . , xn´1q be a linear function, which essentially depends on
arguments, for example, on x0, . . . , xr, where r ă n, and for r ă n´ 1 does not
essentially depend on xr`1, . . . , xn´1. Then it follows from (2) that

f
r2s
j px0, . . . , xn´1q “ a0f

p1q
0 px0, . . . , xn´1q ` ¨ ¨ ¨ ` arf

p1q
r px0, . . . , xn´1q, (3)

where a0, . . . , ar – non-zero coefficients of the field P . On the condition,
m
p2q
0,j “ ¨ ¨ ¨ “ m

p2q
r,j “ 1, mp2q

r`1,j “ ¨ ¨ ¨ “ m
p2q
n´1,j “ 0 for r ă n´ 1, and from the

equation (1) we get
m
r2s
i,j “ maxtm

p1q
i,0 , . . . ,m

p1q
i,r u. (4)

If the functions f p1q0 px0, . . . , xn´1q, . . . , f
p1q
r px0, . . . , xn´1q do not essentially de-

pend on xi (i.e., fictitiously depend on xi), then from the formula (3) it follows
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that f r2sj px0, . . . , xn´1q does not essentially depend on xi. So, µ
r2s
i,j “ 0, and the

theorem is correct. If some of the functions
f
p1q
0 px0, . . . , xn´1q, . . . , f

p1q
r px0, . . . , xn´1q essentially depend on xi, then there is

the linear or nonlinear dependence. Let for l ď r, the functions
f
p1q
0 px0, . . . , xn´1q, . . . , f

p1q
l px0, . . . , xn´1q linearly depend on xi, and for l ă r,

the functions f p1ql`1px0, . . . , xn´1q, . . . , f
p1q
r px0, . . . , xn´1q nonlinearly depend on

xi. Then for l ă r, mp1q
i,0 “ ¨ ¨ ¨ “ m

p1q
i,l “ 1, and mp1q

i,l`1 “ ¨ ¨ ¨ “ m
p1q
i,r “ 2. Hence,

for l ă r, mr2s
i,j “ 2 due to (4), so the theorem is correct. For l “ r due to (4)

m
r2s
i,j “ 1, and due to (3) f r2sj px0, . . . , xn´1q fictitiously or linearly depends on

xi. Therefore, µ
r2s
i,j ď 1, and the theorem is correct.

Let f p2qj px0, . . . , xn´1q be a nonlinear function, which essentially depends on
the arguments: for 0 ă p ď r ă n, there is nonlinear dependence on x0, . . . , xp;
for p ă r – linear dependence on xp`1, . . . , xr; for r ă n ´ 1 – fictitious de-
pendence on xr`1, . . . , xn´1. Then for 0 ď i, j ă n, and p ă r, the formula (1)
transforms to

m
r2s
i,j “ maxt2m

p1q
i,0 , . . . , 2m

p1q
i,p ,m

p1q
i,p`1, . . . ,m

p1q
i,r u, (5)

and for p “ r, the formula (1) transforms to

m
r2s
i,j “ maxt2m

p1q
i,0 , . . . , 2m

p1q
i,r u. (6)

At the same time, it follows from (2) that

f
r2s
j px0, . . . , xn´1q “ f

p2q
j pf

p1q
0 px0, . . . , xn´1q, . . . , f

p1q
r px0, . . . , xn´1qq. (7)

If the functions f p1q0 px0, . . . , xn´1q, . . . , f
p1q
r px0, . . . , xn´1q fictitiously depend

on xi, then due to (7) f r2sj px0, . . . , xn´1q fictitiously depends on xi. So, µ
r2s
i,j “ 0,

and the theorem is correct for t “ 2.
Let some of f p1q0 px0, . . . , xn´1q, . . . , f

p1q
r px0, . . . , xn´1q essentially depend on

xi, i.e. there is linear or nonlinear dependence. If some of the functions
f
p1q
0 px0, . . . , xn´1q, . . . , f

p1q
p px0, . . . , xn´1q essentially depend on xi or for p ă r

some of f p1qp`1px0, . . . , xn´1q, . . . , f
p1q
r px0, . . . , xn´1q nonlinearly depends on xi,

then it holds from (5) and (6) mr2s
i,j “ 2, and the theorem is correct. If for p ă r,

f
p1q
0 px0, . . . , xn´1q, . . . , f

p1q
p px0, . . . , xn´1q fictitiously depend on xi, and some of

f
p1q
p`1px0, . . . , xn´1q, . . . , f

p1q
r px0, . . . , xn´1q linearly depends on xi, then due to
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(5) mr2s
i,j “ 1. Moreover, it follows from (7) that f r2sj px0, . . . , xn´1q fictitiously or

linearly depends on xi. Then µ
r2s
i,j ď 1, and the theorem is correct for t “ 2.

Thus, the theorem is correct for any two transformations on P n. Sup-
pose, that the theorem is true for t ´ 1, where t ą 2. Let we prove that
the theorem is true for t. Denote by h the product f p1q ¨ . . . ¨ f pt´1q. Then
f p1q ¨ . . . ¨ f ptq “ h ¨ f ptq, and MΘpf

p1q ¨ . . . ¨ f ptqq “ MΘph ¨ f
ptqq. It is proved

above that MΘph ¨ f
ptqq ď MΘphq ¨ MΘpf

ptqq. By the induction hypothesis,
MΘphq ďMΘpf

p1qq ¨ . . . ¨MΘpf
pt´1qq. Hence,

MΘph ¨ f
ptq
q ďMΘpf

p1q
q ¨ . . . ¨MΘpf

ptq
q.

Corollary 2. If MΘpf
p1qq ¨ . . . ¨MΘpf

ptqq ‰ p2qn, for t ě 1, then
MΘpf

p1q ¨ . . . ¨ f ptqq ‰ p2qn.

From Corollary 1 and 2, we obtain that the transformation f p1q ¨ . . . ¨ f ptq is
not quite nonlinear, if the multigraph ΓΘpf

p1qq Y ¨ ¨ ¨ Y ΓΘpf
ptqq is not strongly

connected.

4 Generalized primitivity of ternary matrices and corre-
sponding labelled digraphs

For t P N, the matrix M P Mn is called the x2y-primitive if M t “ p2qn.
The smallest t with this property is called the x2y-exponent of the matrix M
and denoted by x2y expM . For t P N, A,B P Mn such that A ď B, it holds
from At ď Bt, that if A is x2y-primitive, then B is x2y-primitive too, and
x2y expA ě x2y expB; if B is not x2y-primitive, then A is not x2y-primitive
too.

Example. Consider the ternary matrix M “

¨

˚

˚

˝

0 1 0 0
0 0 1 0
0 0 0 1
1 2 0 0

˛

‹

‹

‚

.
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Calculate x2y expM :

M 2
“

¨

˚

˚

˝

0 0 1 0
0 0 0 1
1 2 0 0
0 1 2 0

˛

‹

‹

‚

;M 4
“

¨

˚

˚

˝

1 2 0 0
0 1 2 0
0 0 1 2
2 2 0 1

˛

‹

‹

‚

; . . .M 12
“

¨

˚

˚

˝

1 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

˛

‹

‹

‚

;

M 13 “ p2q4. Hence, x2y expM “ 13.
The labelled digraph Γ is called the complete x2y-graph and denoted by

Γ
x2y
n , if the corresponding matrix of labels MpΓq “ p2qn. For t P N, the labelled

digraph Γ P
L
n is called x2y-primitive if Γt “ Γ

x2y
n . The smallest t with this

property we call the x2y-exponent of the labelled digraph Γ and denote by
x2y exp Γ. Since

L
n is isomorphic to Mn, we see that the digraph Γ is x2y-

primitive ðñ the matrix MpΓq is x2y-primitive, and x2y exp Γ “ x2y expM .
Hence, x2y exp Γ is equal to the smallest natural t, such that for any pair of
vertices pi, jq in Γ there is the path of length t with the label “2” from i to j.

Denote UpΓq the digraph obtained from Γ by removing the all labels. For
0 ď i, j ă n, wi,jplq denotes the path of length l from the vertex i to the vertex
j; wr2si – the shortest path from i to the nearest vertex ξpiq, that is the startpoint
of the arc pξpiq, spiqq with the label “2”; dr2s “ maxtlenw

r2s
0 , . . . , lenw

r2s
n´1u. The

vertices ξpiq and spiq are generally ambiguous.

Theorem 3 (The criterion of x2y-primitivity). The labelled digraph Γ P
L
n is

x2y-primitive ðñ Γ contains the arc with the label “2” and UpΓq is primitive,
thereby expUpΓq ď x2y exp Γ ď 1` dr2s ` expUpΓq.

Proof. Necessity. Suppose, the labelled digraph Γ is x2y-primitive. For t P N, Γ
contains the path from i to j of length t with the value 2 of the label. Then, Γ
contains the arc labelled “2”, and for any i, j, UpΓq contains the path of length
t from i to j. Hence, the digraph UpΓq is primitive.

Sufficiency. Let UpΓq be primitive, and t “ expUpΓq. Then, for any i, j “
t0, . . . , n´ 1u, Γ and UpΓq contains the paths from i to j of length t, t` 1, . . . .
Let we construct the path wi,j from i to j, such that:

wi,j “ w
r2s
i ‚ pξpiq, spiqq ‚ wspiq,jpliq,

where li “ t` dr2s´ lenw
r2s
i ě t, i, j P t0, . . . , n´ 1u. The path wspiq,jpliq exists

because t “ expUpΓq. Then lenwi,j “ dr2s ` 1` t ą t, hence, for any i, j in Γ
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there is the path from i to j of length dr2s ` 1` t with the value 2 of the label.
Hence, x2y exp Γ ď 1` dr2s ` t. The upper bound is proved.

Taking into account the definition of the primitive digraph, if τ ă expUpΓq,
then for some i, j P t0, . . . , n ´ 1u, UpΓq and Γ have no path of length τ from
i to j. So, the lower bound is correct.

Corollary 3. If the labelled digraph Γ is x2y-primitive, then

x2y exp Γ ď n` expUpΓq ď n2
´ n` 2.

Proof. The left inequality follows from the Theorem 3, because dr2s ď n´ 1 in
the x2y-primitive digraph. The right inequality is correct due to the universal
Wielandt bound [3].

Theorem 4. 1. If x2y-primitive digraph Γ contains the circuit C of length
l ą 1, then

x2y exp Γ ď dr2s ` 1` n` lpn´ 2q. (8)

2. If the circuit C of length l passes through the arc with the label “2”, then

x2y exp Γ ď n` lpn´ 1q. (9)

Proof. 1. Suppose that the digraph Γl is x2y-primitive and contains at least l
loops. Then, Γl contains the path wz,j of length no more than n ´ 1 from for
any vertex z with a loop to any vertex j. Hence, Γ contains the path uz,j of
length lpn´ 1q from any vertex z of circuit C to any vertex j.

Denote vi,z the shortest path in Γ from i to the nearest vertex z of the circuit
C. We see that len vi,z ď n´ l, so Γ contains the path
ui,z “ w

r2s
i ‚ pξpiq, spiqq ‚ wspiq,z of length no more than dr2s ` 1` n´ l;

ui,z passes through the arc with the label “2”. Therefore, for any vertices i and
j the path ui,z ‚ uz,j passes through the arc labelled “2” and has the length at
most dr2s ` 1` n` lpn´ 2q. Hence, the bound (8) is correct.

2. Suppose that the circuit C passes through the arc with the label “2”. Let
us attach the loop πpzq to the beginning of the path wz,i in Γl. We get that Γl

contains the path πpzq ‚ wz,j of length no more than n with the value 2 of the
label. Then, Γ contains the path uz,j of length no more than ln labelled “2”.
Then, for any vertices i, j in Γ there is a path vi,z ‚ uz,j of length n ` lpn ´ 1q
from i to j with the label “2”. Hence, the bound (9) is correct.

Corollary 4. If dr2s ě l, the bound (8) is greater than (9).
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Example. Suppose that the labelled digraph Γ contains the Hamiltonian
circuit p0, . . . , n ´ 1q and the circuit p0, . . . , l ´ 1q, 3 ă l ă n. If the label “2”
belongs to the only arc pn ´ 1, 0q, then dr2s “ lenw

r2s
0 “ n ´ 1 ě l, and the

bound (8) is greater than the bound (9). If the label “2” belongs to the all arcs
pi, i`1q, where i is odd and i ď 2, then dr2s “ lenw

r2s
n´1 ď 2 ă l, and the bound

(8) is lower than the bound (9).
Denote πkpzq the loop in the vertex z passing k times, k ě 0, 0 ď z ă n.

Theorem 5. 1. If the x2y-primitive digraph Γ contains p ą 0 loops, then

x2y exp Γ ď dr2s ` 2n´ p.

2. If the x2y-primitive digraph Γ contains m ą 0 loops with the label “2”, then

x2y exp Γ ď 2n´m.

Proof. 1. Denote wspiq,z the shortest path of length τ from spiq to the near-
est vertex z with a loop; wz,j – the shortest path of length θ from z to
j. For p ą 0 and i, j P t0, . . . , n ´ 1u construct the path wi,j passing
through the arc with the label “2” and through the vertex z with a loop:
wi,j “ w

r2s
i ‚ pξpiq, spiqq ‚ wspiq,z ‚ π

kpzq ‚ wz,j, where k ě 0. Then τ ď n ´ p,
θ ď n´ 1, and lenwi,j ď dr2s ` 2n´ p` k, p ą 0. Since i, j are arbitrary, and
k ě 0, then x2y exp Γ ď dr2s ` 2n´ p.

2. Denote by wi,z the path of length no more than n ´m from the vertex
i to the nearest vertex z with the loop and label “2”; wz,j– the path of length
no more than n ´ 1 from z to j (if z “ j then the path wz,j is empty). For
m ą 0 and i, j P t0, . . . , n´1u construct the path wi,j passing through the loop
with the label “2”: wi,j “ wi,z ‚ π

kpzq ‚ wz,j. If k ą 0, then the path wi,j passes
through the loop with the label “2”, and lenwi,j ď 2n ´m ´ 1 ` k. Since i, j
are arbitrary, and k ą 0, than x2y exp Γ ď 2n´m.

5 Applications

The proposed approach is applied to the estimation of x2y-exponents of
the ternary matrices, which constructed for the round transformations of block
encryption algorithms DES and GOST 28147-89 (the Diploma thesis at the
Department of Cryptology and Cyber Security at National Research Nuclear
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University “MEPhI”, 2019). The obtained values coincided with the values of
the exponents of mixing matrices for the round transformations.
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Abstract
We propose Limonnitsa, a quantum secure authenticated key exchange (AKE)

scheme which brings together the standardized Limonnik-3 AKE scheme and the super-
singular elliptic curves isogeny cryptographic framework. We discuss Limonnitsa’s basic
cryptographic properties and preliminary choice of its basic parameters that conforms
with another standardized cryptographic primitives.

Keywords: authenticated key exchange, isogenies, Limonnik-3, post-quantum cryptography,
supersingular elliptic curves.

1 Introduction

An emerging threat of quantum computers leads cryptographers to review
many of existing public key cryptographic systems. For example, cryptanalysis
of the schemes based upon the factorization problem, such as RSA and Rabin,
as well as discrete logarithm based schemes, including Diffie-Hellman-Merkle
and ElGamal, is reduced to a polynomial-time quantum algorithm.

Thus, although the prospectives of the construction of a powerful enough
(from a cryptanalyst’s point of view) quantum computer are unclear, many
researchers are concerned about creating “post-quantum” schemes which are to
withstood both “classical” (that is, based upon the Turing-style computations)
and “quantum” cryptanalysis. We mention the NIST proposal for the post-quan-
tum family of cryptosystems which has brought anomalous amount of research
into the post-quantum field.

In 2017, Russia officially accepted a family of AKE protocols designed by
the author as recommendations for standardization (that is, a candidate to
become a national standard). This family includes Echinacea-2, Echinacea-3
and Limonnik-3 protocols1.

1Эхинацея (Echinacea purpurea) and Лимонник (Schizandra chinensis) are medicinal herbs extensively
used in Russian complementary medicine.
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Both the protocols are based upon the elliptic curve Diffie-Hellman scheme
and are thus quantum-insecure. The Echinacea-3 protocol is built from the ISO-
STS-MAC [9], using KEA+C [18] ideas. The Limonnik-3 protocol is built from
the MTI/A0 protocol [19] with influences by [6] and [20].

Unlike Echinacea, Limonnik-3 does not require digital signatures, it may be
viewed as the outputs of two elliptic curve Diffie-Hellman processes, each one
mixing a static and an ephemeral key, hashed together to build a shared secret
key. Thus, we choose this scheme for post-quantum conversion, replacing the
Diffie-Hellman protocol by its post-quantum analogue.

Amongst the multiple post-quantum proposals, we have chosen SIDH, the
supersingular elliptic curves isogeny-based Diffie-Hellman key exchange protocol
[7] for the following reasons.

– Unlike most NIST competitors, the protocol allows for static keys (see,
however, [12, 17] for discussion of several attacks against static keys), which
are mandatory for an AKE scheme;

– the protocol, for a given security parameter, provides keys of moderate size;

– the protocol may be implemented quite efficiently with a well-studied mech-
anisms.

We proceed with a general description of the Limonnik-3 and basic ideas of
supersingular elliptic curves cryptography.

2 Limonnik-3

We choose protocol parameters h2, h3 as two fixed distinct non-empty
strings. The function π : EpGF ppqq Ñ V ˚ represents the point’s x-coordinate as
a binary string, KDFp. . . q is a key derivation function, for example, the one speci-
fied by [2]. MACKp. . . q is a message authentication code defined in [4], encKp. . . q
is the «Kuznyechik» encryption [3] using the key K.

An optionally used information connected to the session (timestamps, IP
addressess, previously shared secret strings etc) which may be used during key
generation is denoted OI. Concatenation of strings a, b is denoted by a ‖ b.

A party A’s identity is denoted by IDA. We suppose that the communicating
parties A and B are using two (possibly different) elliptic curves EApGF ppAq
and EBpGF ppBqq defined over corresponding prime fields GF ppAq, GF ppBq.
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A party’s curve has the following parameters important for the description:

– mA “ |EA|;

– PA is a point of large prime order qA, qA|mA;

– cA “ mA{qA is the cofactor.

Static key pairs psA, SAq and psB, SBq are defined as SA “ sAPA, SB “
sBPB, where 0 ă sA ă qA, 0 ă sB ă qB, and certified by CertA, CertB.

Limonnik-3

A : kA PR r1, qB ´ 1s
AÑ B IDA, CertA, kAPB
B : kB PR r1, qA ´ 1s, Q “ cAkBSA, R “ cBsBkAPB

K ‖M “ KDFpπpQq, πpRq, IDA ‖ IDBr‖ OIsq

tagB “ MACMph2, kBPA, kAPB, IDB, IDAq

B Ñ A IDB, CertB, kBPA, tagB
A : Q “ cAsAkBPA, R “ cBkASB

K ‖M “ KDFpπpQq, πpRq, IDA ‖ IDBr‖ OIsq

If tagB ‰ MACMph2, kBPA, kAPB, IDB, IDAq,

terminates the session with an error
tagA “ MACMph3, kAPB, kBPA, IDA, IDBq

AÑ B tagA
B : If tagA ‰ MACMph3, kAPB, kBPA, IDA, IDBq,

terminates the session with an error

We also assume that any party verifies validity of certificate received and
correctness of elliptic curve points, terminating the session with an error if an
invalid certificate or a “bad” point (i.e. not belonging to the given elliptic curve
or having a small order) is provided by another party.

If the scheme succcessfully completes, the parties A and B are mutu-
ally authenticated and provided with an implicitly verified shared secret key
K “ KAB “ KBA. Note that the key M is used only for the purposes of key
confirmation and must be destroyed after the session is established, see [14].

2.1 Isogenies and cryptography in brief

Consider an elliptic curve EpFq defined over a field F , charF ‰ 2, 3,
Ea,bpFq : y2 “ x3 ` ax` b.
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Definition 1. Let Ea,b, Ea1,b1 – elliptic curves over K. A rational map Ea,b to
Ea1,b1 – is a map

ψ “ ψpx, yq “ pf1px, yq, f2px, yqq,

where f1px, yq, f2px, yq P FpEa,bq, such that for any point px0, y0q P Ea,b where
the functions are defined, implies that pf1px0, y0q, f2px0, y0qq P Ea1,b1pFq.

Definition 2. A rational map defined in every point of Ea,bpFq, is a morphism.

Definition 3. If ψ – is a morphism and ψpOq “ O1, then ψ is an isogeny. If
such a map exists, the curves are isogenous.

Definition 4. For any isogeny ψ : E Ñ E 1 there exists an unique dual isogeny
ψ̂ : E 1 Ñ E such that ψ̂ ˝ ψ “ rmsE and ψ ˝ ψ̂ “ rmsE1, where m is the degree
of an isogeny ψ.

Definition 5. Considering three elliptic curves EpFq, E 1pFq, E2pFq and iso-
genies φ, ψ: φ : E ÞÑ E 1, ψ : E 1 ÞÑ E2, we define composition of isogenies
ψφ : E ÞÑ E2.

We have that ψ̂φ “ φ̂ψ̂ and degψφ “ degψ deg φ.
Let now charF “ p.

Definition 6. If Erpes “ tOu for any e “ 1, 2, . . . , the curve E is supersingu-
lar.

There are about tp{12u distinct supersingular curves defined over GF pp2q,
see [7] – that is quite enough for cryptographic applications.

2.2 Computation of isogenies

One can use Vélu’s formulae [23] to compute isogenies ϕ with a given kernel
(i.e. a subgroup G Ă Eq, ϕ : E ÞÑ E 1 “ E{G. Given curve coefficients a, b
for E, and all of the x-coordinates xi of the subgroup G Ă E, Vélu’s formulae
output a1, b1 for E 1, and the map

ϕ : E Ñ E 1 “ E{G,

px, yq ÞÑ

ˆ

f1px, yq

g1px, yq
,
f2px, yq

g2px, yq

˙

.
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The complexity of computation of isogeny of degree l is Oplq field operations.
For isogenies of smooth degrees, however, the complexity may be lowered by
decomposing it into a composition of isogenies of small degrees.

We recall that isomorphic curves have the same j-invariant. Since construc-
tion of an isomorphism is a simple task, the isogeny problem is actually the
problem of finding isogenies between classes of isomorphic curves, every one of
which is represented by its j-invariant.

3 Supersingular Isogeny Diffie-Hellman

We proceed with the description of the Supesingular Isogeny Diffie-Hellman
scheme (SIDH), following [7].

We fix the public parameters: p “ leAA l
eB
B ¨f˘1, where lA, lB are distinct small

prime numbers (e.g., lA “ 2 and lB “ 3), plA, fq “ plB, fq “ 1, a supersingular
elliptic curve E0pGF pp

2qq and bases tPA, QAu and tPB, QBu, which generate
correspondingly E0rl

eA
A s and E0rl

eB
B s, i.e. xPA, QAy “ E0rl

eA
A s and xPB, QBy “

E0rl
eB
B s.

The party A chooses two random elements mA, nA PR Z{leAA Z, not both
divisible by lA, and constructs an isogeny ϕA : E0 Ñ EA with the kernel KA :“
xrmAsPA ` rnAsQAy. The party A also computes the image tϕApPBq, ϕApQBqu

and sends these points to the party B together with EA.

Simultaneously, the party B chooses two random elements mB, nB PR

Z{leBB Z, not both divisible by lB, and constructs an isogeny ϕB : E0 Ñ EB

with the kernel KB :“ xrmBsPB ` rnBsQBy. The party B also computes the
image tϕBpPBq, ϕBpQBqu and sends these points to the party A.

Having received the party B’s set EB, ϕBpPBq, ϕBpQBq, the party
A constructs an isogeny ϕ1A : EB Ñ EAB with the kernel
xrmAsϕBpPAq ` rnAsϕBpQAqy; the party B operates in a similar way.

The shared key may be computed as the j-invariant of the curve

EAB “ ϕ1BpϕApE0qq “ ϕ1ApϕBpE0qq “

“ E0{ xrmAsPA ` rnAsQA, rmBsPB ` rnBsQBy .
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We have a following commutative diagram:

E
ϕ

ÝÝÝÑ E{ xP y

ψ

§

§

đ

§

§

đ

E{ xQy ÝÝÝÑ E{ xP,Qy

(1)

where ϕ, ψ are random walks in the graphs of isogenies of degrees equal to
powers of lA, lB.

The protocol implements an analogue of the Diffie-Hellman scheme over this
commutative diagram, where the party A chooses ϕ, and B chooses ψ.

4 Putting things together: Limonnitsa

In this section we describe an AKE scheme that is derived from Limonnik-3
by merging into it the ideas of supersingular elliptic curves isogenies crypto.
The new protocol is named Limonnitsa2.

So, we fix two (possibly distinct) sets of the public parameters for the parties:

– pA “ 2ea23ea3 ´ 1,

– EA0pGF pp
2
Aqq : y2 “ x3 ` x,

– linearly independent points PA2, QA2 P EA0r2
ea2s (that is, | xPA2, QA2y | “

22ea2) and linearly independent points PA3, QA3 P EA0r3
ea3s (that is,

| xPA3, QA3y | “ 32ea2)

For the party B, we have:

– pB “ 2eb23eb3 ´ 1,

– EB0pGF pp
2
Bqq : y2 “ x3 ` x,

– linearly independent points PB2, QB2 P EB0r2
eb2s (that is, | xPB2, QB2y | “

22eb2) and linearly independent points PB3, QB3 P EB0r3
ea3s (that is,

| xPB3, QB3y | “ 32ea2)

Now, the party A selects its secret static key as an integer sA such that 0 ă
sA ă 2ea2, constructs the isogeny ϕA : EA Ñ EA{ xPA2 ` rsAsQA2y, calculates

2Лимонница (limonnitsa) stands for a brimstone butterfly (Gonepteryx rhamni) in Russian.
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EA “ EA0{ xPA2 ` rsAsQA2y, PA “ ϕApPA3q, QA “ ϕApQA3q, sets its static
public key to tEA, PA, QAu, and acquires a certificate CertA.

B selects its static key as an integer psB such that 0 ă sB ă 2eb2,
constructs the isogeny ϕB : EB Ñ EB{ xPB2 ` rsBsQB2y, calculates EB “

EB0{ xPB2 ` rsBsQB2y, PB “ ϕBpPB3q, QB “ ϕBpQB3q, sets is static public
key as tEB, PB, QBu, and acquires a certificate CertB as well.

We shall use SIKE [15] modification to the original scheme and generate
kernels of the isogenies for public key calculation in the form xP ` rksQy, that
is, we generate a single random value. As shown by Galbraith [11, 12], the
corresponding computational problems are equivalent.

Limonnitsa

A : kA PR r1, 3
eb3s, SAB “ PB3 ` rkAsQB3,

ϕAB : EB Ñ EB{ xSABy – an isogeny with the kernel xSABy
EAB “ EB0{ xSABy pthat is, EAB “ ϕABpEB0qq

KA “ tE
1
A, ϕABpPB2q, ϕABpQB2qu – A’s ephemeral public key

AÑ B IDA, CertA,KA

B : kB PR r1, 3
ea3s, SBA “ PA3 ` rkBsQA3,

ϕBA : EA Ñ E 1B{ xSBAy – an isogeny with the kernel xSBAy
EBA “ EA0{ xSBAy pthat is, EBA “ ϕBApEA0qq

KB “ tE
1
B, ϕBApPA2q, ϕBApQA2qu – B ’s session public key

TAB “ PA ` rkBsQA

T 1AB “ ϕABpPB2q ` rsBsϕABpQB2q

ψAB : E 1A Ñ E 1A{ xTABy – an isogeny with the kernel xTABy
ψ1AB : EB Ñ EB{ xT

1
ABy – an isogeny with the kernel xT 1ABy

EAB “ ψABpE
1
Aq;E

1
AB “ ψ1ABpEBq

K ‖M “ KDFpjpEABq ‖ jpE 1ABq ‖ IDA ‖ IDBr‖ OIsq

tagB “ MACMph2,KB,KA, IDB, IDAq
B Ñ A IDB, CertB,KB, tagB
A : TBA “ ϕBApPA2q ` rsAsϕBApQA2q

T 1BA “ PB ` rkAsQB

ψ1BA : E 1B Ñ E 1B{ xTBAy – an isogeny with the kernel xTBAy
ψBA : EA Ñ EA{ xT

1
BAy – an isogeny with the kernel xT 1BAy

E 1BA “ ψ1BApE
1
Bq;EBA “ ψ1ABpEAq

K ‖M “ KDFpjpE 1BAq ‖ jpEBAq ‖ IDA ‖ IDBr‖ OIsq

If tagB ‰ MACMph2,KB,KA, IDB, IDAq,
terminates the session with an error
tagA “ MACMph3,KA,KB, IDA, IDBq

AÑ B tagA
B : If tagA ‰ MACMph3,KA,KB, IDA, IDBq,

terminates the session with an error

Our protocol reminds Galbraith’s variant of the NAXOS protocol from [10];
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however, in our setting (provided that the parties’ parameters may differ) the
ephemeral-to-ephemeral shared key which is employed in NAXOS key genera-
tion cannot be produced.

The protocol is a combination of static-to-ephemeral sessions, and thus may
be subject to an attack against static keys by [17]. In order to thwart the attack,
a party must ensure that the public keys it receives are valid, i.e. elliptic curves
are built as prescribed by the protocols, the generators are chosen at random and
are of prescribed order and linearly independent. Several validation techniques
are described in [12]. The paper [22] states that the key validation problem may
be equivalent to the CSSI problem (see below); thus, we would rather use the
following variant of a trick from [16].

Instead of choosing random ephemeral secret key kA, the party A chooses a
single random seed rA P V ˚ and uses a pseudo-random function prf to output
kA “ prfprAq. Then, tagA is calculated as

tagA “ encMph2, rA, KA, KB, IDA, IDBq.

The party B, having calculated the session key, recovers the seed rA and repeats
A’s computations in order to verify that the keys were constructed as prescribed,
otherwise, terminates the session. The parties B and A proceed vice versa.

Note that in this setting a party’s ephemeral secret key is uncovered to
another party, thus, it becomes the party’s responsibility to generate unique
value each time. Now many practical issues arise (for example, storing and
searching through a database of any previously generated values in a secure
manner may be too expensive). We propose to use a secure PRNG instead.

5 Analysis

The security of the protocol relies on the hardness of the following problem.

Problem 1. Computational Supersingular Isogeny – CSSI: let φ1 : E0 Ñ E1 –
an isogeny with the kernel rm1sR1`rn1sS1, where m1, n1 are chosen uniformly
at random from the interval r1, le11 s, and are not both divisible by l. Given E1

and images φ1pR2q, φ1pS2q, find the generator of xrm1sR1 ` rn1sS1y.

Note that we choose the j-invariants of the elliptic curves resulting from two
SIDH processes with different parameters and hash them together with a KDF

function to obtain a shared secret value. Then, a very naive deduction implies
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that an adversary has to solve two distinct instances of CSSI, which should be
twice as hard.

It is believed that the best classical algorithm to attack the problem has the
complexity is Op 2

?
lelq, where lel “ minple11 , l

e2
2 q, while the claw-finding quantum

algorithm [21] has the complexity Op 3
?
lelq. Recent research [5, 16] show that

the actual quantum complexity of breaking the isogeny problem is estimated by
Op 4
?
pq operations, but we choose to be a little on a safe side. We discuss the

choice of parameters in the following sections.
Note that the protocol inherits implicit key confirmation, KCI- and UKS-

immunity from Limonnik-3 [14]. The protocol provides forward security against
A,B (but not A AND B, since if long-term keys of the both parties are compro-
mised, all the sessions involving them both are compromised, too; this property
arises from the basic structure of the MTI/A0 protocol [19].

6 Security arguments

Consider the following computational problem [7, 22].

Problem 2. Computational isogeny Diffie-Hellman, SSCDH: let ϕA : E0 Ñ EA

– an isogeny with kernel xPA ` rnAsQAy, and ϕB : E0 Ñ EB – an isogeny with
kernel xPB ` rnBsQBy, where nA is chosen uniformly randomly from Z{leAA Z
and nB is chosen uniformly randomly from Z{leBB Z. Given EA, EB and the
images ϕApPBq, ϕApQBq, ϕBpPAq, ϕBpQAq, find the j-invariant of the curve
E0{ xPA ` rnAsQA, PB ` rnBsQBy.

The decisional version of the problem may be stated as follows.

Problem 3. Decisional isogeny Diffie-Hellman, SSDDH: Given a tuple sampled
with probability 1{2 from one of the following two distributions

– pEA, EB, ϕApPBq, ϕApQBq, ϕBpPAq, ϕBpQAq, EABq, where
pEA, EB, ϕApPBq, ϕApQBq, ϕBpPAq, ϕBpQAq – as before,

EAB – E0{ xPA `QA, rmsPB ` rnsQBy ;

– pEA, EB, ϕApPBq, ϕApQBq, ϕBpPAq, ϕBpQAq, ECq, where
pEA, EB, ϕApPBq, ϕApQBq, ϕBpPAq, ϕBpQAq – as before, and

EC – E0{ xPA ` rn
1
sQA, PB ` rn

1
sQBy
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where m1, n1 are chosen at random from from Z{leBB Z);

determine from which distribution the tuple is sampled.

We cannot state an analogue of the Diffie-Hellman problem (GDHP) for
the supersingular isogeny case, since decisional problems here are equivalent to
computational. Thus, security arguments for Limonnik-3, proven secure under
the GDHP hardness assumption, cannot be directly transformed for Limonnitsa.
However, as pointed out by Galbraith, we may consider a weaker adversary
model.

We state now a weaker version of the security definition adapted from [6].
We allow an adversary M to perform any of the following queries.

– Initiate a session between any chosen parties.

– Send messages from a party to another, which is followed by a correct
(prescribed by the protocol) response.

– Execute a correct session between any chosen parties.

– Corrupt a party (that is, to learn any secret keys, as well as all generated
shared keys and any local state information).

Note that M cannot perform any Reveal queries.
Define as Λpnq the set of all Limonnitsa public parameters for a chosen

security parameter n: that is, all primes of an appropriate form with bit-lentgh n,
all possible supersingular elliptic curves defined over the corresponding primes.

Definition 7. A key agreement protocol is said to be weak-AKE-secure if the
following conditions hold:

1. If two honest parties complete matching sessions then, except with negligi-
ble probability, they both compute the same session key.

2. No polynomially bounded adversary M defined above can distinguish the
session key of a fresh session from a randomly chosen session key with
probability greater than 1{2 plus a negligible fraction.

Then the following theorem holds.

Theorem 1. Let the SSDDH problem for Λ be computationally hard. Let KDF be
modelled by a pseudorandom function, let MAC be secure against forgery attack.
Then Limonnitsa is secure in the sense of Definition 7.
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Proof. The proof repeats the analogous result for Limonnik-3 [14] in a weaker
security model.

7 Choice of parameters

Consider primes of the form pA “ 2e23e3 ´ 1. In order to keep up the classic
and quantum (see [8]) complexity with the standardized block cipherKuznyechik
[3], which has 128-bit block size and 256-bit keys, we choose the parameter p as
the smallest prime of the form pA “ 2e23e3´1 such that log2 p{6 ě 128 and the
factors 2, 3 are balanced: e2 « e3{ log2 3. Thus we obtain the Limonnitsa-prime
pλ “ 24513284 ´ 1; log2 pλ « 902.

Note that SIKE NIST proposal [15], following NIST requirements and esti-
mations of the quantum security of AES, provides a 964-bit prime for the same
classical security level. Limonnitsa allows for distinct parameters of the parties;
this means that, for example, a party with a SIKE public parameters may run
a Limonnitsa session with a Limonnitsa-prime-based party. The only practical
problem here may be mutual public parameter verification.

Elliptic curve operations may be implemented by various techniques; for
example, Montgomery or Edwards forms of an elliptic curve may be used.

The protocol execution takes (almost) exactly twice the complexity of exe-
cuting a SIDH protocol with analogous choice of parameters. Its feasibility for
embedded systems may be a subject of discussion as well as that of SIDH/SIKE.

8 Conclusion

We have proposed a post-quantum variant of the officially adopted key ex-
change protocol. We have studied its basic cryptographic properties. We have
shown that the protocol is both classical and quantum-secure and conforms to
the cryptographic requirements.

However, implementation and efficiency issues of Limonnitsa, including pa-
rameters optimization for specific processors, as well as side-channel attack pro-
tection, are yet to investigate.
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Abstract
We study the possibility of applying related key attacks on cryptographic devices

which use quantum key distribution (QKD), in case on compromise of «quantum» part.
We consider the simplest way of XORing quantum key and long-term key.

We review several known attacks on QKD systems in order to assess the probability
of recovery of a quantum key by an attacker, which turns out to be close to 1 in many
cases. This leads to increase of success probability when applying related key attack.

As a result we propose the usage of key derivation functions for key update.

Keywords: QKD, quantum key distribution, related key attack, Magma, Kuznyechik, attacks on
QKD systems, block cipher, key derivation.

1 Introduction

Traditionally, it is desirable to obtain information-theoretic security proof
for quantum key distribution protocols, which implies an assessment of the
statistical distance between the uniform distribution and the distribution of key
bits. The following three types of attacks are generally considered (in the order
of increase of the eavesdropper capabilities):

– Individual attacks in which the eavesdropper makes independent measure-
ments of photon states transmitted between legitimate users.

– Collective attacks in which it is assumed that the eavesdropper has quan-
tum memory and has the ability to store measurement results for further
processing.

– Coherent attacks in which the eavesdropper is assumed to have the broadest
range of capabilities, including adaptive attacks (depending on the results
of previous measurements).
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Under this approach, encryption using the obtained keys should also be secure
from the information-theoretical point of view. From a practical point of view,
this leads to the need to use the Vernam cipher, which, however, does not allow
to achieve an acceptable speed of information processing, since it is limited by
the speed of key generation by quantum cryptographic key distribution systems
(QKD systems).

As a compromise variant in the majority of existing systems, the use of QKD
often consists in their integration into the existing cryptographic devices. In this
case, the encryption key of the cryptographic device is periodically updated with
the use of the key generated by the QKD system.

If the above mentioned Vernam cipher is used for updating the cryptographic
device key (bitwise addition of the quantum key with the cryptographic device
key), it is also possible to achieve in some cases information theoretic security in
case of compromising the cryptographic device key or the quantum key. In each
of these two cases, the compromised (known) key is encrypted using another key,
which prevents the attacker from identifying the key used directly for encrypting
the information.

Taking into account that up to now the assessment of practical security of
the QKD systems remains questionable (first of all, regarding the attacks on
the technical implementation of the quantum protocols), it is assumed that in
case of compromising quantum keys, the mentioned approach will allow to keep
the security of the information transmitted with the use of the cryptographic
devices at the «initial» level.

At the same time, for some existing encryption algorithms the proposed ap-
proach can lead to the possibility of implementation of related keys attacks.
In this regard, it is important to study the possibility of using such a method
for Russian standardized encryption algorithms in case of successful implemen-
tation of an attack on the quantum component. We study the possibility of
application of related key attacks on block ciphers, including those defined by
the standard GOST R 34.12-2015, as well as assess their effectiveness depend-
ing on the parameters of attacks on the technical implementation of the QKD
systems. We will consider attacks on modules implementing the most widely
studied quantum BB84 and CV protocols.
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2 Related key attacks on block ciphers

One of the known principles of cryptographic analysis is the so-called «Ker-
ckhoffs’s Law», which can be formulated as follows: «The cryptosystem should
provide security even in a case when all information except a key (keys) is
known to the attacker». Here, the expression «all information except for a key»
means not only that the attacker does not know value of a key, but also that
the attacker does not possess any indirect information on a key. More strictly
the Kerckhoffs’s law can be formulated in the form of an assumption that the
encryption key is a realization of a uniformly distributed random variable. In
practical means of cryptographic information protection the volume of the pro-
cessed data with one key is often essentially limited for a number of reasons,
thus for processing of big volumes of data periodic change of encryption keys is
made. Hence the attacker has a set of ciphertexts encrypted with various keys,
and the number of these keys can be rather large. In this case, we are dealing
with a multikey attack model, and the Kerchhoff’s principle can be reformulated
as follows: the encryption keys are realizations of independent and uniformly
distributed random variables on the key set.

A related key attack on encryption algorithms was proposed in [2]. In the
related attack it is assumed that the attacker works in a multikey model, i.e.
has data encrypted with different keys. At the same time, the values of the
keys themselves are unknown to the attacker, but the attacker has information
about some dependencies between these keys. Let’s assume that the encryption
is performed on the set of keys

pK1, . . . , Kmq, Ki P Vk,

where Vk is the key set. Let’s call mappingR : V m
k Ñ t0, 1u asm-arity predicate,

which is associated with a satisfiability set of this predicate

IR Ď V m
k , IR “ tx̄ P V

m
k |Rpx̄q “ 1u.

In general, the related key model assumes that the attacker has the infor-
mation that the predicate for the set of keys pK1, . . . , Kmq is satisfied, i.e.
RpK1, . . . , Kmq “ 1. And the predicate itself and the satisfiability set is chosen
by the attacker or is known to him. A special case is the so-called functional
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predicates:

RpK1, . . . , Kmq “

"

1, Ki “ fipK1q, i “ 2,m;
0, otherwise,

where fi : Vk Ñ Vk is a set of predefined or known functions, i.e. when the
functional relations between the analyzed encryption keys is known (or chosen).
In turn, a particular case of a functional relation between keys is the differential
relation, which is often used in related keys differential attacks. In this case, it
is assumed that

fipxq “ x‘∆i,

where ‘ is a bitwise XOR in Vk. The values ∆i are set by the attacker (or
known to him).

Suppose that the encryption system uses a hybrid scheme for obtaining en-
cryption keys KH

i by adding a long-term key K˚ with the keys KQ
i distributed

via QKD system, i.e. KH
i “ K˚ ‘ KQ

i . Then, if the QKD system has been
compromised, the keys KQ

i are known to the attacker. In this case, the en-
cryption keys KH

i are not known to the attacker because the long-term key is
unknown. However, the attacker has information about the differences between
the encryption keys:

KH
i “ K˚

‘KQ
i “ KH

j ‘K
Q
j ‘K

Q
i “ KH

j ‘ δij,

where all
δij “ KQ

i ‘K
Q
j

are known to the attacker. So we fall into the situation of a differential func-
tional relation between the keys described above, which can lead to a significant
reduction in the security of encryption algorithms.

3 Related key attacks for Magma

Related key attacks on GOST 28147-89 (Magma) was considered in [4,5]. In
[4] the method of determining the key using the enhancement of the differential
attack - the «boomerang» attack with related keys - was proposed.

The «boomerang» attack uses four plaintext/ciphertext pairs, where each
of the ciphertexts is obtained by encryption on its own key. The basic attack of
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[4] uses four encryption keys with the following relation

K1, K2 “ K1 ‘∆1, K3 “ K1 ‘∆2, K4 “ K1 ‘∆1 ‘∆2.

The attack recovers 31 bits of the first round key with time complexity of about
212 encryptions and the same number of adaptive chosen plaintexts. The paper
also suggests generalizations of the basic attack which recovers 192 bits of the
key (6 round keys out of 8), while the remaining 64 bits are proposed to be
determined by a brute force search. In this case, the attack complexity is about
271 encryptions, and the data complexity is 228 pairs of chosen plaintexts. A
generalized attack requires a set of 14 related keys.

In [5] a combination of differential attack and boomerang method is pro-
posed. The «boomerang» attack described in [4] is used to recover the first two
round keys. For further recovery of round keys it is proposed to use the differen-
tial attack with related keys. The attack requires 12 related keys to be mounted.
In the worst case scenario, the complexity of the attack is 262 encryptions, and
the data complexity does not exceed 243 chosen text pairs.

4 Related key attacks for Kuznyechik

The analysis carried out in [7, 8] did not reveal any related key attacks for
the full round Kuznyechik cipher, primarily due to its complex key schedule.
Hence it is now believed that the related key attacks are not applicable to this
algorithm.

5 Required related keys number and attack probability

In many cases, the application of related key attacks assumes that the re-
lation between the keys used is set by the attacker. However, in the situation
described above when compromising the QKD system, the relation between the
keys is known to the attacker, but is not set by him. The value of

δij “ KQ
i ‘K

Q
j

is the sum of the two keys generated from the QKD system, which are gener-
ated by a random bit generator. Thus, the values in general can be considered
uniformly and independently distributed.
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Then, when mounting a related key attack, the following problem arises.
Suppose that we need to usem related keys pK1, . . . , Kmq to perform the attack.
The relation is defined by the differential functional predicate, i.e.

Ki “ K1 ‘∆i, i “ 2,m,

where the values ∆i are fixed. We need to estimate the number of encryption
keys M : KH

j , j “ 1,M such that among them there is a subset with the neces-
sary relation on the keys: RpKH

j1
, . . . , KH

jm
q “ 1 with the required probability.

Let’s consider the simplest case, when an attack requires two keys: K1 and
K2 “ K1 ‘ ∆. The whole key set is divided into a set of key pairs with the
difference ∆. Now the key set can be divided into two disjoint classes, such
that if one of the keys of the pair lies in the first class, the other one lies in
the second one. At the same time, the number of encryption keys KH

j in each
class will be the same on average due to the uniform distribution of encryption
keys and equal cardinality of classes. Then the estimation of the probability of
finding a key pair K1 and K2 “ K1 ‘∆ among KH

j is essentially the problem
of estimating the probability of a collision in two samples.

It is known from the generalized «birthday paradox» that the probability
of collision in two subsets of N elements, where the subset sizes are equal to
τ1

?
N and τ2

?
N can be estimated as

1´ e´τ1τ2

when N Ñ 8. Then, assuming

τ1

?
N « τ2

?
N «

M

2
,

we get that the probability of guessing the key pair KH
j , satisfying the required

relation is
P2 “ 1´ e´

M2

4N ,

where N “ 2k is the cardinality the key set.
Consider the situation that arises when using the «boomerang» attack with

related keys. In this case, four related keys are used:

K1, K2 “ K1 ‘∆1, K3 “ K1 ‘∆2, and K4 “ K1 ‘∆1 ‘∆2.

As before, the key set can be divided into 4 disjoint classes of equal size, and
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the estimate of the probability of finding the four related keys can be obtained
through the estimate of the probability of 4-multicollision. In [3] Wagner pro-
posed an efficient algorithm for solving the problem, which gives us the corre-
spondence between the desired probability and the amount of data need. As a
result this allows us to correlate the number of related keys available to the at-
tacker with the probability that there exists a subset with the required property,
and hence, to evaluate the success rate of the attack.

In classical assumptions, when keys are assumed to be uniformly and in-
dependently distributed, the attacker acts under the assumption that the keys
are related. Therefore, the probability of the attack includes a factor that cor-
responds to the probability of this assumption being fulfilled which is equal
to

2´kpr´1q

when using r keys. This factor makes the overall success rate of the attack
almost zero.

In the case of a compromised QKD system, when the differences between
the keys are known and uniformly distributed, and when the attack applicable
to one particular relation predicate is known (as in the above attacks for the
Magma cipher), the number of encryption keys required for the attack is quite
large: to achieve success rate close to 1 for an attack with two related keys the
attacker needs about ?

N “
a

|Vk| “ 2128

encryption keys. For an attack with four related keys:

p|VK |q
3
4 “ 2196.

Hence if the attacker has a small number of encryption keys, the probability
estimates will be almost the same as in the classical assumptions.

6 Practical attacks on quantum key distribution systems

In this section we will briefly review some known practical attacks exploit-
ing implementation weaknesses of optical modules of QKD systems. We focus
mostly on systems implementing widely studied BB84 and CV QKD systems.
Our goal is to to assess the a posterior probability of the quantum key bits, or,
in other words, the probability with which the eavesdropper knows the quantum
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key, after the attack. It should be noted that in order to provide information-
theoretic security of the quantum key privacy amplification techniques should be
performed after error correction. This is usually done by means of 2-universal
hash functions family [14]. That means, that quantum key, which is possibly
eavesdropped, is loaded into the cryptographic device after some functional
transformation. Since the procedures of error correction and privacy amplifica-
tion of the key is determined, it is enough to estimate such probability P for
the raw (before error correction) key.

6.1 Photon-number splitting attack

One of the main problems for QKD systems is to implement a single-photon
source in practice. In majority of implementations a weak coherent pulses are
used, which means that source emits multi-photon pulses with non-zero prob-
ability. In this case, Eva has the ability to split the photon beam in order to
intercept one of the photons without affecting other and store it in quantum
memory. After legitimate users announce their bases, Eva has the ability to
measure the stored photon and get the encoding.

In [15] a thorough study is performed. The probability for eavesdropper to
get a correct key depends on the transmission efficiency of a quantum channel
η, mean photon number µ and proportion of the pulses containing one photon
κ. The probability of correct key guessing for Eve as a function of disturbance
D which is introduced for the information channel between the legitimate users
is described as:

P pDq “
1´ e´µp1` µq ` p1´ κqµe´µr1{2`

a

Dp1´Dqs

1´ e´µp1` µκq

The probability depending on the parameters could be up to 1, which means
that the eavesdropper knows the whole key.

6.2 Detector laser damage

In [16] an attack based on high voltage laser damage of photodetectors is
proposed. In the worst case the attacker by destroying detectors is able to get
the full control over the process of quntum key generation. That means the
probability P could be equal to 1 in this attack.
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6.3 Trojan horse attack

In this type of attack, the eavesdropper irradiates the laser of the encoding
module and receives information about the coding of the photon by analyzing
the reflected signal. In [1] the practical application of the attack for two QKD
systems is shown. The research suggests that it is possible to correctly determine
the key bit with a probability of P ą 0.99.

6.4 Bright illumination attack

This type of attack can be used against avalanche photo detectors [13].
During the attack, the photo detector is irradiated by a powerful beam of light,
which leads to the transition of the detector from geiger mode to linear mode. As
a result, an eavesdropper can carry out a meet-in-the-middles attack by measur-
ing the photons sent by initiator and inducing, according to the measurement,
the response of the corresponding photodetector on the receiver side. As a re-
sult, an eavesdropper receives full information about the key being transmitted
P “ 1.

6.5 Time shift attack

In order to minimize the effect of dark readings in a number of systems an
activation of photon detectors on the signals of synchronization is implemented.
The possibility of an attack arises from the fact that the detection efficiency
profiles of photon detectors are not the same. In this case, an eavesdropper
can measure photons, and then change the synchronization signal to activate
the receiver’s photo detector according to his measurements in order to con-
trol detection efficiency according to her measurements. In the worst case, an
eavesdropper can get all the information about the key [10].

6.6 Wavelength attack

Many of QKD systems implement beam splitter on the receiver side. The im-
perfectness of the beam splitter’s wavelength dependent optical property could
be exploited by the eavesdropper. The study [17] suggests that the eavesdropper
after measuring the photon resend it to the receiver at the wavelength depending
on the measured state and the account optical properties of the beam splitter.
In the worst case the eavesdropper could get all the information about the key.
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7 On the possibility of related key attack and counter-
measures

The review, presented in the previous clause, suggests that many of prac-
tically possible attacks on QKD make it possible for the eavesdropper to have
the full knowledge of quantum key. At the same time the main problem with
the implementation of related key attack from the attacker viewpoint is the
impossibility of imposing desired keys to legitimate subscribers. Even when the
eavesdropper is able to get full control over optical parts of the legitimate users,
the process of encoding photons on sender side is beyond his control. As a result,
after the application of the key correction and privacy amplification procedures,
the eavesdropper will not be able to impose the keys with the specified ratios.
As a result, even if the raw key is compromised, the eavesdropper will be able
to expect the related keys to appear only with the specified probability.

At the same time, taking into account the fact that in the conditions under
consideration the eavesdropper is able to detect the fact of appearance of related
keys, which increases the reliability of the attack, and, in general, reduces the
security of the cryptographic device, it seems reasonable to use methods key
derivation that exclude the possibility of considered attacks.

The most effective countermeasure in this case is the use of the key derivation
functions, for example, defined by the recommendation for standardisation [6,
18]. The key derivation functions kdfpS, T, L, P . . .q described in [6] consist
of two stages. At the first stage, an intermediate key Kp1q “ kdf p1qpT, Sq is
produced, which is obtained by hashing of the original secret key S using «salt».
T - the vector which is supposed to be uniformly distributed on some set and, in
general, is considered known to the attacker. At the second stage, the derivative
keys Kp2q “ kdf p2qpKp1q, L, P, ...q are generated from the intermediate key using
the cryptographic transformations, where L is the length of the key sequence
produced, and P - additional information.

In order to provide the security of cryptographic device in case of the QKD
system compromise, it is proposed to use the key derivation function, where the
keys obtained as a result of the quantum protocol are used as salt KQ

i and the
long-term key of a cryptographic device K˚ is used as the secret key.

As a result of this approach, even in the case of compromising the quantum
keys KQ

i , the security proofs of [9] about the computational indistinguishability
of the keys produced by KH

i “ kdfpK˚, KQ
i , L, P . . .q from the sequence of
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independent, equal-probable random variables remain valid.

8 Conclusion

We studied the possibility of applying related key attacks to hybrid cryp-
tographic devices which uses QKD for updating the long-term key in case of
quantum channel compromise.

For the key update method, which consists in bitwise XOR of quantum and
long-term key, it is shown the increase of success probability of the related key
attack in comparison with the classical conditions.

A variant of the key update method based on standardised key derivation
functions, which excludes the possibility of application of the considered attacks,
is proposed.
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Abstract

The work is devoted to the study of ways to implement S-boxes in the form of
quantum circuits with a minimum number of logical qubits and logical quantum gates,
without using ancilla qubits. New quantum circuits that implement the S-boxes of the
GOST R 34.12-2015 ”Magma” on 4 logical qubits have obtained. We have concluded that
for substitutions s P SpVnq with a large number of cycles there are quantum circuits on
n logical qubits that implement the substitution s with fewer logical quantum gates,
compared with substitutions g P SpVnq with a small number of cycles.

Keywords: S-box, quantum circuit, resource estimates.

1 Introduction

The theory of quantum computing has been developing since the end of the
20th century. A number of formal quantum computing models are constructed
in which some computational problems, for example, [1, 2, 3], are solved more
efficiently than in the classical computational model [4]. Actual information
about the current level of quantum technologies development in the field of
quantum computing is presented in [5, 6].

In [7] we consider a method for implementing S-boxes GOST R 34.12-2015
and AES in the form of quantum circuits without using ancilla qubits, based
on an algorithm for implementing an arbitrary unitary operator in the form
of a quantum circuit by decomposing the corresponding unitary matrix into a
product of two-level unitary matrices ([8, sec. 4.5]). Quantum circuits that im-
plement S-boxes of GOST R 34.12-2015 and AES without ancilla qubits were
constructed taking into account the optimization, based on the removal of se-
quences of quantum operations that equival to the identical transformation.
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For the implementation of GOST R 34.12-2015 "Magma" S-boxes 4 log-
ical qubits are enough, and for the implementation of GOST R 34.12-2015
"Kuznechik" and AES S-boxes 8 logical qubit are enough, while in [9, 10] the
implementation of AES S-box requires 40 logical qubits. In [10] a method for
constructing quantum circuit is described, which implements the AES S-box on
9 logical qubits, but it is argued that in comparison with 40 logical qubits case,
this implementation requires approximately three times more quantum gates.

In this work for constructing quantum circuits (Fig. 1-8) we have used gen-
eralized CNOT pC|tq gates ([8, 11]), in which qubit t is controlled by the set
of qubits C. Generalized gates CNOT pC|tq can be implemented without us-
ing ancilla qubits ([8, p. 184]), therefore, we will consider generalized gates
CNOT pC|tq as one self-independent logic gate, which is consistent with the
techniques of assessing the quantum resources described in [12, 13].

2 Construction of quantum circuits implementing
S-boxes without ancilla qubits

In this section, we present an algorithm for constructing quantum circuits
that implement S-boxes without ancilla qubits, based on the decomposition of
the substitution into independent cycles.

Table 1 presents the results of our implementation of Algorithm 1.

S-box data’ – sequences of elementary qubit states transformations
π0 (14,15)(13,14)(11,14)(10,13)(9,14)(8,14)(7,9)(6,11)(12,0)(4,10)(3,6)(2,6)(1,4)
π1 (10,14)(11,12)(9,14)(7,12)(1,8)(6,10)(5,10)(4,9)(6,0)
π2 (1,3)(9,1)(13,9)(5,15)(7,13)(10,7)(6,10)(14,6)(2,5)(4,2)(8,14)(11,4)(0,11)
π3 (14,15)(13,14)(12,15)(11,13)(9,12)(8,15)(7,15)(6,15)(5,13)(4,13)(3,8)(1,8)(12,0)
π4 (5,1)(0,7)(2,5)(8,0)(14,2)(4,8)(13,4)(10,3)(11,14)(12,11)(15,12)
π5 (12,13)(11,13)(10,11)(9,10)(8,11)(7,10)(5,15)(6,12)(4,9)(2,15)(3,6)(5,0)(1,13)
π6 (13,15)(9,14)(12,13)(6,14)(5,9)(11,15)(10,11)(4,6)(3,5)(8,15)(1,14)(7,12)(8,0)
π7 (7,3)(1,7)(0,1)(4,0)(8,4)(6,8)(11,6)(14,11)(2,14)(15,2)(9,15)(12,9)(13,12)

Table 1: Data from algorithm 1 for implementing S-boxes without ancilla qubits.

In Fig. 1-8 the quantum circuits are presented that implement the S-boxes
of GOST R 34.12-2015 "Magma". Optimization of quantum circuits that imple-
ment S-boxes GOST R 34.12-2015 "Magma" was carried out by "brute force",
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Algorithm 1
Input: Substitution s P SpVnq.
Output: Quantum circuit for s P SpVnq without ancilla qubits.
1: Represent s as a product of independent cycles and remove fixed points. As a result, we

obtain k P N independent cycles, s “ s1s2 . . . sk;
2: Consider each cycle si, i P 1, k as an independent substitution, find the decomposition of

the unitary matrix Usi corresponding to the cycle si, i P 1, k, into the product of two-level
matrices (see [7, 8]):

Usi “ V i
1 ¨ . . . ¨ V

i
t ;

3: By the found matrices V i
1 ¨ . . . ¨ V

i
t we could determine all possible pairs of states

datai “ tpx
i
j, y

i
jq : V i

j |x
i
jy “ |y

i
jy, i P 1, k, j P 1, t, xij ‰ yiju.

Lists datai can be simply written according to the cycles of si, i P 1, k, by restoring
the transition table of si. Description of formation of lists datai through two-level matrixes
is given in order to define datai strictly and unambiguously.

4: For each pair pxij, yijq P datai, i P 1, k, j P 1, t, define the list of bit numbers numbpxij ,yijq Ă
t1, 2, . . . , nu, where xij is different from yij.

5: Denote data “
Ťk
i“1 datai. It is required to sort the elements of data in such a way that

|data|´1
ÿ

w“1

|numbpxw,ywq X numbpxw`1,yw`1q| Ñ max,

moreover, the transitions pxij, yijq obtained through the cycle si must preserve the relative
order (otherwise, instead of the cycle si we will get some other cycle s1). This stage can
be implemented using random search with restrictions. As a result of this sorting of data
we get data1.

6: To each element px1, y1q P data1 still corresponds some two-level matrix, i.e. each element
of data1 could be easily implemented using some simple quantum circuit (see [7, 8]).
The implementation of two-level matrices in the form of quantum circuit can be am-
biguous. Let dpx1,y1q be the Hamming distance between the binary representations x1 and
y1, then there exists exactly dpx1,y1q! various quantum circuits consisting from quantum
gates CNOT and generalized CNOT(C|t), that implement the transition px1, y1q (see [8]).
Among them there are only dpx1,y1q quantum circuits that differ significantly, which are
determined by the number t of the controlled qubit in quantum gates CNOT(C|t) that
occurs during the implementation of two-level matrices.
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7: We assume that the quantum circuit that implements the transitions of data1 could be
optimized by independent parts. Then the search for an optimized quantum circuit for
s P SpVnq can be organized using the following procedure:

a: Initialize an array of |data1| elements memory “ t1, . . . , 1u. In memory[iter] we will
write the number of implementation of the two-level matrix that implements the
transition px1iter, y1iterq P data1, iter P 1, |data1|. Set iter “ 1.

b: Set the search depth, for example, depth “ 3. Until iter ă |data1| do:

i: Search for a quantum circuit with minimum length that implements transitions
px1iter, y

1
iterq, . . . , px

1
iter`depth´1, y

1
iter`depth´1q by iterating over all possible variants

of quantum circuits that implements px1iter, y1iterq, . . . , px1iter`depth´1, y
1
iter`depth´1q.

Write the founded numbers of implementations of the two-level matrices to
memory[iter], . . . ,memory[iter ` depth´ 1].

ii: iter “ iter ` depth; The depth of the search is determined by the available
computing power.

c: Repeat this procedure starting at iter “ 2 and the same value of depth.

8: As a result, we obtain a quantum circuit that implements s P SpVnq without using ancilla
qubits, with the minimal number of quantum gates.

i.e. for Magma in Algorithm 1, we have set depth “ |data1| ´ 1. Comparison
of the number of quantum gates in quantum circuits, at [7] and pic. 1-8, that
implementat the S-box without ancilla qubits is given in table 2.

Figure 1: Quantum circuit for π0 = (12, 4, 6, 2, 10, 5, 11, 9, 14, 8, 13, 7, 0, 3, 15, 1).

Figure 2: Quantum circuit for π1 = (6, 8, 2, 3, 9, 10, 5, 12, 1, 14, 4, 7, 11, 13, 0, 15).

Figure 3: Quantum circuit for π2 = (11, 3, 5, 8, 2, 15, 10, 13, 14, 1, 7, 4, 12, 9, 6, 0).
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Figure 4: Quantum circuit for π3 = (12, 8, 2, 1, 13, 4, 15, 6, 7, 0, 10, 5, 3, 14, 9, 11).

Figure 5: Quantum circuit for π4 = (7, 15, 5, 10, 8, 1, 6, 13, 0, 9, 3, 14, 11, 4, 2, 12).

Figure 6: Quantum circuit for π5 = (5, 13, 15, 6, 9, 2, 12, 10, 11, 7, 8, 1, 4, 3, 14, 0).

Figure 7: Quantum circuit for π6 = (8, 14, 2, 5, 6, 9, 1, 12, 15, 4, 11, 0, 13, 10, 3, 7).

Figure 8: Quantum circuit for π7 = (1, 7, 14, 13, 0, 5, 8, 3, 4, 15, 10, 6, 9, 12, 11, 2).

Source code for verifying correctness of quantum circuits in the quantum
simulator Quipper [14], example for π4.

import Quipper
import QuipperLib.Simulation
import System.Random
import Quipper.Printing
import Quipper.QData
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-------------------------
sub1 :: ([Qubit]) -> Circ ([Qubit])
sub1 (input) = do

let [q0, q1, q2, q3] = input
qnot_at q1 ‘controlled‘ (q0.==.0,q2.==.0,q3)
qnot_at q2 ‘controlled‘ [q1]
qnot_at q3 ‘controlled‘ [q1]
qnot_at q1 ‘controlled‘ (q0.==.0,q2.==.0,q3.==.0)
qnot_at q1 ‘controlled‘ (q0.==.0,q2,q3.==.0)
qnot_at q3 ‘controlled‘ [q1]
qnot_at q2 ‘controlled‘ [q1]
qnot_at q0 ‘controlled‘ (q1.==.0,q2.==.0,q3.==.0)
qnot_at q1 ‘controlled‘ [q0]
qnot_at q0 ‘controlled‘ (q1.==.0,q2,q3.==.0)
qnot_at q0 ‘controlled‘ (q1,q2.==.0,q3.==.0)
qnot_at q1 ‘controlled‘ [q0]
qnot_at q3 ‘controlled‘ [q0]
qnot_at q0 ‘controlled‘ (q1,q2.==.0,q3.==.0)
qnot_at q0 ‘controlled‘ (q1.==.0,q2,q3)
qnot_at q3 ‘controlled‘ [q0]
qnot_at q1 ‘controlled‘ [q3]
qnot_at q3 ‘controlled‘ (q0,q1,q2)
qnot_at q2 ‘controlled‘ [q3]
qnot_at q3 ‘controlled‘ (q0,q1,q2.==.0)
qnot_at q1 ‘controlled‘ [q3]
qnot_at q3 ‘controlled‘ (q0,q1,q2.==.0)
qnot_at q2 ‘controlled‘ [q3]
return ([q0, q1, q2, q3])

test1_circuit :: IO ()
test1_circuit = do

putStrLn "Quantum Cirquit in Adobe Reader..."
print_generic Preview (sub1) (replicate 4 qubit)

test1_exec :: IO ()
test1_exec = do

putStrLn "Substitution functionality test:"
print_generic GateCount sub1 (replicate 4 qubit)
g <- newStdGen
--Here are only 2 states, but you could check all 16:
print $ run_generic g(0.0::Double) sub1 ([True,True,True,False])
print $ run_generic g(0.0::Double) sub1 ([True,True,True,True])

--Run--
main = do

test1_circuit
test1_exec
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S-box
Number of
cycles in
S-box

Total gates in
quantum circuit [7]

Total gates in new
quantum circuit

π0 2 33 29
π1 3 29 23
π2 2 37 27
π3 1 29 29
π4 3 31 23
π5 2 35 29
π6 2 31 25
π7 1 31 29

Table 2: Comparison of the number of quantum gates in quantum circuits, at [7] and Fig. 1-8,
that implement the S-box without ancilla qubits.

3 Conclusion

We have obtained new quantum circuits for implementation GOST R 34.12-
2015 "Magma" S-boxes on 4 logical qubits with fewer logical quantum gates
than in [7]. The obtained results allow to draw a conclusion that the more
cycles in substitution, the less the length of the quantum circuit implementing
this substitution can be.
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Appendix 1

The algorithm for constructing quantum circuits of an arbitrary unitary
operator is described in [8], Section 4.5.

Definition 1. Let N “ 2n, n P N, and e1, e2, . . . , eN be the basis of the vector
space LCN over field of complex numbers C. The unitary matrices U P C2n,2n,
nontrivially acting on no more than two basis vectors e1, e2, . . . , eN , are called
two-level unitary matrices (see [8], section 4.5.1 ).

Let’s construct a quantum circuit that implements

π1 “ p6, 8, 2, 3, 9, 10, 5, 12, 1, 14, 4, 7, 11, 13, 0, 15q.

The substitution π1 P SpV4q. Denote y “ π1pxq, x, y P V4. The states |xy, |yy
are vector-columns from LC24 , the action of the operator U |xy “ |yy is a multi-
plication of the column vector |xy by the matrix U P C24,24.
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1. The unitary matrix for π1:

Uπ1
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

2. The matrix Uπ1 can be represented as a product of two-level unitary
matrices:

Uπ1 “ V1 ¨ V2 ¨ V3 ¨ V4 ¨ V5 ¨ V6 ¨ V7 ¨ V8 ¨ V9.

The table 3 contains two-level matrices V1, . . . , V9, participating in the de-
composition Uπ1, states s and t, on which two-level matrices act nontrivially,
and quantum circuits implementing two-level matrices V1, . . . , V9. Matrices are
written as a list of strings, each row is a vector vi P V16, ||vi|| “ 1, i P 1, 16 and
written in hexadecimal notation.
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V1 “ t200, 4000, 2000, 1000, 800, 400, 8000, 100, 80, 40, 20, 10, 8, 4, 2, 1u
s “ |0110y
t “ |0000y

X

V2 “ t8000, 80, 2000, 1000, 800, 400, 200, 100, 4000, 40, 20, 10, 8, 4, 2, 1u
s “ |0001y
t “ |1000y

X

V3 “ t8000, 4000, 2000, 1000, 40, 400, 200, 100, 80, 800, 20, 10, 8, 4, 2, 1u
s “ |0100y
t “ |1001y

X

V4 “ t8000, 4000, 2000, 1000, 800, 20, 200, 100, 80, 40, 400, 10, 8, 4, 2, 1u
s “ |0101y
t “ |1010y

X

V5 “ t8000, 4000, 2000, 1000, 800, 400, 20, 100, 80, 40, 200, 10, 8, 4, 2, 1u
s “ |0110y
t “ |1010y

X

V6 “ t8000, 4000, 2000, 1000, 800, 400, 200, 8, 80, 40, 20, 10, 100, 4, 2, 1u
s “ |0111y
t “ |1100y

X

V7 “ t8000, 4000, 2000, 1000, 800, 400, 200, 100, 80, 2, 20, 10, 8, 4, 40, 1u
s “ |1001y
t “ |1110y

X

V8 “ t8000, 4000, 2000, 1000, 800, 400, 200, 100, 80, 40, 2, 10, 8, 4, 20, 1u
s “ |1010y
t “ |1110y

X

V9 “ t8000, 4000, 2000, 1000, 800, 400, 200, 100, 80, 40, 20, 8, 10, 4, 2, 1u
s “ |1011y
t “ |1100y

X

Table 3: Representation of the matrix Uπ1 as a product of two-level matrices Uπ1 “ V1 ¨ V2 ¨

V3 ¨ V4 ¨ V5 ¨ V6 ¨ V7 ¨ V8 ¨ V9.

Since |yy “ U |xy, |yy “ V1 ¨ . . . ¨ pV8 ¨ pV9 ¨ |xyqq, the quantum circuit of Uπ1
is as follows:

X X X

X X X X X

X

Figure 9: Quantum circuit π1 = (6, 8, 2, 3, 9, 10, 5, 12, 1, 14, 4, 7, 11, 13, 0, 15).

After optimization of the quantum circuit in the figure 9, we obtain the
quantum circuit in the figure 2.
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Abstract

The first related-key attack on 3-round (of 9) Kuznyechik with 2-round (of 8) key
schedule was presented in CTCrypt’18. This article describes a related-key attack on
5-round cipher with the same key schedule. The presented one also has a practical
complexity (232 operations, 230 memory, 216 related keys) and verified in practice. We
obtained result due to the simultaneous use of the integral properties of the cipher
transformations and the key schedule.

Keywords: Kuznyechik, related-key attack, integral cryptanalysis.

1 Introduction

The setting of a related-key attack on cipher was introduced in [6]. Informally
this model assumes that adversary has access to several encryptors with different
unknown keys, but it knows a certain simple relationship (for example, bitwise
xor) between these keys.

In some cases the related-key model is quite consistent with reality. A good
example is an iterative hash function using block cipher as part of compression
function. In this case, adversary has a possibility of manipulating the encryption
keys. Some cryptographic protocols may use related keys by design. One such
related-key protocol CTRR was proposed at CTCrypt’18 [2].

In the same publication [2], the first related-key attack on a reduced variant
of block cipher Kuznyechik [1] was proposed. This approach exploits the ability
of attacker to manipulate keys, and the similarity of the functions in encryption
and the key schedule procedures.

In this paper we present a related-key attack on 5-round (of 9) Kuznyechik
with 2-round (of 8) key schedule. Main result obtained due to the integral prop-
erties [4, 5] of encryption and the key schedule. We also used some approaches
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from [3]. The simplified versions of Kuznyechik are described in the next section
(equations (2) and (3)).

The presented attack was verified in practice with the
help of C++ implementation. Source codes can be found at
https://gitlab.com/v.kir/rk-5R-kuznyechik.

Comparative characteristics of attacks are presented in table 1.

Cipher rounds Key schedule rounds Operations Keys Memory Source
3 2 212 212 „ [2]
5 2 232 216 230 Section 4

Table 1: Related-key attacks on Kuznyechik

2 Definitions

Let F28 be a finite field as defined in [1]. Each element of F28 can be inter-
preted as an integer or binary vector. Field elements are indicated by lowercase
letters: a, b. Denote vector space of dimension n P N over F28 by Fn28. Ele-
ments from Fn28 will be denoted by capital letters: A, B. Blocks of plaintext and
ciphertext also belong to Fn28.

Denote bitwise xor operation by symbol ‘. Let we have a sequence of blocks

B0, ..., Bd P Fn28, d P N,

then we refer to sequence

∆B “ pB0 ‘B1, B0 ‘B2, ..., B0 ‘Bdq P pFn28q
d (1)

as a difference. Throughout the article we always use d “ 28 ´ 1. Differences
are indicated by bold: κ, ∆K.

The transformations over Fn28 (or sets of elements from Fn28) are denoted by
Sans Serif font: f, S, L. Such characters may mean a bijective transformation
of blocks (fpAq, A P Fn28) or non-bijective transformation of differences to the
set of differences (for example, Spκq is a set of differences, κ P

`

Fn28
˘d). The

notation LS indicates a composition of transformations, where S applies first.
The difference ∆ P

`

Fn28
˘d can also be interpreted as n «columns» of d

bytes each: ∆ P
`

Fd28
˘n. If i-th «column» (i “ 1, 2, . . . , n) α P Fd28 contains

all different non-zero bytes, we say that i-th position has an integral property
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All (A). Similarly, if xor of all bytes is equal to zero, then i-th position of the
difference has an integral property Zero (0). Obviously, the property A implies
the property 0. If at least one byte in such «column» is non-zero, we say that
i-th position is active, otherwise inactive.

Kuznyechik

Kuznyechik [1] consists of a sequence of 9 rounds and a post-whitening key
addition. Each round contains three operations:

X – modulo 2 addition of an input block with an iterative key;
S – parallel application of a fixed bijective substitution to each byte of the

block;
L – linear transformation defined as an LFSR over F28.
The block size is 128 bits (n “ 16 bytes), the size of key K is equal to 256

bits.
Key schedule uses round constants Ci P Fn28, i “ 1, 2, . . . , 32.
Round keys Ki P Fn28, i “ 1, 2, . . . , 10 are derived from a master key K as

follows:

K “ K1||K2,

pK2i`1, K2i`2q “ FrC8pi´1q`8s . . . FrC8pi´1q`1s pK2i´1, K2iq , i “ 1, 2, 3, 4,

FrCs pA1, A2q “ pLSXrCspA1q ‘ A2, A1q , C, A1, A2 P Fn28.

We define 3-round Kuznyechik as in [2]. Each round of the key schedule has
only 2 rounds of basic cipher’s Feistel rounds.

EK1,K2
pAq “ XrK4sLSXrK3sLSXrK2sLSXrK1spAq, (2)
pK3, K4q “ FrC2sFrC1s pK1, K2q

K3 “ K1 ‘ LSXrC2spK2 ‘ LSXrC1spK1qq,

K4 “ K2 ‘ LSXrC1spK1q.

5-round Kuznyechik is defined in a similar way:

EK1,K2
pAq “ XrK6sLSXrK5sLSXrK4sLSXrK3sLSXrK2sLSXrK1spAq,

pK3, K4q “ FrC2sFrC1s pK1, K2q , (3)
pK5, K6q “ FrC4sFrC3s pK3, K4q .

189



Denote also the block before addition of the key Ki by Pi (for example
P2 “ LSXrK1spAq).

3 Technical lemmas and concepts

The polytopic cryptanalysis was first introduced in [3]. We will use some
techniques from this concept along with integral cryptanalysis [4].

In particular, we use the difference (1) as «d-difference» in [3]. Let’s consider
how cipher transformations change this difference.

It’s easy to see, that adding a same round key does not change the difference.
The attack presented in section 4 uses non-equal keys. In this case, the difference
between the round keys is added to the difference between the intermediate
states. Note that if both such differences ∆, κ P

`

Fn28
˘d have integral property

0, then ∆‘ κ has the same property.
Suppose that the difference ∆ P

`

Fn28
˘d has only one active position, then

after the S-transformation we have no more than 28 possible differences. Indeed,
all inactive positions remain inactive. We have one non-zero «column» α “

pc1, c2, . . . , cdq P Fd28 and after substitution layer:

spαq “ tpspx‘ c1q ‘ spxq, spx‘ c2q ‘ spxq, . . . , spx‘ cdq ‘ spxqq , x P F28u ,

where s : F28 Ñ F28 is cipher Sbox. Obviously, the number of differences spαq
does not exceed the number of x. In most cases, these numbers are equal. If all
bytes in α are different, all bytes in spαq are also different (the bijective Sbox
preserve the integral property A). If we know α and α1 P spαq, we can easily
find the corresponding x.

The L-transformation bijectively maps one difference to another:

∆ “ p∆1,∆2, . . . ,∆dq , Lp∆q “ pLp∆1q, Lp∆2q, . . . , Lp∆dqq .

If only one position in input difference is active then all positions in output
difference are active (this is true if L is MDS matrix). Under the same conditions,
if one position has the property A, then all output positions will have this
property. The integral property 0 is preserved by L-transformation:

d
à

i“1

∆i “ 0,
d
à

i“1

Lp∆iq “ L

˜

d
à

i“1

∆i

¸

“ 0.
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We will use the so-called integral property [4, 5] of LSXLSX transformation.

Lemma 1. Let one position in the difference ∆ P
`

Fn28
˘d has integral property

A and all other positions are inactive (so-called δ-set). Then any difference
from LSXLSXp∆q has the integral property 0.

Proof. Adding a round key does not change the difference. Thus, we have
LSLSp∆q. After the first substitution layer, one position will have the prop-
erty A and all others will remain inactive. The first linear transformation will
make all bytes active. Each of them will have the property A. The second S
transformation will preserve A and consequently the property 0. Hence, after
the last linear transformation we have the property 0 in each position of the
difference.

Equivalent representation of the last two rounds

The presented attack uses an equivalent representation of the last two
rounds.

Let A,B P Fn28 be a plaintext and ciphertext correspondingly.
K1, . . . , Kr, Kr`1 are round keys, Ki P Fn28, i “ 1, 2, . . . , r ` 1.

The original cipher has the form

B “ XrKr`1sLSXrKrs . . .XrK1spAq “ Er`1 pAq .

Apply the inverse linear transformation to the known ciphertext

L´1
pBq “ L´1

pXrKr`1sLSXrKrs . . .XrK1spAqq ,

L´1
pBq “ L´1

pKr`1q ‘ SXrKrs . . .XrK1spAq.

We denote B 1

“ L´1 pBq, K 1

i “ L´1 pKiq, then the cipher has the form

B
1

“ XrK
1

r`1sSXrKrsLSXrKr´1s . . .XrK1spAq.

Similarly, for the penultimate round. Let’s consider the transformation

XrKrsL pAq “ Kr ‘ L pAq “ L
`

A‘ L´1
pKrq

˘

“ LXrK
1

rs pAq .

Therefore, the cipher transformation can be represented by the formula

B
1

“ XrK
1

r`1sSLXrK
1

rsSXrKr´1s . . .XrK1spAq.
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4 Related-key attack

Let’s represent 5-round Kuznyechik (3) in equivalent form

EK1,K2
pAq “ XrK

1

6sSLXrK
1

5sSXrK4sLSXrK3sLSXrK2sLSXrK1spAq,

pK3, K4q “ FrC2sFrC1s pK1, K2q ,

K4 “ K2 ‘ LSXrC1spK1q,

K3 “ K1 ‘ LSXrC2spK4q,

pK5, K6q “ FrC4sFrC3s pK3, K4q ,

K6 “ K4 ‘ LSXrC3spK3q, K
1

6 “ L´1
pK6q,

K5 “ K3 ‘ LSXrC4spK6q, K
1

5 “ L´1
pK5q.

The attack consists of the following steps:

1. Adversary chooses 28 collections of related keys, 28 keys in each collection.
One plaintext C1 (first constant in the key schedule) will be used.

2. For one of these collections, the special easy verifiable property (integral
distinguisher) is true.

3. The round keys K6, K5 are recovered by using integral and polytopic prop-
erties.

Let’s describe these steps in more detail. We denote

κ “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 0 . . . 0 1
0 0 . . . 0 2

. . . . . . . . . . . . . . .
0 0 . . . 0 255

looooooooooooomooooooooooooon

n“16

˛

‹

‹

‹

‹

‹

‹

‹

‚

the difference between keys K1. The set LSpκq contains 28 differences. The
collection of the related keys looks like

pK1, K2q and set pK1 ‘ κ, K2 ‘ κ
2
q , where κ2 P LSpκq.

It is easy to see that each collection contains the «main» key and a set of 255
related keys. Adversary does not know the keys, but it know all relations (κ
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and κ2 P LSpκq) between them. Adversary encrypts only one plaintext C1 and
gets 28 ciphertexts for each collection of keys. In total we have 1` 28 ¨

`

28 ´ 1
˘

different keys and different ciphertexts correspondingly. In the same collection
we refer to the difference between i-th round keys Ki as ∆Ki, for example
κ “ ∆K1 and κ2 “ ∆K2.

4.1 Integral property

Figure 1 shows the propagation of differences, which is true for only one
collection of keys (for only one κ2 P LSpκq). Active Sboxes have a gray back-
ground. Integral properties are indicated in red bold (A – all bytes are different,
0 – bitwise xor of all bytes is zero). More detailed pictures are presented in
Appendix B.

Figure 1: Related-key attack on 5-round Kuznyechik

Let’s see the key schedule. After the first LSpC1 ‘ K1q transformation we
have difference κ1 P LSpκq. This difference is the same for all collections of keys,
but only for one κ2 “ κ1 is true. If so, we have ∆K4 “ 0 and ∆K3 “ κ.
The difference κ has one active byte. In the difference κ2 P LSpκq, all bytes are
active and have an integral property A.
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Similarly,

∆K6 “ κ
3
P LSpκq

and

∆K5 P LSpκ
3
q ‘ κ “ tδ ‘ κ, δ P LSpκ3qu.

We use the equivalent representation of the last two rounds, therefore we con-
sider difference between the keys K 1

5 “ L´1pK5q instead K5, and K
1

6 “ L´1pK6q

instead K6. Thus we obtain that ∆K
1

6 belongs to Spκq (correspondingly
∆K

1

5 P SLSpκq ‘ L´1pκq).
All bytes of ∆K

1

5 are active and have an integral property 0 (see lemma 1).
The difference ∆K

1

6 has one active byte with the property A.
Now let’s consider the encryption functions. We use only one plaintext C1,

therefore the difference ∆P1 is equal to zero. Note that the first round of en-
cryption also has the form LSpC1‘K1q. Because of this, the difference between
the blocks is also equal to κ1.

If in the key schedule κ1 “ κ2 “ ∆K2 then the difference between the
blocks becomes zero and also ∆P3 “ 0.

The addition of the third round key K3 adds the non-zero difference κ. We
do not know the exact value of the difference ∆P4, but we know that ∆P4

belongs to the set LSpκq. Similarly, after the following substitution layer, we
have ∆P

1

5 P SLSpκq. All bytes of ∆P
1

5 have an integral property A and conse-
quently property 0. The second one is also true for ∆K

1

5. Therefore, their sum
∆P

1

5 ‘∆K
1

5 has an integral property 0. The linear transformation preserves
this one.

Obviously, we know the corresponding ciphertexts and the difference ∆B
between them. The difference ∆K

1

6 P Spκq has one active byte.
Let’s propagate the difference through S´1. For each of 15 Sboxes we have

28 possible differences and for 16’th Sbox we get 216 differences due to ∆K
1

6 P

Spκq.
Let’s check the integral property 0 for each obtained difference. If we cor-

rectly guessed κ2, then there must be at least one such difference for each Sbox.
Otherwise, if we do not guess it correctly, then there is at least one Sbox for
which there is no such difference. Generally speaking, it is possible that a «false»
collection of the related keys will satisfy this property. The probability of the
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existence of the such «false» collection is approximately 0.23 (for more details
see Appendix A). It does not lead to the failure of the attack. We will be able
to distinguish this case through the next step.

We also expect that for each of 15 Sboxes about 2 differences have integral
property 0. For the last Sbox about 28 differences have such property. Thus,
the set S´1p∆B ‘ Spκqq will contain about 215 ¨ 28 “ 223 possible differences,
each of them has the property 0.

4.2 Recovering of the round keys

Let’s consider the last linear transformation. We know that ∆P
1

5 P SLSpκq
and ∆K

1

5 P SLSpκq ‘ L´1pκq. The difference before the linear transformation
is the sum

∆P
1

5 ‘∆K
1

5 P pSLSpκq ‘ SLSpκq ‘ L´1pκqq “
 

δ1 ‘ δ2 ‘ L´1pκq, δ1 P SLSpκq, δ2 P SLSpκq
(

.

On the other hand we have the set of possible differences S´1p∆B ‘ Spκqq
after the linear transformation.

The intersection of sets

pSLSpκq ‘ SLSpκq ‘ L´1pκqq X L´1S´1p∆B ‘ Spκqq

must contain at least one element. We use only one byte position to determine
the inequality of elements from these two sets.

After checking the integral property in the set L´1S´1p∆B ‘ Spκqq there
will be about 223 possible differences.

Recall that the set Spκq contains 28 elements. The linear transformation
does not change the number of differences (LSpκq contains 28 elements). After
another substitution layer we have 216 possible differences at each Sbox. The
difference κ is known, therefore L´1pκq is also known. Consequently, the set
SLSpκq ‘ SLSpκq ‘ L´1pκq contains

216 ¨ p216 ´ 1q

2
` 1 ă 231

possible differences at each Sbox.
Select the position of one of the block bytes. Recall also that each dif-

ference contains 28 ´ 1 vectors and consequently difference in one position
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contains 28 ´ 1 bytes. We store in memory all possible differences from
SLSpκq ‘ SLSpκq ‘ L´1pκq for selected position. Let’s iterate through all dif-
ferences γ in L´1S´1p∆B ‘ Spκqq. If γ matches one of the stored differences
then we assume that γ “ ∆P

1

5‘∆K
1

5. We can expect that γ is the only such
element even if we compare on eight bytes of a difference rather than 28 ´ 1.
Note that if the collection of the related keys is «false» (κ2 ‰ κ1), the match
will probably not be found.

At this step we know ∆P
1

5 ‘∆K
1

5, Lp∆P
1

5 ‘∆K
1

5q, ∆P
1

6, ∆K
1

6, ∆B.
Block

Y : S´1p∆P
1

6q “ Lp∆P
1

5 ‘∆K
1

5q

can be easily found. Let B0 be first ciphertext, then K 1

6 “ B0 ‘ Y . The entire
set of related keys K 1

6 can also be obtained by adding with ∆K
1

6. Therefore, it
is possible to decipher all 28 ciphertexts through the last round.

We know that ∆P4 P LSpκq, ∆K
1

5 P Sp∆K
1

6q ‘ L´1pκq and also ∆P
1

5 ‘

∆K
1

5. Let’s iterate through possible τ P Sp∆K
1

6q ‘ L´1pκq and propagate
∆P

1

5‘∆K
1

5‘τ through S´1. If we guess τ “ ∆K
1

5, then S´1p∆P
1

5‘∆K
1

5‘

τ q “ S´1p∆P
1

5q P LSpκq. Otherwise, we expect that S´1p∆P 1

5 ‘∆K
1

5 ‘ τ q R

LSpκq. In the matching process, each Sbox can be viewed independently of
the others. After that we will know the differences ∆P4, ∆P

1

5, ∆K
1

5. The
ciphertexts after 5’th round are also known. Therefore, the keys K 1

5 can be
found in the same way as K 1

6. Due to the reverse key schedule, the master key
K “ K1||K2 can be easily obtained.

4.3 Complexity

As mentioned before, the attack requires 1` 28 ¨
`

28 ´ 1
˘

ă 216 related keys
and one chosen ciphertext.

The integral property for all 28 related key collections can be checked in
about 28 ¨ p15 ¨ 28 ` 216q « 224 operations.

The most time-consuming stage is the construction of the set SLSpκq ‘
SLSpκq ‘ L´1pκq. We construct this set for only one Sbox, and store only eight
bytes for each difference. It requires about 231 operations and 231 ¨8 “ 234 bytes
of memory. These constructed differences are stored in a hash table. The set
L´1S´1p∆B‘Spκqq contains much fewer elements. Checking for a single element
in a hash table requires constant time. Therefore, the complexity of constructing
the hash table will be the most important. The difficulty of recovering the keys
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K
1

5 is also small: 16 ¨ 28 ¨ 28 ` 28 « 220 operations.
The total complexity does not exceed 232 memory access operations and 230

memory (in sixteen-byte blocks). We also note that the attack is deterministic.
We modeled the attack with a non-optimized C++ implementation. The

average attack time is about 5 minutes on a common PC. The amount of used
memory did not exceed 17 GB.

5 Conclusion

In this paper we present the related-key attack on 5-round Kuznyehcik with
2-round key schedule. The attack has a practical complexity (232 operations,
230 memory, 216 related keys) and has been verified with the help of С++
implementation. The experiments confirmed the correctness of the attack.

Source codes can be found at https://gitlab.com/v.kir/
rk-5R-kuznyechik.

The main result was achieved by using the well-known integral property of
LSX-transformations. We were able to use this property both in the cipher itself
and in the key schedule.

We did not use any specific properties of the linear transformation and the
Sbox. We think that through the use of such properties it is possible to obtain
new results. Another possible way is the use of integral distinguishers for a
greater number of rounds.

The presented attack also shows a significant security margin of the
Kuznyechik’s key schedule.
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A Probability aspects and experimental verification

«True» and «false» collections of the related keys

We know that there is at least one «true» collection. What is the probability
that the integral property (section 4.1) will be correct for the «false» collection?

Assume that all ciphertexts are equally probable and independent of each
other. We propagate the difference of each Sbox thorough nonlinear layer. For
each of 15 Sboxes we’ll have 28 possible differences and for 16’th Sbox we get
216 differences. We also assume that the sum of the elements of any difference
is uniformly distributed. Hence, the probability of the property 0 is equal to
p “ 1

256 for each difference of any Sbox. Denote the probability of the opposite
event by q “ 1´ p “ 255

256 .
Thus, we have:
q28 “ 0.367... – there is no difference that has the property 0 for one Sbox;
1´ q28 “ 0.632... – there is at least one such difference;
p1 ´ q28q15 “ 0.001... – there is at least one such difference for each of the

15 Sboxes.
The probability that one collection of the related keys has the integral prop-

erty is

r “
´

1´ q28
¯15

¨

´

1´ q216
¯

“ 0.001...

We have 28 collections of keys and only one «true» collection. The probability
that «false» collections do not exist is

p1´ rq255
“ 0.765....
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The opposite probability is

1´ p1´ rq255
“ 0.234....

We performed N “ 5000 experiments. The number of cases where collections

exist is equal to 1179. The obtained value
1179

5000
“ 0.236 is close to theoretical.

Number of possible differences

Let we have «true» collection of the related keys. We estimate the number
of possible differences in the set L´1S´1p∆B ‘ Spκqq.

Each Sbox gives at least one possible difference. The probability of the prop-
erty 0 is equal to p “ 1

256 for each difference of any Sbox. We also have 28 possible
differences for each of 15 Sboxes and 216 for 16’th Sbox.

Thus, average number of elements in the set is equal to
ˆ

1`
1

256
¨ p28

´ 1q

˙15

¨

ˆ

1`
1

256
¨ p216

´ 1q

˙

« 223
! 231.

The average experimental value is 222.7. The maximum value among all N ex-
periments is 229.

Matching differences

The intersection of sets

pSLSpκq ‘ SLSpκq ‘ L´1pκqq X L´1S´1p∆B ‘ Spκqq

must contain at least one element. We use only one position to determine the
inequality of elements from these two sets.

One position of the first set contains no more than 231 differences. The
number of elements of the second set is approximately 223. We also assume that
the elements of these sets are random and equally probable.

Only the first 8 bytes (64 bits) of the difference are stored in memory. Then
the average number of «false» matches can be estimated as

231 ¨ 223

264
“ 2´10.

A «false» match can be easily detected by an additional check. In N “ 5000
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experiments, we got only 7 cases of it.

Eight-byte numbers were chosen for ease of implementation.

B Detailed pictures

Figure 2: The difference propagation through the key schedule
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Figure 3: The difference propagation through the cipher
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The Change in Linear and Differential
Characteristics of Substitution Multiplied by
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Abstract

It is shown that the linearity and differential uniformity of the substitution mul-
tiplied by transposition can be calculated with time complexities O

`

22n
˘

and O p2nq
respectively. Some heuristic algorithms of constructing s-boxes are optimized in this
paper.

Keywords: s-box, substitution, heuristic optimization, linearity, linear spectrum, linear
approximation table, differential uniformity, differential spectrum, difference distribution table.

1 Introduction

Constructing s-boxes with excellent cryptographic properties is one of the
important problems in modern cryptography. One approach to solve this prob-
lem is based on heuristic optimization of some given s-box. The heuristic opti-
mization methods include genetic algorithms (see [3, 9] ), hill climbing methods
(see [7, 8]), methods of gradient descent (see [6]), spectral-linear and spectral-
differential methods (see [4, 5]).

The main problem of using heuristic methods is the high level of their time
complexity. The δg-parameter and the pg-parameter of s-box g are the most
difficult to calculate. In this paper we introduce new techniques for calculating
linearity and differential uniformity of the substitution h P S pVnq such that
h “ px, yq g where x, y P Vn, g P S pVnq.

The rest of the paper is organized as follows. Section 2 gives the basic defini-
tions and notations. In section 3 we derive the main propositions and algorithms.
The cryptographic applications of the results are discussed in Section 4. Finally,
Section 5 presents our conclusions.
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2 Definitions and Notations

Let Vn p2q “ Vn be n-dimensional vector space over the field F2. Suppose
that V ˆn “ Vnzt0u. Let S pVnq be the symmetric group on set of 2n elements.
The cardinality of a set A is usually denoted |A|.

We shall use the following operations and notations:

– exclusive-OR (or XOR) is denoted ‘,

– logical AND is denoted ^,

– the scalar product of two elements x “ pxn´1, ..., x0q and y “ pyn´1, ..., y0q

of Fn2 is denoted ˝ and is equal to x ˝ y “ ‘n´1
i“0 xi ^ yi

Now, we give some basic definitions.

Definition 1. The linearity of s-box g is defined as the absolute value of the
bias:

δg “ max
α,βPV ˆn

δgα,β

where
δgα,β “ 21´n

¨ |tx P Vn |x ˝ α “ g pxq ˝ β u| .

The Linear Approximation Table (LAT) of s-box g is a 2nˆ 2n matrix T1 such
that T1 pα, βq “ δgα,β.

S-boxes with small value of δg-parameter offer better resistance against linear
attacks.

Definition 2. The differential uniformity of s-box g is defined as

pg “ max
α,βPV ˆn

pgα,β,

where
pgα,β “ 2´n ¨ |tx P Vn |g px‘ αq ‘ g pxq “ β u| .

The Difference Distribution Table (DDT) of s-box g is a 2nˆ2n matrix T2 such
that T2 pα, βq “ pgα,β.

S-boxes using in cryptographic primitives must have a low pg-parameter
value to provide high resistance to differential cryptanalysis.
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According to [4] we define the linear and the differential spectra of substi-
tution g.

For g P S pVnq and for elements p P Pn´1 and δ P Pn´2, where

Pj “

"

i

2j
ˇ

ˇi “ 0, 1, ..., 2j
*

, |Pj| “ 2j ` 1, j P tn´ 2, n´ 1u ;

we define the sets

D pg, pq “
!

pα, βq P V ˆn ˆ V
ˆ
n

ˇ

ˇ

ˇ
pgα,β “ p

)

,

L pg, δq “
!

pα, βq P V ˆn ˆ V
ˆ
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
δgα,β

ˇ

ˇ

ˇ
“ δ

)

.

Definition 3. The differential spectrum of s-box g is defined as

D pgq “ tpp, |D pg, pq|q |p P Pn´1u , |D pgq| “ 2n´1
` 1.

Definition 4. The linear spectrum of s-box g is defined as

L pgq “ tpδ, |L pg, δq|q |δ P Pn´2u , |L pgq| “ 2n´2
` 1.

3 Main results

This section deals with the change in linear and differential characteristics
of substitution multiplied by transposition. This issue has been studied in [10].
The authors showed that for h “ px, yq g such that g, h : Vn Ñ Vn we get:

δg ´ 22´n
ď δh ď δg ` 22´n,

pg ´ 22´n
ď ph ď pg ` 22´n.

In [7] the similar properties of boolean functions are used to optimize the hill
climbing methods.

In this section we describe two new algorithms for calculating linearity and
differential uniformity of substitution h P S pVnq such that h “ px, yq g. We
also formally prove the correctness of the new algorithms and study their time
complexity.
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3.1 Efficient computation of the elements in linear approximation
table

The first subsection deals with the relationship between elements of linear
approximation tables for the substitutions g, h P S pVnq such that h “ px, yq g.

Algorithm 1.
Input. Substitution g P S pVnq; the elements x, y P Vn; the LAT T1 pgq;

the linear spectrum D pgq.
Step 1. For each element i “ 0, ..., n´ 1 do the following items:

´ calculate elements α “ x‘ y and β “ g pxq ‘ g pyq;
´ if α ˝ i ą 0 then add i to the list I1;
´ if β ˝ i ą 0 then add i to the list I2.

Step 2. For each ordered pair pα, βq P I1 ˆ I2 do the following items:

´ calculate
ˇ

ˇ

ˇ
L
´

g,
ˇ

ˇ

ˇ
δgα,β

ˇ

ˇ

ˇ

¯
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
L
´

g,
ˇ

ˇ

ˇ
δgα,β

ˇ

ˇ

ˇ

¯
ˇ

ˇ

ˇ
´ 1;

´ calculate value δgα,β “ δgα,β ` p´1qα˝x‘β˝gpxq‘1
¨ 22´n;

´ calculate
ˇ

ˇ

ˇ
L
´

g,
ˇ

ˇ

ˇ
δgα,β

ˇ

ˇ

ˇ

¯ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
L
´

g,
ˇ

ˇ

ˇ
δgα,β

ˇ

ˇ

ˇ

¯ˇ

ˇ

ˇ
` 1.

Step 3. The algorithm stops after calculating h “ px, yq g and D phq “

D pgq.
Output. Substitution h P S pVnq such that h “ px, yq g; the linear spectrum

L phq.

The correctness of the algorithm 1 is presented in the first proposition.

Proposition 1. For substitutions g, h P S pVnq such that h “ px, yq g we have

δhα,β ´ δ
g
α,β “

"

0, if either px‘ yq ˝ α “ 0 or pg pxq ‘ g pyqq ˝ β “ 0

p´1qα˝x‘β˝gpxq‘1
¨ 22´n in the converse case

.

Proof. Consider the following sequence of equations

δhα,β ´ δ
g
α,β “ 2P tz ˝ α “ h pzq ˝ βu ´ 2P tz ˝ α “ g pzq ˝ βu “

“ p|tz |z ˝ α “ h pzq ˝ β u| ´ |tz |z ˝ α “ g pzq ˝ β u|q ¨ 21´n
“
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“

˜

ÿ

zPVn

p1´ z ˝ α ‘ h pzq ˝ βq ´
ÿ

zPVn

p1´ z ˝ α ‘ g pzq ˝ βq

¸

¨ 21´n
“

“
`

x ˝ α ‘ g pxq ˝ β ´ x ˝ α ‘ g pyq ˝ β `

` y ˝ α ‘ g pyq ˝ β ´ y ˝ α ‘ g pxq ˝ β
˘

¨ 21´n.

It is easily shown that if x ˝ α “ y ˝ α or g pxq ˝ β “ g pyq ˝ β then

δhα,β ´ δ
g
α,β “ 0.

Suppose that
"

x ˝ α ‰ y ˝ α
g pxq ˝ β ‰ g pyq ˝ β

ˆ"

y ˝ α “ px ˝ αq ‘ 1
g pyq ˝ β “ pg pxq ˝ βq ‘ 1

˙

.

Note that in this case we have
˜

x ˝ α ‘ g pxq ˝ β ´ x ˝ α ‘ g pxq ˝ β ‘ 1
looooooooooooooooooooooooomooooooooooooooooooooooooon

p´1q
x˝α‘gpxq˝β‘1

`

` x ˝ α ‘ g pxq ˝ β ´ x ˝ α ‘ g pxq ˝ β ‘ 1
looooooooooooooooooooooooomooooooooooooooooooooooooon

p´1q
x˝α‘gpxq˝β‘1

¸

¨ 21´n
“

“ p´1qx˝α‘gpxq˝β‘1
¨ 22´n.

This completes the proof.

Let us denote by t1 the complexity of an algorithm 1.

Proposition 2. As nÑ 8 we obviously have

t1 “ O
`

22n
˘

.

Proof. We see that |I1| “ |I2| “ 2n´1. The complexity of algorithm is the dot
product of the following values.

– the number of the iterations of step 2 is |I1| ¨ |I2| “ 22n´2;

– constant number of operations on the step 2 of the algorithm.

Remark 1. The algorithm 1 is nearly n times faster than the classical algorithm
of calculating the linearity.
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Example 1. Consider the following substitutions g, h P S pV3q such that h “
p1, 2q g:

g “

ˆ

0 1 2 3 4 5 6 7
2 4 1 0 3 5 6 7

˙

, h “

ˆ

0 1 2 3 4 5 6 7
2 1 4 0 3 5 6 7

˙

.

The results obtained by algorithm 1 are presented in Table 1 (all changing
elements of the matrix are in bold).

In particular, using preposition 1, we obtain

1. Since p1‘ 2q ˝ 3 “ 0 we see that for any β P V3 it follows that

δh3,β ´ δ
g
3,β “ 0;

2. δh1,1 ´ δ
g
1,1 “ p´1qp1˝1q‘p1˝4q‘1

¨ 22´3 “ 1{2;

3. δh2,3 ´ δ
g
2,3 “ p´1qp2˝1q‘p3˝4q‘1

¨ 22´3 “ ´1{2.

Table 1.
Substitution g Substitution h
2 4 1 0 3 5 6 7 2 1 4 0 3 5 6 7

LAT of g LAT of h
1 0 0 0 0 0 0 0

0 0 ´1
2 ´1

2
1
2 ´1

2 0 0

0 0 0 0 0 0 ´1 0

0 0 ´1
2

1
2

1
2

1
2 0 0

0 1
2

1
2 0 1

2 0 0 ´1
2

0 ´1
2 0 ´1

2 0 1
2 0 ´1

2

0 1
2 ´1

2 0 ´1
2 0 0 ´1

2

0 1
2 0 ´1

2 0 1
2 0 1

2

1 0 0 0 0 0 0 0

0 1
2 ´1

2 0 0 ´1
2 ´1

2 0

0 ´1
2 0 ´1

2
1
2 0 ´1

2 0

0 0 ´1
2

1
2

1
2

1
2 0 0

0 1
2

1
2 0 1

2 0 0 ´1
2

0 0 0 0 ´1
2

1
2 ´1

2 ´1
2

0 0 ´1
2 ´1

2 0 0 1
2 ´1

2

0 1
2 0 ´1

2 0 1
2 0 1

2

δ 0 1
2 1 δ 0 1

2 1

|L pg, δq| 24 24 1 |L pg, δq| 21 28 0

3.2 Efficient computation of the elements in difference distribution
table

The second subsection deals with the relationship between elements of differ-
ence distribution tables for the substitutions g, h P S pVnq such that h “ px, yq g.
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Algorithm 2.
Input. Substitution g P S pVnq; the elements x, y P Vn; the DDT T2 pgq;

the differential spectrum D pgq.
Step 1. For each element α “ 1, ..., 2n ´ 1 such that α ‰ x ‘ y do the

following items:
calculate elements
β0 “ g pxq ‘ g px‘ αq and β2 “ g pyq ‘ g py ‘ αq;
Let us consider 2 cases.
Case 1: assume that β0 “ β2; then
´ calculate element β1 “ g pyq ‘ g px‘ αq;
´ for each element i “ 0, 1 calculate values:

ˇ

ˇ

ˇ
D
´

g, pgα,βi

¯ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
D
´

g, pgα,βi

¯ˇ

ˇ

ˇ
´ 1,

ˇ

ˇ

ˇ
D
´

g, pgα,βi ` 4 ¨ p´1qi`1
¯ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
D
´

g, pgα,βi ` 4 ¨ p´1qi`1
¯ˇ

ˇ

ˇ
`1.

Case 2: suppose that β0 ‰ β2; then
´ calculate elements

β1 “ g pyq ‘ g px‘ αq è β3 “ g pxq ‘ g py ‘ αq;
´ for each element i “ 0, ..., 3 calculate values:

ˇ

ˇ

ˇ
D
´

g, pgα,βi

¯
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
D
´

g, pgα,βi

¯
ˇ

ˇ

ˇ
´ 1,

ˇ

ˇ

ˇ
D
´

g, pgα,βi ` 2 ¨ p´1qi`1
¯
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
D
´

g, pgα,βi ` 2 ¨ p´1qi`1
¯
ˇ

ˇ

ˇ
`1.

Step 2. The algorithm stops after calculating h “ px, yq g and D phq “
D pgq.

Output. Substitution h P S pVnq such that h “ px, yq g; the differential
spectrum D phq.

Let us denote the indicator function

Iβ pxq “

#

1, if β “ x

0, if β ‰ x
,where β, x P Vn.

The correctness of the algorithm 2 is shown in the following proposition.
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Proposition 3. For substitutions g, h P S pVnq such that h “ px, yq g we have

phα,β ´ p
g
α,β “

"

0, if α “ x‘ y
pIβ px1q ` Iβ px2q ´ Iβ px3q ´ Iβ px4qq ¨ 2

1´n, otherwise ,

where x1 “ g px‘ αq ‘ g pyq, x2 “ g py ‘ αq ‘ g pxq, x3 “ g px‘ αq ‘ g pxq,

x4 “ g py ‘ αq ‘ g pyq .

Proof. Let us consider the following transformation sequence

phα,β ´ p
g
α,β “ P th pz ‘ αq ‘ h pzq “ βu ´ P tg pz ‘ αq ‘ g pzq “ βu “

“ p|tz |h pz ‘ αq ‘ h pzq “ β u| ´ |tz |g pz ‘ αq ‘ g pzq “ β u|q ¨ 2´n “

“

˜

ÿ

zPVn

Iβ ph pz ‘ αq ‘ h pzqq ´
ÿ

zPVn

Iβ pg pz ‘ αq ‘ g pzqq

¸

¨ 2´n “

“ 21´n
¨

ÿ

zPtx,yu

pIβ ph pz ‘ αq ‘ h pzqq ´ Iβ pg pz ‘ αq ‘ g pzqqq

It can easily be checked that if α “ x‘ y then phα,β ´ p
g
α,β “ 0.

Assume that α ‰ x‘ y, then we get
´

Iβ pg px‘ αq ‘ g pyqq ` Iβ pg py ‘ αq ‘ g pxqq ´

´ Iβ pg px‘ αq ‘ g pxqq ´ Iβ pg py ‘ αq ‘ g pyqq
¯

¨ 21´n
“

“
`

Iβ px1q ` Iβ px2q ´ Iβ px3q ´ Iβ px4q
˘

¨ 21´n.

This concludes the proof.

Let us denote by t2 the complexity of an algorithm 2.

Proposition 4. As nÑ 8 we obviously have

t2 “ O p2nq .

Proof. The complexity of algorithm is the dot product of the following values:

1. the number of the iterations of step 1 is 2n ´ 1;

2. constant number of operations on the steps of the algorithm.
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Remark 2. The algorithm 2 is nearly 2n times faster than the classical algo-
rithm of computing the differential uniformity.

Example 2. Consider the following substitutions g, h P S pV3q such that h “
p0, 1q g

g “

ˆ

0 1 2 3 4 5 6 7
5 6 1 7 2 4 3 0

˙

, h “

ˆ

0 1 2 3 4 5 6 7
6 5 1 7 2 4 3 0

˙

.

The results obtained by algorithm 2 are presented in Table 2 (all changing
elements of the matrix are in bold).

In particular taking into account preposition 3 we can conclude

1. Since α “ p0‘ 1q “ 1 we see that for any β P V3 we obtain

ph1,β ´ p
g
1,β “ 0;

2. ph4,4 ´ p
g
4,4 “ pI4 p4q ` I4 p1q ´ I4 p7q ´ I4 p2qq ¨ 2

´2 “ 1{4;

3. ph7,5 ´ p
g
7,5 “ pI5 p6q ` I5 p6q ´ I5 p5q ´ I5 p5qq ¨ 2

´2 “ ´2{4.

Table 2.
Substitution g Substitution h
5 6 1 7 2 4 3 0 6 5 1 7 2 4 3 0

DDT of g DDT of h
1 0 0 0 0 0 0 0

0 0 0 2
4 0 0 2

4 0

0 2
4 0 0 2

4 0 0 0

0 0 2
4 0 0 0 0 2

4

0 0 2
4 0 0 0 0 2

4

0 2
4 0 0 2

4 0 0 0

0 0 0 2
4 0 0 2

4 0

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

0 0 0 2
4 0 0 2

4 0

0 1
4

1
4 0 1

4 0 0 1
4

0 1
4

1
4 0 1

4 0 0 1
4

0 1
4

1
4 0 1

4 0 0 1
4

0 1
4

1
4 0 1

4 0 0 1
4

0 0 0 2
4 0 2

4 0 0

0 0 0 0 0 2
4

2
4 0

p 0 1
4

2
4

3
4 1 p 0 1

4
2
4

3
4 1

|D pg, pq| 36 0 12 0 1 |D pg, pq| 25 16 6 0 0
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4 Cryptographic applications

The results of this paper can be applied to optimize some heuristic methods
of constructing s-boxes. It is well-known that the most heuristic methods are
based on swap operations (for example, see [1], [2], [3], [4], [5], [6], [9]). We can
optimize some of this methods using algorithms of this paper. Let’s show this
for the spectral-linear and spectral-differential methods of generating s-boxes
(see [4], [5]).

Let tsl be the computational complexity of algorithm 2 described in [4].

Proposition 5. As nÑ 8 we have the following

tsl “ O
`

27n
˘

.

Proof. In the paper [4], it is proved that

tsl “ O
`

n ¨ 27n
˘

.

The complexity of algorithm is the product of the following values:

1. the complexity of step 2 is c1 ¨ 2
4n ¨ n, c1 “ const;

2. the maximum number of iterations of the step 2 is c2 ¨ 2
3n, c2 “ const.

Using algorithm 1 of this paper we obtain the following complexity bounds
of step 2 c1 ¨ 2

4n. This completes the proof of proposition.

The reader will easily prove the following proposition.
Let tsd be the computational complexity of algorithm 1 described in [4].

Proposition 6. As nÑ 8 we obviously have

tsd “ O
`

n ¨ 26n
˘

.

Suppose tnew is the average execution time of the modified algorithm, told
is the average execution time of its original version. For n (n “ 5, ..., 8) table
3 includes the value told

tnew
of spectral-linear and spectral-differential methods. In

particular from table 1 we obtain the following:

1. if n “ 7 then modified algorithm is nearly 4 times faster than its original
version (see Algorithm 2 in[4]);
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2. if n “ 8 then modified algorithm is nearly 28 times faster than the old one
(see Algorithm 1 in [4]).

Table 3.
n 5 6 7 8

Spectral-linear method (see Algorithm 2 in[4]) 2 3 4 5
Spectral-differential method (see Algorithm 1 in [4]) 5 8 16 28

5 Conclusions

The results of our paper can be summarized as follows.
The δh-parameter (the linear spectrum L phq, the LAT T1 phq) of an s-box h P

S pVnq such that h “ px, yq g can be computed with time complexity O
`

22n
˘

.
This is effected by using the algorithm 1 which described in this paper.

The ph-parameter (the differential spectrum D phq, the DDT T2 phq) of an
s-box h P S pVnq such that h “ px, yq g can be calculated with time complexity
O p2nq. This is effected by using the algorithm 2 which described in this paper.

We optimized some heuristic methods of generating s-boxes. The optimized
methods can be applied for generating of big-size s-boxes.
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Abstract

Theorems on the exact values of linear and differential characteristics are proved
based on the separation of the cipher functional scheme into nonlinear part and linear
medium. The example of universal functional scheme demonstrates a significant range
of possible errors using the current way to estimate the characteristics of probabilistic
relations. It is stressed the difference in obtaining complexity estimates in linear and
differential cryptanalysis in comparison with some other types of cryptanalytic tech-
niques and the importance of proper way to implement experiments in order to verify
the estimation values of the relations characteristics to their true values. The point
of view of finding relations under the condition of a fixed cipher key is insisted. The
duality of the linear and differential cryptanalysis based on the concept of the linear
medium is exposed and formulated mathematically strictly. The degrees of diffusion in
linear medium are defined which maximization is one of the basic principles of ciphers’
design. By that, the qualitative property of high diffusion of the cipher formulated by
K. Shannon is formalized.

Keywords: linear cryptanalysis, differential cryptanalysis, linear medium, block ciphers.

1 Introduction

The point of view on linear and differential cryptanalysis presented here
was formed independently of their numerous representations in cryptographic
literature. These methods should be called local linear and local differential
cryptanalysis more correctly.

This paper is devoted to a technique for constructing a probabilistic linear
and differential relations of functions F : VN Ñ VM defined by a functional
schemes. Here VN “ GF p2qN , VM “ GF p2qM are arithmetic vector spaces over
the field GF p2q.

214



Let V ˚N denotes the set of all Boolean column vectors of length N . Suppose
a is a random vector with the uniform probabilistic distribution on VN . The
non-strict equation aL1 » bL2, a P VN , b “ F paq P VM , is called a probabilistic
linear relation defined by column vectors L1 P V ˚N , L

2 P V ˚M if the measure of
its strictness δL1,L2 “ δFL1,L2 “ 2PtaL1 “ bL2u ´ 1 is defined. The value δL1,L2 is
called a linear characteristic of a probabilistic linear relation.

LetD1 P VN ,D2 P VM are any fixed vectors, ap1q, ap2q P VN , bp1q, bp2q P VM are
any vectors such that bp1q “ F pap1qq, bp2q “ F pap2qq. A non-strict implication "if
ap1q`ap2q “ D1, then bp1q`bp2q “ D2” is called a probabilistic differential relation
and denoted by pD1, D2q. A measure of strictness of this implication pD1,D2 “
pFD1,D2 “ PtF pa `D1q ` F paq “ D2u is called a differential characteristic of a
differential relation.

Probabilistic linear and differential relations are used in attacks on crypto-
graphic keys of the ciphers usually defined by functional schemes. In the next
section we‘ll give some definitions related to functional schemes.

2 The linear medium of a functional scheme

The function F : VN Ñ VM , VN Q a ÞÑ b “ F paq P VM , defined by any
cipher with any fixed key is called a cipher transformation. It is specified using
the functional scheme F , i.e. the sequence of linear and nonlinear mappings.
This sequence may be considered as the computer program without cycles.

Let the nonlinear mappings fi : Vni Ñ Vmi
, xi ÞÑ yi “ fipxiq, i “ 1, ... , k,

be performed in this program by definite order. By xi P Vni we denote the
argument of the function fi. This argument is expressed using a P VN as the
result of applying some previous operations. The linear operations are used
between nonlinear ones. Any linear operation may be expressed using additions
modulo 2 and reproduction nodes with several outputs x ÞÑ px, ... , xq.

We won‘t consider linear operations of the cipher separately. It suffices to
say that for any Boolean miˆnj matrices cij, i “ 0, 1, ... , k, j “ 1, ... , k, k` 1,
m0 “ N , nk`1 “ M , we can write xj “ ac0j `

řj´1
i“1 yicij, j “ 1, ... , k, b “

ac0,k`1 `
řk
i“1 yici,k`1. Let cij “ 0 if i ě j. Then it‘s possible to construct a

matrix C of size
´

N `
řk
i“1mi

¯

ˆ

´

řk
i“1 ni `M

¯

with blocks cij such that

pa, y1, ... , ykqC “ px1, ... , xk, bq. (1)
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The matrix C is said to be a matrix of linear medium of the functional
scheme F . It integrates all linear operations of the cipher transformation. The
linear medium is denoted by the same letter C and is also a functional scheme. It
is obtained from the functional scheme F by deletion of all functional elements
fi, i “ 1, ... , k. As a result all ni Boolean inputs of any functional element fi
becomes the outputs of the linear medium C and all mi Boolean outputs of
this element becomes the inputs of the linear medium C. The linear medium C
determines a linear mapping C : VN`

řk
i“1mi

Ñ Vřk
i“1 ni`M

in accordance with
(1).

Thus the functional scheme F is represented by the linear medium C in
which the nonlinear elements fi : Vni Ñ Vmi

, i “ 1, ... , k, are embedded. As
a result we are able to study separately properties of the linear medium C of
the cipher transformation F and properties of its nonlinear part consisting of
separate functions fi, i “ 1, ... , k.

The representation of the cipher transformation by a functional scheme is
ambiguous. The cryptanalyst himself chooses a certain functional scheme deter-
mining the cipher transformation F . If he chooses local elements fi, i “ 1, ... , k,
too large, then the analysis of each element will be difficult, but this will reduce
their number and simplify the linear medium. On the other hand, if he chooses
elements fi too small up to Sheffer functions, it will increase their number and
will complicate the linear medium.

3 Chains of conformal local linear relations

The main aim of linear cryptanalysis is to construct a pair of column vectors
L1 P V ˚N , L

2 P V ˚Mzt0u such that absolute value of linear characteristic δL1,L2 “
δFL1,L2 “ 2PtaL1 “ bL2u ´ 1 of linear relation aL1 » bL2 is as high as possible.
Here b “ F paq and the vector a P VN has the uniform probabilistic distribution
on VN .

The probabilistic linear relation aL1 » bL2 or, what is the same thing,
aL1 ` bL2 » 0 is obtained by formal addition modulo 2 of local probabilistic
linear relations xil1i ` yil

2
i » 0, l1i P Vni, l2i P Vmi

, yi “ fipxiq, i “ 1, ... , k,
characterized by linear characteristics δi “ δfil1i,l2i

“ 2Ptxil
1
i “ yil

2
i u ´ 1, where

each vector xi has the uniform probabilistic distribution on Vni.
The set L “ ppl1i, l2i q, i “ 1, ... , kq should be conformal in the sense that for

some L1 P V ˚N , L
2 P V ˚M we have the equality

řk
i“1pxil

1
i ` yil

2
i q “ aL1 ` bL2, or

216



the following chain of equalities

0 “
k
ÿ

i“1

pxil
1
i ` yil

2
i q ` aL

1
` bL2 “ xl1 ` yl2 ` aL1 ` bL2 “ pa, yq

ˆ

L1

l2

˙

`

`px, bq

ˆ

l1

L2

˙

“ pa, yq

ˆ

L1

l2

˙

` pa, yqC

ˆ

l1

L2

˙

“ pa, yq

„ˆ

L1

l2

˙

` C

ˆ

l1

L2

˙

,

with respect to variables xi, yi, i “ 1, ... , k (as if under independent a, y). This
variables are related with vectors a and b only by linear relation (1) excluding
equations yi “ fipxiq. In the equalities above x “ px1, ... , xkq, y “ py1, ... , ykq
and l1 P V ˚řk

i“1 ni
is a concatenation of vectors l1i, similarly l2 P V ˚řk

i“1mi
is a

concatenation of vectors l2i , i “ 1, ... , k. Thus the set L “ ppl1i, l2i q, i “ 1, ... , kq
is conformal iff

C

ˆ

l1

L2

˙

“

ˆ

L1

l2

˙

, (2)

for some L1 “ L1L P V
˚
N and L2 “ L2L P V

˚
M .

Let us consider a product δ̃ “ δ1 ¨ ... ¨ δk as a rough approximation (approx-
imate value) for the linear characteristic δL1,L2. This is motivated by the next
reasoning.

Assume that if the random input a P VN is uniformly distributed then
random variables xi P Vni for all i “ 1, ... , k, are uniformly distributed. Suppose
that the Boolean random variables ηi “ xil

1
i ` yil

2
i , i “ 1, ... , k are statistically

independent. Then δL1,L2 “ δ̃.
Let WpL1, L2q be the set of all solutions of the system (2) with respect

to L “ ppl 1i, l
2
i q, i “ 1, ... , kq given L1 P V ˚N , L

2 P V ˚M (the vectors L1, L2

are called boundary conditions). Let W “
Ť

L1PV ˚N ,L
2PV ˚M

WpL1, L2q and Wp0q “

tL P W| l2i “ 0 ñ l1i “ 0, i “ 1, ... , ku. If L P WzWp0q, then δ̃L “ 0, where
δ̃L “

śk
i“1 δ

fi
l1i,l
2
i
. To construct the required linear relation we should find a set

L PWp0q for which the product |δ̃L| is as high as possible. The factors equal to
one are preferable in the product δ̃L. This factors can appear if l2i “ 0. Suppose
L PWp0q. Let θL “ |ti P t1, ... , ku| l2i ‰ 0u| be the number of factors in product
δ̃L possibly not equal to one. To maximize |δ̃L| sometimes it is necessary to find
a number θC “ minLPWp0qzt0uθL called a degree of diffusion of the linear medium
C with respect to linear cryptanalysis. The sets L P Wp0q are called a chains
of conformal local linear relations if only nontrivial (when l 2i ‰ 0) local linear
relations xil1i » yil

2
i , i “ 1, ... , k, are considered.
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The technique described in this section can be applied for searching mul-
tidimensional (s-dimentional) linear relations [1]. In this case it is necessary
to consider matrices with s columns instead of column vectors L1, L2, l1i, l2i ,
i “ 1, ... , k.

4 Chains of conformal local differential relations

If we consider equations (1) for two inputs ap1q, ap2q P VN of the functional
scheme and subtract one from the other, we will get

pD1, d 21, ... , d
2
kqC “ pd

1
1, ... , d

1
k, D

2
q. (3)

where D1 “ ap1q ` ap2q, D2 “ bp1q ` bp2q, d2i “ y
p1q
i ` y

p2q
i , d1i “ x

p1q
i ` x

p2q
i ,

i “ 1, ... , k. Here bp1q “ F pap1qq, bp2q “ F pap2qq and xp1qi , x
p2q
i are the function

fi argument values, if ap1q and ap2q are the inputs of the functional scheme,
y
p1q
i “ fipx

p1q
i q, y

p2q
i “ fipx

p2q
i q, i “ 1, ... , k.

The main aim of differential cryptanalysis is to construct a pair of vectors
D1 P VNzt0u,D2 P VM such that the differential characteristic pD1,D2 “ pFD1,D2 “

PtF pa ` D1q ` F paq “ D2u of non-strict implication ap1q ` ap2q “ D1 ñ

bp1q ` bp2q “ D2 is as high as possible.
Let D1 P VN , D2 P VM , d 1i P Vni, d2i P Vmi

, i “ 1, ... , k, is an arbitrary
set of vectors, satisfying the conformity condition (3). Since C is a block upper
triangular matrix, then from implications xp1qi ` x

p2q
i “ d1i ñ y

p1q
i ` y

p2q
i “ d2i

for all i “ 1, ... , k, it follows that ap1q ` ap2q “ D1 ñ bp1q ` bp2q “ D2.
Let us have the set of local differences D “ ppd 1i, d

2
i q, i “ 1, ... , kq, d 1i P Vni,

d 2i P Vmi
satisfying the condition (3) for some boundary vectors D1 “ D1

D P VN ,
D2 “ D2

D P VM . Consider a product p̃D “
śk

i“1 p
fi
d1i,d

2
i
of differential charac-

teristics pfid1i,d2i “ P
!

fipx
p1q
i ` d1iq ` fipx

p1q
i q “ d2i

)

of local differential relations

pd1i, d
2
i q, where each vector xp1qi has the uniform probabilistic distribution on Vni.

The product p̃D is a rough approximation for the differential characteristic
pFD1,D2 of the differential relation pD1, D2q P VN ˆ VM . This is motivated by
the next reasoning. Let ap2q “ ap1q`D1. Suppose the uniformity of distributions
of random variables xp1qi P Vni, i “ 1, ... , k, follows from the uniformity of
distribution of the random input ap1q P VN . Also suppose that the events yp1qi `
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y
p2q
i “ d 2i , i “ 1, ... , k, are independent. Then, using (3), we have

pD1,D2 ě Pty
p1q
i ` y

p2q
i “ d2i , i “ 1, ... , ku “

“

k
ź

i“1

Ptfipx
p1q
i q ` fipx

p2q
i q “ d 2i u “

“

k
ź

i“1

P
!

fi

´

x
p1q
i

¯

` fi

´

x
p1q
i ` d 1i

¯

“ d 2i

)

“ p̃D.

Let W pD1, D2q be the set of all solutions of the system (3) with respect
to D “ ppd 1i, d

2
i q, i “ 1, ... , kq given boundary differences D1 P VN , D2 P VM .

Let W “
Ť

D1PVN ,D2PVM
W pD1, D2q and W p0q “ tD P W | d 1i “ 0 ñ d2i “

0, i “ 1, ... , ku. If D P W zW p0q, then p̃D “ 0. To construct the required
differential relation we should find a set D P W p0q for which the product p̃D “
śk

i“1 p
fi
d1i,d

2
i
is as high as possible. The factors equal to one are preferable in

this product. This factors can appear if d1i “ 0. For any D P W p0q let θ1D “
|ti P t1, ... , ku| d1i ‰ 0u| be the number of factors in product p̃D possibly not
equal to one. To maximize p̃D sometimes it is necessary to find a number θ1C “
minDPWp0qzt0uθ

1
D called a degree of diffusion of the linear medium C with respect

to differential cryptanalysis. The sets D P W p0q are called a chains of conformal
local differential relations if only nontrivial (d 1i ‰ 0) local differential relations
among pd1i, d2i q, i “ 1, ... , k, are considered.

5 Theorems about exact values of linear and differential
characteristics

Theorem 1. If L1 P V ˚N , L
2 P V ˚M , then δL1,L2 “

ř

LPWpL1,L2q δ̃L.

Theorem 2. If D1 P VN , D2 P VM , then

pD1,D2 “

“
ÿ

DPW pD1,D2q

p̃D `
1

2M

ÿ

pL1,L2qPV ˚NˆV
˚
M

p´1qD
1L1`D2L2

ÿ

L1,L2PWpL
1,L2q:

L1‰L2

δ̃L1
δ̃L2
.

The theorem 1 have been proved in special cases (see [12],[14]). The theorem
2 follows from the theorem 1 and the fact from [12] about the links between
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linear and differential characteristics of Boolean mappings. In the light of this
theorems, the search of linear and differential relations (see sections 3 and 4)
is performed by maximizing the absolute values of individual summands |δ̃L|
and p̃D in formulas for exact values δL1,L2 and pD1,D2. But this maximizations
are carried out for all L P Wp0qzt0u and for all D P W p0qzt0u. This fact is an
additional motivation for choice δ̃L and p̃D as rough approximations for δL1,L2
and pD1,D2.

Also due to theorems 1 and 2 we can see the disadvantages of the technique
of linear and differential cryptanalysis described above. Here are the main dis-
advantages:

1. We are searching for relations that we can find, not the best ones.
2. General results about the exactness of the approximations for linear and

differential characteristics are not available.
3. If we focus on problems of finding δ̃ “ maxLPWp0qzt0u|δ̃L| and p̃ “

maxDPW p0qzt0up̃D, then we have to leave the domains containing the values
δ “ maxL1PV ˚N ,L2PV ˚Mzt0u|δL1,L2| and p “ maxD1PVNzt0u,D2PVMpD1,D2.

Let’s explain the last. The problems of finding δ̃ and p̃ are related to min-
imization of characteristics θL and θ1D. If we decrease θL and θ1D, then the car-
dinalities |WpL1, L2q|, |W pD1, D2q| (see theorems 1 and 2) will reduce and the
values |δL1L,L2L| and pD1D,D2D will probably decrease.

We have to put up with these disadvantages because the problems of max-
imazing the values |δL1,L2| and pD1,D2 is much more difficult then the problems
of maximazing the values |δ̃L| and p̃D as it can be seen from theorems 1 and 2.

Of course, the assumptions about the uniformity of random variables xi P
Vni, i “ 1, ... , k, and on the independence of events in motivations formulated
above are not satisfied as a rule. Nevertheless, SOMETIMES we have δ̃ « δ,
p̃ « p, for example, 3´1 ď δ̃{|δ| ď 3, 10´1 ď p̃{p ď 10. We can verify this with
the help of empirical estimations δ˚, p˚ and appropriate confidence intervals.
If we exceed characteristic threshold of measurement accuracy, then this can
lead to the study of phenomena not related to the essence of the measured
value. The characteristic SOMETIMES refers to a sets of all possible cipher
transformations and chains of conformal local probabilistic relations obtained
by the cryptanalyst.

If the values |δ̃L|, p̃D are small, then the verification of the approximate
equalities δ̃L « δL1L,L2L, p̃D « pD1D,D2D is complicated due to limited computing
resources. In this case we have to consider a close analogues of the investigated
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cipher. According to the authors, the best analogues are those ciphers that have
the same linear medium, even with the same number of iterations. In this case
the equalities in theorems 1 and 2 have the same form. A verification must be
carried out as many situations as possible. For this purpose for the fixed ni and
mi the functional elements f̃i : Vni Ñ Vmi

, i “ 1, ... , k, should be varied so as to
increase |δ̃L|, p̃D. And for any i P t1, ... , ku even the inequalities

ˇ

ˇ

ˇ
δf̃il1i,l2i

ˇ

ˇ

ˇ
ă

ˇ

ˇ

ˇ
δfil1i,l2i

ˇ

ˇ

ˇ
,

pf̃id1i,d2i
ă pfid1i,d2i

can be achieved. The functional elements fi, i P t1, ... , ku, for
which l1i “ 0, l2i “ 0 or d1i “ 0, d2i “ 0 may also vary.

The characteristics δ̃, p̃ have advantages and disadvantages, but they are in-
dependent characteristics of the cipher more important then δ, p. And it doesn’t
even matter that they are close to or far from δ, p. Usually, the characteristics
δ, p are in the imagination of cryptanalyst. They cannot be evaluated for the
real ciphers in contrast to δ̃, p̃.

A large number of indirect data points to the proximity of δ2 and p. For
this reason the linear cryptanalysis is preferable to the differential cryptanalysis
(in some cases). For example, we need about 1{δ2 known plaintexts to attack
the cipher with linear cryptanalysis and about 1{p chosen plaintexts or chosen
ciphertexts to attack it with differential cryptanalysis, more precisely, about 1{p
pairs pap1q, bp1qq, pap2q, bp2qq such that ap1q ` ap2q “ D1 or bp1q ` bp2q “ D2.

6 The duality of differential and linear cryptanalysis

From the comparison of sections 3 and 4 it follows that the problems of
finding linear and differential relations are identical. It is not accidental [2]. The
equality (2) follows from

´

l
1T

1 , ... , l
1T

k , L
2T
¯

CT “

´

L
1T

, l
2T

1 , ... , l
2T

k

¯

by transposi-

tion or from equality
´

L
2T

, l
1T

k , ... , l
1T

1

¯

C˚ “
´

l
2T

k , ... , l
2T

1 , L
1T
¯

, where the matrix
C˚ “ }c˚ij}, i “ 0, 1, ... , k, j “ 1, ... , k, k ` 1, is obtained from the matrix CT

by centrally symmetric permutation of blocks: c˚ij “ cTk`1´j,k`1´i.
Thus, the problem of finding probabilistic differential relations of the cipher

F defined by the functional scheme F with the linear medium C and local
nonlinear functions fi : Vni Ñ Vmi

, i “ 1, ... , k, is equivalent to the problem
of finding probabilistic linear relations for a different (for a dual) functional
scheme F˚ with the linear medium C˚ and local nonlinear functions such that
δ
f˚i
l1, l2 “ p

fk`1´i

l2T , l1T
, l1 P V ˚mk`1´i

, l2 P V ˚nk`1´i
, i “ 1, ... , k.
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Similarly, the problem of finding probabilistic linear relations of the cipher
F is equivalent to the problem of finding probabilistic differential relations for
a functional scheme F˚, for which pf

˚
i

d1, d2 “ δ
fk`1´i

d2T , d1T
, d 1 P Vmk`1´i

, d 2 P Vnk`1´i
,

i “ 1, ... , k.

The functions f ˚i : Vmi
Ñ Vni, i “ 1, ... , k, with such character-

istics may not exist, but it does not matter. The mappings fi are not
used to find probabilistic linear and differential relations. Only the matrices
›

›

›
|δfil1,l2|

›

›

›

l1PV ˚ni ,l
2PV ˚mi

and
›

›

›
pfid1,d2

›

›

›

d1PVni ,d
2PVmi

are needed for this.

7 Universal functional scheme

Consider two functional schemes fε, ε P GF p2q, with parameters N “ 2,
M “ 1, k “ 2, defined by equations y1 “ x0x1 ` px0 ` εqpx1 ` 1 ` εq “
p1` εqx0` εx1. For functional elements px0` εqpx1` 1` εq the absolute values
of linear and differential characteristics are equal for all relations and are not
depend on ε P GF p2q.

A universal functional scheme F for functions VN Ñ VM , pa1, ... , aNq ÞÑ
pb1, ... , bMq, includes M2N schemes fε, 2N schemes for each bi, i “ 1, ... ,M .
For any scheme fε we put x0 “ a1 ` a1 “ 0, and denote by x1 any one of
2N conjunction of Boolean variables a1, ... , aN . Any bi is a sum modulo 2 of
outputs of 2N schemes fε. We may obtain any function VN Ñ VM by selecting
the value ε for each of M2N schemes. Each function corresponds to its own
scheme. Each of the 2M2N functional schemes has the same linear medium.
The absolute values of linear and differential characteristics are equal for the
corresponing functional elements. If we use this functional schemes and follow
the recommendations from sections 3 and 4, then for all functions VN Ñ VM
we obtain the same "best" probabilistic linear relation and the same "best"
differential relation. This is an extreme example of the first disadvantage from
section 5. The universal functional scheme allows us to obtain exotic examples
of relations both between δ̃ and δ and between p̃ and p.
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8 Mission of cryptographic keys in linear and differential
cryptanalysis

Most authors obtain probabilistic linear and differential relations and es-
timate their characteristics directly for functions Φ : VN ˆ VK Ñ VM ,
pa,Xq ÞÑ b “ Φpa,Xq, where X P VK is a cryptographic key. They often
use various kinds of probability-theoretic models depending on X (besides the
probability distributions on VN ˆ VK).

The authors of this work are deeply convinced of the following. The prob-
abilistic relations used to determine subkey Z that apply before (or after) the
mapping Φ, should to be constructed for the cipher transformation F : a ÞÑ b “
Φpa,Xq in accordance with sections 3 and 4 for each key separately. Sometimes
the relations can be obtained for entire classes of keys X with the help of the
same chains. This relations will be characterized by the same approximations
δ̃L, p̃D. Our point of view is difficult to challenge, for example, for a cipher such
that on every round all components of current block are permuted by some per-
mutation depending on the key X. The characteristics of linear and differential
cryptanalysis used to determine subkey Z are the random values with respect
to random X P VK . These random values should be averaged.

Cryptographers who applies linear and differential cryptanalisys are concen-
trated near two poles. One construct chains L and D of conformal local linear
and differential relations. They maximize the values δ̃L and p̃D by painstaking
search and may not know true ratio between δ̃L, δL1L,L2L and between p̃D, pD1D,D2D.
Other cryptographers are trying to prove theoretically the proximity of δ̃, p̃
and δ, p. Sometimes they do it in general case. They use different probability-
theoretic models and do not care if the model is relevant to the analyzed cipher.
Such stadies may lead to false conclusions.

9 The importance of linear and differential cryptanalysis
for cipher design.

We may consider the problem of minimizing parameters δ̃ and p̃ in cipher
design as a formalization of a rule that always exists to make ciphers nonlinear
as much as possible. This is achieved by decreasing the absolute values of linear
and differential characteristics and by increasing the degrees of diffusion θ and
θ1 of the linear medium. The latter explains the transition from SP-networks
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(in which Shannon’s idea of confusion and diffusion were realized in the sec-
ond half of the last century [3]) to XSL-ciphers. A new cipher design technique
has appeared. This technique is based on guaranteeing high diffusion degrees θ
and θ1 of cipher’s linear medium. Cipher construction starts with the construc-
tion of a general structure, i.e. a linear medium. The nonlinear mappings are
not specified in the preliminary stage of cipher design. They are considered in
general form. The diffusion degrees of linear medium are evaluated before the
specification of nonlinear mappings. The higher diffusion degrees, the easier it is
to guarantee the security of a cipher against linear, differential and other tech-
niques of cryptanalysis due to careful selection of nonlinear mappings included
in the functional scheme. The degrees of diffusion θ and θ1 of the linear medium
(along with the number of rounds and the cardinality of the key set) are unusual
characteristics that are easy to estimate and at the same time allow to make
conclusions about the security of the cipher.

The diffusion degrees θ and θ1 of XSL-cipher with two rounds are the
coefficients of diffusion ρΛ and ρ1Λ for separate nonsingular linear transforma-
tion Λ P GLpn, 2q [2]. Similar linear medium’s diffusion degrees related to s-
dimentional linear cryptanalysis are also important. They are more exact diffu-
sion characteristics of permutation matrices used in SP -networks then θ and θ1

[4].

Another representation of the methods of constructing probabilistic linear
and differential relations without separation of the cipher’s linear medium can
be found, for example, in [5]–[13].
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Abstract

In the modified CTR (Counter) mode known as CTR2, nonces are encrypted before
constructing sequences of counters from them. This way we have only probabilistic
guarantees for non-overlapping of the sequences. We show that these guarantees, and
therefore the security guarantees of CTR2, are strong enough in two standard scenarios:
random nonces and non-repeating nonces. We also show how to extend CTR2 to an
authenticated encryption mode which we call CHE (Counter-Hash-Encrypt). To extend,
we use one invocation of polynomial hashing and one additional block encryption.

Keywords: CTR mode, authenticated encryption, block cipher, polynomial hashing, gamma
overlapping.

1 Preliminaries

Let E be a block cipher with block size n and key space K. It is a multiset
consisting of permutations EK P Permpnq which are indexed by secret keys K P

K.
Here Permpnq is the set of all permutations over t0, 1un. Elements of t0, 1un

are called blocks. Let N “ 2n denote their number.
We also denote by t0, 1u˚ the set of all binary words of finite length. For

a word u P t0, 1u˚, let |u| be its length. If u, v are words of the same length,
then u‘v is their bitwise modulo 2 sum (XOR). For a permutation π P Permpnq,
let πi be its ith compositional power (π0 is the identity permutation). Denote
by mris the ith factorial power of a positive integer m: mris “ mpm´1q . . . pm´
i` 1q.
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To extend the action of E from t0, 1un to t0, 1u˚, encryption modes are used.
One of the most popular is CTR. In this mode, a unique nonce S P t0, 1un is
repeatedly transformed by a public permutation next. The resulting sequence

C1 “ S, C2 “ nextpC1q, C3 “ nextpC2q, . . .

is encrypted using EK P E to get the blocks

Γ1 “ EKpC1q, Γ2 “ EKpC2q, . . . .

To encrypt a plaintext X P t0, 1u˚, the first r|X|{ns blocks are used. They
are concatenated and then truncated to |X| bits. The resulting word Γ P

t0, 1u|X| is XORed with X to produce a ciphertext

Y “ X ‘ Γ.

In the Soviet standard GOST 28147 [7], the word Γ is called a gamma. That
is why the notations. The blocks C1, C2, . . . are usually called counters. That is
why CTR (Counter).

Suppose that in two encryption sessions, gammas Γ and Γ1 overlap. Then an
adversary who has intercepted a plaintext-ciphertext pair pX, Y q in one session
can restore Γ “ X ‘ Y and then partially reconstruct X 1 from Y 1 “ X 1‘ Γ1 in
the parallel session. Thereby, a gamma overlapping is considered a compromise
of the CTR encryption.

To avoid overlapping, a permutation next is chosen to have long disjoint
cycles in its cycle decomposition. The nonces S of different sessions are picked
from different cycles or a new nonce continues the cycle (actually, the sequence
of counters) from the previous session. This approach, implemented in the stan-
dards [6, 8, 9], ensures that all counters in all sessions are unique. In other
words, there are no collisions between counters and gamma overlapping is cer-
tainly impossible.

Unfortunately, such strict guarantees of no collisions / non-overlapping
force the nonce management to be rather complicated. One has to use a safe
monotonous timer to generate nonces or a rewritable memory to store them
between sessions. Both options can be difficult to implement on some crypto-
graphic devices. The third option, random generation of nonces, does not match
the approach, at least it is not allowed in the mentioned standards.

Another approach, probabilistic guarantees of gamma non-overlapping, was
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proposed in GOST 28147 and repeated in [15], where a nonce S is first encrypted
and then transformed by next:

C1 “ nextpEKpSqq,

not C1 “ S. (To be completely accurate, GOST’s next is not a permutation: it
acts bijectively on only a 2n{2p2n{2 ´ 1q-element subset of t0, 1un, n “ 64.) The
similar scheme

C1 “ EKpSq

was considered later by P. Rogaway in [14], where the corresponding encryption
mode is called CTR2. We extend this name to the GOST case. It is natural be-
cause the main point there is nonce encryption, the optional invocation of next
is not critical.

Nonce encryption has obvious drawbacks. First, it slightly decreases the
overall effectiveness of the mode. Second, it throws C1 at an unpredictable point
of next’s cycle that may cause a collision with other counters.

On the other hand, the probability of collisions is controllable small under
reasonable restrictions on the amount of data processed with a single key. We
confirm this fact in Section 2 in terms of a game called “Battleship on a circle”.
A control over collisions allows us to prove the security of CTR2 in the CPA
(Chosen Plaintext Attack) settings. This is done in Section 3. In a nutshell, we
embed well-known or easily derived combinatorial estimates within the context
of Provable Security. We examine two techniques for the nonce generation: ran-
dom nonces and non-repeating nonces. Note that we do not require that the
nonce management deterministically ensures uniqueness of all counters in all
sessions and thus allow it to be more flexible.

An additional argument in favor of nonce encryption is that it provides an
easy extension of the conventional CTR encryption to authenticated encryp-
tion (AE). In Section 4, we show how to build this extension using polynomial
hashing and one additional invocation of EK . We call the resulting scheme
CHE, meaning the cascade Counter-Hash-Encrypt. It is actually one of two
AE schemes briefly described in [1]. There the security of only authentication,
not encryption, is considered. In this paper, we fill the gap. We also provide a
detailed description of CHE.

Usually, in AE schemes based on polynomial hashing (perhaps the most
famous of them is GCM [10]), a data-driven polynomial is evaluated at a secret
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point which depends only on K. In some cases (including GCM), this point
can be recovered with the subsequent compromise of all encryption sessions
as soon as a nonce S is used twice. A distinctive feature of CHE is that the
secret point depends on S. Due to this fact, a repetition of nonces in multiple
encryption sessions compromises only these sessions without affecting others.
Thus, CHE provides reasonable security guarantees against nonce-misusing. To
the best of our knowledge, stronger guarantees, the so-called full nonce-misuse
resistance where only completely identical sessions compromise each other, are
only achieved through two passes over data what is difficult to maintain in many
scenarios.

Further we assume that next is a full cycle or almost full cycle permutation.
In other words, if M is the maximum cycle length of next, then M « N .
Usually, M “ N which is achieved by interpreting blocks of t0, 1un as integers
modulo N and incrementing these integers in next. Another option for next is
to interpret t0, 1un as the binary field F of N elements. Let α be a primitive
element of F and β be an arbitrary element. Then the permutation

next : λ ÞÑ αλ` β

decomposes into a cycle of length M “ N ´ 1 and a loop at β{p1´ αq. We use
this next in Section 4.

Finally, it should be mentioned that encrypting a nonce S we make the
counters C1, C2, . . . secret. An adversary cannot reconstruct any input-output
pair of EK even after intercepting all the session data pS,X, Y q. Blocking direct
access to EK complicates attacks to recover K, especially statistical and alge-
braic attacks which usually strongly depend on the complexity of the simplest
accessible cryptographic component.

2 Battleship on a circle

“Battleship on a circle” is played by Navy and an adversary. A game field
is a circle on which M points numbered from 0 to M ´ 1 are placed. Navy
deploys ships on the circle concealing their locations. A ship of displacement ri
(a positive integer) occupies ri consecutive points. In total, q ships of overall
diplacement r (q ď r ď M) are deployed. The adversary makes q shots on the
ships.

Detailed rules of the game (see Figure 1 for example):
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1. The adversary splits r into a sum r1` r2` . . .` rq of positive integers and
reports r1, r2, . . . , rq to Navy.

2. Navy deploys ships at random points on the circle. The bow of the ith ship
is placed at point Ci,1 and the whole ship occupies the segment Ci,1, Ci,1`
1, . . . , Ci,1`ri´1 (additive operations are moduloM). Collisions of ships,
that is, intersections of their segments may occur. In the case of a collision,
Navy loses and capitulates. Let the event D1 mean no collisions.

3. If Navy has not capitulated, then the adversary makes q shots at different
points S1, . . . , Sq on the circle. If at least one shot hits a ship, then the
adversary wins. If all the shots miss, which is fixed by the event D2, then
Navy wins.

Further we consider two variants of the game: G1 and G2.
In G1, the ship bows Ci,1 are chosen uniformly at random independently of

each other. The shot points Si are also chosen uniformly at random with the
only restriction that they must be different. In other words, pS1, . . . , Sqq is a
random q-permutation of M numbers. There are M rqs ways to choose it.

In G2, the bows also form a random q-permutation. Shot points are arbitrary
distinct.

Let us immediately explain that the games G1 and G2 simulate attacks on
CTR2 with random and non-repeating nonces respectively. Ships correspond to
sequences of counters. The lengths of the sequences can be chosen by an ad-
versary who needs only to keep the total length, that is, the total amount of
plaintext-ciphertext data. A collision of ships trivially means a gamma overlap-
ping. More subtle are shots. A hit means that a nonce coincides with one of the
internal counters. We will explain further details in the next section.

We are interested in the probability that Navy wins: P tD1D2u “

P tD2 | D1uP tD1u.

Lemma 1. In the games G1 and G2,

P tD1D2u ě 1´
4qr ´ q2 ´ 2r ` q

M
.

Proof. Let us start with G1. Navy can deploy the fleet without collisions as
follows:

1) put the bow of the first ship at any of M point on the circle;
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Figure 1: Battleship on a circle (Navy wins)

2) permute remaining ships in one of pq ´ 1q! ways;

3) choose q non-negative intervals between successive ships starting from the
first one. The tuple of intervals is a weak q-composition of M ´ r and,
therefore, can be chosen in

`

M´r`q´1
q´1

˘

ways.

We repeat here the arguments of V. Nosov reported in [2]. The arguments
yield:

P tD1u “
Mpq ´ 1q!

`

M´r`q´1
q´1

˘

M q
“
pM ´ r ` q ´ 1qrq´1s

M q´1
“

“

r´1
ź

i“r´q`1

ˆ

1´
i

M

˙

ě 1´
r´1
ÿ

i“r´q`1

i

M
“ 1´

p2r ´ qqpq ´ 1q

2M
.

Let D̄2,i be the event that the shot Si is successful. We have

P
 

D̄2,i | D1

(

“
r

M

and, therefore,

P tD2 | D1u “ 1´ P
 

D̄2,1 Y . . .Y D̄2,q | D1

(

ě

ě 1´
q
ÿ

i“1

P
 

D̄2,i | D1

(

“ 1´
qr

M
.
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In result,

P tD1uP tD2 | D1u ě

ě

ˆ

1´
p2r ´ qqpq ´ 1q

2M

˙

´

1´
qr

M

¯

ě 1´
4qr ´ q2 ´ 2r ` q

2M
,

which was to be proven.

When passing from G1 to G2, the probability P tD1u does not decrease and
we can use the bound just derived on this probability. We can also reuse the
bound on P tD2 | D1u and get the same overall bound as for G1.

An interesting question is what is the best strategy for an adversary in G2.
The partial answer is that with qr !M the bound of Lemma 1 is almost reached
when the adversary chooses r1 “ r ´ q ` 1, r2 “ . . . “ rq “ 1 and shoots the
circle with step r1 starting from a random point. This tactic leads to the fact
that to satisfy D1D2 the bow of the first ship must not occupy a continious
segment of length r1q. The second ship must avoid r1` q points, the third ship
must avoid r1 ` q ` 1 points and so on. In result,

P tD1D2u “

´

1´
r1q

M

¯

q´1
ź

i“1

ˆ

1´
r1 ` q ` i´ 1

M ´ i

˙

«

« 1´
r1q

M
´

q´1
ÿ

i“1

r1 ` q ` i´ 1

M
.

The right part coincides with the bound of the lemma. Approximately the same
probability will be achieved, if the adversary chooses r1 “ . . . “ rq´1 “ tr{qu

and shoots again with step r1.

Finally, let us point out a fact that will be used in Section 4. Suppose that
the rules of the game are relaxed and an adversary is allowed to choose zero ri
or, in other words, reduce the number of ships while maintaining their total dis-
placement r. Analyzing the proof of the lemma, we conclude that the probabil-
ity P tD1u increases with this reduction and, therefore, the bound on P tD1D2u

becomes better. Of course, this bound will be even better, if the adversary
reduces the total diplacement r.
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3 Security of CTR2

To approve the security of CTR2, we use the standard notions sketched
below (see [13] for further details and references).

1. An adversary (probabilistic algorithm) A gains access to an encryption
oracle O. The adversary interacts with O using the following interface. It
chooses a plaintext X P t0, 1u˚ and a nonce S P t0, 1un, sends the oracle
the pair pX,Sq and receives a ciphertext Y P t0, 1u|X|. The adversary must
use this interface following one of the two contracts: the nonces S are either
chosen uniformly independently at random (the random nonces contract)
or they are arbitrary distinct (the non-repeating nonces contract). Empty
plaintexts are not allowed in both contracts.

2. The oracle can be implemented in two ways. In the first (real) implemen-
tation, O actually performs the CTR2 encryption using a permutation EK

chosen at random from E. This implementation is denoted by CTR2rEKs.
In the second (ideal) implementation, O picks Y uniformly at random
from t0, 1u|X|. This implementation is denoted by ρ.

3. The adversary sends O arbitrary queries, receives and analyzes correspond-
ing answers. Its task is to distinguish the real implementation from ideal.
The adversary returns 1 (real) or 0 (ideal). Let AO be the output of A.

4. The distinguishing capabilities of A are characterized by the advantage

Advind-cpa
CTR2rEspAq “

ˇ

ˇ

ˇ
P
!

ACTR2rEKs “ 1
)

´ P tAρ
“ 1u

ˇ

ˇ

ˇ
.

The probabilities here are over the random tape of A and over the random
choice of K and ρ. If Advind-cpa

CTR2rEspAq is small, then the two implementa-
tions are hard to distingush, which means the security of CTR2 based on E
relative to A. The used abbreviation ind-cpa covers the notion of indistin-
guishability and CPA settings: the adversary has access to the encryption
oracle, but not the decryption one.

Let us make a standard simplification replacing EK , a random represen-
tative of E, with π, a random representative of Permpnq. This replacement
turns Advind-cpa

CTR2rEspAq into the advantage

Advind-cpa
CTR2rPermpnqspAq “

ˇ

ˇ

ˇ
P
!

ACTR2rπs
“ 1

)

´ P tAρ
“ 1u

ˇ

ˇ

ˇ
.
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The replacement is motivated by the general assumption that permutations of a
secureE are hard to distinguish from random ones. The replacement is accompa-
nied by a penalty (another advantage) which characterizes indistinguishability
between random representativies of E and Permpnq. This penalty is formal in
nature (it is never estimated), we do not specify it here for simplicity.

For given non-negative integers q and r, q ď r, we are interested in estimat-
ing

max
A

Advind-cpa
CTR2rPermpnqspAq,

where the maximum is taken over all adversaries that make q queries to O
and the total length of plaintexts X in these queries is equal to r. The length
is specified in blocks, possibly incomplete last. Incomplete blocks of different
plaintexts are counted separately.

The advantage of a reasonable A cannot increase if some full block is cut to
incomplete. Therefore, we can assume without loss of the maximum advantage
that all plaintexts and ciphertexts consist of full blocks.

Let us write again how CTR2 works, that is, how plaintexts X1, . . . , Xq and
nonces S1, . . . , Sq are transformed into ciphertexts

Yi “ CTR2rπspXi, Siq, i “ 1, . . . , q.

Let Xi consist of blocks Xi,1, . . . , Xi,ri, i “ 1, . . . , q. where ri ą 0 and r1` . . .`

rq “ r. The corresponding blocks of the ciphertext Yi are

Yi,j “ Xi,j ‘ πpCi,jq,

where

Ci,1 “ nextcpπpSiqq, Ci,2 “ nextpCi,1q, . . . , Ci,ri “ nextpCi,ri´1q.

Here c is an integer parameter of the mode. It equals 0 (the original CTR2)
or 1 (GOST). In this section, the choice of c is inessential. However, in the next
section we use c “ 1.

Lemma 2. Let N be a positive integer and q, r be non-negative integers such
that q ` r ď N . Then

1

pN ´ qqrrs
ě

1

N r

ˆ

1`
rp2q ` r ´ 1q

2N

˙

.
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Proof. Consider three fractions: 1{pN`2q`r´1q, 1{pN´q´iq and 1{pN´q´
r ` 1` iq, 0 ď i ď r ´ 1. The sum of their denominators is 3N . Therefore, the
product of the denominators does not exceed N 3, the product of the fractions
is not less than 1{N 3, and

1

N ´ q ´ i
¨

1

N ´ q ´ r ` 1` i
ě
N ` 2q ` r ´ 1

N 3
“

1

N 2

ˆ

1`
2q ` r ´ 1

N

˙

.

Hence,
ˆ

1

pN ´ qqrrs

˙2

“

“

r´1
ź

i“0

ˆ

1

N ´ q ´ i
¨

1

N ´ q ´ r ` 1` i

˙

ě
1

N 2r

ˆ

1`
2q ` r ´ 1

N

˙r

,

from which the result follows.

Theorem 1. Let M , the maxumum cycle length of next, be at least N ´ 1.
Let an adversary A make at most q queries pX,Sq with either random or non-
repeating S. Let r be the total number of X’s blocks in these queries. Then

Advind-cpa
CTR2rPermpnqspAq ď

rpr ´ 1q

2N
` ε,

where

ε “

“ max

ˆ

0,
rpr ` 2q ´ 1qp4qr ´ q2 ´ 2r ` 3q ` 2q

4N 2
´
pr ´ qq2 ` r ´ 3q ´ 2

2N

˙

.

Proof. The bound obviously holds for q`r ą N (in this case r ą N{2). Assume
further that q ` r ď N , so that Lemma 2 can be applied.

Consider arbitrary nonempty plaintexts X1, . . . , Xq, r full blocks in total,
random or arbitrary non-repeating S1, . . . , Sq, and random π, Y1, . . . , Yq. When
we say random, we mean that implied objects are chosen uniformly at random
from prescribed domains, each object independently of others.

Let the event B means that all r blocks Γi,j “ Xi,j ‘ Yi,j are distinct. For

235



the complementary event B̄, it holds that

P
 

B̄
(

ď
rpr ´ 1q

2N
.

Introduce the probability

p “ P tCTR2rπspXi, Siq “ Yi : i “ 1, . . . , q | Bu

and apply Patarin’s “coefficients H” technique (see [12] and also [4, 5, 11]).
According to this technique, if an inequality p ě p1 ´ εq{N r with some ε ě 0
holds, then the required advantage is upper bounded by the sum P

 

B̄
(

` ε. It
is remains to prove that ε from the statement of the theorem indeed satisfies
the inequality.

Consider the following events, each new one provided that previous events
occur.

The event C: all blocks πpSiq fall into the largest cycle of next. The probabil-
ity pC “ P tCu equals either M q{N q in the case of random nonces or M rqs{N rqs

in the case of non-repeating nonces. In both cases,

pC ě
M

N

´

1´
q

N

¯

.

Indeed,

M q

N q
ě
M rqs

N rqs
“
M

N
¨
pM ´ 1qrq´1s

pN ´ 1qrq´1s
“

“
M

N
¨
M ´ q ` 1

N ´ 1
ě
M

N
¨
N ´ q

N ´ 1
ě
M

N

´

1´
q

N

¯

.

The event D: all counters Ci,j (they are all on the largest cycle according
to C) differ from each other and from nonces Sk. The probability of this event
is already estimated in Lemma 1 of the previous section:

pD “ P tD | Cu ě 1´
4qr ´ q2 ´ 2r ` q

2M
.

We indeed satisfy the rules of the game described there, if we imagine that
the initial counters Ci,1 are placed on the cycle randomly and after that, in
the case of no collisions, the random permutation π either “generates” random
distinct Si “ π´1pnext´cpCi,1qq or implicitly transfers the given distinct Si
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into next´cpCi,1q. It may be that some Si lies outside the cycle. In this case, the
probability pD only increases with respect to the probability treated in Lemma 1
and the bound of the lemma remains valid.

Consider the probability pCD “ P tCDu “ pCpD. Dealing with the caseM “

N ´ 1, we get

pCD ě
´

1´
q

N

¯

ˆ

M

N
´

4qr ´ q2 ´ 2r ` q

2N

˙

ě 1´
4qr ´ q2 ´ 2r ` 3q ` 2

2N
.

Obviously, this bound also holds for M “ N .
The event E : π maps Ci,j to Γi,j. The previous events means that all Γi,j

are distinct, all Ci,j are distinct, all Si are distinct, Ci,j differ from Sk, and q
images of π at points Si are already known. So there are pN ´ qq! ways to
determine remaining images of π and exactly pN ´ q ´ rq! of them are in favor
of E . Therefore,

pE “ P tE | BCDu “ 1

pN ´ qqrrs
ě

1

N r

ˆ

1`
rpr ` 2q ´ 1q

2N

˙

.

Here we use Lemma 2.
In result,

p ě P tCDE | Bu “ pCDpE ě

ě
1

N r

ˆ

1´
4qr ´ q2 ´ 2r ` 3q ` 2

2N

˙ˆ

1`
rp2q ` r ´ 1q

2N

˙

,

from which the expresion for ε follows.

It is easy to verify that ε increases as a function of q for q ď r. Substitut-
ing q “ r into the expressions of the theorem and slightly simplifying them, we
obtain the following bound, uniform in q:

Advind-cpa
CTR2rPermpnqspAq ď

r2 ` r ` 2

2N
`
r2p9r2 ` 5q

4N 2
.

For comparison, a similar advantage in the CTR mode is upper bounded
by r2{p2Nq (see [13]). Informally, the transition from CTR to CTR2 is ac-
companied by a penalty, the main contribution to which is made by the term
9r4{p4N 2q. This penalty is insignificant in the region r2 ! N , which is used in
practice.
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Note that the bound r2{N on the CTR2 advantage is reported (without
proof) in [14] for the case M “ N .

4 CHE and its security

In this section, we extend CTR2 to the authentication encryption mode
called CHE (Counter+Hash+Encrypt). The extended functionality of CHE is
data authentication. CHE follows the Encrypt-then-MAC paradigm (first en-
crypt, then authenticate) which seems to be better than the MAC-then-Encrypt
alternative (see [3]). Not only encrypted data is authenticated, but also associ-
ated data that is transmitted in the plain form. Thus, CHE belongs to the AEAD
(Authentication Encryption with Associated Data) class of the AE schemes.

Let us interpret blocks of t0, 1un as elements of the finite field F of order N .
Suppose that the usual correspondence between F and t0, 1un is used, when the
addition in F is ‘. Let

nextpλq “ α ˚ λ‘ β,

where α is a primitive element of F , β is a nonzero element. Hereinafter we
make the multiplication sign explicit. As we have already noted, the maximum
cycle length of next is N ´ 1. Moreover, the powers nexti, i “ 1, 2, . . . , N ´ 2,
considered as polynomials over F all have nonzero constant terms.

The CHE mode is determined by the algorithms described below. Their
inputs and outputs are: a plaintext X P t0, 1u˚, associated data I P t0, 1u˚, a
key K P K, a nonce S P t0, 1u˚, a ciphertext Y P t0, 1u|X|, an authentication
tag T P t0, 1un. An arbitrary nonzero T0 P F is used. The operation n

Ð means
splitting a binary word into n-bit blocks preceded by padding to the block size.
The reverse operationÐ

m
means assembling a word from several blocks followed

by truncation to m bits.
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Algorithm Wrap Algorithm Unwrap
Input: X, I, K, S.
Output: Y , T .
Steps:

1. H Ð EKpSq, C Ð H,
T Ð T0.

2. pI1, . . . , Ir1q
n
Ð I.

3. For i “ 1, 2, . . . , r1:

(a) T Ð pT ‘ Iiq ˚H.

4. pX1, . . . , Xrq
n
Ð X.

5. For i “ 1, 2, . . . , r:

(a) C Ð nextpCq;
(b) Yi Ð Xi ‘ EKpCq;
(c) T Ð pT ‘ Yiq ˚H.

6. Y Ð
|X|
pY1, . . . , Yrq.

7. Encode |I| and |X|

by W P t0, 1un.
8. T Ð pT ‘W q ˚H.
9. T Ð EKpT q.

10. Return pY, T q.

Input: Y , I, K, S, T .
Output:X or K (authentication er-
ror).
Steps:

1. H Ð EKpSq, C Ð H,
T 1 Ð T0.

2. pI1, . . . , Ir1q
n
Ð I.

3. For i “ 1, 2, . . . , r1:

(a) T 1 Ð pT 1 ‘ Iiq ˚H.

4. pY1, . . . , Yrq
n
Ð Y .

5. For i “ 1, 2, . . . , r:

(a) T 1 Ð pT 1 ‘ Yiq ˚H;
(b) C Ð nextpCq;
(c) Xi Ð Yi ‘ EKpCq.

6. X Ð
|Y |
pX1, . . . , Xrq.

7. Encode |I| and |X|

by W P t0, 1un.
8. T 1 Ð pT 1 ‘W q ˚H.
9. T 1 Ð EKpT

1q.
10. Return X if T “ T 1 and K oth-

erwise.

It is assumed that in Step 10 of both algorithms, different pairs p|I|, |Y |q
give different words W and nonzero |I| or |Y | gives a nonzero W .

The algorithm Wrap can be explained in the following way.

C. First, the CTR2 encryption is performed: Y Ð CTR2rEKspX,Sq. The
encrypted nonce H “ EKpSq is used to build internal counters nextipHq,
i “ 1, 2, . . ..

H. Second, a polynomial fpY,Iqpλq P F rλs is implicitly constructed from
the pair pY, Iq. This polynomial has a positive degree, its constant term
equals 0, different pairs give different polynomials. The polynomial is eval-
uated at the point H, the result Z “ fpY,IqpHq becomes a hash value
of pY, Iq.
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E. Third, the hash value Z is encrypted and returned as T along with Y .

Suppose that deg fpY,Iq ď d. In other words, at most d´1 blocks of I and Y
are processed during a single invocation of polynomial hashing. Suppose further
that d ă N´1. The restrictions on structure and degree of the polynomials fpY,Iq
and the form of next lead to the following estimates (see [1] for details):

P
 

fpY,IqpHq “ fpY 1,I 1qpH
1q | H ‰ H 1

(

P
 

fpY,IqpHq “ a
(

P
 

fpY,IqpHq “ nextipHq
(

P
 

fpY,IqpHq “ nextipH 1q | H ‰ H 1
(

,

/

/

/

.

/

/

/

-

ď
d

N
.

Here pY, Iq ‰ pY 1, I 1q, 1 ď i ď d, a is a fixed element of F , the probabilities are
taken over independent random H,H 1 P F . These estimates form the basis for
justifying the security of CHE.

Dealing with the security, we keep the model introduced in the previous
section. An adversary interacts with an oracle O : pX, I, Sq ÞÑ pY, T q which
either implements the Wrap algorithm (the real implementation, CHErEKs)
or generates Y P t0, 1u|X| and T P t0, 1un at random (the ideal implementation,
ρ). The adversary again follows one of the two contracts: random nonces or
non-repeating nonces. Any of the word X and I can be empty, but not both.

An advantage of the adversary is defined in the standard way. We only
change the abbreviation ind-cpa to priv (privacy). This corresponds to the
tradition when moving from basic encryption to AEAD.

We again idealize E and replace its representative EK with a permutation π
chosen uniformly at random from Permpnq.

Theorem 2. Let an adversary A make at most q queries pX, I, Sq with either
random or non-repeating S. Let r be the total number of X’s and I’s blocks in
these queries. Then

Advpriv
CHErPermpnqspAq ď

pr ` qqpr ` q ´ 1q

2N
` ε,
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where

ε “

“
p2r2 ` 9qr ` 2q2 ´ 3r ` 2q ` 2qpr ` qqpr ` 3q ´ 1q

4N 2
`

`
r2 ` 5qr ´ q2 ´ 2r ` 3q ` 2

2N
.

Proof. We adapt the proof of Theorem 1 preserving notations and following the
general line. Additional notations: Ii — associated data in the ith query, Ti —
a tag in the ith answer, Hi “ πpSiq, Zi “ fpYi,IiqpHiq.

Let d be the maximum degree of polynomials fpYi,Iiq. In other words, d ´ 1
is the maximum total amount of blocks in pXi, Iiq. It is clear that pd´ 1qq ď r.
Therefore, if d ě N´1, then r ě N´2 and the bound of the theorem obviously
holds. Further we assume that d ă N ´ 1.

We preserve the probabilistic model of Theorem 1 assuming additionally
that Ti are chosen uniformly independently at random. Now the event B addi-
tionally means that Ti are distinct and different from Γj,k. It is clear that

P
 

B̄
(

ď
pr ` qqpr ` q ´ 1q

2N
.

For the probability

p “ P tCHErπspXi, Ii, Siq “ pYi, Tiq : i “ 1, . . . , q | Bu ,

it is necessary to construct an inequality p ě p1´εq{N r`q. To do this, we again
deal with the events C, D, E .

The semantics of C is not changed. In D, we allow empty Xi and that the
total number of plaintext blocks is less than r (r covers both plaintext and
associated data blocks). As we have discussed at the end of Section 2, with
these relaxations the bound on the probability pD becomes even better.

In addition, we block in CD the following collisions:

collisions quantity probability
Zi “ Zj qpq ´ 1q{2 ď d{N
Zi “ Sj q2 ď d{N
Zi “ Cj,k ď qr ď d{N
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With this, the bound on pCD becomes weaker:

pCD ě 1´
4qr ´ q2 ´ 2r ` 3q ` 2

2N
´

ˆ

dqpq ´ 1q

2N
`
dq2

N
`
dqr

N

˙

.

Using the inequality pd´ 1qq ď r, we get

pCD ě 1´
2r2 ` 9qr ` 2q2 ´ 3r ` 2q ` 2

2N
.

In E , we require that π not only maps Ci,j to Γi,j, but also maps Zi to Ti. The
previous events mean that all preimages here are pairwise distinct, all images
are pairwise distinct, and q images of π at points Si that differ from Cj,k and Zj
are already known. The total number of preimages is at most r ` q. Therefore,

pE ě
1

pN ´ qqrr`qs
ě

1

N r`q

ˆ

1`
pr ` qqpr ` 3q ´ 1q

2N

˙

.

In result,

p ě pCDpE ě

ě
1

N r`q

ˆ

1´
2r2 ` 9qr ` 2q2 ´ 3r ` 2q ` 2

2N

˙ˆ

1`
pr ` qqpr ` 3q ´ 1q

2N

˙

,

from which the expresion for ε follows.

As in the previous section, ε increases as a function of q for q ď r. Sub-
stituting q “ r into the expressions of the theorem and simplifying them, we
get:

Advind-cpa
CHErPermpnqspAq ď

9r2 ´ r ` 2

2N
`

26r4

N 2
.
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Abstract

In this work we study the security of the prospective Russian authenticated encryp-
tion with associated data mode that is known as MGM. We examine the mode properties
under the condition that we have O

`

2n{2
˘

queries, where n is the state size of the used
block cipher. Two attacks that are based on birthday paradox are proposed.

Keywords: authentication, birthday paradox, AE, AEAD, MGM.

1 Introduction

The Multilinear Galois Mode (MGM) is an authenticated encryption with
associated data (AEAD) block cipher mode. It was originally proposed in [1]
and was fully described later in [2]. MGM mode was developed by the Technical
Committee for standardization “Cryptography and Security Mechanism” (TC-
26) and now is a prospective Russian standard of AEAD mode [3].

In 2019 the MGM mode was analysed in the paradigm of provable security
[4]. That work shows that the privacy and authenticity of MGM mode is prov-
ably guaranteed (under security of the used block cipher) up to the birthday
paradox bound. The modern level of cryptography allows us to build AEAD
modes that are secure beyond the birthday bound [5, 6, 7, 8, 9]. Thus, on the
one hand, it has been shown that MGM has so-called n{2-bit security, but on
the other hand, no real attack has been published so far even in the unlimited
amount of queries.

This work proposes some attacks on the MGM mode in the case when we
can get O

`

2n{2
˘

queries, where n is the state size of the block cipher. The work
describes two attacks on the MGM mode:

– Nonce reusing attack. We present a simple theoretical attack that shows a
way to proceed an authentication tag in case if nonce can be reused.
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– Attack on Authenticity. We will the way to get an authentication tag for
a special type of messages.

Both attacks are based on the well-known birthday paradox and these attacks
do not threaten the security claims of the MGM mode.

2 Definition and Notations

Let V n be the boolean (bit) vector space of dimension n. For a vector x P V n

we call the value |x| “ n the length of the vector x. For the brevity we denote
the union of all vectors of arbitrary length V i, i ě 0 as V ˚.

In this work we assume that any element of the vector space x P Vn can be
represented as an element of the ring Z2n, where “`” and “´” are respectively
the plus and the minus operand in the ring. We also use the representation of
x as an element of a finite field F2n p‘,bq.

We denote msblpxq and lsblpxq respectively the most and the least l signif-
icant bits of a vector x.

For the brevity we define the following operators. Let x, y P V n{2 and t P
Z2n{2:

px}yq‘l t “ px` t}yq ;

px}yqal t “ px´ t}yq ;

px}yq‘r t “ px}y ` tq ;

px}yqar t “ px}y ´ tq .

First, we remind the MGM mode description following the description in
[3]. Let e be a block cipher with block length n and K P V k be a key. Denote
by eKpxq the encryption of a plaintext block x under the key k.

The input of the MGM mode based on a cipher e is pK,N, P,Aq, where:

– K P V k – key ;

– N P V n´1 – nonce ;

– P P V ˚, 0 ď |P | ď 2n{2 – plain text ;

– A P V ˚, 0 ď |A| ď 2n{2 – associated data.
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The length of the plain text and associated data must be less than |P | ` |A| ď
2n{2. The output of the mode is pN,A,C, , T q, where:

– C P V ˚, |P | “ |C| is a cipher text;

– T P V m is an authenticating tag.

The cipher text and the authenticating tag are calculated as follows:

1. The plain text and associated data are divided into equal blocks of length
n (perhaps except the last ones):

A “ A1} . . . }A
˚
h, Aj P Vn, A

˚
h P Vt,

P “ P1} . . . }P
˚
q , Pi P Vn, P

˚
q P Vu,

where j “ 1, 2, . . . , h ´ 1, i “ 1, 2, . . . , q ´ 1, 1 ď u ď n, 1 ď t ď n and
h` q ą 0.

2. The cipher text is calculated as follows:
$

’

’

’

’

&

’

’

’

’

%

Y1 “ eKp0}Nq,

Yi “ Yi´1 ‘r 1, 2 ď i ď q,

Ci “ Pi ‘ eKpYiq, 1 ď i ď q ´ 1,

C˚q “ C˚q ‘MSBupeKpYqqq,

(1)

3. The blocks A˚h and C˚q are padded till the full block size if needed:
#

Ah “ A˚h}0
n´t,

Cq “ C˚q }0
n´u.

(2)

4. The authenticating tag is calculated as follows:

T “ eK

˜

h
ÿ

i“1

Hi b Ai ‘

q
ÿ

j“1

Hh`j b Cj ‘Hh`q`1 b

´

|A|
›

›|C|
¯

¸

,

where Hi “ eKpZiq, and values Zi, i “ 1, 2, . . ., are defined as follows:
#

Z1 “ eKp1}Nq,

Zi “ Zi´1 ‘l 1, 2 ď i ď h` q ` 1.
(3)
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Tag verification and decryption occurs in a similar way. For the brevity we
denote

´

|A|
›

›|C|
¯

as L and call it “length tag”.

3 Nonce reusing

In this section we will show that if we have two different messages with the
same authenticating tags and if we in addition have a possibility to authenticate
an arbitrary message, it is possible to calculate the authenticating tag for the
special message.

Let we have two messages received using MGM mode under the same key
K: pN1, A1, C1, T1q, pN2, A2, C2, T2q. And we also suppose that T1 “ T2:

h1
ÿ

i“1

H1,i b A1,i ‘

q1
ÿ

j“1

H1,h1`j b C1,j ‘H1,h1`q1`1 b L1 “

“

h2
ÿ

i“1

H2,i b A2,i ‘

q2
ÿ

j“1

H2,h2`j b C2,j ‘H2,h2`q2`1 b L2, (4)

where L1 and L2 are the length tags. We also suppose that L1 “
`

n ¨ k1
1}n ¨ k

1
2

˘

and L2 “
`

n ¨ k2
1}n ¨ k

2
2

˘

.
If the left and the right sides of the equation (4) are multiplied by the same

element α of the finite field Fn2 then we get the correct equation. Let’s make the
following message:

#

A1i “ A1,i b α, 1 ď i ď h1,

A1i`h1 “ C1,i b α, 1 ď i ď q1;
(5)

where α can be calculated from the equation:

L1 b α “
`

n ¨ k1
1}n ¨ k

1
2

˘

b α “
`

0}n ¨ pk1
1 ` k

1
2q
˘

, kji P Z, i, j P t1, 2u.

We suppose that it’s possible to request authenticating tag for the associated
data A1 “ A11} . . . }A

1
q1`h1

:

T 1 “ eK

˜˜

h2
ÿ

i“1

H2,i b A2,i ‘

q2
ÿ

j“1

H2,h2`j b C2,j ‘H2,h2`q2`1 b L2

¸

b α

¸
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Let’s examine the value L2bα “ ps1}s2q. To carry out the attack values L1

and L2 should meet the following conditions:

1. ps1, s2q “ pn ¨ k
2
1}n ¨ k

2
2q. The propability of meeting this condition is about

P pn|s1, n|s2q « n´2.

2. k21 ` k22 ă 2n{2.

P
´

s1 ` s2 ă 2n{2
¯

“
1

2n{2

2n{2´1
ÿ

i“0

P
´

i` s2 ă 2n{2
¯

“

“
1

2n

2n{2´1
ÿ

i“0

p2n{2 ´ iq “ 1{2`
1

2n{2`1
.

3. h2 ` q2 ď k21 ` k
2
2.

P ph2 ` q2 ď k21 ` k
2
2q « 1{2.

So with the probability PS “ p2nq´2 the value T 1 will be a correct authenticating
tag for message pN2, C

2, A2, T 1q.
$

’

&

’

%

A2i “ Bi, 1 ď i ď k21;

C2i “ Bi`k21
, 1 ď i ď h2 ` q2;

C2i “ 0, h2 ` q2 ă i ď k22.

As example: n “ 128, k1
1 “ 38, k2

1 “ 48, k1
2 “ 39, k2

2 “ 111. Then

L1 “ 0x13000000000000001800, L2 “ 0x13800000000000003780.

If F2128 “ F2rxs{px
128 ` x7 ` x2 ` x` 1q then

α “ L´1
1 b 0x2b00 “ 0x3c3f14aa0b4941e598bccb28951fe354

and k21 “ 0xe6b0864cb7a77080, k22 “ 0x8cb53060fc31c100.
At the same time if L1 “ L2 then PS “ 1 and it is possible to implement

the following attack.
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Nonce reusing attack

Let all the messages have the following structure: pNi, Ai, Ci, Tiq, where
|Ai| “ |Aj|, |Ci| “ |Cj|, and all messages are calculated under the same key K.

1. Request D messages. With the probability p « 1 ´ exp
!

´
pD´1q2

2n`1

)

two
messages with numbers i and j such as Ti “ Tj will appear.

2. Make a new message from pNi, Ai, Ci, Tiq using the equation (5).

3. Ask to authenticate this message.

4. Get the message pK,Ni, αb pAi}Ciq, T
1q.

5. Make a new message with correct authenticated tag pK,Nj, α b

pAj}Cjq, T
1q.

4 Authenticity of data attack

4.1 How to get Hi?

All values Hi are hidden under encryption algorithm and it’s quite difficult
to get at least one. In this section we’ll propose a way to find such values. As
in the past we assume that all message are calculated under the same key K.

First, we show how to find x and y, such as x, y P V n: eKpxq “ y.
Let’s consider the following message pN1, A1, C1, T1q, where |A1| “ 0, C1 “

0, and |C1| is equal to 1. Then

T1 “ eKpH2 b 1q “ eK
`

eK
`

eK p1||N1q‘l 1
˘˘

.

Let pK,N2, A2, C2, T2q be another message and P1 ‘ C1 “ eKpY1q “

eK peK p0||N2qq is equal to authenticating tag T1. Then we can argue that:

eK
`

eK
`

eK p1||N1q‘l 1
˘˘

“ eK peK p0||N2qq ñ eKp1||N1q “ 0||N2 al 1.

Then in our notations x “ 1||N1 — known value, y “ 0||N2 al 1 — also
known value. Thus, we know the equality eKpxq “ y.

According to the MGM mode description eK p1}Nq “ Z1. Let lsbn2 pN1q “

lsbn
2
pN2q there is such a value t: t P Z, t ă 2n{2:

Zt´1 “ eKp1||N1q‘l t “ 0||N2 ‘l
pt´ 1q “ p1||N1q,
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and it is possible to calculate

Ht´1 “ eK pZt´1q “ eKpeKp1||N1q‘l tq “ eKp1||N1q “ 0||N2 al
´1.

And in our notations eKpxq “ y, where y “ Ht´1 “ 0||N2 al ´1 and
x “ Zt´1 “ eKp1||N1q‘l t.

If there is a limit of|P |` |A| ď 2n{2´∆, then (since the operation ‘l changes
only the left side of 0}N2) the equation eKpxq “ y can be obtained with prob-
ability

P1 “ P
´

t ď 2n{2´∆
¯

“ 2´∆.

At the same time, if there are no limitations on the amount of processed mate-
rial, this equation exists with the probability equal to P1 “ 1.

4.2 Double H attack

Let’s suppose that we have two different values Hi “ eKpZiq, Hj “ eKpZjq

and e´1
K pHiq, e´1

K pHjq for some values i ă j ă 2n{2. We also assume that
lsbn

2
pZiq “ lsbn

2
pZjq.

Let h, q P N0 and h ` q ` 1 “ j then we can form the following message S
(value x will be determined later):

S “

¨

˚

˝

0, 0, . . . , 0
loooomoooon

i´1

, x, 0, 0, . . . , 0
loooomoooon

j´i´2

˛

‹

‚

“

¨

˚

˝

A1, . . . , Ah, C1, . . . , Cq
loooooooooooomoooooooooooon

j´1

˛

‹

‚

.

The authenticating tag T of the message S is calculated as follows:

T “ eKpxbHi ‘ LbHjq,

where L “ plpAq}lpCqq — length tag of message S.
Fixing the values h and q we can calculate the value x using one of the

following equations:
xbHi ‘ LbHj “ e´1

K pHiq;

xbHi ‘ LbHj “ e´1
K pHjq

and authenticated tag will be equal to Hi and Hj respectively.
A pair of values h and q can be fixed by any of the j possible values and

which means that we can calculate authenticating tag for 2 ¨ j messages without
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knowing the secret keyK and moreover, half of these messages will have T “ Hi

and the other half will have authenticated tag equal to Hj. That also means
that in case of j ą 1 we can also find a collision.

Double H attack

We suppose that all lsbn
2
pN 1

iq and lsbn2 pN
2
i q are equal.

1. Get m1 messages pN 1
i , A

1
i, C

1
i, T

1
i q, where |A1i| “ 0, |C 1i| “ n:

M1 “ tY1pNiqu
m1

i“0 “ teKpeKp0}Niqqu
m1

i“0 .

2. Get 2¨m2 messages pN2
i , A

2
i , C

2
i , T

2
i q, where |A2i | “ 0, |C2i | “ 1. We suppose

that about the half of these messages is equal to zero C22 “ 0 (one bit) and
we have

M2 “ tTju
m2

j“0 “
 

eK
`

eK
`

eK p1}Niq‘l
˘˘(m2

j“0
.

3. With some probability P2 we find two equalities:

eKp1}N1q “ 0}N2 al 1,

eKp1}N3q “ 0}N4 al 1,

lsbn
2
pN1q “ lsbn

2
pN2q “ lsbn

2
pN3q “ lsbn

2
pN4q.

4. In accordance with the section 4.1 with the probability P 2
1 we can find two

pair of values: Ht1, Ht2, e
´1
K pHt1q, e

´1
K pHt2q.

5. Without loss of generality we suppose that t2 ą t1. Fixing h, q P N0 by any
values such as: h` q ` 1 “ t2 form the message:

S “ p0, 0, . . . , 0
loooomoooon

i´1

, x, 0, 0, . . . , 0
loooomoooon

t2´t1´2

q “ pA1, . . . , Ah, C1, . . . , Cqq ,

where x is calculated as follows:

xbHt1 ‘ LbHt2 “ e´1
K pHt1q, L “ ph}qq .

6. The authenticating tag of message S is Ht1.
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4.3 Difficulty and Probability of Double H attack

Let’s find the probability P2 from section 4.2.
We have the setsM1 andM2 such that |M1| “ m1, |M2| “ m2. The elements

of these sets are integers from the set: 0, 2n ´ 1. We can assume that every set
has no identical elements: Mi “

 

M 1
i ,M

2
i , . . . ,M

mi

i

(

and M j1
i “ M j2

i if and
only if j1 “ j2.

The probability that we can find at least one identical element in the sets
M1 and M2 can be calculated as follows:

p1 “ 1´

`

2n´m1

m2

˘

`

2n

m2

˘ « 1´ exp
!

´
m1m2

2n

)

.

At the same time, exactly one identical element will be found with probability:

p “ 2n
`

2n´1
m1´1

˘

¨
`

2n´m1

m2´1

˘

`

2n

m1

˘

¨
`

2n

m2

˘ «
m1m2

2n
¨ exp

"

´1` 2m1 ` 2m2 ´ 2m1m2

2n`1

*

.

And the required probability that more that one identical element will be found
can be calculated using the equation P2 “ p1 ´ p.

To implement this attack we need:

– m1 ` 2 ¨m2 queries;

– memory O pm1q.

The attack success probability is equal to P 2
1 ¨P2. In the case of the absence

of restrictions on the amount of material processed the probability is equal to
P2.

Conclusion

In this paper we examined some aspects of the MGM AEAD mode and
proposed two theoretical attacks that describe some properties of the studied
mode.

Both attacks require about O
`

2n{2
˘

queries, with n the state size of used
block cipher.

The core of the first attack is a possibility of manipulating length tag. If
we have two messages with the same authenticating tag and if we can ask to
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authenticate some associated data with repeated nonce we can make a message
that haven’t been ever encrypted and authenticated.

The core of the second attack is a possibility to find Hi which is used to
make authenticating tag. If we have two values Hi and Hj, i ă j, we can make
j messages that have authenticating tag equal to Hi and j messages that have
authenticating tag equal to Hj.

At the same time a constituent part of both attacks are birthday paradox
and these attacks do not threaten the security claims of MGM [3].
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Abstract

We present and discuss new algorithmic ideas for improving OBDD-attacks against
stream ciphers, which compute the secret initial state by generating a sequence of Opnq
ordered binary decision diagrams (OBDDs) of maximal width Op2

1´α
1`α

n
q, where n de-

notes the inner state length and α P p0, 1q the compression rate of the cipher. We
propose and experimentally verify the following strategy of avoiding the huge storage
demand of Op2

1´α
1`α

n
q. (1) Generate in parallel two OBDDs P and Q such that P ^ Q

has only a few satisfying assignments. (2) Compute pP ^Qq´1p1q, including the secret
inner state, by a new breadth-first-search based algorithm. We show that this approach
improves standard OBDD-attacks drastically.

Keywords: Symmetric Cryptography, Stream Ciphers, OBDD Attacks.

1 Introduction

Stream ciphers are symmetric encryption algorithms intended for the online
encryption of plaintext bitstreams X which have to pass an insecure channel.
The encryption is performed by bitwise addition of a keystream S, which is
generated in dependence of a secret symmetric session key k and, possibly, a
public initial value IV. The legal recipient, who also knows k, decrypts the
encrypted bitstream Y “ X ‘ S by generating S and computing X “ Y ‘ S.
In this paper, we consider KSG-based stream ciphers, i.e., stream ciphers that
generate the keystream using a so-called keystream generator (KSG).

KSGs are stepwise working devices that can be formally specified by finite
automata. KSGs are defined by an inner state length n and the corresponding
set of inner states t0, 1un, a state update function π : t0, 1un Ñ t0, 1un and an
output function out : t0, 1un Ñ t0, 1u. Starting from an initial state q0 P t0, 1u

n,
in each clock cycle i ě 0, the KSG produces a keystream bit zi “ outpqiq and
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changes the inner state according to qi`1 “ πpqiq. The output bitstream Spq0q

is defined by concatenating all the outputs z1z2z3 ¨ ¨ ¨ .
The main security requirement for stream ciphers is the following: when

a secret initial state is chosen randomly, it must be hard to distinguish the
generated keystream from a truly random bitstream. This implies the hardness
of the problem S´1: given a piece z of keystream of length ` ě n, compute an
initial state q which generates z in the sense that z is a prefix of Spqq. In this
paper, we focus on analyzing the security of KSGs with regard to S´1-attacks,
which try to solve the S´1-problem for a given piece z of keystream.

The main building blocks of many KSG-constructions are so-called Feedback
Shift Registers (FSRs). FSRs are defined over a number m of register cells
and a feedback function f : t0, 1um Ñ t0, 1u. In each clock cycle, given the
inner state pb1, . . . , bmq, the bit b1 is the output bit and the state changes to
pb2, . . . , bm´1, fpb1, . . . , bmqq. The FSR is called a linear FSR (LFSR) if the
feedback function is GF p2q-linear, and it is called a nonlinear FSR (NFSR)
otherwise.

The output sequences defined by LFSRs with a primitive connection poly-
nomial have several very useful pseudorandomness properties, e.g., the maximal
period of 2m ´ 1. However, an LFSR alone does not represent a secure KSG as
the problem S´1 can be efficiently solved by inverting an pnˆ nq-matrix.

Many KSG-constructions use a small number of FSRs (LFSRs or NFSRs) to
generate a secret inner bitstream, which has to pass a nonlinear filter function
to produce the output keystream. This allows to split the keystream generation
process into two parts: (1) the generation of the inner bitstream IBpqq from
an initial state q, consisting of the bits produced by the FSRs, and (2) the
generation of the public output keystream Spqq “ CpIBpqqq that is generated
from the secret inner bitstream IBpqq using an online compression function C.
The compression rate of a keystream generator is defined to be α “ 1{A , where
A denotes the average number of inner keystream bits needed to produce one
output bit. Note that the secret initial state q is a part (often the prefix) of the
inner bitstream IBpqq.

Concerning S´1-attacks against stream ciphers, one distinguishes short-
keystream attacks (e.g., OBDD-attacks) and long-keystream attacks (e.g., time-
memory-data tradeoff (TMD-TO) attacks). Short-keystream attacks solve the
S´1-problem where only a small sequence of keystream bits was observed. In
this case, the sequence is usually not significantly longer than n. Long-keystream
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attacks require a lot more keystream bits (e.g., 2n{2 for the TMD-TO attacks
of Babbage [1] and Golić [5]) to solve the S´1-problem.

Ordered binary decision diagrams (OBDDs) are a graph based data structure
for representing Boolean functions. Due to their specific algorithmic properties,
there is a wide range of practical applications of OBDDs, especially in the
field of hardware verification (see, e.g., [9]). OBDD-attacks were introduced by
Krause in [6] and further studied in, e.g., [7], [11], [4]. They represent the most
efficient kind of short-keystream attack against stream ciphers. The number of
necessary keystream bits nearly matches the information-theoretic lower bound,
which corresponds to the unicity distance of the cipher.

OBDD-attacks refer to the decision if for a given initial state q, a given piece
of inner bitstream y and a given piece of keystream z it holds that y is prefix of
IBpqq and Cpyq is prefix of z. For many KSGs, this problem can be formulated
as a set R “ tR1, . . . , Rtu of easy relations between the q-bits and the y-bits,
and between the y-bits and the z-bits, which all can be tested by small OBDDs.

OBDD-attacks compute the OBDDs QpIq for increasing subsets I Ď

t1, . . . , tu, which test if all relations Ri, i P I, are fulfilled. They are based
on certain algorithmic properties of OBDDs:

– The conjunction P ^Q of two OBDDs can be computed within time and
space Op|P | ¨ |Q|q.

– OBDDs P can be efficiently minimized in time Op|P |q.

– The width of a minimized OBDD P is bounded from above by the amount
of satisfying assignments of P .

In the standard OBDD-attack, one generates a sequence QpI1q Ñ QpI2q Ñ

¨ ¨ ¨ Ñ QpIsq, where QpI1q is small and the number of satisfying assignments
of QpI1q is bounded by 2p1´αqn. For j “ 2 to s, Ij is derived from Ij´1 by
adding one new relation from R. This implies that on average |QpIjq´1p1q| ď
2α ¨ |QpIj´1q

´1p1q| and width pQpIjqq ď mint2 ¨width pQpIj´1qq , |QpIjq
´1p1q|u.

It follows that on average after r “ 1´α
1`αn iterations the maximal width of

Op2 1´α
1`αnq is reached and that after 1

αn iterations we obtain an OBDD for which
the secret initial state is the only satisfying assignment, i.e., which solves the
problem.

OBDD-attacks (and their generalization based on free binary decision di-
agrams (FBDDs)) yield the best known short-keystream attacks against sev-

256



eral practically used ciphers such as the A5/1-generator included in the GSM-
standard [3], the E0-generator included in the Bluetooth standard [2], or the
self-shrinking generator [8].

1.1 Our Results

We propose the following modification of OBDD-attacks for circumventing
the bottleneck consisting in the huge amount of storage needed for the interme-
diate OBDDs in the iterations near the critical round number r “ 1´α

1`αn.

(1) Generate two disjoint subsets I and J of relations from R in parallel such
that the OBDDs QpIq and QpJq are of moderate size and the set QpI Y
Jq´1p1q of satisfying assignments of QpIq^QpJq “ QpIYJq is small. Then
compute QpI Y Jq “ QpIq ^ QpJq using the standard OBDD-synthesis
algorithm.

(2) Suppose that strategy (1) leads to sets I and J for which the set
QpI Y Jq´1p1q is not just “small” but even comprises of only a single el-
ement. Then compute this satisfying assignment directly from QpIq and
QpJq by means of our new breadth-first-search-based algorithm instead of
performing the OBDD synthesis QpIq ^QpJq.

The first part of our experimental results, presented in Section 4, shows that
strategy (1) is a lot more space efficient than computing QpIYJq using the clas-
sical OBDD-attack suggested in [6] (and employed in all follow-up works since).
Strategy (2) allows us to investigate the complexity of the following Bounded
Synthesis Problem: given two OBDDs P1 and P2 for which it is known that
P1^P2 has only one satisfying assignment, compute this satisfying assignment.

The standard solution is to compute P1 ^ P2 using the standard OBDD-
synthesis algorithm and then to minimize the resulting OBDD. Note that for
solving the bounded synthesis problem, it is sufficient to find the only exist-
ing directed path connecting the root to the 1-sink of P1 ^ P2, as this path
corresponds to the only satisfying assignment of P1 ^ P2.

In Section 5, we describe a depth-first-search (DFS) approach and a breadth-
first-search (BFS) approach for solving the Bounded Synthesis Problem. Our
most promising candidate is the BFS-approach as it allows to identify nodes in
P1 ^ P2 which do not occur in the minimized OBDD.
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Structure of the paper: The remaining part of this paper is organized as
follows. In Section 2, we first provide the basic information about OBDDs.
We do this by considering a subfamily of OBDDs, so-called leveled OBDDs
(LOBDDs). The reason for considering LOBDDs is that the relevant algorithmic
properties of OBDDs can be explained more easily for LOBDDs, and in our
cryptographic context we obtain LOBDDs in a natural way. Note that all of
our results about LOBDDs hold also for OBDDs. In Section 3, we describe
the classic BDD attack against stream ciphers on the basis of a toy example.
Note that like this toy example, also the generators used in our experiments do
not provide sufficient cryptographic hardness for modern practical applications.
However, due to their feasible inner state size and simple definition, they are
well suited for applying and verifying our algorithmic ideas. In Section 4, we
describe strategy (1) and the intuition behind it in further detail and provide
corresponding experimental results. In Section 5, we present our algorithmic
approaches for the bounded synthesis problem. Finally, in Section 6, we present
the experimental results which compare our DFS- and BFS-approach to the
standard synthesis algorithm, and conclude the paper.

2 Preliminaries

2.1 Leveled Ordered Binary Decision Diagrams (LOBDDs)

Definition 1. An LOBDD P over Xn “ tx1, . . . , xnu is a directed acyclic
labeled Graph G “ pV,Eq with one root and one sink, where V is the set of
vertices and E is the set of edges. The following properties apply to P :

– The set of vertices V is partitioned into n ` 1 pairwise disjoint levels,
L1pP q, . . . , Ln`1pP q. The nodes in LipP q, 1 ď i ď n, are labeled xi.

– L1pP q contains only the root root pP q, labeled x1.

– Ln`1pP q contains only the sink sink pP q, labeled 1.

– The edges are labeled with either 0 or 1. The labels correspond to the
Boolean value of the respective variable.

– For all v P V ztsink pP qu, there are either two outgoing edges with different
labels or there is only one outgoing edge (labeled 0 or 1).
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– For each edge pu, vq P E, there exists some level i P t1, . . . , nu such that
u P LipP q and v P Li`1pP q.

– The size of P is denoted by |P | and it is defined to be equal to the amount
of nodes, i.e., |P | :“ |V |.

– The width of P is denoted by width pP q and it is defined to be equal to the
size of the largest level, i.e., width pP q :“ max

1ďiďn
t|LipP q|u.

Fix some i P t1, . . . , n ` 1u and fix some node v P LipP q. A path leading
from the root root pP q to v corresponds to a unique t0, 1u-assignment of the
variables tx1, . . . , xi´1u. Similarly, a path leading from v to the sink sink pP q
corresponds to a unique t0, 1u-assignment of the variables txi, . . . , xnu. This
motivates the following definitions:

Definition 2. For all i P t1, . . . , n ` 1u and all nodes v P LipP q, we define
ReachP pvq to be the set of all those t0, 1u-assignments of tx1, . . . , xi´1u which
correspond to paths from root pP q to v.

Definition 3. For all i P t1, . . . , n ` 1u and all nodes v P LipP q, we define
SatP pvq to be the set of all those t0, 1u-assignments of txi, . . . , xnu which cor-
respond to paths from v to sink pP q.

Definition 4. The Boolean function f : t0, 1un ÝÑ t0, 1u computed by P is
defined by

fpxq “ 1 ðñ x P SatP proot pP qq “ ReachP psink pP qq .

It can be straightforwardly shown that for each Boolean function f :
t0, 1un Ñ t0, 1u there exists an LOBDD P over Xn that computes f . Fur-
ther, there exists an efficient algorithm running in space and time Op|P |q that
minimizes P , i.e., it computes the minimal LOBDD that represents the same
function as P . Note that P is minimal if and only if each node of P is reachable
from root pP q and if for all i P t2, . . . , nu and for all v ‰ v1 P LipP q we have
SatP pvq ‰ SatP pv1q. Otherwise v and v1 could be merged into one node. We
refer the reader to [12] for further details.

For any two LOBDDs P andQ overXn, we can define the canonical LOBDD
P ^Q over Xn computing the logical conjunction of the functions computed by
P and Q. For defining P ^ Q, we again consider a graph G “ pV,Eq. The set
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of vertices is partitioned into n` 1 levels L1pGq, . . . , Ln`1pGq and the nodes in
LipGq, 1 ď i ď n, are labeled by xi.

Definition 5. Let P and Q be two arbitrary LOBDDs over Xn. The LOBDD
G :“ P ^Q is defined as follows. For all i P t1, . . . , n` 1u:

– Level i is defined to be LipGq :“ LipP q ˆ LipQq.

– There exists an edge ppu, u1q, pv, v1qq P LipGq ˆ Li`1pGq labeled b P t0, 1u
if and only if pu, vq is an edge labeled b in P and pu1, v1q is an edge labeled
b in Q.

It follows directly that L1pGq “ tproot pP q , root pQqqu and Ln`1 “

tpsink pP q , sink pQqqu. Further, the LOBDD P ^ Q is formed by all nodes
of G reachable from the root proot pP q , root pQqq. It can be easily checked
that P ^ Q is an LOBDD computing the logical conjunction of the functions
computed by P and Q. In general, P ^Q is not minimal, even if P and Q are
minimal. In the worst case, P ^Q has the width Θpwidth pP q ¨ width pQqq.

The above definition can be straightforwardly generalized to compute the
LOBDD P1^¨ ¨ ¨^Pk for given LOBDDs P1, . . . , Pk. The LOBDD P1^¨ ¨ ¨^Pk
computes the logical conjunction of the functions computed by P1, . . . , Pk. In
the worst case, it has the width Θpwidth pP1q ¨ ¨ ¨ ¨ ¨ width pPkqq.

2.2 Comparison of LOBDDs and OBDDs

In Subsection 2.1, we defined LOBBDs, which respect the canonical
variable ordering px1, x2, . . . , xnq on all paths from the root to the sink.
Similarly, π-LOBDDs can be defined, which respect the variable ordering
pxπp1q, xπp2q, . . . , xπpnqq on all paths from the root to the sink, where π is some
permutation on t1, . . . , nu. LOBDDs differ from general OBDDs in two ways:

1. OBDDs are usually defined to have a 1-sink and a 0-sink. Moreover, each
node has exacly two edges, labeled 0 and 1, respectively. A missing edge
in our LOBDD definition is equivalent to an edge pointing to the 0-sink.
In fact, this is just a matter of notation.

2. General OBDDs do not have to be leveled, i.e., there may be an edge pu, vq
from a node u labeled xi to a node v labeled xj, where 1 ď i ă j ď n` 1.
If j ą i ` 1, this implies that the subfunction computed at v does not
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depend on the variables xi`1, . . . , xj´1. In LOBDDs, on contrast, we always
demand j “ i` 1.

Each OBDD P can be easily converted to an LOBDD P 1 with |P 1| ď n ¨ |P |:
Consider the edge pu, vq, where u is a node labeled xi, v is a node labeled xj,
and j ą i ` 1. In the LOBDD, pu, vq is replaced by a sequence of j ´ i ´ 1
dummy nodes labeled xi`1, . . . , xj´1.

Note that if an OBDD P is satisfying the property that for all x ‰ x1 P
SatP proot pP qq the Hamming distance between x and x1 is larger than one,
then P has to be an LOBDD. As all functions considered in our cryptographic
context have this property, we decided to work with LOBDDs in most parts of
the paper (esp. in Section 4) since minimization and the construction of P ^Q
can be defined more easily in the model of LOBDDs.

3 Classical BDD Attacks against Stream Ciphers

Let us consider the toy example of a simple KSG with inner state size five,
whose secret inner bitstream x1, x2, . . . is defined by the feedback relation

xt`5 :“ xt ‘ xt`2 for t ě 1, (1)

where px1, . . . , x5q denotes the secret initial state. Moreover, let the output
function of this KSG be given as

zt :“ xt`2 ¨ xt`4 for t ě 1. (2)

It can be easily checked that for this KSG, the initial state px1, . . . , x5q “

p0, 1, 1, 0, 1q leads to the keystream prefix pz1, . . . , z7q “ p1, 0, 1, 0, 1, 0, 1q.
Classical OBDD-based cryptanalysis now proceeds as follows. An attacker

who gets hold of the above keystream prefix starts by turning his information
about step t “ 1 into an OBDD. From Eq. (1), he knows that

x1 ‘ x3 ‘ x6 “ 0 (3)

holds w.r.t. the newly generated inner state stream bit x6. This knowledge is
represented by the OBDD R1 depicted in Fig. 1, whose satisfying assignments
(leading to the OBDD’s 1-sink) are those satisfying Eq. (3).

Also at t “ 1, the attacker learns from the observed first keystream bit
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Figure 1: OBDDs R1 (left), Q1 (mid.), P1 “ R1 ^Q1 (right). The solid (resp. dashed) edges
denote that the variable labeling the edge’s source node takes the value 1 (resp. 0).

z1 “ 1 together with Eq. (2) that

x3 ¨ x5 “ 1 (4)

must hold. This knowledge is represented by the OBDD Q1 in Fig. 1.
Through AND-synthesis of R1 and Q1, the attacker finally obtains the

OBDD P1 depicted in Fig. 1, whose satisfying assignments are exactly those
assignments to x1, x3, x5, x6 which simultaneously fulfill Eqs. (3) and (4).

For the next step, t “ 2, the attacker proceeds analogously. More precisely,
he builds the OBDDs R2 and Q2 corresponding to the relations x2‘x4‘x7 “ 0
and x4 ¨ x6 “ 0 (as z2 “ 0), respectively. The new main OBDD P2 is computed
as P2 :“ P1 ^R2 ^Q2.

The general attack strategy is now as follows. The attacker will treat the
subsequent iterations t “ 3, 4, . . . accordingly, obtaining further growing OB-
DDs P3, P4, and so on. However, as explained in detail in [6], at some point, the
size of the OBDDs Pt will eventually reach a maximum and henceforth (usu-
ally quickly) decrease. Note that this maximum actually dominates the overall
complexity of the attack.

In the case of our toy example, after only seven steps, the main OBDD P7

has degraded into a list as depicted in Fig. 2. The only satisfying assignment to
the first twelve bits of the inner state stream can be derived from P7 directly as
px1, . . . , x12q “ p0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0q. The first five bits px1, . . . , x5q are
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Figure 2: The OBDD P7, which contains the solution of our cryptanalysis.

the secret initial state that underlies the attacked keystream prefix and, hence,
represent the solution of our OBDD-based cryptanalysis. From this initial state,
an attacker can now generate the full keystream.

4 Attack Improvement and Experimental Results

Instead of building only one main OBDD Pt (see our example in Section 3)
we now suggest to work with ‘two main OBDDs’ P 1

t and P 2
t as follows.

Algorithm 2 A new approach for more efficient, parallelizable OBDD attacks.
X Ð merging point parameter (see explanation below)
pP 1

0 , P
2
0 q Ð p1-OBDD, 1-OBDDq

for t “ 1 to X do
if t is odd then
pP 1

t , P
2
t q Ð pP 1

t´1 ^Rt ^Qt, P
2
t´1q

else
pP 1

t , P
2
t q Ð pP 1

t´1, P
2
t´1 ^Rt ^Qtq

end if
end for
P̃X Ð P 1

X ^ P
2
X

tÐ X
while P̃t has more than one satisfying assignments do

tÐ t` 1
P̃t Ð P̃t´1 ^Rt ^Qt

end while
return P̃t

The intuition behind the efficiency of our new approach is the following. Let
tmax denote the step in which the single main OBDD Pt would have reached
its maximum size |Ptmax| and remember that for t ą tmax, the sizes |Pt| would
henceforth constantly decrease until only one satisfying assignment is left. Then,
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for a properly chosen parameter X (in particular, X ą tmax), the result P̃X :“
P 1
X ^ P 2

X in Algorithm 2 will already have much less nodes than Ptmax with
the effect that the respective synthesis operation will have advantageous (as
compared to working with Ptmax) expected time and memory consumption. Note
that for the new approach to be actually more efficient than the classical one,
X must be still small enough such that the sizes of the OBDDs P 1

X and P 2
X still

stay significantly below |Ptmax|.
In order to assess the efficiency gains achievable with our new approach,

we performed an experimental evaluation using the well-known BDD package
CUDD [10]. As the attack target, we considered a simple KSG of size 39 bits,
whose inner state stream is defined by the relation

xt`39 :“ xt ‘ xt`13 ‘ xt`5 ¨ xt`17 ‘ xt`24 ¨ xt`29 for t ě 1,

and whose output function is zt :“ xt`9 ‘ xt`19 ‘ xt`29, t ě 1.
The classical approach described in Section 3 leads to a memory consump-

tion of almost 900 MB and takes about 215 seconds. The single main OBDD
used there reaches its maximum size at tmax “ 17. In contrast, the same attack
using our new approach in Algorithm 2 (with X “ 22) requires only about 110
MB of memory and is completed in as few as 8 seconds.

Also note that the OBDDs P 1
t and P 2

t are built on the basis of completely
separate information. Thus, they could as well be easily computed in parallel
on different CPUs in order to further speed up the attack.

5 A Related Special Synthesis Problem for LOBDDs and
Algorithmic Approaches

We have seen in the previous sections that given a piece of keystream z, the
problem of computing the secret inner state x which generates z can be reduced
to computing a sequence P1, . . . , Pk of (L)OBDDs of a moderate size such that
x is a satisfying assignment of P1 ^ ¨ ¨ ¨ ^ Pk and the number of satisfying
assignments of P1^ ¨ ¨ ¨ ^Pk is moderately bounded. In Section 4, we described
a corresponding approach with k “ 2 and verified through experiments that this
approach was indeed significantly more efficient than the classical BDD-attack
described in Section 3.

The standard way of computing the set of satisfying assignments of P1^¨ ¨ ¨^
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Pk from P1, . . . , Pk is to construct P1^¨ ¨ ¨^Pk as described in Subsection 2.1 and
to minimize it. This algorithm needs space and time Θp|P1^¨ ¨ ¨^Pk|`

řk
i“1 |Pi|q,

where in the worst case we have |P1 ^ ¨ ¨ ¨ ^ Pk| “ ΘpΠk
i“1|Pi|q. The resulting

question is the following:

Can we find more efficient algorithms to compute the set S of satis-
fying assignments of P1 ^ ¨ ¨ ¨ ^ Pk if |S| is small?

We are convinced that this question represents a fundamental open problem in
complexity theory. So far, we cannot yet present an algorithm for this prob-
lem which has an asymptotic worst case running time essentially better than
ΘpΠk

i“1|Pi|q. Nonetheless, we are able to come up with new algorithmic ap-
proaches which are much simpler than the standard synthesis algorithm and
which explicitly use the fact that the set of satisfying assignments of P1^¨ ¨ ¨^Pk
is small. Our experimental results in Section 6 show that our algorithms are more
space efficient than the standard synthesis.

In the following, we restrict ourselves to the case that k “ 2 and |S| “ 1;
i.e., we are given two LOBDDs P1 and P2 over the set of Boolean variables
Xn “ tx1, . . . , xnu for which we know |pP1 ^ P2q

´1p1q| “ 1. The problem is to
compute the only satisfying assignment x of P1^P2 in a more efficient way than
by the standard synthesis algorithm described above. One obvious consequence
of the assumption |pP1 ^ P2q

´1p1q| “ 1 is that we do not have to compute the
complete LOBDD P1 ^ P2. It is sufficient to compute the only path in P1 ^ P2

leading from the root pv0
1, v

0
2q to the sink ps1, s2q.

There are two elementary graph algorithms that compute all nodes of a
given directed graph which are reachable from a given starting point: depth-first
search (DFS) and breadth-first search (BFS). Hence, we present two algorithmic
approaches for computing pP1^P2q

´1p1q: a DFS approach and a BFS approach.

5.1 The DFS Approach

The underlying data structure is a stack S used to store the nodes of P1 ^

P2. The stack maintains a pointer head pSq to the node on top of the stack.
During the execution of the algorithm, some nodes of P1 ^ P2 will be labeled
gray (discovered) and some will be labeled black (discovered but useless). The
algorithm starts by labeling the root pv0

1, v
0
2q gray and pushing it on top of

the stack. In each iteration, the node pv, v1q “ head pSq on top of the stack
is considered. If there is a successor pw,w1q of pv, v1q which is not black, then
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pw,w1q will be labeled gray and pushed onto S, i.e., head pSq “ pw,w1q. If not,
pv, v1q will be labeled black and removed from the stack. The algorithm stops
if it discovers the sink ps1, s2q. In this case, the nodes in the stack identify the
only assignment in pP1 ^ P2q

´1p1q.
It is a well known fact that this algorithm has time and space costs ofOp|P1^

P2|q. While the stack always contains at most n nodes, the space consuming part
of this approach results from the necessity to store all nodes labeled black. In
the worst case, a large part of the nodes of unminimized P1 ^ P2 have to be
discovered before finding the path to ps1, s2q.

5.2 The BFS Approach

This approach uses the following easy fact resulting from |pP1^P2q
´1p1q| “

1.

Lemma 1. For all nodes pv, v1q in P1 ^ P2, the property |SatP1^P2
pv, v1q | ď 1

is fulfilled, and if |ReachP1^P2
pv, v1q | ą 1, then SatP1^P2

pv, v1q “ H.

The underlying data structure for BFS is a queue Q used to store the nodes
of P1 ^ P2. Q is equipped with the pointers tail pQq, pointing to the back
of Q, and the pointer head pQq, pointing to the front of Q. The nodes pv, v1q
of the LOBDD P1 ^ P2 have an additional property pv, v1q.path. pv, v1q.path
contains the assignment of the Boolean variables corresponding to the only path
in P1 ^ P2 from the root to pv, v1q.

During the execution of the algorithm, some nodes of P1^P2 will be labeled
gray (discovered) and some nodes will be labeled black (discovered but useless).
The algorithm starts by labeling the root pv0

1, v
0
2q gray and putting it into the

queue Q, i.e., tail pQq “ head pQq “ pv0
1, v

0
2q.

In each iteration, the node pv, v1q “ head pQq is removed from Q. If pv, v1q
is gray, each successor pw,w1q of Q is processed in the following way: If pw,w1q
was not discovered before, then pw,w1q.path is computed by adding the label
of the edge ppv, v1q, pw,w1qq to pv, v1q.path. pw,w1q will be labeled gray and put
into the queue Q, i.e., tail pQq “ pw,w1q. If pw,w1q is gray (already discovered
and contained in Q), it is labeled black. The algorithm stops when ps1, s2q is
labeled gray. In this case, ps1, s2q.path yields the only satisfying assignment of
P1 ^ P2.

Note that if a node pv, v1q is black, then |ReachP1^P2
pv, v1q | ą 1. This implies

SatP1^P2
pu, u1q “ H for all nodes pu, u1q reachable from pv, v1q in P1 ^ P2.
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Consequently, if a black node is dequeued from Q, its successors will not be
enqueued into Q. Compared to the DFS approach, it is not necessary to store
nodes removed from Q. Hence, the space consumption equals the maximum size
of Q. It can be upper bounded by width pP1q ¨ width pP2q.

6 Further Experimental Results and Conclusion

In order to assess the space reduction achievable with our new algorithmic
approaches presented in Section 5, we performed corresponding experiments
based on size-reduced KSG prototypes. But unlike in Section 4, we could not
use an existing BDD package such as CUDD, which is highly optimized for
real-world usage and would not have easily allowed for the kind of algorithmic
analysis (w.r.t. implementation-independent metrics) required in our context.
Consequently, we had to write our own LOBDD package from scratch in order
to derive experimental results for

– a 28-bit Geffe-generator with three maximum-period LFSRs defined by
lt`7 :“ lt ‘ lt`1, mt`10 :“ mt ‘ mt`3, and nt`11 :“ nt ‘ nt`2, and the
output function zt :“ lt ¨mt ‘mt ¨ nt ‘ nt;

– a 26-bit NFSR with feedback function xt`26 :“ xt‘xt`13‘xt`5 ¨xt`17 and
output function zt :“ xt`9 ‘ xt`19.

As described in Section 5, the relevant memory consumption metrics for our
new algorithms are the maximum size (i.e., number of elements) of the set of
black nodes for the DFS approach and of the queue for the BFS approach. We
compare this to the approach that the LOBDD P1^P2 is actually computed in
order to find the only assignment in pP1^P2q

´1p1q. The relevant metric there is
the size (i.e., number of nodes) of the LOBDD before minimization. The results
in the following table are an average based on 100 randomly sampled (Initial
State, Keystream Prefix )-pairs per KSG:

DFS-based BFS-based Synthesis-based
(black nodes) (queue nodes) (LOBDD nodes)

Geffe-KSG 4003455 667694 6530494
NFSR-KSG 7631335 557169 10977359

Clearly, both of our new algorithmic approaches are more space efficient than
using standard synthesis to compute pP1 ^ P2q

´1p1q. Especially the BFS-based
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variant seems extremely promising and could initiate a new phase of BDD-based
cryptanalysis. As future work, we suggest to integrate our new approaches into
standard BDD packages like CUDD.
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Abstract

The TLS protocol is the most widely used cryptographic protocol providing secure
communications over the Internet. In 2019 Rosstandart has approved recommendations
for standardization those define the use of the TLS 1.2 ciphersuites based on the actual
Russian cryptographic algorithms. This paper presents security bounds for the Record
protocol defined by the Russian ciphersuites that provides authenticity and confiden-
tiality of transmitted data. The bounds were obtained in the IND-sfCCSA model, which
relevance we pay special attention to, and are presented as a function of the used cryp-
tographic primitives security bounds. When using these bounds to obtain the certain
security parameters of the Record protocol, one must take into account the current state
of research concerning security of the used primitives.

Keywords: TLS protocol, information security, Russian cryptographic algorithms.

1 Introduction

One of the main applications of cryptography is the establishment of a secure
connection, namely provision of an authenticated channel between a client and
a server, ensuring integrity and confidentiality of transmitted data. The most
widely used protocol solving this task is the Transport Layer Security (TLS)
protocol.

The TLS protocol consists of two layers. The Record protocol represents the
low layer and works over some transport protocol (for example TCP) providing
reliable connection with guaranteed delivery of data packets. The Record proto-
col provides confidentiality and integrity of transmitted data and uses keys and
cryptographic parameters those are negotiated during the Handshake protocol
running. The specific modes of operation of the TLS protocol, which determine
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all its sub-protocols, in particular, the Record and Handshake protocols, are
specified within the framework of the so-called «ciphersuites».

Due to its use in the vast majority of modern web applications, TLS is the
most researched for the presence of both theoretical [13, 37, 38] and practi-
cal [24, 23, 35, 31] vulnerabilities. Therefore the protocol has changed dramat-
ically from the first versions in purposes of security. In 2018 the TLS protocol
version 1.3 was adopted as the current standard [34], which was designed with all
modern cryptographic principles taken into account. However, the introduction
and distribution of a new solution take a lot of time, so the protocol version 1.2
still remains the current standard. In particular, now it is supported by 95%
of sites in the Internet [1]. In addition, TLS 1.3 is supported lower than 15%
of sites. So we can claim that more than 80% sites in the Internet supports
only TLS 1.2.

In 2019 Rosstandart has approved recommendations for standardization [8]
which define the use of TLS 1.2 ciphersuites based on the actual Russian cryp-
tographic algortihms [3, 2, 7, 5, 6]. In this document the following ciphersuites
are defined:

– TLS_GOSTR341112_256_WITH_MAGMA_CTR_OMAC
(0xC1,0x01);

– TLS_GOSTR341112_256_WITH_KUZNYECHIK_CTR_OMAC
(0xC1,0x00).

In 2019 IANA has added these ciphersuites to the "TLS Cipher Suite" reg-
istry with the numbers listed above in the brackets.

The main principles of the Handshake protocol almost was not changed
compared to the previous version of the Russian ciphersuites [4]. At the same
time, the Record protocol is not similar to its analogue from the previous version
of the Russian ciphersuites, nor to the foreign versions. It uses all the advanced
developments related to the tasks of providing a secure channel and increasing
a key lifetime (that is, the amount of data processed under a single key). In this
paper, we focus on the security analysis of the Record protocol only, assuming
that the key material produced during the Handshake protocol running and
used by the Record protocol, is chosen at random according to the uniform
distribution on the set of fixed length binary strings.

The Record protocol is based on an authenticated encryption scheme with
associated data that ensures confidentiality and integrity of transmitted data.
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The analyzed ciphersuites use the Mac-then-Encrypt [15] scheme that consists of
the CTR-ACPKM [7] encryption mode and the OMAC message authentication
code [2]. The MAC-then-Encrypt scheme without the possibility of associated
data processing was analyzed in [28] where its security was proven when using
the stream cipher mode or the CBC mode (only for the data lengths that are
multiple of the blockcipher block length). The security analysis of the Mac-
then-Encrypt scheme with associated data using the CBC mode with a random
initialization vector was carried out in [32], which also took into account the
features of using the message padding procedure. The analysis was made in
the model, that ensures integrity only within the separate messages. To achieve
integrity at the message flow level, it is necessary to consider so-called stateful
schemes. In [22] the sfAE model was introduced for such schemes analysis. Also
the method for constructing secure stateful schemes based on secure stateless
schemes was proposed.

Unfortunately, the results mentioned above cannot be directly applied to
obtain the security bounds for the Record protocol specified by the Russian
ciphersuites. Indeed, the work of [32] does not provide the security analysis of
the stateful Mac-then-Encrypt scheme with associated data that uses arbitrary
basic encryption and MAC modes in the way defined by the TLS version 1.2
protocol standard. The direct application of the results of [22] for the analysis
of the Russian ciphersuites is also impracticable, since this paper consider the
scheme, where the encryption mode uses random and independent of the internal
state values of IV. At the same time, for the Record protocol defined by the
Russian ciphersuites, the nonce-based CTR-ACPKM encryption mode is used
where IVs depend on the current state.

In this paper we analyze a general stateful MAC-then-Encrypt AEAD
scheme that uses nonce-based encryption mode and MAC as it is specified in
TLS 1.2 RFC (see [25], the case of GenericStreamCipher). The analysis was
carried out in IND-sfCCSA model that extends the sfAE model. We focus on
the relevance of the proposed model for analyzing the Record protocol. The
lower bound of the proposed scheme security was obtained as a function of the
used encryption mode and MAC security level in the standard ROR-CPNA [36]
and PRF [16] models, respectively. As far as the authors know, such a bound
has not been previously presented explicitly in the literature. Also this work
presents bounds for a general stateful AEAD scheme with a pseudorandom
generator used for re-keying purpose. The obtained bound are applied to the
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Record protocol defined by the Russian ciphersuites. The resulting bounds de-
pend on the block cipher (Magma or Kuznyechik) security in the PRP-CPA
model and the HMAC function (based on the Stribog hash function) security
in the PRF model.

The paper is organized as follows. In Section 2 and Section 3 basic definitions
and notation are introduced, basic schemes and security models are defined. Sec-
tion 4 introduces the IND-sfCCSA security model, explains its design features.
Section 5 is devoted to the security analysis of the general stateful Mac-then-
Encrypt scheme with associated data and of the general AEAD scheme with
pseudorandom generator. Section 6 describes the main object of the research
— the Record protocol defined by the Russian ciphersuites. In Section 7, the
bound obtained in the previous sections is applied to the analyzed protocol.

2 Basic notations and definitions

By t0, 1us we denote the set of s-component bit strings and by t0, 1u˚ we
denote the set of all bit strings of finite length including the empty string. For
a P t0, 1u let ar be the string, consisting of r symbols a. For bit strings a and b
we denote by a}b their concatenation. Let |a| be the bit length of the string a.

For a bit string u and a positive integer l ď |u| let msblpuq (lsblpuq) be the
string, consisting of the leftmost (rightmost) l bits of u. For integers l ą 0 and
i ě 0 let strlpiq be l-bit representation of i with the least significant bit on the
right. For an integer l ą 0 and a bit string u P t0, 1ul let intpuq be the integer i
such that strlpiq “ u.

For any set S, define PermpSq as the set of all bijective mappings on S
(permutations on S). A block cipher E (or just a cipher) with block size n and
key size k is a permutation family

`

EK P Permpt0, 1u
nq | K P t0, 1uk

˘

, where
K is a key. If the value s is chosen from a set S uniformly at random, then we
denote s U

ÐÝ S.
If the variable x gets the value val then we denote xÐÝ val. Similarly, if the

variable x gets the value of the variable y then we denote xÐÝ y. If the variable
x gets the result of a probabilistic algorithm A we denote A $

ÝÑ x (x $
ÐÝ A). If we

need to emphasize that A is deterministic than we denote it by A ÝÑ x (xÐÝ A).
The event when A returned value val as a result is denoted by AÑ val

We model an adversary using an interactive probabilistic algorithm that has
access to one or more oracles. The resources of an adversary A are measured
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in terms of time and query complexities. For a fixed model of computation and
a method of encoding the time complexity includes the description size of A.
The query complexity usually includes the number of queries and the maximal
length of queries or the total length of queries. Denote by AdvMS pAq the measure
of the success of the adversary A in realizing a certain threat, defined by the
model M, for the cryptographic scheme S. The formal definition of this measure
will be given in each specific case.

3 Basic algorithms and security models

Standard security model for block ciphers is PRP-CPA («Pseudo Random
Permutation under Chosen Plaintext Attack») (see, e.g. [17]). The formal de-
scription is presented in Appendix A.1.

Introduce the definition of a symmetric encryption scheme SE. In the cur-
rent paper we consider encryption schemes those use an additional initialization
vector. Values of the initialization vector may be restricted by some conditions.

Definition 1. Let K Ď t0, 1u˚ be a set of keys, M Ď t0, 1u˚ be a set of
plaintexts, C Ď t0, 1u˚ be a set of ciphertexts, and IV Ď t0, 1u˚ be a set of
initialization vectors. An IV-based symmetric encryption scheme is a set of
algorithms SE “ tSE.K, SE.E, SE.Du, where

– SE.K
$
ÝÑ K: A probabilistic algorithm outputting a key K P K.

– SE.EpK, IV,mq ÝÑ c: A deterministic encryption algorithm taking an ini-
tialization vector IV P IV, a key K P K, and a plaintext m P M as its
inputs. An output of the algorithm is a ciphertext c P C.

– SE.DpK, IV, cq ÝÑ m: A deterministic decryption algorithm taking an ini-
tialization vector IV P IV, a key K P K, and a ciphertext c P C as its
inputs. An output of the algorithm is a plaintext m PM.

The standard notion for encryption modes analysis is the ROR-CPNA
(«Real or Random under Chosen Plaintext and Nonce Attack») model. The
formal description is presented in Appendix A.1. This model is similar to the
standard ROR-CPA security model [18] but considers nonce-respecting adver-
saries [36]. Informally, in this model the adversary has to distinguish the ob-
tained ciphertexts from the ciphertext of «garbage», having the capability to
adaptively choose plaintexts and nonces (in a unique manner).
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Introduce the definitions of a message authentication scheme MA and an se-
curity model PRF, which is used in analysis of message authentication schemes.

Definition 2. Let K Ď t0, 1u˚ be a set of keys, M Ď t0, 1u˚ be a set of
messages, T Ď t0, 1u˚ be a set of tags. A deterministic message authentication
scheme ia a set of algorithms MA “ tMA.K, MA.TAG, MA.VFu, where

– MA.K
$
ÝÑ K: A probabilistic algorithm outputting a key K P K.

– MA.TAGpK,mq ÝÑ t: A deterministic message authentication algorithm
taking a key K P K and a message m PM as its input. An output of the
algorithm ia s tag t P T (message authentication code).

– MA.VFpK,m, tq ÝÑ r: A deterministic algorithm verifying a message tag.
An input of the algorithm is a key K P K, a message m P M, and a
message tag t P T . An output of the algorithm is a result of tag verifying
to be equal to true in the case of success, and false, otherwise.

The standard notion for message authentication modes analysis is the PRF
(«Pseudorandom Function») model [19]. The formal description is presented
in Appendix A.1. Informally, in this model the adversary has to distinguish
the target mode under a random unknown key from a «truly» random func-
tion, having the capability to adaptively choose messages and obtain their tags.
The distinguishability threat, considered in the model, is «easier» to implement
than the other more intuitively understandable threats, such as key recovery or
typical forgeries (universal, selective, existential).

Introduce the notion of a pseudorandom generator G.

Definition 3. Let K Ď t0, 1u˚ be a set of states and B Ď t0, 1u˚ be a set of
blocks. A generator is a pair of algorithms G “ tG.K,G.Nu, where the deter-
ministic algorithm G.K (key generation algorithm) sets an initial state of the
generator St P K, the deterministic algorithm G.N (algorithm for calculating
the next state) takes the current state St P K as input and returns a block
Out P B, viewed as the output of this stage, and an updated state, to be stored
and used in the next invocation.

The standard notion for generators analysis is the PRG («Pseudorandom
Generator») model [16]. The formal description is presented in Appendix A.1.
Informally, in this model the adversary has to distinguish the generator output
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string from the string of the same length chosen at random according to the
uniform distribution.

For brevity sake, hereinafter by G.NpSt, iq denote the i-th block of the output
sequence of the generator with the initial state St.

4 IND-sfCCSA security model

In order to estimate the security of the protocol from both the confidentiality
and the integrity point of view we introduce the notion of an AEAD-scheme with
internal state.

In the paper we consider only schemes the update function of which can
depend on a previous state only and doesn’t depend on a key, associated data,
plaintext or ciphertext. Also an encryption state and a decryption state are
supposed to be chosen from the same set and to be equal at the beginning of
work.

Definition 4. Let K Ď t0, 1u˚ be a set of keys, M Ď t0, 1u˚ be a
set of messages, AD Ď t0, 1u˚ be a set of associated data, C Ď t0, 1u˚

be a set of ciphertexts, and S be a set of states. An AEAD-scheme with
internal state (stateful AEAD-scheme) is a set of algorithms sfAEAD “

tsfAEAD.K, sfAEAD.Init, sfAEAD.Upd, sfAEAD.E, sfAEAD.Du, where

– sfAEAD.Kpq
$
ÝÑ K: A probabilistic key generation algorithm outputting a

key K P K.

– sfAEAD.Initpstq ÝÑ pstE, stDq: A deterministic algorithm for scheme ini-
tialization. An input of the algorithm is an initial state of the scheme st P
S. An output of the algorithm is a pair of initial encryption stE “ st P S
and decryption stD “ st P S states.

– sfAEAD.Updpstq ÝÑ st1: A deterministic algorithm taking a state st P S
(encryption or decryption state). An output of the algorithm is an updated
state st1 P S.

– sfAEAD.EpK, ad,m, stEq
$
ÝÑ c: A probabilistic algorithm of authenticated

encryption taking a key K P K, associated data ad P AD, a plaintext
m P M, and an encryption statestE P S as an input. An output of the
algorithm is a ciphertext c P C.
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– sfAEAD.DpK, ad, c, stDq ÝÑ m : A deterministic algorithm of authenticated
decryption taking a key K P K, associated data ad P AD, a ciphertext
c P C, and a decryption state stD P S. An output of the algorithm is a
plaintext m PM or errpr symbol K.

The stateful AEAD-scheme is correct if for all K P K, m P M, ad P
AD and st P S such that c Ð sfAEAD.EpK, ad,m, stq, it is true that
sfAEAD.DpK, ad, c, stq “ m. We consider only correct schemes.

Introduce an IND-sfCCSA («Indistinguishability under stateful Chosen
Ciphertext and State Attack») security model to analyze stateful AEAD
schemes. This model takes into account threats related to a message flow
such as replay, dropping and shuffling messages. This model differs from
stateful Authenticated Encryption (sfAE) model defined in [22] and [32]. In the
sfAE model, only protocols that allow no more than one incorrect query to the
decryption oracle are secure. However, there can be protocols which allow the
adversary to forge a message with particular number more than one time. The
IND-sfCCSA model allows adversaries to forge one message multiple times that
extends the class of protocols we can analyze.

Definition 5. The advantage of an adversary A in the model IND-sfCCSA for
the stateful AEAD scheme sfAEAD is defined as:

AdvIND-sfCCSA
sfAEAD pAq “

“ Pr
“

ExpIND-sfCCSA´1
sfAEAD pAq Ñ 1

‰

´ Pr
“

ExpIND-sfCCSA´0
sfAEAD pAq Ñ 1

‰

,

where experiments ExpIND-sfCCSA´b
sfAEAD pAq, b P t0, 1u, are defined in the following

way:
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ExpIND-sfCCSA´b
sfAEAD pAq

K
$
ÐÝ sfAEAD.Kpq

uÐ 0, v Ð 0
sentÐH

stÐ A
pstE, stDq Ð sfAEAD.Initpstq

b1 Ð AEncryptb,Decryptb

returnb1

Oracle Encryptbpad,mq

if b “ 0 then
m

U
ÐÝ t0, 1u|m|

end if
cÐ sfAEAD.EpK, ad,m, stEq
sentÐ sentY pad, c, uq

stE Ð sfAEAD.UpdpstEq
uÐ u` 1
returnc

Oracle Decrypt1pad, cq

mÐ sfAEAD.DpK, ad, c, stDq
if pm ‰ Kq then

if ppad, c, vq P sentq then
mÐ K

end if
stD Ð sfAEAD.UpdpstDq
v Ð v ` 1

end if
returnm

Oracle Decrypt0pad, cq

returnK

Note that the basic principle of defining experiments in the IND-sfCCSA
model (the contents of the encrypted string and the procedure for the formation
of decryption result) is similar to the principle of defining experiments in the
basic models used for analyzing the schemes that aims to provide confidentiality
and integrity only at the level of a single message. These basic models are
constructed in such a way that еру decryption queries repeated the responses
of the encryption oracle do not give the adversary any new information (such
queries we will call trivial). This makes the model meaningful. Indeed, otherwise
for any scheme there would be an adversary which could realize the threat
in this model, i.e. the model would not allow anything to be said about the
security properties of the scheme. The distinctive feature of the IND-sfCCSA
model is that the decryption queries are trivial only when the message received
in response to the encryption query with the number u is transmitted to the
decryption oracle as the query with the same number (this is implemented
using counters u and v). Thus, the responsibility for detecting replay, dropping
or changing the order of messages now lies on the scheme, and the analysis
in the IND-sfCCSA model reflects this security property of the scheme. Due
to the fact that the counter v of decrypted messages increases only in case of
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successful query processing, the adversary can try to forge the v-th message as
many times as possible, making testing queries. In this case, the adversary can
always change the attacked value of the counter by making the corresponding
trivial query.

The IND-sfCCSA model is relevant only for analyzing unidirectional secure
channels. However, most of bidirectional channels are symmetric and are ob-
tained via establishing two unidirectional channels by the usage of one protocol
on two independent keys. The paper [30] shows that a sufficient condition for
the security of protocols providing a symmetric bidirectional channel running on
independent keys is the security of the basic protocol providing unidirectional
channel in the model similar to IND-sfCCSA. Therefore, models extended in
the case of a bidirectional channel will not be considered in this paper.

5 Security bounds

5.1 Security bound of MtE-AD scheme in IND-sfCCSAmodel

Introduce a stateful AEAD-scheme of type MtE-AD («MAC-then-Encrypt-
with-Associated-Data»).

Definition 6. Let for sets AD, M, MMA, MSE, IV, T and finite set S the
following deterministic functions are defined:

– encodeMA : AD ˆMˆ S ÑMMA;

– encodeSE : M ˆ T Ñ MSE, decodeSE : MSE Ñ M ˆ T , such that
decodeSEpencodeSEpm, tqq “ pm, tq for all m PM , t P T ;

– StateToIV : S Ñ IV;

– Next : S Ñ S.

Let MA be a deterministic message authentication scheme for the sets KMA,
MMA, T . Let SE be an IV-based encryption scheme for the sets KSE, MSE,
CSE, IV. Let K “ pKSE ˆ KMAq be a set of keys, M Ď t0, 1u˚ be a set of
plaintexts, AD be a set of associated data, S be a set of states and CSE Ď
t0, 1u˚ be a set of ciphertexts, and IV Ď t0, 1u˚ be a set of initialization vectors.
A stateful AEAD-scheme of type MtE-AD is a set of algorithms sfAEAD “

psfAEAD.K, sfAEAD.Init, sfAEAD.Upd, sfAEAD.E, sfAEAD.Dq where:
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sfAEAD.K :

KSE
$
ÐÝ SE.Kpq

KMA
$
ÐÝ MA.Kpq

returnK

sfAEAD.Initpstq :

stE Ð st
stD Ð st
returnpstE, stDq

sfAEAD.Updpstq :

st1 Ð Nextpstq
returnst1

sfAEAD.EpK, ad,m, stEq

pmÐ encodeMApad,m, stEq
tÐ MA.TAGpKMA, pmq
IVE Ð StateToIVpstEq
rmÐ encodeSEpm, tq

c
$
ÐÝ SE.EpKSE, IVE, rmq

stE Ð sfAEAD.UpdpstEq
returnc

sfAEAD.DpK, ad, c, stDq

IVD Ð StateToIVpstDq
rmÐ SE.DpKSE, IVD, cq

pm, tq Ð decodeSEprmq
pmÐ encodeMApad,m, stDq
if MA.VFpKMA, pm, tq ‰ true then

returnK
end if
stD Ð sfAEAD.UpdpstDq
returnm

Definition 7. Let IV be a set, S be a finite set. A function StateToIV : S Ñ
IV is an injective with according to a bijective function Next : S Ñ S,
if StateToIVpstq ‰ StateToIVpst1q for all st ‰ st1, st, st1 P S, such that
D α P N : Nextαpstq “ st1.

Definition 8. Let AD, M, MMA be sets, S be a finite set. A function
encodeMA : ADˆMˆS ÑMMA is a collision free function with according to a
bijective function Next : S Ñ S, if encodeMApad,m, stq ‰ encodeMApad

1,m1, st1q

for all pad,m, stq ‰ pad1,m1, st1q, ad, ad1 P AD, m,m1 P M, st, st1 P S, such
that D α P N : Nextαpstq “ st1.

Definition 9. Let AD, M, MMA Ď t0, 1u
˚ be sets, S be a finite set. A function

encodeMA : ADˆMˆS ÑMMA is r-adding, r P N if |encodeMApad,m, stq| ď
|ad| ` |m| ` r for all ad P AD, m PM.

Definition 10. An SE encryption scheme is a CRD-scheme (Collision Resistant
Decryption) if SE.DpK, IV, cq ‰ SE.DpK, IV, c1q for all K P KSE, IV P IV and
c ‰ c1, c, c1 P CSE.
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Definition 11. Let Next : S Ñ S be a bijective function. Then define the func-
tion α : S Ñ N as follows: αpstq “ min

α : Nextαpstq“st
α.

Theorem 1. Let sfAEAD be a stateful AEAD-scheme of type MtE-AD and the
following conditions hold:

1. the IV-based encryption scheme SE is a CRD-scheme;

2. the Message authentication scheme MA is such that the set T is t0, 1uτ ;

3. Next is a bijective function such that αmin “ min
stPS

αpstq;

4. StateToIV is an injective function with according to Next;

5. encodeMA is an r-adding collision free function with according to Next;

6. decodeSE is injective.

Let A be an adversary for the sfAEAD scheme in the IND-sfCCSA model with
time complexity at most t, making at most qE ď αmin queries to the Encrypt
oracle, at most αmin´1 trivial queries and at most qD test queries to the Decrypt
oracle with length at most l. Then there exists an adversary B for the SE scheme
in the ROR-CPNA model, making at most qE queries to the Encrypt oracle with
length at most l` τ , and exists an adversary C for the MA scheme in the PRF
model, making at most qE ` qD queries to the TAG oracle with length at most
l ` r, such that

AdvIND-sfCCSA
sfAEAD pAq ď 2 ¨ AdvPRFMA pCq ` AdvROR-CPNA

SE pBq `
qD
2τ
.

Furthermore, the time complexities of B and C are at most t`cpqE`qDqpl`r`
τqpTMA`TSEq, where TMA and TSE is computational resources needed to process
data with length at most l ` r ` τ by algorithms of the MA and SE schemes
respectively, c is a constant that depends only on a model of computation and
a method of encoding.

The proof can be found in Appendix B.1

5.2 Security bound of MtE-AD scheme with key diversification

Consider a stateful AEAD-scheme of type MtE-AD with key diversification.
We build such scheme psfAEAD,Gq from a scheme sfAEAD and a generator G.
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Definition 12. Let K “ B, AD, M, C, S be sets. Let sfAEAD be a stateful
AEAD-scheme, G be a generator. A stateful AEAD-scheme with key diversifi-
cation is a set of algorithms

psfAEAD,Gqh “

“ tpsfAEAD,Gqh.K, psfAEAD,Gqh.Init, psfAEAD,Gqh.Upd,

psfAEAD,Gqh.E, psfAEAD,Gqh.Du

where:

psfAEAD,Gqh.K :

K
$
ÐÝ G.Kpq

returnK

psfAEAD,Gqh.Initpstq :

pstE, stDq Ð sfAEAD.Initpstq
returnpstE, 0q, pstD, 0q

psfAEAD,Gqh.Updpstq :

st1.stÐ sfAEAD.Updpst.stq
st1.uÐ st1.u` 1
returnst1

psfAEAD,Gqh.EpK, ad,m, stEq

iÐ tstE.u{hu

Ki ÐÝ G.NpK, iq
cÐ sfAEAD.EpKi, ad,m, stE.stq

returnc

psfAEAD,Gqh.DpK, ad, c, stDq

iÐ tstE.u{hu

Ki ÐÝ G.NpK, iq
mÐ sfAEAD.DpKi, ad,m, stD.stq

returnm

The following theorem shows how key diversification affects the security of
the stateful AEAD-scheme sfAEAD.

Theorem 2. Let A be an adversary with time complexity at most t in the
IND-sfCCSA model for the psfAEAD,Gqh scheme with fixed h, making at most
qE queries to the Encrypt oracle and at most qD test queries to the Decrypt oracle
with length at most l. Then there exists an adversary B in the IND-sfCCSA
model for the sfAEAD scheme making at most minpqE, hq queries to the Encrypt
oracle and at most qD test queries to the Decrypt oracle with length at most l
bits, and exists an adversary D in the PRG model for the G generator, making
the query with value at most N “ rqE{hs, such that:

AdvIND-sfCCSA
psfAEAD,Gqh

pAq ď N ¨ AdvIND-sfCCSA
sfAEAD pBq ` 2 ¨ AdvPRGG pDq.

Furthermore, the time complexities of B and D are at most t ` clNpqE `
qDqTsfAEAD, where TsfAEAD is computational resources needed to process data
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with length at most l by algorithm of the sfAEAD scheme, c is a constant that
depends only on a model of computation and a method of encoding.

The proof can be found in Appendix B.2.

5.3 Final bounds

Summarizing the results of Theorem 1 and Theorem 2 we claim the following
theorem:
Theorem 3. Let sfAEAD be a stateful AEAD-scheme of type MtE-AD fulfilling
the Theorem 1 conditions. Let A be an adversary with time complexity at most
t in the IND-sfCCSA model for the psfAEAD,Gqh scheme with fixed h making
at most qE queries to the Encrypt oracle and at most qD test queries to the
Decrypt oracle with length at most l bits. Then there exists an adversary B for
the SE scheme in the ROR-CPNA model making at most minpqE, hq queries to
the Encrypt oracle with length at most l` τ bits, exists an adversary C for MA
the scheme in the PRF model making at most minpqE, hq ` qD queries to the
TAG oracle with length at most l ` r, and exists an adversary D in the PRG
model for the G generator, making the query with value at most N “ rqE{hs,
such that:

AdvIND-sfCCSA
psfAEAD,Gqh

pAq ď

ď 2 ¨ AdvPRGG pDq `N ¨ AdvROR-CPNA
SE pBq ` 2N ¨ AdvPRFMA pCq `

NqD
2n

.

Furthermore, the time complexities of B and C are at most t` cpqE ` qDqpl`
r ` τqpTMA ` TSEq ` clNpqE ` qDqTsfAEAD and the time complexity of D is at
most t ` clNpqE ` qDqTsfAEAD, where TMA and TSE is computational resources
needed to process data with length at most l`r`τ by algorithms of the MA and
SE schemes respectively, TsfAEAD is computational resources needed to process
data with length at most l by algorithm of the sfAEAD scheme, c is a constant
that depends only on a model of computation and a method of encoding.

6 Russian ciphersuites for TLS 1.2

The Record protocol provides bidirectional secure channel therefore during
a Handshake protocol running, every side generate key material for sending and
receiving messages separately.
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We describe the Record protocol only in the case when the data is transmit-
ted unidirectionally, because the bidirectional channel is symmetrical and the
key material is chosen independent at random according to uniform distribution
(this follows from the Handshake security assumption).

During a correct running of the Record protocol the sender must count sent
messages and the receiver must count received messages. The Record Protocol
takes messages to be transmitted, fragments the data into blocks, forms from
every block a record with the latest number, and transmits the result. Received
data is interpreted as a record with certain number and then decrypted, verified,
and delivered to higher-level protocols according to the header of this record.

The procedure of formation of a protected record in the Record protocol,
defined by the Russian ciphersuites, corresponds to the use of an AEAD-scheme
with internal state and re-keying. Here the MAC-then-Encrypt scheme is used
as a AEAD-scheme with internal state. This MAC-then-Encrypt scheme is
based on the OMAC and CTR-ACPKM block cipher modes of the Magma
or Kuznyechik cipher (further this scheme is called a TLS-REC scheme). The
key tree construction algorithm, defined by the algorithm TLSTREE [8], is used
as a generator for re-keying (further this algorithm is called a TREE generator).

Now assume that a key K “ pKMA, KSEq and IV were produced by the
Handshake protocol, where KMA P t0, 1uk is a key for the OMAC mode,
KSE P t0, 1u

k and IV P t0, 1un{2 are a key and an initialization vector for
the CTR-ACPKM mode, k and n are a key length and block length of the ci-
pher to be used. For processing of the record with sequential number sn, new
keys are generated:

Ksn
“ pKsn

MA, K
sn
SEq “ pTLSTREEpKMA, snq,TLSTREEpKSE, snqq .

Let m be a data block produced during the fragmentation of the original
message which should be protected. Three stages can be distinguished in the
formation process of a protected record PRec, with a sequential number sn,
from m.

1. Formation of the unprotected record header: header “ t}v}l, where t P
t0, 1u8 is the record type (1 byte), v P t0, 1u16 is the protocol version (2
bytes), l P t0, 1u16 is the byte representation of the byte length of m (2
bytes).

2. Formation of the protected record header: header1 “ t}v}str16pintplq `
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|mac|q.

3. Formation of the protected record: PRec “ header1}c, where c is calculated
by the following way: c “ TLS-REC.EpKsn, header,m, pIV, snqq.

(a) Formation of the unprotected record Rec “ header}m.
(b) Calculation of the message authentication code: mac “

OMAC.TAGpKsn
MA, str64psnq}Recq.

(c) Calculation of the current initialization vector: IV sn “

strn{2ppintpIV q ` snq mod 2n{2q.
(d) Encryption of the unprotected record payload and the mes-

sage authentication code from the previous step: c “

CTR-ACPKM.EpKsn
SE, IV

sn,m}macq.

The receiver decrypts the protected record PRec with the sequential number
sn by the following way:

1. Formation of the header header1 “ t}v}l of the protected record PRec and
verification of correctness of its format. If the result of verification is error,
then the error code unexpected_message or decode_error is sent, and
the connection is terminated by the receiver.

2. Verification of the following condition on the value l from the header: the
length intplq doesn’t exceed 214 ` 16 bytes. If the verification result is
error, then the error code record_overflow is sent, and the connection is
terminated by the receiver.

3. Accumulation of the data of length intplq by the receiver to form a cipher-
text c.

4. Formation of the unprotected record header: header “ t}v}str16pintplq ´
|mac|q.

5. Formation of the record Rec “ header}m, where m is calculated by the
following way: m “ TLS-REC.DpKsn, header, c, pIV, snqq:

(a) Calculation of the current initialization vector: IV sn “

strn{2ppintpIV q ` snq mod 2n{2q.
(b) Decryption of the record payload and the message authentication code:

m}mac “ CTR-ACPKM.DpKsn
SE, IV

sn, cq.
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(c) Formation of the unprotected record Rec “ header}m.

(d) Verification of the message authentication code: true
?
“

OMAC.VFpKsn
MA, str64psnq}Rec,macq. If the verification result is

error, then the error code bad_record_mac is sent, and the connec-
tion is terminated by the receiver.

6.1 Relevance of the security model

Before analyzing the target protocol in the IND-sfCCSA model, it is neces-
sary to make sure that the model really covers all the capabilities of an adversary,
which it has in practice and which largely depend on a specific implementation
of the protocol.

Below we present the justifications for accordance the capabilities, provided
by the experiment in the IND-sfCCSA model, to the real capabilities of the
active adversary.

— The IND-sfCCSA model allows the adversary to make the encryption and
decryption queries with arbitrary associated data, while the Record proto-
col allows sending and receiving only those records which header satisfies
a strictly defined format. Note that the fact of success or failure of veri-
fying the header format does not give the adversary any additional secret
information about the internal state of the protocol, since the header is
transmitted in the channel in the open form and is verified immediately
before the start of the record decryption. Therefore, the theoretical capa-
bilities of the adversary in this case are even wider than practical ones.

— The decryption oracle in the IND-sfCCSA model can return either plain-
text or the error symbol K, which in the Record protocol corresponds to
the bad_record_mac error code. Other error codes can occur only when
verifying the header format, and in accordance with the preceding rationale
item, the absence of analysis of these errors in the model cannot lead to
cryptographically dangerous consequences, therefore, consideration of the
type of attack with processing various errors (IND$-sfCCA3 [20], SAE [14])
is redundant.

— The IND-sfCCSA model allows the adversary to encrypt and decrypt data
of any bit length, unlike the Record byte-oriented protocol, which controls
the record length by verifying the header (record_overflow error). In the
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model, the query length is the parameter of the adversary, the restriction
on which is taken into account when obtaining specific estimates of the
insecurity value.

— Despite data to be protected is received from the transport layer proto-
col as a stream, the Record protocol starts processing of the record and
the subsequent transfer of service information (for example, an upper level
protocol error code) to the channel only after accumulating enough data
necessary to form the entire record. Therefore, the queries processing per-
ceived by the oracles corresponds to the message processing by protocol on
practice, and, thus, consideration of the type of attack with the possibility
of ciphertext fragmentation (CFA [33]), as well as attacks with adaptive
selection of text blocks (BCPA [27] and IND-BLK-CCA [21]), is redundant.

— The IND-sfCCSA model does not take into account the time of query pro-
cessing by the oracles, which obviously does not correspond to the practice,
where the time depends primarily on the record length. However, in the
case of the Record protocol construction, the record length is not confiden-
tial information, since it is written to the header. Length hiding property is
useful and was introduced in TLS 1.3, but when using TLS 1.2 this prop-
erty should be achieved by some higher-level solutions, so we do not take
this property into account when analyzing TLS 1.2.

— The Record protocol does not transfer an incoming message to the appli-
cation level until it is verified for integrity, which means that consideration
of the INT-RUP and AE-RUP [12] models is redundant.

7 Applying results to TLS-REC

7.1 TLS-REC scheme

Consider the stateful MtE-AD scheme TLS-REC. In TLS-REC the OMAC
function with T “ t0, 1un is used as an MA scheme, and the CTR-ACPKM
encryption mode with IV “ t0, 1un{2 is used as a CRD-scheme SE. For TLS-REC
the set AD is the set t0, 1u40 (5 bytes) and the set S is the set IVˆZ2n{2. Then
we define functions from Definition 6 as follows:

– encodeMApad,m, stq ÝÑ pm “ str64pst.snq}ad}m;
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– encodeSEpm, tq ÝÑ rm “ m}t, decodeSEprmq ÝÑ pm, tq “

pmsb|rm|´τprmq, lsbτprmqq;

– StateToIVpstq ÝÑ IV “ strn{2ppst.sn` intpst.IV qq mod 2n{2q;

– Nextpstq ÝÑ st1 “ pst.IV, pst.sn` 1q mod 2n{2q.

It is easy to see that Next is bijective. Note that if for st, st1 P S exists
α : Nextαpstq “ st1 then st.IV “ st1.IV (denote this property by *). Therefore,
αpstq “ 2n{2 for all st “ pIV, snq. Obviously, decode is injective. The function
encodeMA is defined as concatenation of fixed length bit strings str64pst.snq P
t0, 1u64, ad P t0, 1u40 and variable length string m P t0, 1u˚. Due to this and
the property *, encodeMA is a 64-adding collision free function with according
to Next. If for st, st1 P S the property * holds and st1.sn ‰ st.sn, then pst.sn`
intpst.IV qq ı pst.sn1`intpst.IV qq mod 2n{2. Therefore, the StateToIV function
is injective with according to Next.

Then we can apply the results of Theorem 1 to the TLS-REC scheme.
Now consider the TREE generator. Note that the C3 constant in the

TLSTREE definition specifies the parameter h — the amount of messages pro-
cessed on one «leaf» key. Therefore we can define the TREE algorithms as
follows:

1. TREE.Kpq Ñ K “ pKMA, KSEq

2. TREE.NpK, iq Ñ Ki “ pTLSTREEpKMA, i ¨ hq,TLSTREEpKSE, i ¨ hqq

Consider the pTLS-REC,TREEqh scheme with fixed h. Note that an ad-
versary can not choose initial state pIV, snq when attacking Record protocol
because it is equal to pIV 1, 0q where IV 1 is a part of key material produced by
the Handshake protocol. So the capabilities of adversaries in the IND-sfCCSA
model are wider then in practice. Note that for initial state pIV 1, 0q the scheme
pTLS-REC,TREEqh is equal to the one described in Section 6.

Thus, we can apply the results of Theorem 3 to the pTLS-REC,TREEqh
scheme with fixed h.

7.2 Applying obtained bounds on practice

Let M be some security model and AdvMpAq is some characteristic of pos-
sibilities of A when implementing the threat in the model M . Let T be a tuple
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of limitations on computational resources of an adversary and any other pa-
rameters characterizing its work in the model M . T may additionally contain
the values limiting the total number of queries to the oracles considered by the
modelM . For example, in the ROR-CPNA model this tuple contains time com-
plexity of the adversary, number of queries to encryption oracle and the maximal
length of one query. The set ApT q of the adversaries, satisfying the limitations
that are defined by T , is finite. By InSecMpT q we’ll denote the maximal value
AdvMpAq for adversaries A in the set ApT q.

Consider particular numbers of messages processed on one key and queries,
those are defined in [8] and [25]. The TLS 1.2 specification define that if the MAC
value is incorrect then the connection must be aborted with bad_record_mac
fatal error. So number of test queries qD is at most 1. Furthermore, the length
of one record is no more then l “ 217 ` n bits, where n is a bit length of the
MAC tag.

Considering HMAC as a base primitive, we bound InSecPRFHMACpt, qq as
q2

2256

using estimates from [29]. Note that to process qE messages we need
P

qE
h

T

keys,
where h is a number of messages processed on one key. Let the section length
in the CTR-ACPKM mode be s bits. Then the result of Theorem 3 applied to
pTLS-REC,TREEqh scheme can be rewritten using InSec notion.

InSecIND-sfCCSA
pTLS-REC,TREEqhpt, qE, 1, lq ď

ď 2 ¨ InSecPRGTLSTREEpt1, Nq `N ¨ InSec
ROR-CPNA
СTR-ACPKMpt2, h, rl{ns` 1q`

` 2N ¨ InSecPRFOMACpt3, h` 1, rl{ns` 1q `
QqE
h

U

¨
1

2n
.

(1)

There values t1, t2, t3 are obtained as computational complexity of adver-
saries from Theorem 3. Apply bounds of TLSTREE, СTR-ACPKM and OMAC
security from Appendix C.
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InSecIND-sfCCSA
pTLS-REC,TREEqhpt, qE, 1, lq ď

2 ¨ 2 ¨

ˆ

1`

R

N

p213q2

V

`

R

N

213

V˙

¨ InSecPRFHMACpt4, 2
13, 2q`

`

QqE
h

U

¨
217

s
¨ InSecPRP-CPAE pt5,

s

n
` 2q`

`

QqE
h

U

¨

217

s ¨ p
s
n ` 2q2

2n`1
` 2

QqE
h

U

¨ InSecPRP-CPAE pt6, ph` 1q ¨ prl{ns` 1q ` 1q`

`

QqE
h

U

¨
4 ¨ ph` 1q2 ¨ prl{ns` 1q2

2n
`

QqE
h

U

¨
1

2n
.

Consider used block cipher E as ideal (then InSecPRP-CPAE pt, qq “ 0). Apply-
ing HMAC and block cipher bounds we achieve the following estimate:

InSecIND-sfCCSA
pTLS-REC,TREEqhpt, qE, 1, lq ď

QqE
h

U

¨
4

211
¨

227

2256
`

QqE
h

U

¨

217

s ¨ p
s
n ` 2q2

2n`1¨
`

`

QqE
h

U

¨
4 ¨ ph` 1q2 ¨ prl{ns` 1q2

2n
`

QqE
h

U

¨
1

2n

Note that if qE is less then h then we can rewrite bound 1 as:

InSecIND-sfCCSA
pTLS-REC,TREEqhpt, qE, 1, lq ď

ď 2 ¨ InSecPRGTLSTREEpt1, 1q ` InSecROR-CPNA
СTR-ACPKMpt2, qE, rl{ns` 1q`

` 2 ¨ InSecPRFOMACpt3, qE ` 1, rl{ns` 1q `
1

2n
. (2)

Analogously applying abovementioned bounds we receive:

InSecIND-sfCCSA
pTLS-REC,TREEqhpt, qE, 1, lq ď

ď
12

2256
`

217

s ¨ p
s
n ` 2q2

2n`1
`

4 ¨ pqE ` 1q2 ¨ prl{ns` 1q2

2n
`

1

2n

With particular values of s, n and h we get the bounds presented in Table 1.
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Ciphersuite s n h Security bound

qE ă h qE ě h

. . ._KUZNYECHIK_CTR_OMAC 215 27 64 q2E ¨ pl ` 27q2 ¨ 2´140 qE ¨ pl ` 27q2 ¨ 2´126

. . ._MAGMA_CTR_OMAC 213 26 4096 q2E ¨ pl ` 26q2 ¨ 2´74 qE ¨ pl ` 26q2 ¨ 2´62

Table 1: Security bounds for TLS-REC ciphersuites.

8 Conclusion

This paper introduces the IND-sfCCSA model that allows to analyze a wide
class of protocols those provide secure channels. We obtain security bounds for
the general stateful MAC-then-Encrypt with associated data scheme and for the
general stateful AEAD scheme with pseudorandom generator. The presented
theorems allows to estimate the security of the above-mentioned scheme by
the security of the used cryptographic schemes such as encryption mode, MAC
scheme and pseudorandom generator. This paper shows the relevance of the
IND-sfCCSA model for the Record protocol and presents the security bounds
for the new specification of this protocol defined by the Russian ciphersuites
(bounds 1, 2; Table 1).

The open problems are to prove the tightness of the bounds or to improve
them. The second objective can be achieved by improving the proof in the
IND-sfCCSA model or by improving the model. One of the way to improve the
model is to make the capabilities of adversary more real, for example do not let
him set or know the IV value, since in TLS 1.2 with the Russian ciphersuites
IV is a part of secret key material.
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A Security models

A.1 Basic security models

In this appendix we formally define basic security models.

Definition 13. For a cipher E with parameters n and k define

AdvPRP-CPAE pAq “

“ Pr
“

ExpPRP-CPA´1
E pAq Ñ 1

‰

´ Pr
“

ExpPRP-CPA´0
E pAq Ñ 1

‰

,

where the experiments ExpPRP-CPA´1
E pAq and ExpPRP-CPA´0

E pAq are defined in
the following way:

ExpPRP-CPA´b
E pAq

if b “ 0 then
P

U
ÐÝ Permpt0, 1unq

else
K

U
ÐÝ t0, 1uk

end if
b1

$
ÐÝ APb

return b1

OraclePbpMq, M P t0, 1un

if b “ 0 then
return P pMq

else
return EKpMq

end if

Definition 14. For an IV-based encryption scheme SE define advantage of
adversary A in ROR-CPNA model as

AdvROR-CPNA
SE pAq “

“ Pr
“

ExpROR-CPNA´1
SE pAq Ñ 1

‰

´ Pr
“

ExpROR-CPNA´0
SE pAq Ñ 1

‰

,

where the experiments ExpROR-CPNA´b
SE pAq, b P t0, 1u are defined in the follow-

ing way:
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ExpROR-CPNA´b
SE pAq

K
$
ÐÝ K

usedÐH

b1 Ð AEncryptbp¨q

return b1

Oracle EncryptbpIV,mq

if IV P used then
return K

end if
usedÐ usedY tIV u
if b “ 0 then

m
$
ÐÝ t0, 1u|m|

end if
cÐ SE.EpIV,K,mq
return c

ROR-CPNA model differs from ROR-CPA in definition of Encrypt oracle.
First in ROR-CPNA model Encrypt oracle takes as input one additional value
IV P IV. It states as initialization vector for the correct work of encryption
scheme. The ROR-CPNA experiment also uses the set used to check if this IV
value was queried yet to avoid the trivial attack. If IV from new query was
queried early then oracle Encrypt returns error(K).

Often the analysis results are received in stronger model IND-CPNA. In
this model the adversary has to distinguish the obtained ciphertexts from the
«garbage», having the capability to adaptively choose plaintexts and nonces
(in a unique manner). This model can’t be applied to Record protocol analysis
because header is simply distinguishable from random value. But this model is
applyable to the cipher modes such as CTR-ACPKM

Definition 15. Let SE “ tSE.K, SE.E, SE.Du be a symmetric encryption
scheme and let A be an adversary. The advantage of A for the scheme SE in
the IND-CPNA model (IND-CPNA-advantage) is defined as

AdvIND-CPNA
SE pAq “

“ Pr
“

ExpIND-CPNA´1
SE pAq Ñ 1

‰

´ Pr
“

ExpIND-CPNA´0
SE pAq Ñ 1

‰

,

where the experiments ExpIND-CPNA´b
SE pAq, b P t0, 1u is defined as follows
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ExpIND-CPNA´b
SE pAq

K
$
ÐÝ K

usedÐH

b1 Ð AEncryptbp¨q

return b1

Oracle EncryptbpIV,mq

if IV P used then
return K

end if
usedÐ usedY tIV u
cÐ SE.EpIV,K,mq
if b “ 0 then

c1
$
ÐÝ t0, 1u|c|

return c1

end if
return c

The following inequality holds:

Statement 1.

InSecROR-CPNA
SE pt, q, lq ď InSecIND-CPNA

SE pt, q, lq.

Definition 16. Let MA be a message authentication scheme and let A be an
adversary. Then the advantage of A in PRF model is defined as:

AdvPRFSE pAq “ Pr
“

ExpPRF´1
MA pAq Ñ 1

‰

´ Pr
“

ExpPRF´0
MA pAq Ñ 1

‰

,

where experiments ExpPRF´b
MA pAq, b P t0, 1u, is defined as follows:

ExpPRF´1
MA pAq

K
$
ÐÝ MA.Kpq

b1
$
ÐÝ ATag1

return b1

Oracle Tag1
pmq

return MA.TAGpK,mq

ExpPRF´0
MA pAq

RndÐÝ H

b1
$
ÐÝ ATag0

return b1

Oracle Tag0
pmq

if E τ 1 P T : pm, τ 1q P Rnd
then

τ
U
ÐÝ T

RndÐÝ RndY tpm, τqu
else

τ ÐÝ τ 1

end if
return τ
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Definition 17. Let G be a pseudorandom generator and let A be an adversary.
Then the advantage of A in PRG model is defined as:

AdvPRGG pAq “ Pr
“

ExpPRG´1
G pAq Ñ 1

‰

´ Pr
“

ExpPRG´0
G pAq Ñ 1

‰

,

where the experiments ExpPRG´1
G pAq and ExpPRG´0

G pAq are defined as follows:

ExpPRG´1
G pAq

St0
$
ÐÝ G.Kpq

OutÐÝ ε

N
$
ÐÝ A

for i do0N-1
pOuti, Sti`1q Ð G.NpStiq

end for
OutÐ pOut0, . . . , OutN´1q

b
$
ÐÝ ApOutq

return b

ExpPRG´0
G pAq

N
$
ÐÝ A

Out
U
ÐÝ BN

b
$
ÐÝ ApOutq

return b

B Security analysis of AEAD schemes

B.1 Security analysis of MtE-AD scheme

Consider the advantage of the adversary A in IND-sfCCSA model for
sfAEAD scheme.

AdvIND-sfCCSA
sfAEAD pAq “

“ Pr
“

ExpIND-sfCCSA´1
sfAEAD pAq Ñ 1

‰

´ Pr
“

ExpIND-sfCCSA´0
sfAEAD pAq Ñ 1

‰

Construction of adversary C. Construct adversary C in PRF model for MA
scheme that uses A as a black box next way
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CTagb

b̂
U
ÐÝ t0, 1u

KSE
$
ÐÝ SE.Kpq

uÐ 0; v Ð 0
sentÐH

stÐ A
pstE, stDq Ð sfAEAD.Initpstq
b1 Ð ASimEnc, SimDec

return b1 “ b̂

SimEncpad,mq

pmÐ encodeMApad,m, stEq

tÐ Tagbppmq
IVE Ð StateToIVpstEq
rmÐ encodeSEpm, tq
cÐ SE.EpKSE, IVE, rmq

sentÐ sentY pad, c, uq
stE Ð sfAEAD.UpdpstEq
uÐ u` 1
return c

SimDecpad, cq

IVD Ð StateToIVpstDq
rmÐ SE.DpKSE, c, IVDq
pm, tq Ð decodeSEprmq
pmÐ encodeMApad,m, stDq
if Tagbppmq “ t then

if ppad, c, vq P sentq or pb̂ “ 0q
then

mÐK

end if
stD Ð sfAEAD.UpdpstDq
v Ð v ` 1

else
mÐK

end if
return m

Adversary C first generate bit b̂ and key KSE at random and then simulates
oracle Encrypt and Decrypt using SimEnc and SimDec to answer the A queries.

Denote ExpIND-sfCCSA´b1,b2
sfAEAD pAq the experiment where the adversary in-

teracts with encryption oracle Encryptb1 and decryption oracle Decryptb2

(ExpIND-sfCCSA´1,1
sfAEAD pAq “ ExpIND-sfCCSA´1

sfAEAD pAq, ExpIND-sfCCSA´0,0
sfAEAD pAq “

ExpIND-sfCCSA´0
sfAEAD pAq).
Note that if adversary C interacts with ExpPRF´1

MA then C simulates to
A experiment ExpIND-sfCCSA´1,1

sfAEAD if b̂ “ 1 and experiment ExpIND-sfCCSA´1,0
sfAEAD

otherwise. If C interacts with ExpPRF´0
MA then he simulates to A experiment

ExpIND-sfCCSA´1,1

sfAEAD1
if b̂ “ 1 and experiment ExpIND-sfCCSA´1,0

sfAEAD1
otherwise. There

sfAEAD1 is sfAEAD scheme with MA changed to random oracle. Random oracle
does not use the key KMA, but for every new value pm P MMA returns value
t

U
ÐÝ T at random.
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The advantage of the adversary C in PRF model is

AdvPRFMA pCq “ Pr
“

ExpPRF´1
MA pCq Ñ 1

‰

´ Pr
“

ExpPRF´0
MA pCq Ñ 1

‰

“

“
1

2
¨

´

Pr
”

ExpPRF´1
MA pCq Ñ 1 | b̂ “ 1

ı

` Pr
”

ExpPRF´1
MA pCq Ñ 1 | b̂ “ 0

ı¯

´

´
1

2
¨

´

Pr
”

ExpPRF´0
MA pCq Ñ 1 | b̂ “ 1

ı

´ Pr
”

ExpPRF´0
MA pCq Ñ 1 | b̂ “ 0

ı¯

“

“
1

2
¨

´

Pr
”

ExpIND-sfCCSA´1,1
sfAEAD pAq Ñ 1

ı

` Pr
”

ExpIND-sfCCSA´1,0
sfAEAD pAq “ 0

ı¯

´

´
1

2
¨

´

Pr
”

ExpIND-sfCCSA´1,1

sfAEAD1
pAq Ñ 1

ı

` Pr
”

ExpIND-sfCCSA´1,0

sfAEAD1
pAq “ 0

ı¯

“

“
1

2
¨

´

Pr
”

ExpIND-sfCCSA´1,1
sfAEAD pAq Ñ 1

ı

´ Pr
”

ExpIND-sfCCSA´1,0
sfAEAD pAq Ñ 1

ı¯

looooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooon

α

´

´
1

2
¨

´

Pr
”

ExpIND-sfCCSA´1,1

sfAEAD1
pAq Ñ 1

ı

´ Pr
”

ExpIND-sfCCSA´1,0

sfAEAD1
pAq Ñ 1

ı¯

looooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooon

β

.

Then α “ 2 ¨ AdvPRFMA pCq ` β. Estimate the α value. Note that

AdvIND-sfCCSA
sfAEAD pAq “

“ Pr
”

ExpIND-sfCCSA´1,1
sfAEAD pAq Ñ 1

ı

´ Pr
”

ExpIND-sfCCSA´0,0
sfAEAD pAq Ñ 1

ı

“

“ Pr
”

ExpIND-sfCCSA´1,1
sfAEAD pAq Ñ 1

ı

´ Pr
”

ExpIND-sfCCSA´1,0
sfAEAD pAq Ñ 1

ı

`

` Pr
”

ExpIND-sfCCSA´1,0
sfAEAD pAq Ñ 1

ı

´ Pr
”

ExpIND-sfCCSA´0,0
sfAEAD pAq Ñ 1

ı

“

“ α ` Pr
”

ExpIND-sfCCSA´1,0
sfAEAD pAq Ñ 1

ı

´ Pr
”

ExpIND-sfCCSA´0,0
sfAEAD pAq Ñ 1

ı

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

γ

.

Then, α “ AdvIND-sfCCSA
sfAEAD pAq ´ γ, and estimate can be rewritten as

AdvIND-sfCCSA
sfAEAD pAq “ 2 ¨ AdvPRFMA pCq ` β ` γ.

Estimate the value β “ Pr
”

ExpIND-sfCCSA´1,1

sfAEAD1
pAq Ñ 1

ı

´

Pr
”

ExpIND-sfCCSA´1,0

sfAEAD1
pAq Ñ 1

ı

.

Introduce the following modifications of the experiment: Exp
IND-sfCCSAj´1,1

sfAEAD1
,
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j “ 0, 1, . . . , qD. The encryption oracle Encrypt1 does not change and the de-
cryption oracle Decryptb, b P t0, 1u is defined as follows:

Exp
IND-sfCCSAj´1,1

sfAEAD1
pAq

K
$
ÐÝ sfAEAD.Kpq

uÐ 0, v Ð 0, r Ð 0
sentÐH

stÐ A
pstE, stDq Ð sfAEAD.Initpstq

b1 Ð AEncrypt1,Decryptb

return b1

Oracle Decrypt1pad, cq

mÐ sfAEAD.DpK, ad, c, stDq
if ppad, c, vq R sentq then

if pr ă jq then
mÐK

end if
r Ð r ` 1

end if
if pm ‰ Kq then

if ppad, c, vq P sentq then
mÐ K

end if
stD Ð sfAEAD.UpdpstDq
v Ð v ` 1

end if
return m

In this modification the decryption oracle Decrypt1 returns error while an-
swering to first j testing queries regardless of their correctness.

Note that ExpIND-sfCCSA0´1,1

sfAEAD1
is equal to ExpIND-sfCCSA´1,1

sfAEAD1
and

Exp
IND-sfCCSAqD´1,1

sfAEAD1
is equal to ExpIND-sfCCSA´1,0

sfAEAD1
.

So the following equation holds:

β “ Pr
”

ExpIND-sfCCSA´1,1

sfAEAD1
pAq Ñ 1

ı

´ Pr
”

ExpIND-sfCCSA´1,0

sfAEAD1
pAq Ñ 1

ı

“

“ Pr
“

ExpIND-sfCCSA´1
sfAEAD1

pAq Ñ 1
‰

´ Pr
”

ExpIND-sfCCSA´1,0

sfAEAD1
pAq Ñ 1

ı

“

“ Pr
”

ExpIND-sfCCSA0´1,1

sfAEAD1
pAq Ñ 1

ı

´ Pr
”

Exp
IND-sfCCSAqD´1,1

sfAEAD1
pAq Ñ 1

ı

“

“

qD´1
ÿ

j“0

´

Pr
”

Exp
IND-sfCCSAj´1,1

sfAEAD1
pAq Ñ 1

ı

´ Pr
”

Exp
IND-sfCCSAj`1´1,1

sfAEAD1
pAq Ñ 1

ı¯

looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

µj

.

Estimate µj for some j P t0, . . . , qD ´ 1u.
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Let ωj be an event such that j ` 1-th adversary query is a correct testing
query (adversary forged ). Note that Exp

IND-sfCCSAj`1´1,1

sfAEAD1
returns K answering

to this query and Exp
IND-sfCCSAj´1,1

sfAEAD1
returns some value m ‰K. Note that ωj

probability is determined by randomness source of the adversary A, random key
KSE and the choosing mac values at random. Then the value of j ` 1-th query
depends on randomness source of the adversary A anf the previous answers from
oracles.

But when the j ` 1-th testing query is formed both Exp
IND-sfCCSAj´1,1

sfAEAD1

and Exp
IND-sfCCSAj`1´1,0

sfAEAD1
have returned identical answers so the distribu-

tions are identical too. It is true because the encryption oracle Encrypt1

is equal and Decrypt1 decryption oracle returned only error value K. Then
the distributions those determine the probability of ωj event in experiments
Exp

IND-sfCCSAj´1,1

sfAEAD1
pAq and Exp

IND-sfCCSAj´1,1

sfAEAD1
pAq are indistinguishable for every

adversary A. Moreover if the event ωj does not occured for any j then the distri-
butions on results of experiments ExpIND-sfCCSA´1

sfAEAD1
pAq and ExpIND-sfCCSA´1,0

sfAEAD1
pAq

are indistinguishable too.
So for any j P t0, . . . , qD ´ 1u:

µj “ Pr
”

Exp
IND-sfCCSAj´1,1

sfAEAD1
pAq Ñ 1

ı

´ Pr
”

Exp
IND-sfCCSAj`1´1,0

sfAEAD1
pAq Ñ 1

ı

“

“ Pr rωjs ¨
´

Pr
”

Exp
IND-sfCCSAj´1,1

sfAEAD1
pAq Ñ 1 | ωj

ı

´ Pr
”

Exp
IND-sfCCSAj`1´1,1

sfAEAD1
pAq Ñ 1 | ωj

ı¯

loooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooon

ď1

`

` Pr rωjs ¨ Pr
”

Exp
IND-sfCCSAj´1,1

sfAEAD1
pAq Ñ 1 | ωj

ı

´ Pr
”

Exp
IND-sfCCSAj`1´1,0

sfAEAD1
pAq Ñ 1 | ωj

ı

loooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooon

“0

ď

ď Pr rωs .

Estimate the probability Pr rωjs.
Denote by pad1, c1q the j ` 1-th testing request to the decryption oracle for

some counter value v1 and the internal state st1D. Let pm1 be such that pm1 “

encodeMApad
1,m1, st1Dq, pm

1, t1q “ decodeSEpSE.DpKSE, IVD, c
1qq.

Since the request pad1, c1q is testing, i.e. pad1, c1, v1q R sent, then one of the
following conditions is met:

1. at the time of processing the request pad1, c1q, the counter value u is not
greater than the value of v1 (the record with the number v1 has not yet
been sent to the channel by an honest sender).
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2. ad ‰ ad1 _ c ‰ c1, where pad, cq is a query to the oracle Encrypt1 with
the value of the counter u “ v1 and the internal state stE “ st1D (trivial
query).

Let us show that the j`1-th testing request to the decryption oracle causes
a new request to the random oracle.

The first case. By the condition of the theorem, the number of queries to the
oracle Encrypt1 is not greater than αmin, and the trivial queries to the oracle
Decrypt1 are not greater than αmin´ 1. Also, due to the definition of the oracle
Decrypt1, the preceding testing queries do not increase the value of the v counter,
therefore v1 ă alphamin (counter from zero). Therefore, due to the properties of
the Next function, when processing all queries to the Encrypt1 oracle with u ‰ v1,
the states st˚ neqstD were used. Thus, the inequality encodeMApad

˚,m˚, st˚q ‰
pm1 holds for any ad˚,m˚ due to the encodeMA is collision free function with
according with the function Next.

Recall that the oracle Decrypt1 by definition does not handle all previous
requests and returns K in response.

Thus, the value of pm1 has not previously arrived at the input of a random
oracle.

The second case. Since the reasoning above for the first case is true for
the second case, it suffices to show that pm1 ‰ pm, where pm is value corre-
sponding to the trivial query pad, cq such that pm “ encodeMApad,m, st

1
Dq,

pm, tq “ decodeSEpSE.DpKSE, IVD, cqq.
Note that

– if ad ‰ ad1, then pm1 ‰ pm, because encodeMA is collision free function with
according with the function Next.

– if c ‰ c1 and ad “ ad1, then at least one of the conditions m ‰ m1 or t ‰ t1

is met because SE is CRD-scheme and decodeSE is injective. Then

– if m ‰ m1, then pm ‰ pm1 , because encodeMA is collision free function
with according with the function Next.

– if pm “ m1q and pt ‰ t1q, then pm “ pm1 and t “ t1, because random
oracle returns equal values for equal inputs.
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Thus, in the second case, the value of pm1 has not previously arrived at the
input of a random oracle.

Therefore, the required probability is estimated from above by the proba-
bility of guessing the value t U

ÐÝ T , i.e.

Pr rωjs ď
1

2τ
, @j P t0, . . . , qD ´ 1u

Thus, the bound takes the form

AdvIND-sfCCSA
sfAEAD pAq “ 2 ¨ AdvPRFMA pCq `

qD
2τ
` γ.

Construction of adversary B. We now estimate the value of γ by constructing
an adversary B for the SE scheme in the ROR-CPNA model, which uses A as
the black box.

BEncryptb

KMA
$
ÐÝ MA.Kpq

stÐ A

pstE, stDq Ð sfAEAD.Initpstq
b1 Ð ASimEnc, SimDec

return b1

SimEncpad,mq

pmÐ encodeMApad,m, stEq

tÐ MA.TAGpKMA, pmq
rmÐ encodeSEpm, tq
IVE Ð StateToIVpstEq
cÐ EncryptbpIVE, rmq
stE Ð sfAEAD.UpdpstEq
return c

SimDecpad, cq

return K

By definition qE ď αmin. Therefore, by virtue of the injectivity of the func-
tion StateToIV with according to Next condition holds IVE R used.

Thus, with b “ 0 the adversary B simulates the conditions of the experiment
ExpIND-sfCCSA´0,0

sfAEAD , and with b “ 1 simulates the conditions of the experiment
ExpIND-sfCCSA´1,0

sfAEAD . Therefore,

γ “ Pr
”

ExpIND-sfCCSA´1,0
sfAEAD pAq Ñ 1

ı

´ Pr
”

ExpIND-sfCCSA´0,0
sfAEAD pAq Ñ 1

ı

“

“ Pr
“

ExpROR-CPNA´1
SE pBq Ñ 1

‰

´ Pr
“

ExpROR-CPNA´0
SE pBq Ñ 1

‰

“

“ AdvROR-CPNA
SE pBq
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Substituting the resulting ratio in the estimate, we get

AdvIND-sfCCSA
sfAEAD pAq “ 2AdvPRFMA pCq ` AdvROR-CPNA

SE pBq `
qD
2n
.

B.2 Security analysis of MtE-AD scheme with generator

We construct the adversary D in the PRG model for the G generator,
which uses A as the black box. The adversary D acts as follows. Receiving
as input some sequence from N “ rqE{hs of blocks K0, K1, . . . , KN´1, he
chooses the random bit b $

ÐÝ t0, 1u and models for A experimental conditions
ExpIND-sfCCSA´b

psfAEAD,Ĝqh
pAq, using these blocks as appropriate keys. Note that in the

case of the adversary D in the model PRG ´ 1, Ĝ is the generator G. In the
case of the adversary D in the model PRG ´ 0 , Ĝ “ G1 is the generator that
produces the keys, choosing them equiprobably from the set K independently of
friend After the completion of the experiment, the adversary D outputs 1, if the
withdrawal of the adversary A coincided with the bit b, and 0, in the opposite
case.

Consider the advantage of the adversary D in the PRG model:

AdvPRG
G pDq “ Pr

“

ExpPRG´1
G pDq Ñ 1

‰

´ Pr
“

ExpPRG´0
G pDq Ñ 1

‰

“

“

´

Pr
”

ExpIND-sfCCSA´1
psfAEAD,Gqh

pAq Ñ 1 X b “ 1
ı

` Pr
”

ExpIND-sfCCSA´0
psfAEAD,Gqh

pAq Ñ 0 X b “ 0
ı ¯

´

´

´

Pr
”

ExpIND-sfCCSA´1
psfAEAD,G1qh

pAq Ñ 1 X b “ 1
ı

` Pr
”

ExpIND-sfCCSA´0
psfAEAD,G1qh

pAq Ñ 0 X b “ 0
ı ¯

The bit b is chosen randomly, then the previous expression can be written as
follows:

AdvPRG
G pDq “ Pr

“

ExpPRG´1
G pDq Ñ 1

‰

´ Pr
“

ExpPRG´0
G pDq Ñ 1

‰

“

“

´1

2
¨ Pr

”

ExpIND-sfCCSA´1
psfAEAD,Gqh

pAq Ñ 1
ı

`
1

2
¨ Pr

”

ExpIND-sfCCSA´0
psfAEAD,Gqh

pAq Ñ 0
ı ¯

´

´

´1

2
¨ Pr

”

ExpIND-sfCCSA´1
psfAEAD,G1qh

pAq Ñ 1
ı

`
1

2
¨ Pr

”

Exp
IND-sfCCSA´0
psfAEAD,G1qh

pAq Ñ 0
ı ¯

“

“
1

2

´

Pr
”

ExpIND-sfCCSA´1
psfAEAD,Gqh

pAq Ñ 1
ı

`

´

1´ Pr
”

ExpIND-sfCCSA´0
psfAEAD,Gqh

pAq Ñ 1
ı ¯¯

´

´
1

2

´

Pr
”

Exp
IND-sfCCSAh,N´1

psfAEAD,G1qh
pAq Ñ 1

ı

`

´

1´ Pr
”

ExpIND-sfCCSA´0
psfAEAD,G1qh

pAq Ñ 1
ı ¯¯

“

“
1

2

´

AdvIND-sfCCSA
psfAEAD,Gqh

pAq ´ AdvIND-sfCCSA
psfAEAD,G1qh

pAq
¯

Thus,
AdvIND-sfCCSA

psfAEAD,Gq pAq ď 2 ¨ AdvPRGNG pDq ` AdvIND-sfCCSA
psfAEAD,G1q pAq.
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Estimate the advantage AdvIND-sfCCSA
psfAEAD,G1qh

pAq. To do this, we describe the following
series of experiments HybridjpAq, where j P t0, 1 . . . Nu.

HybridjpAq

K0, K1, . . . , KN´1
U
ÐÝ t0, 1uk

uÐ 0, v Ð 0
sentÐH

stÐ A
pstE, stDq Ð sfAEAD.Initpstq
b1 Ð AHybridEnc, HybridDec

return b1

Oracle HybridEncpad,mq

iÐ tu{hu

if u ă j ¨ h then
m

$
ÐÝ t0, 1u|m|

end if
cÐ sfAEAD.EpKi, ad,m, stEq
sentÐ sentY pad, c, uq
stE Ð sfAEAD.UpdpstEq
uÐ u` 1
return c

Oracle HybridDecpad, cq

iÐ tv{hu

mÐ sfAEAD.DpKi, ad, c, stDq

if pm ‰ Kq then
if pad, c, vq P sent or v ă j ¨ h

then
mÐ K

end if
stD Ð sfAEAD.UpdpstDq
v Ð v ` 1

end if
return m

In these experiments, oracles Encrypt0 and Decrypt0 are modeled on the first
j ¨h requests for the adversary A, and on the rest oracles Encrypt1 and Decrypt1.
We introduce the following notation: Pj “ Pr rHybridjpAq “ 1s. Note that in
this case

γ “ Pr
”

Exp
IND-sfCCSAh,N´1

psfAEAD,G1q pAq Ñ 1
ı

´ Pr
”

Exp
IND-sfCCSAl,N´0

psfAEAD,G1q pAq Ñ 1
ı

“

“ Pr rHybridNpAq Ñ 1s ´ Pr rHybrid0pAq Ñ 1s “ PN ´ P0.

To estimate the value PN ´ P0, let construct an adversary B in the
IND-sfCCSA model for the sfAEAD scheme.
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BEncryptb,Decryptb

j
U
ÐÝ t1, . . . Nu

K0, . . . , Kj´1, Kj`1, . . .
$
ÐÝ t0, 1uk

uÐ 0, v Ð 0
sentÐH

stÐ A
pstE, stDq Ð sfAEAD.Initpstq
b1 Ð ASimEnc, SimDec

return b1

SimEncpad,mq

iÐ tu{hu
if u ă pj ´ 1q ¨ h then

m
$
ÐÝ t0, 1u|m|

cÐ sfAEAD.EpKi, ad,m, stEq
end if

if pj ´ 1q ¨ h ă u ă j ¨ h then
if v ă u and u “ pj ´ 1q ¨ h then

send stE
end if
cÐ Encryptbpad,mq

end if

if u ě j ¨ h then
cÐ sfAEAD.EpKi, ad,m, stEq

end if

sentÐ sentY pad, c, uq
stE Ð sfAEAD.UpdpstEq
uÐ u` 1
return c

SimDecpad, cq

iÐ tv{hu
if v ă pj ´ 1q ¨ h then

mÐ sfAEAD.DpKi, ad, c, stDq
end if

if pj ´ 1q ¨ h ă v ă j ¨ h then
if u ă v and v “ pj ´ 1q ¨ h then

send stD
end if
mÐ Decryptbpad, cq

end if

if v ě j ¨ h then
mÐ sfAEAD.DecpKi, ad, c, stDq

end if

if pm ‰ Kq then
if pad, c, vq P sent or v ă pj ´ 1q ¨ h

then
mÐ K

end if
stD Ð sfAEAD.UpdpstDq
v Ð v ` 1

end if
return m

The adversary B chooses j U
ÐÝ t1, . . . Nu, queries the A initialization data,

and then models for the adversary A the work of its oracles using the SimEnc
and SimDec functions. The functions SimEnc and SimDec are designed so
that the first pj ´ 1q ¨ h queries they simulate oracles Encrypt0 and Decrypt0 of
the adversary A respectively. On the queries from pj ´ 1q ¨ h ` 1 to j ¨ h the
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functions use the own oracles of the adversaryB to respond to the requests of the
adversary A. On the remaining requests, the functions SimEnc and SimDec
simulate oracles Encrypt1 and Decrypt1 of the adversary A. After completing
the experiment, the adversary B outputs the same bit as A.

Note that if the adversary B has access to the oracles Encrypt0 and Decrypt0,
then the following equality holds:

Pr
“

ExpIND-sfCCSA´0
sfAEAD pBq Ñ 1

‰

“

N
ÿ

i“1

1

N
¨ Pi.

And if the adversary B has access to the oracles Encrypt1 and Decrypt1,

Pr
“

ExpIND-sfCCSA´1
sfAEAD pBq Ñ 1

‰

“

N
ÿ

i“1

1

N
¨ Pi´1.

Consider the advantage of the adversary B in the IND-sfCCSA model

AdvIND-sfCCSA
sfAEAD pBq “

“ Pr
“

ExpIND-sfCCSA´1
sfAEAD pBq Ñ 1

‰

´ Pr
“

ExpIND-sfCCSA´0
sfAEAD pBq Ñ 1

‰

“

“

N
ÿ

i“1

1

N
¨ Pi ´

N
ÿ

i“1

1

N
¨ Pi´1 “

1

N
pPN ´ P0q.

Therefore, AdvIND-sfCCSA
psfAEAD,G1qh

pAq “ N ¨AdvIND-sfCCSA
sfAEAD pBq, which completes the proof

of the theorem.

C Basic security estimates

To obtain specific estimates for the TLS-REC protocol, you will need to
recall some estimates for the cryptographic schemes used in the protocol. The
CTR-ACPKM [7] mode is used as the encryption scheme in TLS-REC, the
OMAC [2] mode is used as the MAC scheme, and the TLSTREE 6 function
based on KDF [5] function is used for key derivation.

C.1 Known estimates for CTR-ACPKM, OMAC, KDF

The OMAC mode is analyzed in [26]. This paper formulates the following
statement about OMAC security.
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Theorem 4 (OMAC security).

InSecPRFOMACpt, q, lq ď InSecPRP-CPAE pt1, ql ` 1q `
4q2l2

2nn2
.

The CTR-ACPKM mode is analyzed in [10] This paper formulates the fol-
lowing statement about CTR-ACPKM security.

Theorem 5 (CTR-ACPKM security). Let N be the parameter of
СTR-ACPKM mode. Then for any adversary A with time complexity at most
t that makes queries, where the maximal message length is at most m (m ď

2n{2´1) blocks and the total message length is at most σ blocks, there exists an
adversary B such that

AdvIND-CPNA
СTR-ACPKMN

pAq ď

ď l ¨ AdvPRP-CPAE pBq `
pσ1 ` sq

2 ` . . .` pσl´1 ` sq
2 ` pσlq

2

2n`1

where s “ rk{ns, l “ rm{N s, σj is the total data block length processed under the
section key Kj and σj ď 2n´1, σ1`. . .`σl “ σ. The adversary B makes at most
σ1`s queries. Furthermore, the time complexity of B is at most t` cnpσ` lsq,
where c is a constant that depends only on the model of computation and the
method of encoding.

The KDF function is analyzed in [11] This paper formulates the following
statement on the relationship between the security of the KDF function in the
PRF model and the security of the HMAC function in the PRF model.

Theorem 6 (KDF security).

InSecPRFKDF pT, q, uq ď InSecPRFHMACpT ` q, q, u` 1q.

C.2 TLSTREE security in the PRG model

Recall the construction of a pseudo-random generator with an internal state
from [9], which is a generalization of the TREE algorithm. This construction is
a balanced tree, in which each vertex that is not a leaf corresponds to a separate
pseudo-random generator with an internal state. Each sheet corresponds to the
output unit of the whole structure. The output blocks of all generators, except
those on the lower level, fill the random tape of the generators’ key generation
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algorithms with a lower level. We assume that all levels of this tree are L. More
formally, this definition can be written as follows.

Definition 18. Let Gl “ pKl,Nlq be pseudorandom generators with the set of
states K and the set of blocks B, those are used on level l. Let al be a number of
blocks, which gives each generator on level l. Define a pseudorandom generator
G “ pK,Nq with the set of states K and the set of blocks B as follows

Kpq

St1 Ð K1pq

for l do1L-1
pOutl, Stlq Ð NlpStlq
Stl`1 Ð Kl`1pOutlq

end for
StÐ xSt1, . . . , StL´1, 0y
return St

NpStq

xSt1, . . . , StL´1, iy Ð St
l Ð L´ 1; dÐ i` 1
while d mod al “ 0 do

dÐ td{alu; l Ð l ´ 1
end while
pOutl, Stlq Ð NlpStlq
while l ă L´ 1 do

l Ð l ` 1; Stl Ð KlpOutl´1q

pOutl, Stlq Ð NlpStlq
end while
StÐ xSt1, . . . , StL´1, i` 1y
return pOutL´1, Stq

For this construction, it was proved in [9] that the pseudo-random generator
G will be secure in the PRG model if all the generators Gl used in the con-
struction are secure in the same model. More strictly, the following theorem is
true.

Theorem 7 (Abdalla, Bellare [9]). Let each Gl “ pKl,Nlq be a secure stateful
generator for all l “ 1, . . . , L ´ 1. Let a0 “ 1 Let nl “

śl´1
j“0 al be the total

number of nodes at level l. Let G be the overall stateful generator formed out of
the basic stateful generators as described in Definition 18. Let A be an adversary
for G in the PRG model with time complexity at most t. Then adversaries
B1, . . . , BL´1 exist with time complexity t1 « t such that

AdvPRGG,nL
pAq ď

L´1
ÿ

l“1

nl ¨ Adv
PRG
Gl,al

pBlq

Apply this theorem to the algorithm TREE, defined in Section 6. If we
represent this algorithm as a tree, as suggested in [9], then it is obvious that
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the number of levels is L “ 4, and al “ 213, l “ 1, 2, 3. Thus we receive the
following security estimate for TREE.

AdvPRGTREEpAq ď p1` 213
` p213

q
2
q ¨ 2 ¨ AdvPRGKDF pBq

This unequality can be rewritten as.

InSecPRGTREEpt, p2
13
q
3
q ď

ď p1` 213
` p213

q
2
q ¨ 2 ¨ InSecPRGKDF pt1, 2

13
q ď 228

¨ InSecPRGKDF pt1, 2
13
q.

Note that the additional factor of 2 with terms AdvPRGKDF pBq and
InSecPRGKDF pt1, 2

13q arises from the fact that each generator at the top of the tree
generates keys from the set KSE ˆKMA, using the KDF function twice.

If the algorithm TREE generated less than p213q3 keys, then the estimate
will look like this:

InSecPRGTREEpt, Nq ď

ˆ

1`

R

N

p213q2

V

`

R

N

213

V˙

¨ 2 ¨ InSecPRGKDF pt1, 2
13
q

Applying the estimate for KDF we obtain:

InSecPRGTREEpt, Nq ď

ˆ

1`

R

N

p213q2

V

`

R

N

213

V˙

¨ 2 ¨ InSecPRFHMACpt1, 2
13, 2q
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Abstract

We study security of a fuzzy extractor under two probablistic models of a biometric
vector: a sequence of independent non-equiprobable random variables and a Markov
chain. We propose approaches for estimation of the average amount of work needed for
searching for the correct secret vector of a fuzzy extractor depending on the parameters
of the biometric vector model.

Keywords: biometric identification, fuzzy extractor, Markov chain, sequence of independent
non-equiprobable random variables.

1 Introduction

Fuzzy extractors are cryptographic mechanisms that allow linking the vector
of biometric data with a string of characters, which can be a cryptographic key or
an identification vector, protecting the latter from compromise. Such schemes
are convenient for use, for example, in mobile devices, because they actually
implement a secure storage of user biometric data.

The milestone study [1] proposes formal proofs for the fuzzy extractor se-
curity in the form of evaluaition of the statistical distance between the actual
distribution of vector bits of the output sequence (so-called helper string or
simply helper) of the extractor and the equiprobable distribution. The model
used in this study corresponds to the situation of a single user enrollment. At
the same time, it was shown in [2] that if a user enrolls on different resources
using the same biometric parameters and the attacker has the ability to ana-
lyze the corresponding helpers, then classical constructions of fuzzy extractors
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become insecure. In [3] a set of attacks exploiting helper manipulation for fuzzy
extractors used in physically unclonable functions are presented.

In this paper we consider a situation when the attacker may have informa-
tion about the parameters of the biometric vector bits probability distribution.
Indeed, depending on the biometric technology used, the method of digitizing
the biometric image, technical features of the biometric information registration
device, the specified distribution may differ from the equiprobable one and un-
der certain conditions it could be known to the attacker. If the deviation is not
large, it can be shown that this will not have a significant impact on the security
of fuzzy extractors that uses XOR for linking a secret string and a biometric
vector (this follows from the study [6] of Vigenere cipher security), otherwise,
the attacker can reduce the number of probable variants of a secret string and
mount the search algorithm which complexity is less than the complexity of
brute force algorithm.

We consider two biometric vector models:

– a model in which bits of a biometric vector form a sequence of independent
non-equiprobable random variables;

– a model in which bits of a biometric vector form a Markov chain.

Based on the general methodology described in [4] for the simplest fuzzy
extractor with Hamming correcting code, the paper describes approaches for
estimating the average amount of work of the secret string search algorithm.

The work is organized as follows: the necessary definitions are given in Sec-
tion 2, Section 3 gives the results for the independent non-equiprobable model,
Section 4 gives the results for the Markov chain, Section 5 is devoted to the
comparison of the estimates for the two models considered. Some proofs and
tables are provided in the appendix.

2 Notations and definitions

We will use the following notations throughout the work:

– w – biometric vector,
– n – length of a biometric vector w,
– s – secret string,
– q – helper string (helper),
– k – secret string s length,
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– N “ 2n – total number of binary vectors of length n,
– m “ n´ k – number of parity bits of Hamming code,
– d “ 3 – code distance,
– dist – Hamming distance,
– wt – Hamming weight.

We consider the following fuzzy extractor scheme.
Let C: t0, 1uk Ñ t0, 1un – the encoding function of the correction code,

D: t0, 1un Ñ t0, 1uk – the corresponding decoding function. The fuzzy extractor
based on the bitwise vectorial XOR has the following form:

– Genrws “ xs, qy, where s PR t0, 1uk, q “ w ‘ Crss;
– Reprw1, qs “ Drw1 ‘ qs “ Drw1 ‘ w ‘ Crsss “ s, if distrw,w1s ď d.

If, as already noted, the attacker knows some a priori information about the
distribution of bits of the biometric vector, he can, for example, in accordance
with the approach described in [4], rearrange vectors w in descending order
according to their probabilities, and subsequently perform search and evaluation
of the required vector by the following formula: Crss “ q ‘ w.

Next we will be interested in the average number of steps of the search
algorithm to determine the correct Crss. For simplicity we will consider the
case when Hamming code is used to correct errors.

3 Independent non-equiprobable bits

Consider th case when bits of the biometric vector w are independent and

distributed under Bernoulli law with the known parameter p ‰
1

2
. For the sake

of certainty p ă
1

2
, q “ 1´ p.

Arrange all possible vectors of length n in descending order of their proba-
bility:

w1 “ p0, 0, . . . , 0, 0q,

. . .

wN “ p1, 1, . . . , 1, 1q.

The whole set of binary vectors of the length n is divided into n` 1 classes
W 0, . . . ,W n whose elements have the same probability. W i represents a set of
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vectors of length n and weight i:

|W i
| “

ˆ

n

i

˙

, @wj P W
i : wtpwjq “ i,Prpwjq “ pi ¨ qpn´iq.

We can XOR wj with q “ pq1, . . . , qnq. As a result we obtain the following
set:

s1 “ pq1, . . . , qnq,

. . .

sj “ ppwjq1 ‘ q1, . . . , pwjqn ‘ qnq,

. . .

sN “ pq1 ‘ 1, . . . , qn ‘ 1q.

Note that sk ‘ sj “ wk ‘ wj.
The partition W 0, . . . ,W n generates the corresponding partition of the set

tsj, j “ 1, Nu into subsets S0, . . . , Sn:

|Si| “

ˆ

n

i

˙

,Prpsjq “ pi ¨ qpn´iq, @sj P S
i.

Let’s evaluate the number of codewords in each of S0, . . . , Sn classes. Denote
this numbers correspondingly as K0, . . . , Kn.

Lemma 1. The number K i of codewords in class Si, i “ 2, n is equal to

K i
“

`

n
i´1

˘

´K i´1 ´K i´2 ¨ pn´ pi´ 2qq

i
.

Thus, we got a partition of the set K i “ Kn´i, i “ 0, . . . , pn´ 1q{2.
We have split the set of vectors tsj, j “ 1, Nu into non-crossing spheres with

centers in code words. The number of such spheres is equal to the number of

code words:
n
ř

i“0

K i “ 2k.

Next, we use Arbekov’s approach (see [4]) to estimate the average amount
of work before determining the true secret string of the fuzzy extractor. The
essence of the algorithm is a partial search of the set tsiu. In this set, there
exists l such that sl “ Crss, where s is the secret string. Instead of searching
through the whole ordered set, we will only search through the vectors from its
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initial (highly probable) part rS Ă tsiu, including all the spheres with centers in
the classes S0, . . . , Sr: |rS| “M ă N .

We have:

RpMq “ EξEpR|sl R rSq ` EpR|sl P rSq “

“
1

πpMq

˜

p1´ πpMqq ¨M `

V
ÿ

j“0

jpj

¸

.

We denote here ξ - as the number of steps of guessing algorithm, V “
řr
i“0K

i - the number of spheres in rS, r - the maximum number of the set
sj from rS, M - the number of vectors in highly probable set rS Ă tsiu, which
includes all spheres with centers in classes S0, . . . , Sr: |rS| “M ă N .

With Lemma 1 according to [4] we have, that the average amount of work
is equal to:

RpMq “ pπpMqq´1

˜

p1´ πpMqq ¨M `

V
ÿ

j“0

jpj

¸

“

“

˜

K0
¨

ˆ

qn `

ˆ

n

1

˙

p1qn´1

˙

`

r
ÿ

j“1

Kj
¨
`

pjqn´j `

ˆ

j

1

˙

pj´1qn´pj´1q
`

`
`

n´j
1

˘

pj`1qn´pj`1q
˘

¸´1

¨

«˜

1´

ˆ

K0
`

qn `
`

n
1

˘

p1qn´1
˘

`

`
r
ř

j“1

Kj
`

pjqn´j `
`

j
1

˘

pj´1qn´pj´1q `
`

n´j
1

˘

pj`1qn´pj`1q
˘

˙

¸

¨

¨

˜

r
ř

i“0

K ip1` nq

¸

`

˜

K0
`

qn `
`

n
1

˘

p1qn´1
˘

`
r
ř

j“1

ˆ

j´1
ř

i“1

K i ` 1`
j
ř

i“1

K i

˙

2
¨

¨Kj ¨

ˆ

pjqn´j `
`

j
1

˘

pj´1qn´pj´1q `
`

n´j
1

˘

pj`1qn´pj`1q

˙

¸ff

.
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4 Markov chain

Now we consider the case when biometric vector bits form a homogeneous
Markov chain with a discrete time and two states χ “ t0, 1u. Let the initial
states of Markov’s chain are equiprobable, i.e. pp0q0 “ p

p0q
1 “ 1{2.

In this case, it is difficult to estimate the average amount of work in general.
However, we can propose an algorithm for evaluating the characteristics we are
interested in for the number of specific values of fuzzy extractor parameters.

Let the Markov chain transition matrix is known – P “
ˆ

p00 p01

p10 p11

˙

, where

pij “ Prpxr “ i|xr´1 “ jq, i, j P t0, 1u, @r P t1, 2, . . .u.

Any sample w of this Markov chain could be described by the transition

matrix F “

ˆ

f00 f01

f10 f11

˙

, where fij – the number of transitions from i to j,

i, j P t0, 1u.
We will use the following notations:

– fi` “
ř

jPt0,1u fij;
– f`j “

ř

iPt0,1u fij.

Note that fi` is the sum of elements of the transition matrix F , that is the
number of transitions from the state of i from 1 to pn´1q step. Similarly, f`j is
the sum of elements of column i of the transition matrix F that is, the number
of transitions to the state j from 2 to n step.

Let N pnq
xy pF q be the number of vectors obtained by the Markov chain for n

steps with the transition matrix F , starting from the state x and finishing at
the state y.

4.1 Evaluation of the initial and the final state according to the
matrix F

Let us know the transition matrix F for a sample of the Markov chain for
n steps.

Proposition 1. |f01 ´ f10| ď 1.
Moreover, if f01 ă f10, the vector w starts at 1 and ends at 0.
If f01 ą f10, w starts at 0 and ends at 1.
If f01 “ f10 ‰ 0, w starts and ends at the same state 0 or 1.
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Corollary 1. f01, f10 ď pn´ 1q{2.

Using the statement 1, we can easily restore the initial and final states of
w “ tw1, . . . , wnu according to the following rule:

f01 “ f10 “ 0 :

f00 ą 0 ñ w0 “ wn “ 0;
f11 ą 0 ñ w0 “ wn “ 1;

f01 “ f10 ‰ 0 ñ w0 “ wn “ 0 or w0 “ wn “ 1;
f01 ą f10 ñ w0 “ 0, wn “ 1;
f01 ă f10 ñ w0 “ 1, wn “ 0.

4.2 Recovery of all possible transition matrices F

Note, that the number of transitions in a vector of length n is equal to
ř

i,jPt0,1u fij “ n´ 1.

Proposition 2. Let f01, f10 are fixed.
Then f00 P t0, 1, . . . , pn´ 1q ´ f01 ´ f10u.

Corollary 2. f11 “ pn´ 1q ´ f01 ´ f10 ´ f00 P tpn´ 1q ´ f01 ´ f10, . . . , 1, 0u.

Using the statement 2 and the corollaries 1, 2, we can restore all possible
transition matrices F for n steps for a given Markov chain sample according to
the following algorithm:

1. For all i1 from 0 to pn´ 1q:

2. For all i2 from pn´ 1´ i1q to 0:

3. If ppn´ 1q ´ i1 ´ i2q mod 2 “ 1, then

i3 “ ppn´ 1q ´ i1 ´ i2 ´ 1q{2,

return:
ˆ

i1 i3
i3 ` 1 i2

˙

,
ˆ

i1 i3 ` 1
i3 i2

˙

;

else
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i3 “ ppn´ 1q ´ i1 ´ i2q{2,

return:
ˆ

i1 i3
i3 i2

˙

.

4.3 Evaluation of a Markov chain sample probability with transition
matrix F

The probability of a Markov chain sample w with transition matrix F could
be evaluated according to the following relation:

Prpwq “
1

2

ź

i,jPt0,1u

p
fij
ij .

4.4 Evaluation of a number of Markov chain samples with given
transition matrix F

It was shown in [5] that

N pnq
uv pF q “

ś

iPt0,1u fi`!
ś

i,jPt0,1u fij!
F ˚vu,

where F ˚vu – is a cofactor for element pv, uq of a matrix F ˚ “ tf ˚iju:

f ˚ij “

#

δij ´ fij{fi` , if fi` ą 0;

δij , if fi` “ 0.

Here δij “

#

1 , if i “ j

0 , if i ‰ j
– Kronecker symbol.

4.5 Construction of the highly probable set

After performing the previous steps, we can build a table of the following
form:

r f t00 | f
t
01 | f

t
10 | f

t
11 | PrpF

t
q | N pnq

pF t
q s.

Here the columns contain the following data:

– f tij, @i, j P t0, 1u – elements of the transition matrix of the sample for n
steps;
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– PrpF tq – the probability to get the sample with the transition matrix F t;
– N pnqpF tq “

ř

i1,inPt0,1u
N
pnq
i1,in
pF tq – the number of samples with the transi-

tion matrix F , which is equal to N pnq
i1,in
pF tq, where i1 and in – teh initial

and the final steps.
Note, that from the proposition 1 it follows that:

– N pnqpF tq “ N
pnq
1,0 pF

tq, if f01 ă f10;
– N pnqpF tq “ N

pnq
0,1 pF

tq, if f01 ą f10;
– N pnqpF tq “ N

pnq
0,0 pF

tq `N
pnq
1,1 pF

tq, if f01 “ f10.

We can sort the resulting table by column Pr. We want to get a sample
(highly probable) set of size M . To do this, select the first Z records in the list
so that

řZ´1
t“1 N

pnqpF tq ăM and
řZ
t“1N

pnqpF tq ěM . On the basis of them, we
will build the sample set. To do this, we need to restore N pnq

i1,in
vectors for each

of the M records - Markov’s chain samples with initial and final states i1, in.

After the construction of the sample set, one can perform calculations of the
average amount of work before determining the true secret string, similar to [4].

4.6 Recovery of vectors with the initial and final states and transi-
tion matrix F

We know the initial state j1, the final state j2 and the transition matrix F .
That is, the general form of the sought vectors is as follows

`

1 2 3 . . . n´ 2 n´ 1 n

j1 _ _ . . . _ _ j2

˘

.

Let’s consider a recursive algorithm for recovering unknown bits.
Input:
l – vector length,
j1, j2 – the initial and the final states,
F – transition matrix for pl ´ 1q steps.

Output:
twu – the set of vectors of length l.

The general idea:
Consider the matrix F . Let’s determine whether such matrix allows starting
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from the state j1 (fj1` ě 1) and returning to the state j2 (f`j2 ě 1).
If the answer is yes, we will try to add one bit to the right of the first character
and to the left of the last character, reducing the corresponding matrix elements
F by 1.
The number of unknown characters will thus be reduced by a factor of 2:

`

1 2 3 . . . n´ 2 n´ 1 n

j1 j1
1 _ . . . _ j2

2 j2

˘

.

We repeat these steps for the obtained representations until we have the whole
vector length exhausted.

1. Restore all possible transition matrices F for n steps (cl. 4.2).

2. Sort the obtained set in descending order of probability to get the Markov
chain sample with this transition matrix (cl. 4.3).

3. Determine possible pairs of initial and final states for each F matrix (cl.
4.1).

4. Calculate the number of NijpF q vectors formed along the Markov chain
and having the specified transition matrix, initial and final states (cl. 4.4).

5. Compile the set of vectors to be searched in: for each transition matrix from
the obtained set and the corresponding initial and final states, restore all
possible vectors twu (cl. 4.5, 4.6).

6. Calculate the average amount of work.

5 Comparison of estimates

Figure 5 shows the differences between the average amount of work for
the model with independent non-equiprobable bits RstpM, pst0 q and the Markov
chain model R2pM, p00, p11q. The corresponding tables are given in the appendix
B. For the Markov model, the probabilities of outcomes in order to correspond
to the first model were calculated as values of Markov chain limit probabilities.

As one would expect, the average amount of work in the case of the Markov
chain model is lower than in the case of independent, non-equiprobable bits. It
should be noted that for the bits of biometric vectors in practical applications, it
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Figure 1: Difference of amounts of work for the length of a biometric vector n “ 255 without
truncating of search for the considered models (see Appendix B for details).

is the correlation type dependencies that are observed, so that the second model
seems to be more adequate. However, for the real biometric vector one should
expect the presence of models with different parameters for different bits.

We performed some evaluation of probablistic distribution on real biometric
data. We considered biometric data extracted from AT&T face database with
LBP algorithm. We tested several postprocessing techniques for removal of cor-
related and biased bits, and observed some remnant correlation and bias. This
is supports the adequacy of the considered models.
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A Proofs of the results

A.1 Proof of Lemma 1

Proof. The proof is recursive.
Consider the class S0 “ ts0u, s0 “ q.
Let the vector q be a code word, then K0 “ 1 ùñ K1 “ 0, as @sj P

S1, distps0, sjq “ wtps0 ‘ sjq “ wtpw0 ‘ wjq “ 1 ă d, where wj P W 1, i.e. any
vector from S1 lies in a sphere with the center in the code word q of a single
radius and is not a code word itself.

Now suppose that we have found all Kj, j “ 1, i´ 1, i ě 2. We will find the
number of code words K i in the class Si, obtained by adding various binary
vectors wl P W i of weight i with the vector q. Note that each sphere with the
center in the code word from this class includes

`

i
1

˘

vectors from the class Si´1,
and each vector belongs to only one such sphere.
|Si´1| “

`

n
i´1

˘

– number of vectors in Si´1,
K i´1 – number of code words in the class Si´1,
K i´2 ¨

`

n´pi´2q
1

˘

– number of vectors from Si´1 belonging to spheres with
centers from Si´2. Therefore, the number of vectors belonging to the spheres
with centers from Si is equal to :

ˆ

n

i´ 1

˙

´K i´1
´K i´2

¨ pn´ pi´ 2qq.

Each such sphere includes 1 vectors from Si´1, and the spheres do not in-
tersect. As a result, we get:

K i
“

`

n
i´1

˘

´K i´1 ´K i´2 ¨ pn´ pi´ 2qq

i
, @i ě 2.

If q is not a code word, then K0 “ 0, K1 “ 1. The formula for calculating
the number of code words in each class remains unchanged.

A.2 Proof of proposition 1

Proof. Consider all possible relations between f01 and f10.

1. If f01 “ f10 ‰ 0, then having started the movement from the state of
i P t0, 1u, we will leave it fi,1´i times and we will come back to it f1´i,i “

322



fi,1´i times again, i.e., we will eventually find ourselves in the same state
from which the movement began. At f01 “ f10 “ 0 the vector completely
consists of 0 or 1, depending on f11 and f00.

2. Now let |f01 ´ f10| “ 1. Let’s consider all possible options:

(a) Letf10 “ f01 ` 1. Let’s consider two cases:

– We start from 0. Then we will exit f01 ´ 1 “ f10 times and return
to f10 times. But we still have one more transition from 0 to 1,
because f01 “ f10 ` 1, therefore, the system comes to state 1.

– We start from 0. Then we will leave it f01 times and return to
f10 ´ 1 “ f01 times. But we still have one more transition from
1 to 0, however, we are in the state of 0 and will not be able to
implement it. Therefore, this case is impossible.

3. After considering the previous case (|f01´ f10| “ 1), it becomes clear that
|f10 ´ f01| ą 1 cannot be (otherwise, it will not be possible to exhaust all
the required transitions).

A.3 Proof of the proposition 2

Proof. We fix the initial state of Markov chain sample, for example, 0. Then the
sample should have f01 “starts” from the state of 0 to 1 and f10 “ ‘returns‘” to
the initial state of 0. It will also have f00 and f11 – as 1.

If the values are known to be f01, f10, then by varying the intervals between
the next “start” ’ and “return” ’ to the original state, any value can be obtained
from f00 to pn´ 1q ´ f01 ´ f10.

B Comparison table

– n – the length of the biometric vector w,
– r P t0, . . . , nu – the parameter of the truncated key search algorithm,

– Mprq “
r
ř

j“0

`

n
i

˘

– the power of the sample set,

– R2pM, p00, p11q – the average amount of work before determining the true
secret string in Markov chain model,
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– pst0 – the component of stationary distribution of Markov chain probabili-
ties,

– RstpM, pst0 q – the average amount of work before determining the true key
in independent non-equiprobable bits model (Bernoulli scheme).

n p00 p11 r R2pM,p00, p11q pst RstpM,pst0 q

255 0.2 0.2 55 2190.44... 0.5 2254

255 0.2 0.3 55 2192.32... 0.4667 2241.77...

255 0.2 0.4 55 2196.38... 0.4286 2228.51...

255 0.2 0.5 55 2202.46... 0.3846 2215.55...

255 0.2 0.6 55 2202.99... 0.3333 2203.52...

255 0.2 0.7 55 2194.47... 0.2727 2193.70...

255 0.2 0.8 55 2190.34... 0.2 2186.80...

255 0.2 0.9 55 2177.17... 0.1 2168.82...

255 0.3 0.3 55 2197.68... 0.5 2254

255 0.3 0.4 55 2206.65... 0.4615 2239.88...

255 0.3 0.5 55 2216.08... 0.4167 2224.76...

255 0.3 0.6 55 2212.35... 0.3636 2210.23...

255 0.3 0.7 55 2197.69... 0.3 2197.52...

255 0.3 0.8 55 2192.06... 0.2222 2188.72...

255 0.3 0.9 55 2180.96... 0.125 2173.65...

255 0.4 0.4 55 2219.93... 0.5 2254

255 0.4 0.5 55 2233.34... 0.4545 2237.35...

255 0.4 0.6 55 2219.93... 0.4 2219.81...

255 0.4 0.7 55 2200.69... 0.3333 2203.52...

255 0.4 0.8 55 2192.78... 0.25 2191.20...

255 0.4 0.9 55 2183.42... 0.1429 2178.43...

255 0.5 0.5 55 2254 0.5 2254

255 0.5 0.6 55 2224.18... 0.4444 2233.81...

255 0.5 0.7 55 2202.67... 0.375 2213.04...

255 0.5 0.8 55 2193.37... 0.2857 2195.40...

255 0.5 0.9 55 2185.18... 0.1667 2182.91...

255 0.6 0.6 55 2219.93... 0.5 2254

255 0.6 0.7 55 2202.55... 0.4286 2228.51...

255 0.6 0.8 55 2193.83... 0.3333 2203.52...

255 0.6 0.9 55 2186.20... 0.2 2186.80...

255 0.7 0.7 55 2197.79... 0.5 2254

255 0.7 0.8 55 2193.30... 0.4 2219.81...

255 0.7 0.9 55 2185.70... 0.25 2191.20...

255 0.8 0.8 55 2191.85... 0.5 2254

255 0.8 0.9 55 2182.96... 0.3333 2203.52...

255 0.9 0.9 55 2171.75... 0.5 2254

255 0.2 0.2 255 2212.03... 0.5 2254

255 0.2 0.3 255 2224.51... 0.4667 2252.85...

255 0.2 0.4 255 2231.88... 0.4286 2250.76...

255 0.2 0.5 255 2235.00... 0.3846 2247.12...
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255 0.2 0.6 255 2233.71... 0.3333 2240.98...

255 0.2 0.7 255 2226.98... 0.2727 2230.56...

255 0.2 0.8 255 2212.16... 0.2 2212.06...

255 0.3 0.3 255 2235.77... 0.5 2254

255 0.3 0.4 255 2242.34... 0.4615 2252.62...

255 0.3 0.5 255 2244.87... 0.4167 2249.91...

255 0.3 0.6 255 2242.99... 0.3636 2244.88...

255 0.3 0.7 255 2235.77... 0.3 2235.72...

255 0.3 0.8 255 2220.58... 0.2222 2218.56...

255 0.4 0.4 255 2248.56... 0.5 2254

255 0.4 0.5 255 2250.91... 0.4545 2252.28...

255 0.4 0.6 255 2248.57... 0.4 2248.56...

255 0.4 0.7 255 2241.02... 0.3333 2240.98...

255 0.4 0.8 255 2225.86... 0.25 2225.59...

255 0.5 0.5 255 2254 0.5 2254

255 0.5 0.6 255 2250.91... 0.4444 2251.74...

255 0.5 0.7 255 2243.11... 0.375 2246.14...

255 0.5 0.8 255 2228.33... 0.2857 2233.12...

255 0.6 0.6 255 2248.57... 0.5 2254

255 0.6 0.7 255 2241.66... 0.4286 2250.76...

255 0.6 0.8 255 2227.69... 0.3333 2240.98...

255 0.7 0.7 255 2235.78... 0.5 2254

255 0.7 0.8 255 2223.05... 0.4 2248.55...

255 0.8 0.8 255 2212.21... 0.5 2254

Table 1: Comparison of the results for two models.

325



Information Hiding



Data Embedding Based on Linear Hash
Functions

Boris Ryabko1,2 and Andrey Fionov1,3

1 Institute of Computational Technologies SB RAS, Russia
2 Novosibirsk State University, Russia

3 Siberian State Univ. of Telecommunications and Computer Science, Russia
boris@ryabko.net, a.fionov@ieee.org

Abstract

Embedding hidden data in digital objects is usually performed by introducing some
errors (distortions). If the distortion exceeds a certain bound, the methods of steganal-
ysis can detect the presence of hidden data. We consider general class of stegosystems
based on linear hash functions. The suggested stegosystems allow to transmit secret
information of the amount asymptotically close to the maximum possible under a given
admissible level of distortion.

Keywords: data hiding, data embedding, embedding rate, linear hash function.

1 Introduction

We consider the problem of steganography which can be formulated as the
problem of transmitting messages in such a way that the very fact of trans-
mission be concealed from any observer. To achieve this goal, the messages are
embedded in various innocuous objects (digital photos, audio, video, etc.), often
called cover objects or covertexts, whose transmission cannot raise any suspi-
cion. So an alternative term for steganography is data hiding. The observer who
examines transmitted objects tries to detect the presence of hidden data, which
is the main problem of steganalysis. There is a lot of literature on steganography,
the basics can be found in, e.g., [1].

It is usually assumed that there are two communicating parties – Alice and
Bob. Alice embeds a secret message in a cover object and transmits it to Bob
over an open communications channel. Bob receives the object and extracts
the message. There is Eve who observes over the channel carries out steganal-
ysis of transmitted objects. It is also usually assumed that secret messages are
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encrypted prior to their embedding. So Alice and Bob must agree in advance
on a stego key which can be used for encryption and decryption as well as for
determining some other details of embedding and extracting algorithms.

There is a class of so-called perfect stegosystems where embedding data does
not change the structure and statistical properties of cover objects and, hence,
the presence of hidden information cannot be detected. In particular. efficient
methods of constructing such systems for covertexts generated by sources with
finite memory are suggested in [2].

However, embedding hidden data in digital images, audio and similar “nat-
ural” objects that cannot be modeled by finite memory sources is based on
introducing some errors (distortion). This distortion makes digital objects “less
natural” which is the main hook for steganalysis that permits to detect the
presence of hidden data. So the question arises before stegosystem developers,
how to construct the methods that would allow to embed maximal amount of
information under a given (admissible) level of distortion. Note that this prob-
lem cannot be solved “once and for all” since with the progress in steganalysis
the level of undetected distortion becomes smaller and smaller.

To explain the essence of the problem, let us consider an example. Let Alice
be able to transmit innocuous N -bit messages in which she can change no more
than n bits. (It is supposed that Eve can detect the fact of introducing distortion
if n ` 1 bits or more have been changed). One of the possible Alice strategies
is to select n positions (agreed with Bob) and replace them with the bits of a
secret message (in real systems Alice and Bob often select those positions using
identical pseudorandom number generators). In this case, Alice can transmit
n-bit secret messages and the size of the set of all potentially possible secret
messages is 2n. As we know, the progress in steganalysis restricts the number of
distorted bits n to be much less than the covertext size N . The ratio α “ n{N
is called the embedding rate and, for some covertexts, may be equal to few
percent.

On the other hand, if Alice has freedom to select any n positions in the
covertext, she has the set of possible messages of size not 2n but of a rather
greater value

`

N
n

˘

(more precisely,
řn
i“0

`

N
i

˘

as she may change not exactly n
bits but any their number up to n bits). Consequently, Alice can potentially
transmit secret messages of log

řn
i“0

`

N
i

˘

bits which asymptotically, as N gets
large, equals Nhpαq p1` op1qq, where hpαq “ ´pα logα`p1´αq logp1´αqq is
the binary Shannon entropy, see [3]. We can see that even for small embedding
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rates α “ n{N , the length of embedded message, asymptotically, can be much
greater than n.

The idea of introducing distortion not in fixed n positions of covertext but
in “variable” positions determined by the embedded message, was in one form or
another realized in stegosystems utilizing error-correcting codes. Such systems
were first suggested in [4] and then developed and generalized in [5, 6, 7] and
many other works.

We consider a more general class of stegosystems that incorporates, as spe-
cial cases, the methods essentially equivalent to those based on error-correcting
codes. Running a few forward, we note that the stegosystems suggested in this
paper allow to transmit secret information of the amount asymptotically close
to the maximum possible, i.e. log

řn
i“0

`

N
i

˘

.

2 Problem Setting

Proceed to a formal description of the problem considered. Let there be given
a stegosystem with the set of covertexts Ĉ and the set of admissible distortions
D̂. Denote by c ˚ d a covertext c with introduced distortion d. For instance, Ĉ
may be a set of digital photos in full-color BMP format with resolution 1280ˆ
800 pixels (each pixel is encoded by three bytes, representing the intensities of
red, green and blue color components (RGB)). Various admissible distortions
may be accepted for various stegosystems. For example, in one stegosystem
distortions of not more than 1% of least significant bits (LSB) in any of RGB
components may be admitted. In this case the set of admissible distortions D̂
may be composed of elements represented as three matrices (maps) of zeros and
ones, each of size 1280ˆ 800, where ones indicate the positions which must be
altered by LSB replacement, the share of ones being not greater than 1% in
each matrix. An alternative demand may admit distortions of not more than
1% of LSB, as previously, but distortions in adjacent pixels are prohibited. In
the third case, the distortions are admitted if in any 10 ˆ 10 square there is
not more than 1 bit changed. And so on. If the images are in JPEG format,
different rules establishing the admissible distortions may be applied.

A natural question is related to estimation of the amount of information
which can be covertly transmitted in the system Ĉ, D̂. Let us call this value
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the capacity of the system and denote by γ. Then, evidently,

γ ď log |D̂| , (1)

where, as usually, |D̂| is the number of elements in D̂. (Indeed, each distortion
corresponds to one hidden message, so the number of words of length γ (which
is 2γ) cannot be greater than the number of admissible distortions |D̂|, hence
2γ ď |D̂|).

3 A Solution Based on Linear Hash Functions

We could see in the examples considered that, in many cases, both cover-
texts and distortions may be represented as binary words of equal length and
the process of applying the distortion d to the covertext c is reduced to bitwise
addition modulo 2, i.e. the covertext with introduced distortion may be repre-
sented as w “ c‘d. In this section, we describe a stegosystem Λ whose capacity
is close to the upper bound (1). For this we need a so-called linear hash function
λ defined over the set of words w with values in the set of binary words of a
certain length γλ (for definition of hash functions and their use in cryptography
and computer science in general may be found in many textbooks, see, e.g.,
[1]). We assume that the function λ, as any ordinary hash function, makes good
mixing and for any covertext c P Ĉ and distortion d P D̂ the identity is valid

λpc‘ dq “ λpcq ‘ λpdq . (2)

It is worth noting that the required hash function does not need to be crypto-
graphically secure.

Describe now the sequence of actions of Alice and Bob (or the protocol)
defining the system Λ.

Let Alice have a covertext c P Ĉ and wish to send it to Bob with embedded
secret message s P t0, 1uγλ. To do that Alice computes u “ λpcq, v “ u‘ s, and
finds the distortion d P D̂ satisfying the identity λpdq “ v. Then Alice forms
the stegotext w “ c‘ d and sends it to Bob.

Bob, having received the stegotext w, computes λpwq.
It occurs that λpwq “ s ! That is, Bob could extract the secret message.

More precisely, the following simple yet important theorem is valid:
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Theorem 1. Let the stegosystem Λ be used. If for every word v P t0, 1uγλ there
exists d P D̂ for which λpdq “ v, then λpwq “ s and the system capacity equals
γλ.

Proof. Indeed, from linearity of λ it follows that λpwq “ λpc‘dq “ λpcq‘λpdq.
Due to the system construction λpdq “ v “ u‘s and λpcq “ u hence λpc‘dq “
u‘ pu‘ sq “ s. The theorem is proved.

Remark 1. In order to fulfill the condition that d P D̂ for which λpdq “ v
exists, it is sufficient to require that the values of hash function λ cover entirely
the set of γλ-bit words, i.e. the identity must hold tλpdq : d P Du “ t0, 1uγλ.
Then, evidently, for any v P t0, 1uγλ such d P D̂ can be found that λpdq “ v.
Notice also that the system capacity equals γλ in this case.

4 Linear Hash Functions over Binary Fields

Complexity, performance, as well as the very existence of the described above
stegosystem Λ depends primarily on linear hash function λ which we shall now
consider. We consider only one class of such functions based on the abstract
mathematical theory of Galois fields which finds wide practical application in
the systems of information transmission and storage where it is referred to as
cyclic redundancy check (CRC) codes. To describe the considered class of linear
hash functions we assume that empty and filled covertext objects as well as
distortions are represented by binary words of length N , N ą 0. Every word
w “ wN´1wN´2 . . . w1w0 P t0, 1u

N may be seen as the polynomial

wpxq “ wN´1x
N´1

` wN´2x
N´2

` ¨ ¨ ¨ ` w1x` w0 . (3)

Let m be an integer and

gpxq “ xm ` gm´1x
m´1

` gm´2x
m´2

` ¨ ¨ ¨ ` g1x` g0

be a degree m polynomial. We define the hash function λGpwq as the remainder
from devision of wpxq by gpxq:

λGpwq “ wpxq mod gpxq , (4)

using this notation both for polynomial and the word formed by its coefficients.
Note immediately that from elementary properties of polynomials it follows that
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λGpw1 ‘ w2q “ λGpw1q ‘ λGpw2q , i.e. λG is a linear hash function.
Denote by ΛG the described above stegosystem Λ in the case when the hash

function λG is employed.
It is known that if gpxq is an irreducible polynomial (i.e. the one that cannot

be factored), then the set of all possible polynomials λGpwq constitutes a binary
field F2m (or a Galois field GF p2mq in alternative notation) whose definition and
main properties can be found in many textbooks, see e.g. [8].

Consider an example. Let the covertexts be binary words of length N “

2m´1, m ě 1, and the admissible distortion be 1 bit (in other words, Alice gets
an N -bit word w in which she may change not more than 1 bit for hidden data
transmission). Formally, the set of admissible distortions D̂ may be represented
as D̂ “ ts0, s1, . . . , sNu, where si is a word having single 1 at the i-th position
and zeros at the remaining positions (s0 consisting of zeros only).

To construct the stegosystem ΛG choose a primitive polynomial gpxq of
degree m that constitutes a binary field F2m and let for a word w P t0, 1uN hash
function λGpwq be defined by identities (3) and (4). (Note that the length of
hash values is m bits.)

Proposition 1. The capacity of the stegosystem ΛG equals m bits which is the
maximum possible value.

Proof. Recall that D̂ “ ts0, s1, . . . , sNu, hence the capacity of this stegosystem
cannot exceed log |D̂| “ logpN ` 1q “ m. Let us show now that the capacity
equals m. Indeed, the capacity of stegosystem ΛG is determined in the remark
to Theorem 1. As it follows from the remark, it suffices to show that the values
of hash function λG are different at all possible distortions d P D̂. We defined
the set D̂ so that any element si contains a single 1 bit in the i-th position (s0 is
all zeros). Consequently, λGpsiq “ xi´1 mod gpxq for all i “ 1, 2, . . . , N , see (4).
By definition, the polynomial gpxq is primitive and the property of binary field
dictates that xi´1 mod gpxq are non-zero and different for all i “ 1, 2, . . . , N “

2m ´ 1, (they generate 2m ´ 1 different non-zero elements of the field). Hence
all λGpsiq are different for i “ 1, 2, . . . , N and also differ from λGps0q “ 0.

Consider a more specific example. Let m “ 2 and thus N “ 3. In this case,
the set of admissible distortions D̂ “ t000, 001, 010, 100u (we write the words
in big-endian format, i.e. the least significant bit is the rightmost, for ease of
association with polynomials). Assume that Alice and Bob choose the primitive
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polynomial gpxq “ x2 ` x ` 1. Then the hash function values for the elements
of D̂ are:

λGp000q “ 00 ,

λGp001q “ 1 mod gpxq “ 01 ,

λGp010q “ x mod gpxq “ x “ 10 ,

λGp100q “ x2 mod gpxq “ x` 1 “ 11 .

Suppose Alice has the covertext c “ 101 and wishes to transmit the secret
message s “ 11. By the protocol defining stegosystem Λ, Alice computes u “
λGpcq “ λGp101q “ px2 ` 1q mod px2 ` x ` 1q “ x “ 10. Then Alice finds
v “ u‘s “ 10‘11 “ 01 and determines d P D̂ for which λGpdq “ 01: d “ 001.
Alice introduces distortion d in covertext c: w “ 101‘ 001 “ 100, and sends it
to Bob. Bob, having received the distorted covertext w, computes λGp100q “ 11
and gets the secret message s “ 11.

Remark that with the admissible distortion 1 bit, the considered stegosystem
ΛG has the same capacity as a stegosystem based on Hamming codes, see [7].

5 Potential Capacity of Stegosystems Based on
Linear Hash Functions

In this section, we show that “almost any” stegosystem based on linear hash
function, generally speaking, has the capacity asymptotically close to the max-
imum possible. To do this, we go back to considering the general system Λ. In
this system, Alice transmits in one covertext object γλ bits of secret information
which means, by definition, that the capacity equals γλ so the question of its
evaluation plays an important role. Let us proceed to answering this question.

We start with clarifying the concept of hash function mixing property. Let
λ be a function defined over the binary words of length N and taking values in
the set of binary words of length m, moreover, N ě m ě 1. We refer to this
function as mixing if for any v P t0, 1um

P tλpwq “ vu “ 2´m , (5)

if different w are picked from the set of words t0, 1uN uniformly at random
(with equal probabilities).

Assume now that the sets of covertexts Ĉ and admissible distortions D̂ are
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given, their elements are represented by binary words of length N , and there is
a hash function λ, of which is only known that it possesses the mixing property
(5). Let us estimate the capacity γλ of this system. First, note that with any
(non-zero) value of m and any hash function λ the situation is possible when
the values of hash function λpdq, d P D̂, do not completely cover the set t0, 1um,
i.e.

tv : λpdq “ v, d P D̂u ‰ t0, 1um .

Therefore the described system may have some (non-zero) capacity only with
certain probability. Obviously, only those systems are practically interesting
which have this probability close to 1, say, 1´ 10´8.

It occurs that asymptotically under any arbitrarily small δ ą 0 the capacity
γλ is close to the maximum possible. More formally, the following holds:

Theorem 2. Let the stegosystem Λ be defined on the set of covertexts Ĉ, the
set of randomly selected admissible distortions D̂ and uses a hash function λ
which possesses the mixing property (5). Then for large |D̂| and any δ ą 0 the
inequality

γλ ě log |D̂| ´ log lnp|D̂|{δq (6)

holds with probability 1´ δ (here log denotes binary and ln natural logarithms).

Proof. The proof is based on known solutions of the problem of distributing
balls into boxes. The problem is formulated as follows. There are M boxes into
which K balls are to be distributed uniformly at random, besides, each box can
stow an arbitrary number of balls. A random variable µ0 is defined to be the
number of boxes that remain empty after finishing the distribution of balls. It
is shown in [9] that

Epµ0q ďMe´K{M . (7)

With respect to the stegosystem Λ, we may consider every word from the
set t0, 1um as a box, and the elements of D̂ as the balls. Besides, assume that
the ball d is placed in the box v P t0, 1um´, if λpdq “ v. Note that the mixing
property (5) ensures uniformity of distribution of balls into boxes. So

M “ 2m , K “ |D̂| . (8)

Random variable µ0 being not equal to zero, means that the values of hash
function λpdq do not cover entirely the set t0, 1um under the given D̂. By the
condition of the theorem, it is required that the probability of this event be
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equal to 1´ δ, i.e.
P tµ0 “ 0u “ 1´ δ . (9)

Notice now that, by definition,

Epµ0q “

8
ÿ

j“1

j ˆ P tµ0 “ ju .

It is plain that

Epµ0q ě

8
ÿ

j“1

1ˆ P tµ0 “ ju “ 1´ P tµ0 “ 0u .

From this inequality and (7) we obtain

Me´K{M ě 1´ P tµ0 “ 0u ,

consequently,
P tµ0 “ 0u ě 1´Me´K{M .

By substitution of (9) in the last inequality we obtain

1´ δ ě 1´Me´K{M .

Hence
K{M ´ lnM ď lnp1{δq .

Taking into account that the number of boxes M is less than the number of
balls K (since, according to the theorem condition, we consider large K “ |D̂|),
from the last inequality we obtain

K{M ´ lnK ď lnp1{δq .

By rearranging the last inequality we can see that

M ě K{ lnpK{δq .

Considering that this inequality holds with probability 1´δ and Eq. (8) is valid,
taking logarithms we obtain

γλ ě log |D̂| ´ log lnp|D̂{δq| .
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This completes the proof.

6 Methods of Constructing Stegosystems Based on
Linear Hash Functions

The problem of constructing the system with capacity r close to the maxi-
mum γλ given by (1) essentially depends on the size of the set D̂. If this quantity
is small and all elements of D̂ may be counted in relatively short time, we can
define a hash function λ1 whose values may be recorded for all admissible dis-
tortions d P D̂. Then the maximal value of r can be found such that certain
(e.g. initial) r bits of values of λ1pdq, d P D̂, cover entirely the set t0, 1ur. In this
case, we can slightly modify the hash function by making its value consisted of
those r bits. (It is easy to see that in the modified hash function the property
of linearity is preserved.) The capacity of this stegosystem is obviously r bits. If
Alice and Bob have enough time, they can exhaustively search through several
hash functions to select one with maximal capacity and then use the selected
hash function for stegosystem construction.

However, in many situations in practice the set of admissible distortions D̂
is of very large size so the exhaustive search through all d P D̂ to find exper-
imentally a hash function of maximal capacity is infeasible. Let, for instance,
the placeholders for embedding are the least significant bits of relatively small
images, represented as matrices of zeros and ones of dimensions 100ˆ 100 and
the admissible distortions amount to 2% of symbols. Then the number of ad-
missible distortions equals

ř200
i“0

`

10000
i

˘

" 2100 which precludes the exhaustive
search.

We consider a well-known approach to solving this problem: divide the cover-
text in small pieces and use each piece as a separate covertext. Then the total
amount of admissible distortions is distributed among the pieces. Thus for the
example above the initial covertext of dimensions 100 ˆ 100 can be divided in
200 equal-size pieces with admissible distortion 1 bit per piece. In this case the
stegosystem is greatly simplified and we can use the method based on binary
fields. Unfortunately, the capacity of the system with split covertexts may be
essentially lower than that of initial system. For the example considered, the
potential capacity of initial system is log

ř200
i“0

`

10000
i

˘

„ 1400 (see (1)), while
the capacity of the system with split covertexts is only 200ˆ tlog 51u “ 1000.

Let us derive asymptotic estimates for both stegosystems that allow to judge
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about their capacities in general case. Let the covertexts and admissible distor-
tions be the sets of N -bit words and each word of the admissible distortion set
contains not more than n ones (in other words, distortions in not more than n
symbols of covertext are admitted). So the rate of embedding α “ n{N . Then
from (1) we can see that for any stegosystem Λ its capacity γλ does not exceed
log

řn
i“0

`

N
i

˘

. Using known asymptotic estimates for large N and fixed α, see
[3], we may write

γλ ď Nhpαq p1` op1qq , (10)

where hpαq “ ´pα logα ` p1´ αq logp1´ αqq.
Consider now a simple stegosystem λ1 where each covertext is divided in

n subwords of equal length N{n with admissible distortion 1 bit. We have
seen that such a system can be built using binary fields and its capacity γ1

λ “

n logpN{nq, see Proposition 1. (We do not count for the necessity of rounding
N{n since we are interested in asymptotic estimates.) The last equation can be
presented as

γ1
λ “ Np´α logαq p1` op1qq .

Comparing it with (10) we can see that, asymptotically, when implementing the
stegosystem λ1, the loss in capacity is

Np´p1´ αq logp1´ αqq p1` op1qq .

Upon small α, this value tends to zero hence the loss in implementing the simple
stegosystem gets negligible.
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Abstract

Homomorphic encoding allows to perform certain mathematical operations with the
encoded text and to get the encoded outcome that corresponds to the operations’ re-
sults processed with a plaintext. There exist both fully homomorphic and partially
homographic options (with respect to one or more operations). For practical use of such
an encoding it is necessary to have a homomorphism with respect for at least one op-
eration. Using non-associative operations, we construct in this paper an example of a
cryptosystem based on the El-Gamal system that is homomorphic with respect to two
on-going operations: a group one and a quasi-group one.

Keywords: public-key cryptosystem, homomorphic encryption, non-associative algebraic
structures.

1 Introduction

Fully Homomorphic Encryption (FHE) is a specific cryptographic primitive
that allows to compute the ciphertexts Encpfpm1, . . . ,mtqq without knowing
the decryption key and the original input data m1, . . . ,mt only with the use
of the encrypted data Encpm1q, Encpm2q, . . . , Encpmtq and of the arbitrary
function f . If the encrypted data Encpm1q, Encpm2q, . . . , Encpmtq allows to
compute the ciphertext Encpfpm1, . . . ,mtqq only for certain functions f , the
primitive is called a partially homomorphic encryption.

Cryptographically strong FHE systems may provide new opportunities to
maintain information security in such areas like cloud computing, medical and
financial data processing because they allow to operate data without its prelim-
inary deciphering in an untrusted environment. The very idea of the FHE was
firstly proposed in 1978 in [12] but found no practical implementation.
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The first successful attempt to create a FHE system was the system proposed
by Goldwasser-Micali in 1982 [7]. However, this cryptosystem was homomorphic
only for one operation – modulo 2 addition.

Furthermore, there was a number of systems presented that were homomor-
phic only in one operation, such as widely-known El-Gamal and RSA cryp-
tosystems. The question on existence of FHE remained unsolved. The first ho-
momorphism was developed by D. Boneh, E.-J. Goh and K. Nissim in the system
elaborated in 2005 [5] allowing the computation of any number of additions and
one multiplication of the encrypted messages.

An encryption system homomorphic with respect to addition and multipli-
cation in the residue ring was firstly proposed in the paper by Gentry [6] in 2009.
Afterwards, there appeared more than a dozen of papers providing alternative
options for encrypting systems to be fully homomorphic over residue rings. A
detailed overview of these works can be found in [2].

Despite the use of a certain number of the cryptosystems proposed in real-
world system, it is already proved that the FHE systems over the residue rings
are vulnerable to the known-plaintext attacks [2]. In this regard, a particular
interest may be payed to the homomorphic systems based on non-associative
structures. Such systems shouldn’t be obligatory homomorphic over the residue
rings but they still allow to solve a number of practical issues.

It was already proposed in [8] to use some classes of the groupoids for en-
cryption systems which are homomorphic with respect to a unique operation.
This paper considers the extension of the El-Gamal [9] cryptosystem to quasi-
groups linear over the Abelian group. In this case the resulting system possesses
the homomorphic property with respect to two operations at once: group and
quasi-group.

2 Basic definitions

Let Enc,Dec be an encrypting and decrypting function of a cryptosystem A.
Such a cryptosystem is called homomorphic with respect to an n-ary operation
˚pa1, ..., anq [13] if there exists an effective algorithm M which transforms (for
any set of plaintexts pm1, ...mnq) the input set pEncpm1q, ..., Encpmnqq into
output C such that

DecpCq “ ˚pm1, ...,mnq.
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A particular case of such encryption systems are systems for which

Decp˚pEncpm1q, ..., Encpmnqqq “ ˚pm1, ...mnq.

In other words, homomorphic encryption allows to produce certain math-
ematical operations with encrypted texts and obtain an encrypted result that
corresponds to the results performed with plaintexts.

Following [10], for an element g of a groupoid pΩ, ˚q and given r, l P N, we
define the right r-th and left l-th powers respectively by the equalities:

grrs “ p...ppg ˚ gq ˚ gq. . .q
loooooooooomoooooooooon

r factors

, rlsg “ p. . . pg ˚ pg ˚ gqq...q
loooooooooomoooooooooon

l factors

.

We say that g has commuting right powers, or that g is a CRP-element, if

@m,n P N : grmsrns “ grnsrms. (1)

If this identity is valid for any element g P Ω, then we say that pΩ, ˚q is a
CRP-groupoid.

Similarly, using the identity

@m,n P N : rmsrnsg “ rnsrmsg,

we define elements and groupoids with commuting left powers, CLP-elements
and CLP-groupoids, respectively.

Let us say that a groupoid pΩ, ˚q is a groupoid with commuting powers pCP-
groupoidq if it is a CLP- and CRP-groupoid and moreover, for any g P Ω and
any l, r P N, the following equality holds:

rls
pgrrsq “ prlsgqrrs.

Example. Let pΩ,`q be an Abelian group. Fixing two commuting auto-
morphisms σ, τ P AutpΩq (στ “ τσ) we define a new operation ˚ on Ω by the
following condition:

@ x, y P Ω x ˚ y “ σpxq ` τpyq. (2)

So we obtain a groupoid pΩ, ˚q, which is a quasi-group. Such quasi-groups form
a class of medial quasi-groups i.e. quasi-groups with the identity px˚yq˚pu˚vq “
px ˚ uq ˚ py ˚ vq [1]. According to [10] quasi-group pΩ, ˚q is a CP-groupoid.
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Some medial quasi-groups have already been used in [8] to create encryption
system for homomorphic quasi-group operations ˚.

3 Cryptosystem description

Let pΩ,`q be an Abelian group, and pΩ, ˚q be a medial quasi-group with
operation (2). The commuting powers allow to extend El-Gamal cryptosystems
on quasi-group pΩ, ˚q.

Cryptosystem 1.
1. Public key generation. Selecting an element g P Ω, user A generates

an arbitrary (secret) number rA and computes gA “ grrAs. The pair pg, gAq is
the public key of user A.

2. Encryption. In order to encrypt a message m P Ω user B generates an
arbitrary (secret) number rB and computes gB “ grrBs. Then he computes grrBsA

and mAB “ m` g
rrBs
A . His ciphertext is the pair pgB,mABq.

3. Decrypting. In order to decrypt a ciphertext pgB,mABq user A computes
g
rrAs
B and finds x “ mAB ´ g

rrAs
B .

Denote by AUT pσ, tq the complexity of calculation of σtpaq for an arbitrary
element a of the semigroup pΩ,`q.

Theorem 1. The Cryptosystem 1 operates correctly, the complexity of a mes-
sage encryption is estimated by OpAUT pσ, |Ω|q log2p|Ω|qq operations in the
group pΩ,`q.

Proof. Let pg, gAq be a public key for user A, and pgB,mABq be the result of
encoding of an arbitrary message m P Ω with this key. To decrypt the message
user A computes x “ mAB ´ g

rrAs
B “ m` g

rrBs
A ´ g

rrAs
B . Due to commutation of

the right powers in the quasi-group pΩ, ˚q, we have

g
rrBs
A “ grrAsrrBs “ g

rrAs
B .

Therefore, x “ m`g
rrBs
A ´g

rrAs
B “ m, and the decoding is accomplished correctly.

The estimation in Theorem 1 follows from the fact that complexity of compu-
tation of the element grks in the quasi-group pΩ, ˚q, according to [10], is estimated
by OpAUT pσ, kq log2pkqq operations in the group pΩ,`q.

Remark 1. Conventionally, automorphisms are defined by the action on gen-
erators of the group. In this case, according to [10], the complexity of expo-

343



nentiation, and hence the encryption in the Cryptosystem 1 is estimated as
Oplog |Ω|q. If automorphisms σ, τ have small order in comparison with the or-
der of the group, this valuation equals the estimation of the complexity due to
the classical El-Gamal scheme.

Note that the complexity of revelation of the secret key by an observer having
access to the open information g, grrAs, grrBs does not exceed the complexity of
the right discrete logarithm in the groupoid, i.e. the complexity of solving the
equation

grxs “ h. (3)

Remark 2. The complexity of the right discrete logarithm in the groupoid
depends both on the groupoid structure and on its representation. The solution
to the problem within different structures is researched in [10, 11, 3, 4].

A natural generalization of Cryptosystem 1 consists in combination of right
and left powers.

Cryptosystem 2.
1. Public key generation. User A chooses an element g P Ω, a natural

numbers r ď n, an ordered set of numbers a1, ..., an P N, and computes

gA “
ra1s...rarsgrar`1s...rans.

User’s A public key is the pair pg, gAq.
2. Encryption. In order to encrypt a message m P Ω, user B generates

natural numbers t ď k, an ordered set of numbers b1, ..., bk P N, and computes

gB “
rb1s...rbtsgrbt`1s...rbks.

Then he computes gAB “ rb1s...rbtsg
rbt`1s...rbks
A and mAB “ m`gAB. The ciphertext

is the pair pgB,mABq.
3. Decrypting. In order to decrypt a ciphertext pgB,mABq, user A com-

putes gBA “ ra1s...rarsg
rar`1s...rans
B and finds x “ mAB ´ gBA.

Theorem 2. The Cryptosystem 2 operates correctly. The complexity of message
encryption is estimated by OpN ¨AUT pσ, |Ω|q log2p|Ω|qq operations in the group
pΩ,`q, where N “ maxpn, kq.

Proof. The same as for the Theorem 1.
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Remark 3. It is natural to choose n and k not exceeding the logarithm of the
size of the set Ω.

When using the Cryptosystem 2, the recovery of a message by the user from
the ciphertext is not harder than the problem of generalized discrete logarithm
[10], i.e. of finding some pair of positive integers u, v and some set px1, ..., xvq
xi P N, i P 1, v, satisfying the equation:

rx1s...rxusgrxu`1s...rxvs “ h, (4)

if such numbers exist. At the moment, common approaches to a solution of the
problem are not described yet. Some approaches are developed in [4].

It is well-known that El-Gamal scheme is homomorphic in regard to group
operations. Systems constructed with the help of medial quasi-groups also are
homomorphic in regard to group operations. For further we need an additional
lemma.

Lemma 1. For any elements a and b of the medial quasi-group pΩ, ˚q, and for
any natural numbers n and k the following equations are true:

1. pa` bqrns “ arns ` brns,

2. rkspa` bq “ rksa` rksb,

3. rkspa` bqrns “ rksarns ` rksbrns.

Proof. According to [10], for any element g of the quasi-group pΩ, ˚q, the fol-
lowing equation is satisfied:

grns “ σn´1
pgq ` σn´2

pτpgqq ` ...` σpτpgqq ` τpgq. (5)

If we take g “ a` b, we get

pa` bqrns “ σn´1
pa` bq ` σn´2

pτpa` bqq ` ...` σpτpa` bqq ` τpa` bq.

As σ and τ are homomorphisms of the group pΩ,`q, for any natural number k,
we have

σkpτpa` bqq “ σkpτpaq ` τpbqq “ σkpτpaqq ` σkpτpbqq.
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Using this equality we get

pa` bqrns “
´

σn´1
paq ` σn´2

pτpaqq ` ...` τpaq
¯

`

`

´

σn´1
pbq ` σn´2

pτpbqq ` ...` τpbq
¯

.

The proof of the first equality is finished with the implementation of the identity
(5) for elements a and b.

The second equality is proved in the same way, using the described in [10]
identity:

rksg “ τ k´1
pgq ` τ k´2

pσpgqq ` ...` τpσpgqq ` σpgq. (6)

The last equality follows from the first two ones.

Theorem 3. The cryptosystems 1 and 2 are homomorphic with respect to the
group operation `.

Proof. Since Cryptosystem 1 is a particular case of the system 2, we need to
consider only the Cryptosystem 2.

Let Encpmq, Decpcq be the algorithms of the encryption and decryption,
defined in the points 2 and 3 of the Cryptosystem 2. Let us check that they are
homomorphic with respect to the operation `.

Let c1 “ pg1, s1q, c2 “ pg2, s2q be ciphertexts, got as a result of encryption
of the messages m1 and m2 under a public key k “ pg, gAq.

Apply the algorithm of the decryption Dec to c1 ` c2 “ pg1 ` g2, s1 ` s2q:

Decpc1 ` c2q “ ps1 ` s2q ´
ra1s...rarspg1 ` g2q

rar`1s...rans.

Using Lemma 1 several times, we get

ra1s...rarspg1 ` g2q
rar`1s...rans “

ra1s...rarsg
rar`1s...rans
1 `

ra1s...rarsg
rar`1s...rans
2 .

According to the definition of Dec

s1 ´
ra1s...rarsg

rar`1s...rans
1 “ Decpc1q, s2 ´

ra1s...rarsg
rar`1s...rans
2 “ Decpc2q.

We obtain
Decpc1 ` c2q “ Decpc1q `Decpc2q.

Let us move to consideration of the quasi-group operation ˚.
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Lemma 2. For any elements a, b, c, d P Ω and natural numbers n and k, the
following equalities hold:

1.rkspa ˚ bqrns “ rksarns ˚ rksbrns,

2.pa` bq ˚ pc` dq “ a ˚ c` b ˚ d.

Proof. According to the definition of the operation ˚, a ˚ b “ σpaq ` τpbq.
Therefore,

σpa ˚ bq “ σpσpaq ` τpbqq “ σ2
paq ` σpτpbqq “ σ2

paq ` τpσpbqq “ σpaq ˚ σpbq.

In particular, σparksq “ pσpaqqrks and, similarly, τparksq “ pτpaqqrks. To obtain
the first equality we need to apply Lemma 1 to the elements σpaq and τpbq.

Let us move to the second equality.

pa` bq ˚ pc` dq “ σpa` bq ` τpc` dq.

As σ and τ are homomorphisms of the group pΩ,`q,

σpa` bq “ σpaq ` σpbq, τpc` dq “ τpcq ` τpdq.

If we rearrange the summands, we get

pa` bq ˚ pc` dq “ pσpaq ` τpcqq ` pσpbq ` τpdqq.

Using the definition of the operation ˚ once again, we get the required equality.

Theorem 4. Cryptosystems 1 and 2 are homomorphic with respect to quasi-
group operation ˚.

Proof. We shall use notations from Theorem 3.
Let’s have a look at the elementW “ Decpc1q˚Decpc2q. Using the definition

of the operation Dec, we get:

W “
`

s1 ´
ra1s...rarsg

rar`1s...rans
1

˘

˚
`

s2 ´
ra1s...rarsg

rar`1s...rans
2

˘

.

Let’s apply the second point of the lemma 2:

W “
`

s1 ˚ s2

˘

´
`

ra1s...rarsg
rar`1s...rans
1 ˚

ra1s...rarsg
rar`1s...rans
2

˘

.
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If we apply the first point from lemma 2 several times, we get:

W “
`

s1 ˚ s2

˘

´
`

ra1s...rarspg1 ˚ g2q
rar`1s...rans

˘

.

We see thatW coincides with the result of the decryption of the message c1˚c2 “

pg1 ˚ g2, s1 ˚ s2q. Thus, Decpc1 ˚ c2q “ Decpc1q ˚Decpc2q.

One can show that the built-up systems are not fully homomorphic. Yet
they are homomorphic for many classes of functions.

For example, if we take the cyclic group pZp,`q (p ą 2), the identical
automorphism σ, and τpxq “ ´x, then we can prove that the proposed cryp-
tosystems are homomorphic for an n-ary operation ˚pa1, ..., anq if and only if
the operation ˚ is given by a linear function of a1, ..., an from pZp,`q.
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Abstract

In this article we consider the two-dimensional discrete logarithm problem for the
subgroup G of an elliptic curve over a finite prime field that has an efficient automor-
phism of order 6 (for given P1, P2, Q P G, 0 ă N1, N2 ă

a

|G| find n1, n2 such that
Q “ n1P1 ` n2P2,´N1 ď n1 ď N1,´N2 ď n2 ď N2). For this problem, modification
of the Gaudry-Schost algorithm is suggested, such that for any ε ą 0 there exists an
algorithm which average complexity does not exceed p1` εq0.847

?
N `OεpN

1{4q group
operations for N “ 4N1N2, N Ñ8.

Keywords: Gaudry-Schost algorithm, two-dimensional discrete logarithm problem, efficient
automorphism.

1 Two-dimensional discrete logarithm problem

Definition 1. Discrete logarithm problem.
Given: group G “ xP y, Q P G.
Find: n P t0, . . . , |G| ´ 1u such that Q “ nP .

Definition 2. Two-dimensional discrete logarithm problem.
Given: group G; P1, P2, Q P G, N1, N2 P N, Q “ n1P1 ` n2P2 for some
(unknown) n1 P t´N1, . . . , N1u, n2 P t´N2, . . . , N2u.
Find: n11, n12 P Z such that Q “ n11P1 ` n

1
2P2.

Two-dimensional discrete logarithm problem arises in a number of contexts,
for example, computation of the group order of the Jacobian of curves [9], anal-
ysis of the complexity of solving the discrete logarithm problem for exponents of
bounded height [2]. In general case, the Gaudry-Schost algorithm [9] is the most
efficient algorithm for solving the two-dimensional discrete logarithm problem.
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The basic idea of the algorithm can be described as follows. First, we define the
so-called “tame” and “wild” sets:

T “ t´N1, . . . , N1u ˆ t´N2, . . . , N2u,

W “ t´N1 ` n1, . . . , N1 ` n1u ˆ t´N2 ` n2, . . . , N2 ` n2u.
1

Then, we compute in parallel pseudo-random sequences.

xiP1 ` yiP2, pxi, yiq P T, i “ 1, 2, . . . , (1)
Q` zjP1 ` wjP2, pn1 ` zj, n2 ` wjq P W, j “ 1, 2, . . . (2)

until we get two identical elements in them:

xkP1 ` ykP2 “ Q` zlP1 ` wlP2, (3)

then we can find n11 “ xk ´ zl, n
1
2 “ yk ´ wl.

The average complexity of the Gaudry-Schost algorithm is determined using
the following result of Galbraith and Holmes.

Theorem 1. [6, Theorem 1] Suppose that the following conditions are satisfied.

1. We assume that there are C different colours of balls. The j-th ball sampled
has probability rj,c of being colour c (independent of all previous selections)
where c P t1, . . . , Cu.

pc “ lim
nÑ8

n´1
n
ÿ

k“1

rj,c

exists, and p1 ě p2 ě ¨ ¨ ¨ ě pC ą 0. Let bn,c “ pc ´ n´1
řn
k“1 rj,c. We

assume that there is a constant K such that |bn,c| ď K{n for all c.

2. There are N 1 P N distinct urns. If the j-th ball has color c then the prob-
ability that it is put in urn i is qc,ipN 1q (i.e., independent of previous
colour and urn selections and of k). There exists d ą 0 such that for
every c “ 1, . . . , C and i “ 1, . . . , N 1,

0 ď qc,i ď d{N 1.

There exist constants α, µ ą 0 such that

|ti P t1, . . . , N 1
u : q1,i, q2,i ě µ{N 1

u| ě αN 1.
1despite the fact that the n1, n2 are unknown, we can choose elements from W , as it will be shown later
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Let ZN 1 be the first time that there are two balls of different colours in the
same urn. Then

MpZN 1q “

c

π

2AN 1
`OpN 11{4

q,

Where

AN 1 “

C
ÿ

c“1

pc

¨

˝

C
ÿ

c1“1,c‰c1

pc1

˜

N 1
ÿ

i“1

qc,iqc1 ,i

¸

˛

‚

and the constant in O depends on C, pc, d,K, α, µ, but does not depend on N 1

and qc,i.

The average complexity of the Gaudry-Schost algorithm is calculated by
Galbraith and Ruprai in [7] and equal p2.43 ` op1qq

?
N , where N “ 4N1N2,

op1q Ñ 0, N1, N2 Ñ 8. In the same article an improved version of the algorithm
was proposed with average complexity p2.36` op1qq

?
N .

One can use the automorphism of group G for which the orbit of any element
of the group is calculated much faster than a group operation (this automor-
phism is called efficient) to speed up algorithm for solving the two-dimensional
problem. Let G be a cyclic prime-order group and have an efficient automor-
phism ϕ acting in the group G as a multiplication by λ P t1, . . . , |G|´1u. Then,
just as it is done for the classical discrete logarithm problem [5, 14], you can
speed up the algorithm if you look not for the same elements of the sequences
(1) and (2), but for the same equivalence classes of these elements. Indeed, in
this case, instead of equality (3), we have the equality

ϕspxkP1 ` ykP2q “ Q` zlP1 ` wlP2, (4)

for some s, whence

Q “ pλsxk ´ zlqP1 ` pλ
syk ´ wlqP2,

i.e. n11 “ λsxk ´ zl, n
1
2 “ λsyk ´ wl.

Efficient automorphisms are widely used in software implementations of
cryptographic mechanisms based on elliptic curves [4, 3] in order to obtain
speedup of scalar multiplications. The performance gains can be obtained by
rewriting of kP as k1P ` k2ϕpP q, where ϕ – is an automorphism of an elliptic
curve, and k1, k2 ď Cdecomp

a

|G|.
To compute kP for a random 0 ă k ă |G| (GLV[10], GLS [11] methods)
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one of the following approaches [1] is used.
1. The parameters k1, k2 PR r0,

a

|G|qXZ are selected, and then point kP “
k1P ` k2ϕpP q is calculated, where k ” k1 ` λk2 mod |G|. This approach
is called recomposition.

2. A random parameter k is selected, and then corresponding k1, k2 are deter-
mined to calculate a point. This approach decomposition is more resource
intensive.

In case of using recomposition or decomposition, the problem of finding the
discrete logarithm k can be reduced to finding values of k1, k2 that satisfy

kP “ k1P ` k2ϕpP q,

i. e. solving the two-dimensional discrete logarithm problem with P2 “ ϕpP1q.
There are several modifications of Gaudry-Schost algorithm for the cases of

elliptic curves with efficient automorphism.
1. In the case of subgroup of an elliptic curve y2 “ x3 ` Ax`B over a fi-

nite prime field of p ą 3 elements (it has an efficient automorphism
of order 2) with N1 “ N2 there is algorithm with average complexity
p1` εq1.2533

?
N `OεpN

1
4 q group operations [13], where N “ 4N1N2;

2. In the case of a subgroup of an elliptic curve y2 “ x3 ` Ax over a finite
prime field of p ” 1 mod 4 elements with P2 “ ϕpP1q and N1 “ N2, where
ϕ is an efficient automorphism of order 4, there is algorithm with average
complexity p1` εq0.8862

?
N `OεpN

1
4 q group operations [13], where N “

4N1N2;

3. In the case of a subgroup of an elliptic curve y2 “ x3 `B over a finite
prime field of p ” 1 mod 3 elements with P2 “ ϕpP1q and N1 “ N2,
where ϕ is an efficient automorphism of order 6, there is algorithm with
average complexity p1`εq0.8862

?
N`OεpN

1
4 q group operations [13], where

N “ 4N1N2.
In the latter case the automorphism of order 6 of an elliptic curve

y2 “ x3 `B does not give a corresponding performance gain of
?

6 times. The
purpose of this article is to obtain an optimized version of Gaudry-Schost algo-
rithm for this case. The main idea of modification of Gaudry-Schost algorithm
is to decompose the tame set into smaller ones and use notuniform choice of
elements from these subsets.
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2 Modified Gaudry-Schost algorithm

The prime-order-q subgroup G of an elliptic curve E defined over GF ppq
by the equation y2 “ x3 ` B with p ” 1 pmod 3q, q2 - #E has an efficient
automorphism ϕ of order 6, ϕpx, yq “ pβx,´yq, where β ‰ 1 – the cube root
of 1 modulo p, λ is the root of the equation λ2 ´ λ ` 1 ” 0 pmod qq. For the
point P “ px, yq, the equivalence class is represented by six elements:

tpx, yq, pβx,´yq, pβ2x, yq, px,´yq, pβx, yq, pβ2x,´yqu.

If P2 “ ϕpP1q, then

ϕpaP1 ` bP2q “ apλP1q ` bpλ´ 1qP1 “ ´bP1 ` pa` bqP2,

from where

ϕ2
paP1 ` bP2q “ ´pa` bqP1 ` aP2,

ϕ3
paP1 ` bP2q “ ´aP1 ´ bP2,

ϕ4
paP1 ` bP2q “ bP1 ´ pa` bqP2,

ϕ5
paP1 ` bP2q “ pa` bqP1 ´ aP2,

i. e. the equivalence class of the point aP1`bP2 under the action of the group xϕy
also includes the specified five points. Each such equivalence class corresponds
to a set (class) of pairs

Cpa, bq “ tpa, bq, p´b, a` bq, p´pa` bq, aq,

p´a,´bq, pb,´pa` bqq, pa` b,´aqu. (5)

Theorem 2. Let G be a prime-order-q subgroup of an elliptic curve E defined
over a finite prime field GF ppq by the equation y2 “ x3 ` B with p ” 1
pmod 3q, q2 - #E; ϕ is an automorphism of the group G, ϕpx, yq “ pβx,´yq,
where β ‰ 1 is the cube root of 1 modulo p; λ is the root of the equation
λ2 ´ λ` 1 ” 0 pmod qq such that ϕpx, yq “ λpx, yq. Then for any ε ą 0 there
exists an algorithm for solving the two-dimensional discrete logarithm problem
in G with average complexity p1`εq0.847

?
N `OεpN

1
4 q group operations (with

N1 “ N2, P2 “ ϕpP1q and pn1, n2q, chosen uniformly at random), where N “

4N1N2, N Ñ 8.

Proof. We define the “tame” set T and the set rT of representatives of the classes
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T in the classical way:

T “ tCpa, bq : ´N1 ď a ď N1,´N1 ď b ď N1u.

rT “ t0, . . . , N1u ˆ t1, . . . , N1u Y tp0, 0qu.

We define the sets T ji , j “ 0, . . . , 5, i “ 1, 2 as follows (graphically repre-
sented at the figure 1):

T 0
1 “ tpa; bq : 0 ď a ď N1, 1 ď b ď N1 ´ au,

T 0
2 “ tpa; bq : 0 ď a ď N1, N1 ´ a` 1 ď b ď N1u,

T ji “ ϕpT j´1
i q “ tϕpa; bq : pa; bq P T j´1

i u, j “ 1, . . . , 5, i “ 1, 2.

Then
T i1 X T

j
2 “ m, i, j “ 0, . . . , 5, i ‰ j.

rT “ T 0
1 Y T

0
2 .

Figure 1: figure
Structure of tame set

Figure 2: figure
Values of x, y

Denote by T0 the union of classes from the set T .
Define

Wk “ tCpn1 ` a, n2 ` bq : ´
kN1

2
ď a ď

kN1

2
,´

kN1

2
ď b ď

kN1

2
u
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and

ĂWk “ t´
kN1

2
` n1, . . . ,

kN1

2
` n1u ˆ t´

kN1

2
` n2, . . . ,

kN1

2
` n2u.

We will compute tame and wild sequences as follows

xiP1 ` yiP2,

#

pxi, yiq P T
0
1 , with probability p3

pxi, yiq P T
0
2 , with probability p4 “ 1´ p3

, i “ 1, 2, . . . ,

Q` zjP1 ` wjP2, pzj, wjq P ĂWk, j “ 1, 2, . . .

Then average complexity measured in group operations does not exceed the
total number ZN 1 of values pxi, yiq and pzj, wjq, chosen before the appearance of
pxl, ylq and pzm, wmq such that Cpxl, ylq “ Cpzm, wmq. Further we will estimate
average number of steps of algorithm ZN 1 as it done in [13]. Under the conditions
of the Galbraith-Holmes theorem, we have the following.

p1 “ p2 “
1

2
,

|T | “ |rT | “ |T 0
1 | ` |T

0
2 | “

N

4
,

|T 0
1 | “ |T

0
2 | “

N

8
,

|ĂWk| “ k2N

4
.

However, balls of colour 1 (tame) will fall into urns from the sets T 0
1 and

T 0
2 with probabilities p3 and p4, respectively (p3 ` p4 “ 1). Then

q1,i “

$

’

&

’

%

p3 ¨
8
N , if i P T 0

1

p4 ¨
8
N , if i P T 0

2

0, otherwise
.

Since each class Cpa, bq contains no more than 6 elements, T XWk is divided
into 6 disjoint subsets Uj, j “ 1, . . . , 6, such that each class in Uj gets exactly
j elements from ĂWk, i. e.

q2,i “
4j

N
, i P Uj.
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Besides,
U “ U1 Y U2 “ pU X T

0
1 q Y pU X T

0
2 q.

We get:

AN 1 “
1

2
p
8p3

N

4

k2N
|U1| `

8p4

N

4

k2N
|U2|q “

“
16

k2N 2
pp3|U1| ` p4|U2|q,

MpZN 1|pn1, n2qq „

c

π

2AN 1
“

d

πk2N 2

32pp3|U1| ` p4|U2|q
“

“

c

π

32
kN

d

1

p3|U1| ` p4|U2|
.

Following the articles [8, 12], we set n1 “ xN1, n2 “ yN1, |x|, |y| ď 1. Let
estimate the cardinality of the set U depending on the values of x and y (see
figure 2).

1. pn1, n2q P B1 “ tpxN1, yN1q : ´ 1 ` k
2 ď x ď 1 ´ k

2 , maxp´1 ´ x `

k,´1 ` k
2q ď y ď minp1 ´ x ´ k, 1 ´ k

2qu. Probability of pn1, n2q P B1

is equal 3
4 ´ k ` k2

4 . In this case, the set ĂWk is completely contained in
YT j1 , j “ 0, . . . 5, i. e.

|U1| “ |ĂWk|

2. pn1, n2q P B2 “ tpxN1, yN1q : ´ 1 ď x ď 1, maxp´1 ´ x,´1q ď y ď

minp1´x, 1quzB1. Probability of pn1, n2q P B2 is equal k´ k2

4 . In this case
we can estimate

|U1| ě
|ĂWk|

4

3. pn1, n2q P B3 “ tpxN1, yN1q : k` k
2 ď x ď 1´ k

2 , 1´ x` k ď y ď 1´ k
2u.

Probability of pn1, n2q P B3 is equal k
2

2 ´
k
2 `

1
8 . In this case, the set ĂWk is

completely contained in T0, i. e.

|U2| “ |ĂWk|

4. pn1, n2q P B4 “ tpxN1, yN1q : 0 ď x ď 1, 1´ x ď y ď 1uzB3. Probability

356



of pn1, n2q P B4 is equal ´k2

2 `
k
2 . In this case we can estimate

|U2| ě
|ĂWk|

8

5. pn1, n2q P B5 “ tpxN1, yN1q : k` k
2 ď x ď 1´ k

2 , 1´ x` k ď y ď 1´ k
2u.

Probability of pn1, n2q P B3 is equal k
2

2 ´
k
2 `

1
8 . In this case, the set ĂWk is

completely contained in T0, i. e.

|U2| “ |ĂWk|

6. pn1, n2q P B6 “ tpxN1, yN1q : 0 ď x ď 1, 1´ x ď y ď 1uzB5. Probability
of pn1, n2q P B4 is equal ´k2

2 `
k
2 . In this case we can estimate

|U2| ě
|ĂWk|

8

Now we can estimate MpZN 1q.

MpZN 1q “

“

ˆ

3

4
´ k `

k2

4

˙

MpZN 1|pn1, n2q P B1q `

ˆ

k ´
k2

4

˙

MpZN 1|pn1, n2q P B2q`

`2 ¨

ˆ

1

4
´ k ` k2

˙

MpZN 1|pn1, n2q P B3q`2 ¨
`

k ´ k2
˘

MpZN 1|pn1, n2q P B4q ď

ď

ˆ

3

4
´ k `

k2

4

˙
c

π

32
kN

c

4

p3k2N
`

ˆ

k ´
k2

4

˙
c

π

32
kN

c

16

p3k2N
`

` 2 ¨

ˆ

1

4
´ k ` k2

˙
c

π

32
kN

c

4

p4k2N
` 2 ¨

`

k ´ k2
˘

c

π

32
kN

c

16

p4k2N
`

“

c

πN

32

ˆ

3

2
´ 2k `

k2

2
` 4k ´ k2

˙
c

1

p3
`

`

c

πN

32

ˆ

1

2
´ 2k ` 2k2

` 4k ´ 4k2

˙
c

1

p4

“

c

πN

32

ˆˆ

3

2
?
p3
`

1

2
?
p4

˙

` 2k

ˆ

1
?
p3
`

1
?
p4

˙

´ k2

ˆ

3

4
?
p3
`

2
?
p4

˙˙
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Let

εpkq “

ˆ

2k

ˆ

1
?
p3
`

1
?
p4

˙

´ k2

ˆ

3

4
?
p3
`

2
?
p4

˙˙ˆ

3

2
?
p3
`

1

2
?
p4

˙´1

,

then

MpZN 1q ď p1` εpkqq
1

8

c

π

2

ˆ

3
?
p3
`

1
?
p4

˙

?
N.

The minimum of the function fpxq “
´

3?
x
` 1?

1´x

¯

at p0; 1q is reached at

x0 “
9
10 ´

3 3
?

3
10 `

32{3

10 « 0.67533. Then for p3 “ 0.67533, p4 “ 0.32467

MpZN 1q ď p1` εq0.847
?
N `OεpN

1
4 q

3 Conclusion

The modification of the Gaudry-Schost algorithm is proposed, which is the
most effective for solving the two-dimensional discrete logarithm problem for
an elliptic curve y2 “ x3 `B. The performance gain was obtained by non-
uniformly selecting elements from various subsets of the Tame set.
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Abstract

In this paper, we investigate division polynomials for hyperelliptic curves of genus 2
defined by the Dickson polynomial. For the case of l “ 3, we obtain explicit formulae.

Keywords: hyperelliptic curve, division polynomials, Mumford-Cantor’s coordinates, l-torsion,
Dickson polynomials.

1 Introduction

Let Fq be a finite field of size q “ pn, where p ą 2. A hyperelliptic curve C
of genus g is a nonsingular curve defined by equation

y2
“ fpxq,

where f is a monic polynomial of degree 2g ` 1 or 2g ` 2.
Hyperelliptic curves were first proposed for use in cryptography by Koblitz

[2] for building cryptosystems based on discrete logarithm problem (DLP). At
the present time only curves of genus 2 and 3 are considered for building of
cryprosystems on DLP due to index-calculus attacks [7].

On the other side, in the post-quantum cryptography on isogenies there is
no limitation on genus. The main problem in this field is an absence of effective
formulas for a computation of isogenies in general case of degree l. Recently,
Flynn and Yan Bo Ti [10] proposed a first post-quantum isogeny-based scheme
on genus 2 curves. The authors used the Richelot isogenies for a computing of
degree 2 isogenies and the Kummer surfaces for degree 3 case.

In this work, we develop a direct approach for degree 3 case to remove a
dependency on the Kummer surface in scheme. It consist of two steps. The first
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step is to give an explicit formulas for the division polynomials which describe
kernels of degree 3 isogenies. The second step is a computation of an isogeny from
the division polynomial. The division polynomials provide explicit formulas for
a scalar multiplication in the Jacobian of hyperelliptic curve. Since it is known
that rls “ ψ ˝ ψ̂ for any isogeny ψ of degree l, the computation of an isogeny
can be done by factoring or decomposing the division polynomials.

As the first step, in this paper, we give explicit formulas for the division poly-
nomials which describe kernels of degree 3 isogenies. We do this for interesting
class of curves defined by the Dickson polynomials.

The division polynomials were first introduced for elliptic curves (g “ 1)
and later were described for hyperelliptic curves by Cantor [4]. The division
polynomials are used in Schoof-Pila-like [3] algorithms for counting points on
the Jacobian of the curve and in computation of the modular equations [6].
By theorem of Tate [1], point-counting allows us to determine whether two
hyperelliptic curves have the isogenous Jacobians or not. Counting points on the
Jacobian of curve involves a computation modulo division ideal generated by the
division polynomials. Because of that, the degrees and the form of the division
polynomials directly affects the complexity of point-counting algorithms.

In this work, we investigate the division polynomials for special classes of
curves, which defined by the Dickson polynomials. These classes arise in the
decomposition of Jacobians of curves with equation X : y2 “ x2g`1`axg`1`bx.

Theorem 1 ([8]). If genus g of X is odd then

JXpFqr
g
?
bsq „ JX1

pFqr
g
?
bsq ˆ JX2

pFqr
g
?
bsq

where
X1 : y2

“ Dgpx,
g
?
bq ` a

and
X2 : y2

“ px2
´ 4

g
?
bqpDgpx,

g
?
bq ` aq.

If genus g of X is even then

JXpFqr
2g
?
bsq „ JX3

pFqr
2g
?
bsq ˆ JX̃3

pFqr
2g
?
bsq

where
X3 : y2

“ px` 2
2g
?
bqpDgpx,

g
?
bq ` aq
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and
X̃3 : y2

“ px´ 2
2g
?
bqpDgpx,

g
?
bq ` aq.

Here,Dgpx, αq for some constant α denotes the Dickson polynomial of degree
g. If α “ 1, we simply write Dgpxq instead of Dgpx, 1q. We refer to [5] for
definition and properties of the Dickson polynomials.

Because of the theorem, the computation of the number of points on
the JXpFqq can be reduced to the computation of the number of points on
JX1

, JX2
, JX3

, JX̃3
.

2 Background and Notations

Let k be a perfect field, charpkq ‰ 2 and a hyperelliptic curve C{k of genus
g is defined by the equation

C : Y 2
“ fpXq “

2g`1
ÿ

i“0

fiX
i; f2g`1 “ 1.

We denote the l-torsion subgroup of elements from the Jacobian Jack̄pCq of
curve C by Jack̄pCqrls, where l is a prime and l ‰ charpkq.

Let τ be a hyperelliptic involution and σ : C{k̄ Ñ Jack̄pCq be a canonical
injection, such that a point P corresponds to a divisor class rP ´ 8s. Any
element of Jack̄pCq can be uniquely represented by a divisor D “

řr
i“1 σpPiq

and the following holds:

– Pi P Cpk̄q and Pi ‰ 8;

– Pi ‰ τpPi1q with i ‰ i1;

– r ď g.

Let Pi “ pxi, yiq P Cpkq. Then the Mumford-Cantor’s representation of the
divisor D has following form

D “ pdpXq, epXqq “
`

Xr
` dr´1X

r´1
` . . .` d0, er´1X

r´1
` . . .` e0

˘

,

where dpXq “
śr

i“1pX ´ xiq, epxiq “ yi, deg epXq ă deg dpXq ď g and
dpXq|pe2pXq ´ fpXqq.

362



In fact, all generic non-zero divisors D P JackpCqrls have a weight g. In this
work, we will consider the case g “ 2 and then for the divisor D “ P1`P2´28
we have

rlsD “ 0 ô rlspP1 ´8q “ ´rlspP2 ´8q.

Set P1 “ px1, y1q and P2 “ px2, y2q. So, the Mumford-Cantor’s coordinates for
divisors rlspPi ´8q, i “ 1, 2, can be represented by the pair of polynomials

ˆ

δl

ˆ

xi ´X

4y2
i

˙

, εl

ˆ

xi ´X

4y2
i

˙˙

.

We remark that δl
´

xi´X
4y2i

¯

is not necessarily a monic polynomial. Thus, we need
to divide by the leading coefficient to obtain the Mumford-Cantor’s representa-
tion.

The main result of this paper is explicit formulae for δ3 and ε3 in the case
of genus 2 hyperelliptic curve defined by the Dickson polynomials.

3 Padé Approximation

To find the polynomials δl and εl, we can use an algorithm for group law from
[9] for adding divisors in Mumford-Cantor’s representation. But there is a more
efficient way due to Cantor [4] which use Padé approximation. We specialize this
formulas to the case of curves defined by the Dickson polynomials and l “ 3
and obtain them in explicit form.

Throughout this paper, we assume g “ 2. We consider a hyperelliptic curve
C{Fq defined by the equation

Y 2
“ pX ˘ 2qpD4pX,αq ` cq,

where D4pX,αq “ X4 ´ 4X2α ` 2α2 is the Dickson polynomial and α, c P Fq.
Let P “ px, yq P CpFqq. We make a following change of variables

P “ px, yq ÞÑ P̃ “ p0,´yq.

Then by setting
X “ x´ Z, f̃pZq “ fpx´ Zq,
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the original curve

C : Y 2
“ X5

˘ 2X4
´ 4αX3

¯ 8αX2
` p2α2

` cqX ˘ p4α2
` 2cq,

passing through the point P , is replaced by the curve

C̃ : Ỹ 2
“ px´ Zq5 ˘ 2px´ Zq4 ´ 4αpx´ Zq3 ¯ 8αpx´ Zq2`

` p2α2
` cqpx´ Zq ˘ p4α2

` 2cq,

passing through the point P̃ . Denote the right part of the equation of the new
curve by f̃pZq.

Expand the expression
b

f̃pZq in a Taylor series around Z “ 0:

SpZq :“

b

f̃pZq “
8
ÿ

i“1

sipxqZ
i.

with constant term s0 “ ´y.
If we assume mr “

X

r`g
2

\

and nr “
X

r´g´1
2

\

with additional conditions r ě
g`1. Let ArpZq and BrpZq be non-zero polynomials, such that the formal power
series ArpZq ´ BrpZqSpZq is divided by Zmr`nr`1 and degAr ď mr, degBr ď

nr, then a pair pAr, Brq is pmr, nrq-Padé approximants of series SpZq, namely
ArpZq
BrpZq

“ SpZq up to order mr ` nr. So, the solution of Padé approximation
problem can be reduced to the finding of polynomials ArpZq and BrpZq.

For next section we need following notations:

CrpZq “ ´
ArpZq ´BrpZqSpZq

Zr
,

DrpZq “ ´pArpZq `BrpZqSpZqqCrpZq.

Here CrpZq is an error value showing how far ArpZq
BrpZq

is from approximating
SpZq. The zeros of the polynomial DrpZq correspond Z-coordinates of divisor
representation rrspP̃ ´8q.

4 Explicit Formulae

In this section we obtain the explicit formulae for the division polynomials
ψr and as a consequence we obtain explicit formulae for the Mumford-Cantor’s
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coordinates via coefficients of the series SpZq, the division polynomials ψr, the
Padé approximants ArpZq, BrpZq and the values CrpZq, DrpZq for g “ 2.

Let P “ px, yq P CpFpq, where

y “ ˘
a

x5 ˘ 2x4 ´ 4αx3 ¯ 8αx2 ` p2α2 ` cqx˘ p4α2 ` 2cq.

and as above we have

SpZq “
8
ÿ

i“1

sipxqZ
i.

Denote

detpSqmn “

∣∣∣∣∣∣∣∣∣∣∣

sm´n`1 sm´n`2 . . . sm
sm´n`2 sm´n`3 . . . sm`1

... ... . . .
...

sm´1 sm . . . sm`n´2

sm sm`1 . . . sm`n´1

∣∣∣∣∣∣∣∣∣∣∣
The first four values for the division polynomials are

ψ1 “ 0,

ψ2 “ 1,

ψ3 “ p2yq
2,

ψ4 “ p2yq
5s3.

As above
mr “

Yr ` g

2

]

, nr “

Z

r ´ g ´ 1

2

^

.

and for r ě 5 we can express ψr by terms detpSqmrnr :

ψr “ p2yq
r2´r´2

2 ¨ detpSqmr`1nr`1
.

However, the value ψr can be calculated by the recursion formula with s ě r
[4]:

ψs ¨ ψr ¨ ψs`r ¨ ψs´r “

∣∣∣∣∣∣

ψs´2 ψs´1 ¨ ψr`1 ψs ¨ ψr`2

ψs´1 ¨ ψr´1 ψrψs ψs`1 ¨ ψr`1

ψs ¨ ψr´2 ψs`1 ¨ ψr´1 ψs`2 ¨ ψr

∣∣∣∣∣∣

Also according to [4] the first non-trivial values for the Padé approximants
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Ar, Br and the error value Cr with r “ 0, . . . 4 are

A0pZq “ ´1,

A1pZq “ ´Z, A2pZq “ ´Z
2,

A3pZq “
2
ÿ

i“0

siZ
i, A4pZq “

3
ÿ

i“0

siZ
i,

B0pZq “ 0,

B1pZq “ 0, B2pZq “ 0,

B3pZq “ 1, B4pZq “ 1,

C0pZq “ 1,

C1pZq “ 1, C2pZq “ 1,

C3pZq “
8
ÿ

i“3

siZ
i´3, C4pZq “

8
ÿ

i“4

siZ
i´4,

Knowing only ψr and the initial values given above, we get recursion formu-
lae for Ar, Br, Cr with r ě 5:

ArpZq “ p2yq
´r`2

¨
ψr´1

ψr´2
¨ Ar´1pZq ´ p2yq

´2r`3
¨
ψr
ψr´2

¨ Ar´2pZq ¨ Z.

BrpZq “ p2yq
´r`2

¨
ψr´1

ψr´2
¨Br´1pZq ´ p2yq

´2r`3
¨
ψr
ψr´2

¨Br´2pZq ¨ Z.

CrpZq “

ˆ

p2yq´r`2
¨
ψr´1

ψr´2
¨ Cr´1pZq ´ p2yq

´2r`3
¨
ψr
ψr´2

¨ Cr´2pZq

˙

{Z.

By similar way we define the initial values for DrpZq with r “ 2, 3, 4:

D2pZq “ ´Z
2,

D3pZq “ 2ps0s5 ` s1s4 ` s2s3qZ
2
` 2ps0s4 ` s1s3qZ ` 2s0s3,

D4pZq “ 2ps0s6 ` s1s5 ` s2s4qZ
2
` 2ps0s5 ` s1s4qZ ` 2s0s4.
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And recursion formula for DrpZq with r ě 5 is

DrpZq “ 2

˜

p2yq´2r`4 ¨
ψ2
r´1

ψ2
r´2
¨ Ar´1pZq ¨ Cr´1pZq

Z
´

´
p2yq´3r`5 ¨

ψr´1ψr
ψ2
r´2

¨ Ar´1pZq ¨ Cr´2pZq

Z
`

` p2yq´4r`6
¨
ψ2
r´1

ψ2
r´2

¨ Ar´2pZq ¨ Cr´2pZq´

´ p2yq´3r`5
¨
ψr´1ψr
ψ2
r´2

¨ Ar´2pZq ¨ Cr´1pZq

¸

ti2u “

“ 2pArpZq ¨ CrpZqqti2u,

where a symbol ti2u denotes omitting all terms in branches of degree more than
2.

Finally, we reformulate one of the central Cantor’s theorem in our notations:

Theorem 2 ([4]). If r ě 3 then element rrspP̃ ´8q in the Jacobian Jack̄pC̃q
of the curve C̃ can be represented by the pair pDrpZq, ErpZqq, where

ErpZq “

“ 2y ¨
ψr´1ψr`1

ψ2
r

¨Z ¨
´

p2yqr
2`r´2Dr`1pZq

ψ2
r`1

´
p2yqr

2´3rDr´1pZq

ψ2
r´1

¯

pmodDrpZqq.

Returning to the original curve C and divisor rrspP ´ 8q with r ě 3, the
Mumford-Cantor’s coordinates are the polynomials of following form:

δrpZq “ p2yq
r2´r´2

¨Drp4y
2Zq,

εrpZq “
y ¨ pψ2

r´1 ¨ δr`1pZq ´ ψ
2
r`1 ¨ δr´1pZqq ¨ Z

ψr´1 ¨ ψ2
r ¨ ψr`1

pmod δrpZqq.

4.1 Case of l “ 3

Consider a hyperelliptic curve C{Fp of genus g “ 2 with the equation

Y 2
“

“ pX´2qpD4pX,αq`cq “ X5
´2X4

´4αX3
`8αX2

`p2α2
`cqX´4α2

´2c,
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where D4pX,αq “ X4´ 4αX2` 2α2 is the Dickson polynomial. Set α “ 1,
then our equation has a form:

Y 2
“ X5

´ 2X4
´ 4X3

` 8X2
` pc` 2qX ` p´2c´ 4q.

For the divisor D “ P1 ` P2 ´ 28 with points P1 “ px1, y1q and P2 “ px2, y2q,
we have a relation

rlsD “ 0 ô rlspP1 ´8q “ ´rlspP2 ´8q.

For l “ 3 we denote the Mumford-Cantor’s representation as

r3spP1 ´8q “

ˆ

δ3

ˆ

x1 ´X

4y2
1

˙

, ε3

ˆ

x1 ´X

4y2
1

˙˙

,

r3spP2 ´8q “

ˆ

δ3

ˆ

x2 ´X

4y2
2

˙

, ε3

ˆ

x2 ´X

4y2
2

˙˙

.

For simplicity we set

r3spP1 ´8q “

“
`

d2px1, y1qX
2
` d1px1, y1qX ` d0px1, y1q, e1px1, y1qX ` e0px1, y1q

˘

,

r3spP2 ´8q “

“
`

d2px2, y2qX
2
` d1px2, y2qX ` d0px2, y2q, e1px2, y2qX ` e0px2, y2q

˘

,

where d2, d1, d0, e1, e0 are rational functions of variables xi, yi, i “ 1, 2.
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d2 “ ´
1

4y4

ˆ

64x20 ´ 512x19 ` 512x18 ` 6144x17 ` p256c´ 16896qx16 ` p´2048c´ 20480qx15`

` p120832` 3072cqx14 ` p´32768` 16384cqx13 ` p´391680´ 55808c` 384c2qx12`

` p´3072c2 ´ 12288c` 380928qx11 ` p6144c2 ` 253952c` 614400qx10`

` p12288c2 ´ 212992c´ 999424qx9 ` p´439296c` 256c3 ´ 59904c2 ´ 374784qx8`

` p1228800` 36864c2 ` 696320c´ 2048c3qx7`

` p129024c2 ` 5120c3 ` 192512c´ 90112qx6`

` p´786432´ 786432c´ 196608c2qx5`

` p´19968c3 ´ 23040c2 ` 230400` 64c4 ` 149504cqx4`

` p253952´ 512c4 ` 28672c3 ` 184320c2 ` 376832cqx3`

` p´4096c3 ´ 106496´ 147456c` 1536c4 ´ 61440c2qx2`

` p´65536c´ 49152c2 ´ 2048c4 ´ 16384c3 ´ 32768qx`

` 16384` 8192c3 ` 1024c4 ` 24576c2 ` 32768c

˙

,
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d1 “ ´
1

4y4

ˆ

´ 128x21 ` 1024x20 ´ 1024x19 ´ 12288x18 ` p33792´ 512cqx17`

` p4096c` 95y2 ` 40960qx16 ` p´608y2 ´ 241664´ 6144cqx15`

` p144y2 ` 65536´ 32768cqx14 ` p783360´ 768c2 ` 111616c` 6464y2qx13`

` p24576c´ 761856` 6144c2 ` 60cy2 ´ 9960y2qx12`

` p´1228800´ 12288c2 ´ 26688y2 ´ 507904c` 96cy2qx11`

` p70240y2 ´ 3408cy2 ` 425984c´ 24576c2 ` 1998848qx10`

` p25216y2 ` 119808c2 ` 878592c` 11072cy2 ´ 512c3 ` 749568qx9`

` p90c2y2 ` 552cy2 ` 4096c3 ´ 2457600´ 192024y2 ´ 73728c2 ´ 1392640cqx8`

` p´59520cy2 ´ 10240c3 ` 180224´ 258048c2 ´ 385024c` 104320y2 ` 480c2y2qx7`

` p142528y2 ` 393216c2 ` 98240cy2 ` 1572864c` 1572864´ 6992c2y2qx6`

` p´128c4 ` 23232c2y2 ´ 460800` 39936c3´

´ 134400y2 ´ 20736cy2 ´ 299008c` 46080c2qx5`

` p´368640c2 ` 380c3y2 ` 1024c4 ´ 507904´ 69552cy2 ´ 753664c´

´ 15776y2 ´ 57344c3 ´ 30072c2y2qx4`

` p39296cy2 ´ 3072c4 ` 122880c2 ´ 2272c3y2 ` 8192c3 ` 294912c`

` 32000y2 ` 212992` 7104c2y2qx3`

` p65536` 4096c4 ` 32768c3 ` 131072c` 4752c3y2`

` 7872cy2 ` 16224c2y2 ` 98304c2 ´ 11136y2qx2`

` p´65536c´ 11136c2y2 ` 2304cy2 ´ 16384c3´

´ 2048c4 ´ 32768´ 49152c2 ´ 3904c3y2 ` 17920y2qx`

` 888c3y2 ´ c4y2 ´ 9232y2 ´ 5664cy2 ` 1256c2y2

˙
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d0 “ ´
1

4y4

ˆ

64x22 ´ 512x21 ` 512x20 ` 6144x19 ` p´16896` 256cqx18`

` p´95y2 ´ 20480´ 2048cqx17`

` p120832` 608y2 ` 3072cqx16 ` p´32768´ 144y2 ` 16384cqx15`

` p´391680´ 55808c´ 6464y2 ` 384c2qx14`

` p´60cy2 ` 9960y2 ´ 12288c´ 3072c2 ` 380928qx13`

` p6144c2 ` 40y4 ` 253952c` 26688y2 ´ 96cy2 ` 614400qx12`

` p´192y4 ´ 999424´ 70240y2 ` 12288c2 ` 3408cy2 ´ 212992cqx11`

` p´11072cy2 ´ 374784` 256c3 ´ 439296c´ 160y4 ´ 25216y2 ´ 59904c2qx10`

` p´90c2y2 ` 1920y4 ` 696320c´ 2048c3 ´ 552cy2 ` 36864c2 ` 192024y2 ` 1228800qx9`

` p5120c3 ` 192512c´ 480c2y2 ` 59520cy2 ´ 40cy4´

´ 90112` 129024c2 ´ 720y4 ´ 104320y2qx8`

` p´786432´ 98240cy2 ´ 8960y4 ´ 196608c2´

´ 142528y2 ` 640cy4 ´ 786432c` 6992c2y2qx7`

` p´19968c3 ` 149504c` 20736cy2 ´ 23232c2y2 ` 230400´ 23040c2`

` 64c4 ` 12672y4 ´ 3136cy4 ` 134400y2qx6`

` p376832c` 253952` 184320c2 ´ 380c3y2 ` 15776y2 ` 2560y4 ` 69552cy2`

` 28672c3 ` 6400cy4 ´ 512c4 ` 30072c2y2qx5`

` p2272c3y2 ´ 106496´ 147456c´ 61440c2 ´ 32000y2 ´ 9760y4 ` 440c2y4´

´ 39296cy2 ´ 7104c2y2 ´ 4000cy4 ` 1536c4 ´ 4096c3qx4`

` p´2240c2y4 ´ 16384c3 ´ 4752c3y2 ´ 49152c2 ´ 32768` 11136y2 ´ 16224c2y2´

´ 3840cy4 ` 1280y4 ´ 2048c4 ´ 65536c´ 7872cy2qx3`

` p1024c4 ` 11136c2y2 ´ 2304cy2 ` 32768c` 16384` 24576c2 ` 3680c2y4`

` 8192c3 ´ 17920y2 ` 4480cy4 ´ 5760y4 ` 3904c3y2qx2`

` p´1664c2y4 ` 1536cy4 ` c4y2 ` 5664cy2 ` 9232y2 ` 9728y4 ´ 888c3y2 ´ 1256c2y2qx´

´ 1952cy4 ` 8c3y4 ´ 464c2y4 ´ 1984y4

˙

,
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e1 “
1

p2yq9

ˆ

145x24 ´ 1392x23 ` 2472x22 ` 16288x21 ` p´1626c´ 59460qx20`

` p20880c´ 89952qx19`

` p689296´ 96568cqx18 ` p116064c´ 459072qx17`

` p´5649c2 ` 597564c´ 3226692qx16`

` p81568c2 ´ 2566528c` 7090816qx15 ` p´456816c2 ` 3031872c` 659520qx14`

` p1116480c2 ` 3700992c´ 20189952qx13`

` p1684c3 ´ 194792c2 ´ 15568016c` 25595680qx12`

` p13344c3 ´ 5577792c2 ` 18238848c` 2370816qx11`

` p´274800c3 ` 13458528c2 ´ 5592384c´ 38119296qx10`

` p1462208c3 ´ 11625856c2 ´ 8844032c` 34221568qx9`

` 9pc` 2qp999c3 ´ 413782c2 ` 505556c` 757304qx8`

` p´48pc` 2qp1889c3 ´ 98362c2 ´ 70260c` 481032qqx7`

` 8pc` 2qp45865c3 ´ 229418c2 ´ 450196c` 1301704qx6`

` p´96pc` 2q2p7693c2 ` 8724c´ 52236qqx5`

` p´6pc` 2q2p111c3 ´ 115790c2 ´ 250476c` 978904qqx4`

` 16pc` 2q2p277c3 ´ 4298c2 ´ 33828c` 50056qx3`

` p´24pc` 2q3p457c2 ` 16676c´ 38108qqx2`

` 96pc` 2q3p125c2 ` 3188c´ 6412qx`

` pc` 2q3pc3 ´ 4922c2 ´ 72948c` 135944q

˙
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e0 “
1

p2y9q

ˆ

´ 145x251392x24 ´ 2472x23 ´ 16288x22 ` p1626c` 59460qx21`

` p88y2 ´ 20880c` 89952qx20 ` p´704y2 ` 96568c´ 689296qx19`

` p480y2 ´ 116064 ˚ c` 459072qx18`

` p9600y2 ` 5649c2 ´ 597564c` 3226692qx17`

` p´1448cy2 ´ 17488y2 ´ 81568c2 ` 2566528c´ 7090816qx16`

` p17664cy2 ´ 87552y2 ` 456816c2 ´ 3031872c´ 659520qx15`

` p´80512cy2 ` 333568y2 ´ 1116480c2 ´ 3700992c` 20189952qx14`

` p133632cy2 ´ 138240y2 ´ 1684c3 ` 194792c2 ` 15568016c´ 25595680qx13`

` 16p143c2y2 ` 10828cy2 ´ 69156y2 ´ 834c3 ` 348612c2 ´ 1139928c´ 148176qx12`

` p´6272c2y2 ´ 1120768cy2 ` 2223616y2 ` 274800c3´

´ 13458528c2 ` 5592384c` 38119296qx11`

` p´64p1243c2y2 ´ 28852cy2 ` 21932y2 ` 22847c3 ´ 181654c2 ´ 138188c` 534712qqx10`

` p535808c2y2 ´ 961536cy2 ´ 822272y2 ´ 8991c4 ` 3706056c3`

` 2898072c2 ´ 15915744c´ 13631472qx9`

` 16p707c3y2 ´ 83358c2y2 ´ 41500cy2 ` 206936y2 ` 5667c4 ´ 283752c3 ´ 800952c2`

` 1021536c` 2886192qx8`

` p´8pc` 2qp12640c2y2 ´ 196736cy2 ` 289152y2`

` 45865c3 ´ 229418c2 ´ 450196c` 1301704qqx7`

` 32pc` 2qp11084c2y2 ´ 17520cy2 ` 16880y2 ` 23079c3 ` 72330c2 ´ 104364c´ 313416qx6`

` p´6pc` 2qp97536c2y2 ` 56320cy2 ´ 408576y2 ´ 111c4 ` 115568c3`

` 482056c2 ´ 477952c´ 1957808qqx5`

` p´8pc` 2qp89c3y2 ´ 44618c2y2 ´ 17748cy2 ` 274760y2`

` 554c4 ´ 7488c3 ´ 84848c2 ´ 35200c` 200224qqx4`

` 8pc` 2q2p680c2y2 ` 23456cy2 ´ 37728y2 ` 1371c3 ` 52770c2 ´ 14268c´ 228648qx3`

` p´32pc` 2q2p481c2y2 ` 11012cy2 ´ 24956y2 ` 375c3 ` 10314c2 ´ 108c´ 38472qqx2`

` pc` 2q2p18816c2y2 ` 124416cy2 ´ 350720y2 ´ c4`

` 4920c3 ` 82792c2 ` 9952c´ 271888qx`

` p´8pc` 2q3pc2 ` 1028c´ 2044qqy2

˙

.

Conclusion

In this paper, we obtained the explicit formulae for 3-division polynomial
for class of curves, defined by the Dickson polynomial. This gives an explicit
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description of 3-torsion in the Jacobian of the curve and this allow us to find
the points of order 3. Therefore, we can find #JCpFqq pmod 3q.

In further works, we will use this formulae to describe p3, 3q-isogenies for
our class of curves with applications to scheme of Flynn and Yan Bo Ti.
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