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Dear colleagues!

This year the Workshop “Current Trends in Cryptology” will open its doors
for information protection specialists and everyone interested in the subject for
the 8th time.

This time the unbiased international program committee reviewed 37 papers
submitted by representatives of 6 countries. Coming in second in the Workshop
history, this number is almost twice as much as it was last year. The increase
indicates the growth of the academic community understanding of information
security importance, that happened including on the ground of Russian govern-
ment course for digitalization in all aspects of life and activities of individuals,
society and the state. 22 papers selected after the reviewing will be presented
to you at the Workshop. There are different kind of topics to cover including
analysis and design of classical block and stream cryptographical mechanisms as
well as widely discussed post-quantum cryptographic protocols which can save
their cryptographic characteristics even if an appropriate quantum computer
is created. Practical applications of cryptography also will not be left out of
attention. A wide range of subjects affirms that each of 128 participants from 8
countries will find something interesting and worth to be used in scientific and
practical activity.

This year the program committee decided to carry out an experiment and
added the scientific program with cryptography lectures for information security
specialists and high-schoolers. In the former case the lectures will be delivered by
leading experts of cryptographic devices developers and technical committee for
standardization “Cryptography and security mechanisms” (TC 026), in the latter
case — by the professors of a leading Russian university graduating cryptography
specialists. Two panel discussions are to be held during the Workshop. The
first one will be dedicated to the first one in Russian Federation brand new
cryptography museum, particularly to the ideas and plans its founders as well
as the issues will have to be solved by them. The second one will deal with the
work of the Academy of Cryptography of the Russian Federation laboratory
on standardization problems in cryptography and information security which
was created as a part of national program “Digital Economy of the Russian
Federation”.

Covering the trends in cryptology and contributions in them by outstanding
academia community representatives is one of distinguished characteristics of
the Workshop that is also highlighted in its title. This is achieved including
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by enlarging the program with invited talks by leading Russian and foreign
specialists. This year there will be three such talks. The first one by Andrey
Pichkur and Alexey Tarasov will be devoted to the Mikhail M. Glukhov passed
away last year who was an academician of the Academy of Cryptography of
the Russian Federation and is justifiably regarded as one of the founders of the
Russian algebraic cryptographic school. We will also listen to Luca de Feo, one
of the leading specialists in elliptical curves isogeny post-quantum cryptography;,
and Kenneth Paterson who will talk on a new version of TLS protocol. Dear
colleagues, we are facing four days of effective work which in result, I hope, will
let us expand the horizons of our knowledge and apply achieved information in
scientific researches and projects.

Thereon I would like to declare the workshop “Current Trends in Cryptog-
raphy” (CTCrypt 2019) open.

President of the Academy of Cryptography of the Russian Federation
Aleksandr Shoitov



INVITED TALKS



Introducing TLS 1.3

Kenneth Paterson

Applied Cryptography Group, Switzerland
kenny.paterson@inf.ethz.ch

Abstract

After a long gestation in the IETF TLS Working Group, work on TLS 1.3 was finally
completed in 2018 with the publication of RFC 8446. In this talk, I'll explain how TLS
1.3 works, how it differs from earlier protocol versions, and why. I'll also reflect on the
standardisation process which resulted in TLS 1.3.

Keywords: cryptographic protocol, standardisation, TLS 1.3.
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How to prove a secret isogeny

Luca De Feo

Université de Versailles, France
luca.de-feo@uvsq.fr

Abstract

Isogenies of elliptic curves have proven to be a powerful tool to construct crypto-
graphic protocols, in particular quantum-resistant ones.

The key encapsulation protocol SIKE is currently being considered for standardi-
sation in the NIST post-quantum competition, while the younger primitive CSIDH is
likely to find useful applications in more advanced protocols where a static-static key
exchange is needed.

At present, the picture of isogeny-based signature protocols is much less bright.
While it is known how to derive various identification schemes and signatures from both
SIKE and CSIDH, they are all inefficient in some regard.

In this talk I will review the different protocols, both quantum-resistant and not,
that have been devised to prove knowledge of a secret isogeny. I will explain their uses
and limitations, report on ongoing work, and present some open questions.

Keywords: isogenies of elliptic curves, post-quantum cryptography, quantum-resistance,
cryptographic protocol.
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ALGEBRAIC AND PROBABILISTIC ASPECTS



On Isometric Mappings of the Set of All Boolean
Functions into Itself Which Preserve Self-Duality
and the Rayleigh Quotient

Aleksandr Kutsenko

Novosibirsk State University, Russia
alexandrkutsenko@bk.ru

Abstract

A bent functions is called self-dual if it equals to its dual. It is called anti-self-dual if
it is equal to its complement. A mapping of the set of all Boolean functions in n variables
into itself is said to be isometric if it preserves the Hamming distance. In this paper we
study isometric mappings which preserve self-duality and anti-self-duality. The complete
characterization of these mappings is obtained. Based on this result, the set of isometric
mappings which preserve the Rayleigh quotient of a Boolean function is obtained. As
a corollary all isometric mappings which preserve bentness and the Hamming distance
between bent function and its dual are given.

Keywords: self-dual bent, Hamming distance, Isometric mapping, Rayleigh quotient.
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1 Introduction

The term “bent function” was introduced by Oscar Rothaus in the 1960s
in [13]. At the same time the maximally nonlinear Boolean functions were also
under study in the Soviet Union. In 1962 the term minimal function which is in
fact an analog of a bent function, was proposed by the Soviet scientists Eliseev
and Stepchenkov, see [14].

Bent functions have applications in many domains, such as error correcting
codes, spreading sequences for CDMA, and cryptology. In symmetric cryptog-
raphy, due to maximal nonlinearity, these functions can be used as building
blocks of stream and block ciphers in order to make them more resistant to
main statistical methods of cryptanalysis among which are linear and differ-
ential cryptanalyses. Extensive information concerning bent functions can be
found in monography of Tokareva [14].

A bent function that coincides with its dual is called self-dual. Open ques-
tions which are relevant to the class of bent functions are also relevant for the
self-dual bent functions. A difficult problem is the complete characterization
and description of the class of self-dual bent functions and estimation of its
cardinality. There are a number of articles which are devoted to these and other
problems. In particular, in the article [2] Carlet et al. explored self-dual bent
functions: some symmetries, which preserve self-duality were given; it has been
proved that the Hamming distance between a self-dual bent function and an
anti-self-dual bent function in n variables is exactly 2”71, In [6] the classifica-
tion of all quadratic self-dual bent functions is presented by Hou. Feulner et
al. in [4] gave some new mappings which preserve self-duality. Some new con-
structions of bent functions both with their duals one can find in [12]. The
upper bound for the cardinality of the set of self-dual bent functions which fol-
lows from the exact number of formally self-dual bent functions is presented
by Hyun and Lee in [7]. The complete Hamming distance spectrum between
self-dual Maiorana—McFarland bent functions was obtained in [8].

In current paper we study isometric mappings of the set of all Boolean
functions in n > 4 variables into itself which preserve self-duality and anti-self-
duality. The complete characterization of these mappings is obtained (Theo-
rem 1). We also completely study isometric mappings which bijections between
self-dual and anti-self-dual bent functions (Theorem 2). Based on this result,
the set of isometric mappings which preserve the Rayleigh quotient of a Boolean
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function is obtained (Corollary 1). All isometric mappings which preserve bent-
ness and the Hamming distance between bent function and its dual are given.

2 Notations and definitions

Let 4 be a set of binary vectors of length n.

A Boolean function f in n variables is any map from Fy to Fo. Its sign func-
tion is F(z) = (=1)® z e F}. Obviously we have (—1)7®) = 1 — 2f(z)
for any x € Fy. We will also refer to a sign function as to a vector from
the set {+1}°": F = (=1)f = ((=1)%, (=1)", ..., (=1)"1) e {+1}*", where
(fo, f1, .-y fon_1) € F%" is a truth-table representation of f with arguments given
in the lexicographic order. The set of Boolean functions in n variables is denoted
by F,.

The Hamming weight wt(z) of the vector z € F} is the number of nonzero
coordinates of x. The Hamming weight wt(f) of the function f € F, is the
Hamming weight of its vector of values. The sign @ denotes a sum modulo 2. The
Hamming distance dist(f, g) between Boolean functions f, g in n variables is a
cardinality of the set {z € F} : f(z) ® g(x) = 1}. For z,y € F} denote (x,y) =

@ x;y;. The Walsh-Hadamard transform (WHT) of the Boolean function f in
i=1
n variables is an integer function Wy : Fy — Z, defined as

Wily) = 3 (~J @2,y e By,

n
ey

Let I, be an identity matrix of size n and H,, = H1®” be the n-fold tensor
product of the matrix H; with itself, where

m-(U1).
It is known the Hadamard property of this matrix
H,H' = 2" ).
In [2] an orthogonal decomposition of R?" in eigenspaces of H, was given:
R — Ker (Hn + 2“/212n) @ Ker (Hn _ 2”/212n> ,
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where the symbol @ denotes a direct sum of subspaces.
Denote H, = 27"/*H,.
A Boolean function f in an even number n of variables is said to be bent if

Wi(y)| =22

for all y € Fy. The set of bent functions in n variables is denoted by B,,.
In other words, the function f is bent if and only if for its sign function F'
it holds H,,F' € {£1}*". From the definition above it follows that for any y € F%
we have N
Wily) = (—1)/0212

for some fe Fa.

The Boolean function fdeﬁned above is called the dual function of the bent
function f.

If bent function f coincides with its dual it is said to be self-dual bent. A bent
function which coincides with the negation of its dual is called an anti-self-dual
bent. In [9] it was proved that within the set of sign functions of self-dual bent
functions in n > 4 variables there exist a basis of the eigenspace of the matrix
H, attached to the eigenvalue 2/2. The set of (anti-)self-dual bent functions in
n variables, according to [6], is denoted by SB*(n) (SB™(n)).

A mapping ¢ of the set of all Boolean functions in n variables into itself
is called an isometric mapping if it preserves the Hamming distance between
functions, that is

dist((f), p(g)) = dist(f, g),

for any f,g € F,. The set of all isometric mappings of the set of all Boolean
functions in n variables into itself is denoted by Z,.
The general form of isometric mappings is

f(@) — f(x(z)) @ g(x),

where 7 is a permutation on the set F4 and g € F,, [11].

It is known [15] that every isometric mapping of the set of all Boolean
functions into itself that transforms bent functions into bent functions is a com-
bination of an affine transform of coordinates and an affine shift. The mapping
f— fdeﬁned on the set of bent functions, preserves the Hamming distance [1]
that is it is an isometric mapping of the set B,,.

There is a one-to-one correspondence between Z,, and the set of matrices of
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order 2" x 2" with elements from the set {0, &1} such that in every row (column)
there is exactly one nonzero element. Indeed, let ¢ : f(z) — f(7(z)) ® g(z),
where 7 is a permutation on the set 5 and g € F,,. Then for any f € F,, and
its sign function F' e {+1}* the sign function F' € {+1}*" of ¢ (f) can be
expressed as ' = AF, where A is a 2" x 2" matrix

in which in the row with number (¢ + 1) € {1,2,...,2"} a nonzero element is in

the (j+1)-th column, where j is a number with binary representation m (v;). The

vector v € F} is a binary representation of the number &k € {0, 1,...,2" — 1}.
Denote, according to [5], the orthogonal group of index n over the field Fo

as
O, ={LeGL(n,2)|LL" = I,},

where LT denotes the transpose of L and I, is an identical matrix of order n
over the field Fs.

3 Isometric mappings preserving self-duality

In [4] (Theorem 1) it was shown that the mapping
f@) — f(L(z®c) ®{c,x)@d,

where L € O, ¢ € F}, wt(c) is even, d € Fy, preserves self-duality of a bent
function. It is obvious that this mapping is an element from Z,.
In this section we generalize this result within isometric mappings.

Proposition 1. Let n = 4. Isometric mapping ¢ € L, with matriz A:

— preserves self-duality if and only iof it preserves anti-self-duality;
— preserves self-duality if and only if AH,, = H,A.
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Proof. In [9] it has been proved that for n > 4 within the set SB™(n) there exist
a subset { fz}fgl < SB™(n) with linearly independent sign functions {FZ}ZQZ1 c
Ker (H,, — Is») and a subset {gZ}ZQZ1 < SB™(n) with linearly independent sign
functions {Gz}?:_ll < Ker (H,, + I2»).

Prove the first statement. Let 541 preserves self-duality. Since the matrix A is
invertible one, the vectors {AFi}?:l are also linearly independent sign functions
of self-dual bent functions. Then for any sign functions G of g € SB™(n) we have:

(AG, AF,)) = (ATAG,F,) = (G,F)) = 0

for i = 1,2,...,2""!. That is, for every anti-self-dual bent function ¢ its image
©(g) is also an anti-self-dual bent function. By the same arguments one can
show that the statement is true in opposite direction as well.

Now prove the second assertion. If AH,, = H, A, then for any sign functions
F of f € SB™(n) it holds:

M, (AF) = A(H,F) = AF,

hence the mapping preserves self-duality.

Denote B = H,A — AH, and assume that the mapping with matrix A
preserves self-duality and, as mentioned in the first assertion, anti-self-duality.
In particular, for 7 = 1,2, ...,2" ! it holds

and

H, (AG;) = —AG;.
Fori=1,2,....,2"! we have:
(HoA — AM,)F, = Ho(AF) — A(H,F) = M, (AF) — AF, = BF,

Then BF; = 0 € R?" for every ¢ = 1,2,...,2" 1. Since the set {Fz}f;l forms
a basis of the subspace Ker (H,, — Isn) it can be deduced that all rows of the
matrix B are vectors from the subspace (Ker (H,, — Ign))L = Ker (H,, + In).

Fori=1,2,...,2"! we also have:
(H,A— AH,) Gy = H, (AG;) — A(H.G;) = H, (AG;) + AG; = BG,.
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In this case BG; = 0 € R* for every i = 1,2, ....,2" 1. Since the set {GZ}ZQZ;1
forms a basis of the subspace Ker (H,, + In) we can conclude that all rows of the
matrix B are vectors from the subspace (Ker (H, + Ion))" = Ker (H,, — Ion).
Thus we have proved that all rows of the matrix B lie in Ker (H,, + Ion) N
Ker (H,, — Ion) but the intersection of orthogonal subspaces consists only of the
zero element of the space R™. Therefore the matrix B is zero matrix. H

Theorem 1. An isometric mapping f(z) — f(w(z)) ® g(z) of the set of all
Boolean functions in n = 4 variables into itself preserves (anti-)self-duality if
and only if

m(x) = L(zx®c)
and

g(x) =L, x) @,

where L € O, c € FY, wt(c) is even, d € Fs.

Proof. The opposite direction immediately comes from [4] (Theorem 1).
Assume that A is a matrix of the mapping f(x) — f (w(z)) ® g(z) of the
set of all Boolean functions in n variables into itself and this mapping preserves
(anti-)self-duality. Let T}, be a sign function of an affine function {a,z) @ r,
where a € F4,r € Fy. In other words Ty, is equal to some row (column) of the
matrix H, or —H,,. From Proposition 1 it follows that AH,, = H, A hence

H, (AT,,) = A (M, Ty,) = 220 - Aey, = 220" - ey,
where k, k' € {1,2,...,2"} ,0,0" € {£1}. Then
ATQ’T = 277,/20_/ . Hnek/ = Ta/’rl

for some o’ € Fy, r' € TFy.
Thus the considered mapping transforms the set of all affine functions in n
variables into itself hence it has form

f(x) — [(Lz@®b) ®{c,z) D,

where L is a m x m invertible binary matrix, b,c¢ € Fy,d € Fy, see [10], for
example.

Now consider the relation AH,, = H,A in details. Denote, N = 2" and let,
as before, v, € F be a binary representation of the number k£ € {0, 1, ..., 2" —1}.
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Then
(_1)<vo,vo> (_1)<vo,v1> (_1)<vo,vzv_1>

g (_1)<v17vo> (_1)<vl,v1> (_1)<U17UN—1>

(_1)<UN71;'U0> (_1)<'UN717'U1> o (_1)<UN71aUN71>
and A is the matrix

va@b

in which in the row with number (i + 1) € {1,2,..., N} a nonzero element is in
the (j + 1)-th column, where j is a number with binary representation Lv; @ b.

Fix arbitrary ¢, j € {0, 1, ..., N — 1}. Write explicitly

(AHn) — 1)<C7vi>®<Lwi®bﬂ)j>@d.

i+1j+1 = (

In order to obtain (H,A),,, ;,, rewrite matrix A in the following form

Llw@b|o ... o (—pletwened o g

Then it clear that

(HaA) (1)t o) (el )

i+1,j+1 —

Since AH, = H,A implies (AHn)i+1,j+1 = (HnA)Z.H’jJrl for any i,j €
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{0,1,..., N — 1}, the following relation must hold

(_ 1)<c,vi>(—B<Lvi(—Bb7vj>(-Bd _ (_ 1 ) <Ui7L_1 (yj@b)>@<c,L—1 (Uj(—Bb)>(—Bd,
or equivalently

(,xy® Lz ®by)ydd= <SIJ,L_1 (y@b)>@
®{c,L7 (y@b)ydd. (1)

for any x,y € F3.

Put y € F§ with wt(y) = 0 in (1). Then
{c,x)y =z, Lby@®{c,L7'b),
(&, L7b@®c)y ={c,L7"'b)
for any = € 5. Then

L bv®c=0,
<c, L*1b> =0,

{b = Le, )

wt () is even.

Return to (1) and take (2) into account:
(e;0) @ {Lax® Le,y) = (o, LT (y @ Le)y @ e, L' (y @ Le) ),

e,y ® (La,y) ®{Le,yy = (o, Ly)y @z, ) ® (¢, LT'y) ® e, ¢,
(La,y) ®{Le,yy = {x, L yy@{c, L7 y),

Loy = (L) @ec).y).

for any x,y € Fy. In this case
L(z®c) = (Lil)T (x®c)

for any x € 5 that is
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for any z € Fy. It holds if and only if
L= (",
Thus, combining (2) and (3) we obtain

L—l — LT
b= Lc,

wt () is even.

[]

4 Isometric bijections between self-dual and anti-self-
dual bent functions

It is known [2] (Theorems 5.1, 5.3) that there exists a bijection between
SB*(n) and SB™(n), based on the decomposition of sign functions of (anti-
)self-dual bent functions. Namely, let (Y, Z) € {+1}*", where Y, Z € {J_r1}2n_1,
be a sign function for some f € SB¥(n). Then a vector (Z, —Y) € {+1}* is a
sign function for some function from SB™(n). In terms of isometric mappings
the mentioned transform can be represented as

f@) — fz@c) @),

where ¢ = (1,0,0,...,0) € F5.
In paper [6] it was mentioned that the more general form of this mapping

f@) — fz@c) @),

where ¢ € F%, wt(c) is odd, is a bijection between SB*(n) and SB™(n). It is
obvious that this mapping is an element from Z,,.
In this section we generalize these results within isometric mappings.

Proposition 2. Let n > 4. Isometric mapping ¢ € L, with matriz A is a
bijection between SBT(n) and SB™(n) if and only if AH, = —H,A.

Proof. If H,A = —AH,,, then for any sign functions F,G of f € SB™(n) and
g € SB™(n) respectively it holds:

M, (AF) = —A (H,F) = —AF,
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H, (AG) = —A(H,.G) = AG,
hence the mapping is a bijection between SB(n) and SB™(n).
Take { fl}?;1 < SB™(n) with linearly independent sign functions {FZ}?Z? c
Ker (H,, — Ion) and { gl}lzz1 < SB™(n) with linearly independent sign functions
{G’Z}ZZ;1 c Ker (H,, + Isn) from the proof of the Proposition 1. Denote B =

H, A+ AH, and assume that the mapping with matrix A is a bijection between
SB*(n) and SB™(n). In particular, for 7 = 1,2, ..., 2" it holds

and

M, (AG;) = AG;.

Fori=1,2,...,2" ! we have:
(HoA+ AH,) F; = H, (AF) + A(H.F;) = H,(AF;) + AF; = BF;.

Then BF; = 0 € R?" for every ¢ = 1,2,...,2" 1. Since the set {FZ}ZQZ1 forms
a basis of the subspace Ker (H,, — Isn) it can be deduced that all rows of the
matrix B are vectors from the subspace (Ker (M, — o))" = Ker (H,, + Ion).

For i = 1,2,...,2" ! we also have:
(H A+ AH,) G = H, (AF) + A(H.G;) = H, (AG;) — AG; = BG,.

In this case BG; = 0 € R* for every i = 1,2,...,2" 1. Since the set {Gl}i?
forms a basis of the subspace Ker (H,, + I3») we can conclude that all rows of the
matrix B are vectors from the subspace (Ker (H, + Ion))" = Ker (M, — Ion).
Thus we have proved that all rows of the matrix B lie in Ker (H,, + Ion) N
Ker (H,, — Ion) but the intersection of orthogonal subspaces consists only of the

zero element of the space R™. Therefore the matrix B is zero matrix. H

Theorem 2. An isometric mapping f(x) — f(w(z)) @ g(x) of the set of all
Boolean functions in n = 4 variables into itself is a bijection between SB™(n)
and SB™(n) if and only if

m(r)=L(z®c)
and

g(x) =L, x) @4,
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where L € Oy, c € F}, wt(c) is odd, d € Fs.

Proof. Let f € B, and f = f @ e for some ¢ € Fy. Consider a function g(z) =
f(L(x®c)®{c,z)®d, where L € O,, c € Fy, wt(c) is odd, d € Fy:

Wg(y) _ Z (_1)<x,y>®g(x) _ Z (_1)(x,y>@f(L(x@c))@<c,m>@d _

xeFy xelFy
= (—1)¢ Z (—1)@v@ODf (La®e) —
xeFy
= (=1)" Z (_1)<L*1z®c,y®6>®f(2) _
zelFy
= (_1)d®<07y>®<0,0> Z (_1)<ZvL(y®0)>@f (2) —

mn
z€F}

_ (_1)d@<c,y>@12n/2<_1)f(L(y(—Bc)) _ 2n/2(_1)f(L(y@c))@<c,y>@d(—B5(—B1 _

_ 2n/2(_1)g(y)@5®1 _ 2n/2<_1)§(y)'

The opposite direction has been proved.

By using the same considerations as in the proof of the Theorem 1 it has
form

f(x) — [(Lz@b) ®{c,x) D,

where L is a n x n invertible binary matrix, ,b,c € 5, d € .

From Proposition 2 it follows that AH, = —H,A. Let, as before, v, € Fy
be a binary representation of the number k € {0, 1,...,2" — 1}.

Recall from the proof of the Theorem 1 that

(AH,) (—1)<evn@XLo@b.u;)®d

i+1j+1 —

(HnA)jq 01 = (—1)<”1‘va1(Uj®b)>®<c,L*1(fuj@b)>@d

for any 4,7 € {0,1,...,2" — 1}.

Since AH, = —H,A implies (AILIH)HIJ+1 = — (H,A)
{0,1,...,2" — 1}, the following relation must hold

i+1,j41 for any i,j €

(_ 1)<c,vi>®<Lvi®b,vj>®d _ (_ 1)<U¢,L71 (Uj®b)>€r)<c,L*1 (vj®b)>€r)d®1 :
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or equivalently

{e,0) @ Lz @b,y) @d =z, L7 (y®b))®
&, L (yob))@dal (4)

for any x,y e 3.
Put y € Fy with wt(y) = 0 in (4). Then
(c,x) = <x, L*1b> @ <c, L*1b> D1,
<x, L@ c> = <c, L_1b> @1
for any x € . Then

L '%h®c=0,
<c, L_1b> =1,

b= Lc,
{Wt (c)is odd. (5)

Return to (4) and take (5) into account:

(c,2) D{La @ Le,yy =, L (y@ Le)y®{c, L' (y® Le) ) @ 1,
e,y @ (La,y) ®{Le,yy = {z, L 'y)y @ (z,c) ®{c, L y)y ®{c, ) D 1,
(L, yy ®{Le,y) = (z, L y) @ {c, Ly),
L@e),p= (L) @@e).y).

for any x,y € Fy. It holds if and only if

L= (LM

Thus, combining (5) and (6) we obtain

-t = T
b= Lc,
wt (c) is odd.
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5 Isometric mappings preserving the
Rayleigh quotient

In [2] the Rayleigh quotient Sy of a Boolean function f € F,, was defined as

Sy = Z (—1)f@Sf WSy — Z (_1)f(y)Wf(y>_

x,yelfy yelfy

For any f € B,, the normalized Rayleigh quotient Ny is a number

Ny = Z (—1)/ @S @) Q_n/QSf_

r n
xeF}

In [2] (Theorem 3.1) it was proved that for any f € F,, the absolute value of
Sy is at most 232 with equality if and only if f is self-dual (+2°%/?) and anti-
self-dual (—23”/ 2) bent function. In the article [3] the operations on Boolean
functions that preserve bentness and the Rayleigh quotient were given. Namely,
it was proven that for any f € B,,, L € O,, c € F},d € [y the functions g, h € B,
defined as g(x) = f(Lx) ®d and h(z) = f(x @ c) B {c,x) provide N, = Ny
and Nj, = (— 1) Ny.

One can notice that the mentioned operations are isometric mappings from
Z,. In this section we generalize these results within isometric mappings.

Theorem 3. An isometric mapping ¢ € L, of the set of all Boolean functions
in n = 4 variables into itself preserves the Rayleigh quotient if and only if it
preserves self-duality.

Proof. For straight direction it is enough to mention that S; = +2372 if and
only if f € SB™(n) (|2], Theorem 3.1).

Assume that the mapping ¢ preserves self-duality. Let A be its matrix. Then
by Proposition 1 we have AH, = H,A. Rewrite the Rayleigh quotient in the
following form:

Sy = Z (_1)f(ff)®f(y)@<w»y> — (F, H,F),

z,yely
where F' is a sign function. The mapping preserves the Rayleigh quotient if
Se() = (AF H,, (AF)) = (F, H,F) = 5.
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for any sign function F'. Consider
(AF,H, (AF)y = (AF,A(H,F)y = (A"AF, H,F) = (F, H,F),
therefore it preserves the Rayleigh quotient. [

Corollary 1. An isometric mapping f(z) — f(w(x)) @ g(x) of the set of all
Boolean functions in n = 4 variables into itself preserves the Rayleigh quotient
if and only if

m(z) = L(z@c),
and

9(x) = {c,z) @ d,
where L € O, c € F}, wt(c) is even, d € 5.
Theorem 4. An isometric mapping ¢ € L, of the set of all Boolean functions

inn = 4 variables into itself changes the sign of the Rayleigh quotient if and
only if it is a bijection between SB™(n) and SB™(n).

Proof. For straight direction it is enough to mention that S; = +237/2 if and
only if f € SB*(n) and Sy = —2%2 if and only if f € SB™(n) ([2], Theorem 3.1).

Assume that the mapping ¢ is a bijection between SB*(n) and SB™(n). Let
A be its matrix. Then by Proposition 2 we have AH,, + H,A = 0. Rewrite the
Rayleigh quotient in the following form:

Sy = Z (1)@ WSy — (F H F),

x,yefFy

where F' is a sign function. The mapping changes the sign of the Rayleight

quotient if
Sop) = CAF, H, (AF)) = —(F, H,F) = —5}.

for any sign function F'. Consider

<AF7 H, (AF)> = <AF7 —A (HnF)> -
= —(A"AF, H,F) = —(F,H,F),
therefore it changes the sign of the Rayleigh quotient. ]

Corollary 2. An isometric mapping f(x) — f(w(x)) ® g(x) of the set of all
Boolean functions in n = 4 variables into itself changes the sign of the Rayleigh
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quotient if and only if
m(x) =L(zx®c),

and

9(x) = {c,x) @ d,
where L € O, c € Fy, wt(c) is odd, d € Fs.

The following corollary can be deduced:

Corollary 3. Any isometric mapping of the set of all Boolean functions in
n = 4 variables into itself which preserves the Rayleigh quotient or changes the
sign of the Rayleigh quotient also preserves bentness.

The Rayleigh quotient characterizes the Hamming distance between a bent-
function and its dual. Indeed, let f € B,,, then

, N 1 1
dlSt(f,f)ZZ 1—W5f:2 1—§Nf

Thus from Proposition 1, Theorem 1 it follows that the isometric mapping
preserves bentness and the Hamming distance between any bent function in
n > 4 variables and its dual if and only if it preserves self-duality and its form
is described by the Theorem 1.

Let us summarize the main results from this paper. Let ¢ be an isometric
mapping of the set of all Boolean functions in n > 4 variables into itself with
matrix A, namely

p: fx) — [(n(x)) @g(2),

where 7 is a permutation in Fy and g € F,.
Theorem 5. The following conditions are equivalent:
— o preserves self-duality;
— p preserves anti-self-duality;
—  preserves the Rayleigh quotient;

—  preserves bentness and the Hamming distance between any bent function
and its dual;

—7m(x) = L(x@®c) and g(z) = {c,x) ® d, where L € O, c € F}, wt(c) is
even, d € Fy;
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— AH, = H, A.

Theorem 6. The following conditions are equivalent:

— @ is a bijection between SB™(n) and SB™(n);
— ¢ changes sign of the Rayleigh quotient;

—7m(x) = L(x®c) and g(z) = {c,x) ® d, where L € O, c € F}, wt(c) is
odd, d € Fy:

— AH, = —H,A.
It follows that the way of classifying self-dual bent functions given in |2, 4]

is the most general within isometric mappings.
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Abstract

This study examines the properties of Boolean functions related to ensuring the
resistance of the filter generator to the key recovery method, based on the so-called
planar approximations. The problem of the existence of an «ideal» function, balanced
on all possible planes, is considered. The weight distribution of Boolean functions on
planes of different dimensions is studied: the number of planes on which the function is
not balanced and the weight of the function on planes of a given dimension are estimated.
In particular, the study presents all possible sets of values of the specified parameters
for functions of 5 variables.

Keywords: filter generator, Boolean function, stream cipher.

1 Introduction

The filter generator is one of the elements often used in the construction of
stream ciphers ([8, 14, 15]). The internal state of such a generator, which is a
binary string of a fixed length, initially filled with the key bits, is transformed
from cycle to cycle using a certain fixed linear transformation. The output of
each clock cycle is the value of the fixed Boolean function (which is usually
called the filter function) of the current state of the generator. Several key re-
covery methods are proposed for this scheme (see, for example, [10, 9, 11]). Such
methods are effective if the elements of the generator satisfy some negative prop-
erties (for example, the filter function is close to the function of a small number
of variables or the shift register that specifies the linear transformation has a
small number of feedbacks). Accordingly, to ensure resistance to these methods,
generator elements must satisfy certain properties. Examples of such properties
for the filter function are balancedness, nonlinearity, correlation, and algebraic
immunity. Typically, these properties are called cryptographic, and a deeper
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understanding of their nature and interrelationships is of particular interest (a
review of the results on this subject is contained in the monograph [6]).

In [1], a key recovery method for a filter generator is proposed. It uses a
planar approximation, a concept introduced in the same reference. This is the
name of a set of sequences of planes (cosets in some linear subspaces). In this
case, the planes included in the same sequence should be the images of a certain
single plane with respect to different degrees of the linear transformation used in
the generator. The key can be recovered the more effectively, the closer the filter
function to the constant on those planes that are included in the approximation.
The problem of constructing such approximations is generally nontrivial (some
special cases are considered in [1] and [5]).

As far as the authors know, the properties that generator elements must
possess to achieve the generator resistance to the method described in [1| have
not been previously studied. In this study, such properties are examined exclu-
sively in the context of the filter function. That is, the study examines whether
it is possible to ensure generator resistance only by choosing such a function.
This problem statement may seem unnatural. Indeed, the filter generator will
be resistant to the specified method if it is unable to build a sufficiently accurate
planar approximation. The possibility of its construction in the general case es-
sentially depends on the properties of not only the filter function, but also the
linear transformation. In this case, resistance can still be ensured regardless of
the linear transformation, for example, with the help of a hypothetical «ideal
function», which is balanced on all possible planes of all dimensions. However,
this study shows (see Section 4) that there is not only such a function, but also
a function balanced on all planes of at least one arbitrary dimension.

Because of the lack of a specified «ideal», this study examines how Boolean
functions can be close to it. The number of planes of various dimensions on which
the Boolean function is not balanced is estimated (see Section 5.2). We also
obtained weight estimates of a Boolean function on planes of a fixed dimension
for fixed values of its nonlinearity and weight (see Section 5.3). Therefore, an
inequality relating the degree of algebraic degeneracy of a Boolean function and
its nonlinearity was obtained. It is also proved that the number of planes on
which the weight of the function differs from half the power of the plane by
an arbitrary fixed value does not change when the function is affected by the
elements of the group BU(V,)$Hy — a certain generalization of the full affine
group (inversion of the function values is additionally allowed). Regarding this
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group, a classification of Boolean functions of 5 variables has been compiled, and
for each class, the above values are given, which are related to the weight of the
function on the planes (see Section 6). The study also presents (see Section 7)
the results of estimation of these parameters for some specific Boolean functions
(for example, for the filter function used in the LILI-128 cipher [8] and bent
functions of 6 variables).

The results obtained in this work can be used to refine the estimates of
the complexity of the preliminary stage of the key recovery method, during
which planar approximations are constructed. In [4], the problem of construct-
ing «good» planar approximations is studied under the conditions of fairly
strong model assumptions: only the weight of the Boolean function is considered.
Within the framework of this model, it is impossible to compare the resistance
of generators built based on different filter functions. If the number of planes
with different weights of the function on them is known for the studied Boolean
function, then the estimate of the probability of adding a new plane to the
trajectory can be refined (for example, using the sample model without return).

The following Section 2 outlines the basic concepts and definitions that are
necessary for further discussion, and Section 3 briefly describes the method
from [1] and related concepts. The following sections describe the main results
of this work and the issues that remain open.

The proofs of all theorems and propositions are presented in Appendix.

2 Basic concepts and definitions

Let Iy be a field of 2 elements. Let V,, = [Fy be a linear space of dimension
n on the field Fo. The set supp(z) = {i € {0,...,n — 1} |z; = 1} is called the
carrier of vector z = (xg,...,x,_1) € V,. The fact that L < V,, is a subspace
of space V,, shall be denoted as follows: L < V,,. Let us denote the linear shell
of vectors vV, ... o) of V,, by L(v™, ..., v®*)) [12]. A coset in the subspace
of this space shall be called the plane plane in the space V,,, and its dimension
shall be the dimension of this subspace. Planes in the space V,,, the dimension
of which is equal to n — 1, are called hyperplanes.

The Boolean function f of n variables is the mapping f : V,, — Fy. The
set of all Boolean functions of n variables shall be denoted by F,. The carrier
of the function f € F,, is the set 1y = {z € V,, | f(z) = 1}. The weight wt (f)
of a Boolean function f € F, is the power of its carrier. The function f € F,
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is balanced if wt(f) = 2""1 [6]. For u € V,, and a € Fy let I, be an affine
function I, ,(z) = (x,u)@a of n variables, where {(z,u) is the scalar product of
vectors z and w. Let [, be the linear function [, g». For S < V,, and f € F, fls
shall denote the restriction of the function f on the set S, that is, a function
fls : S — Ty, such that f|g(z) = f(z).

Let Ny be the set N U {0}. A filtering generator shall mean a mapping
from Ny x V,, to Fo, which is determined by a non-degenerate linear mapping
AV, -V, and a balanced Boolean function f € F, which assigns the number
i and the vector u* € V}, to the bit z; = f(A*(u*)). The vector u* shall be called
the key or the initial content of the filter generator, and the sequence of bits
20, 21, - - - — the output sequence of the filter generator. The result of encrypting
plaintext € Vy based on the key u* € V,, using a stream cipher based on
the filtering generator is the vector y € Vi, such that y; = z; @ z; for any
i€ {0,...,N—1}. In other words, y = @z, where z = (29, 21, ...,2ny-1) € Wy
is the initial segment of length N of the output sequence of the filter generator.

The Walsh-Hadamard transform is often used to analyze the cryptographic
properties of Boolean functions. The Walsh-Hadamard transform of the Boolean
function f e F, Fn is the function W; : V,, — Z, such that Wy(u) =
> meVn(_l)f (@)&w.) The values W (u) are called Walsh-Hadamard coefficients
(or, in short, Walsh coefficients). The following relations are valid (see, for ex-
ample, [6]):

Wi(u) = 2" —2-dist (f, 1), (1)

2, i)

ueVy,

22" (Parseval equality). (2)

3 Key recovery method and planar approximations

In [1], a method for recovering the filter generator key was proposed, the
main idea of which is as follows. The membership of a key in a certain plane is
determined as a result of only one check of the equality of some bits of the output
sequence by previously calculated fixed values. To improve the efficiency of the
method, it is necessary to be able to perform such a check for a set of planes
that almost completely cover the entire space of keys V,,. A detailed description
of the method, evaluation of its characteristics and application examples are
given in [1].

For the present study, the necessary condition for the efficiency of this
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method is important. It consists in the existence for the filter generator of an
approximation of a special type, which was called planar in [1]. The following
are the relevant definitions from this reference.

Here and below, A is a linear mapping from V,, to V,,, and f is a function
from F,.

Let m € N, L = (Loy,...,Ly), where all L; are planes in V,,, and

T = (to,t1,...,tm), where tg = 0, < t; < ... < t, are positive inte-
gers. A triple Traj = (m,L,T) is called a trajectory for A if the relations
L; = Att-1(L; 1), i =1,...,m are valid. In this case, the value m is called

trajectory length, and Lg is an initial plane.

Let Traj = (m, L, T) be the trajectory for some linear transformation. Let
also B = (by,...,by), where all b; € Fy, and P = (p1,...,pn), where all
pi € [0;1]. A couple (B,PP) is called a characteristic of the Traj trajectory
with respect to function f € F,, if p; is the probability that with a random
equiprobable choice of a vector v from L; the value of f(v) coincides with the
constant b;.

Each trajectory of length m corresponds to 2" characteristics, among which

there is at most one characteristic that has all p; > 1. A characteristic with

such a property is called positive with respect to f. T2he trajectory for which
there is a positive characteristic is called a suitable trajectory. In this case, for
any trajectory there is a characteristic in which p; > % for all 4.

The finite set of trajectories Traj(l), e ,Traj(s) for A, which are suitable
with respect to the function f, with pairwise different starting planes shall be
called the planar approximation of the function f with respect to the mapping
A.

The following section deals with the existence of a function for which no
suitable trajectory exists, and therefore, there is no planar approximation for

any A.

4 Non-existence of an «ideal» function

The method described in the previous section is not applicable for a function
balanced on all planes of all dimensions. Indeed, there is no suitable trajectory
for such a function. However, the following theorem says about the non-existence
of even such a function, which is balanced on all planes of at least one dimension.

Further we will say that a certain plane of the space V,, is f-balanced (f-
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unbalanced)) if the function f is balanced (unbalanced) on this plane. If specify-
ing a particular function f is not important or it is clear from the context which
function f is in question, we will simply say about a balanced (unbalanced)
plane.

Theorem 1. For any function f € F,, and for any k, 1 < k < n — 1, there

exists a plane of space V,, of dimension k such that the weight of the function
f on it is different from 2F1.

Even though the requirement of balancedness on all planes of at least one di-
mension, the impossibility of fulfilling which has been proved above, guarantees
the absence of suitable trajectories, it can still be weakened. This is explained
by the fact that the efficiency of the method depends not on the presence of
unbalanced planes, but on their number and on how close the function f on
such planes is to a constant. Further, we study these two parameters of Boolean
functions: number of unbalanced planes and weight of functions on planes of
different dimensions.

5 The weight of a Boolean function on planes

5.1 Planes of the space V,

For convenience of presentation and perception of further material, let us
define the following directed graph. Let G = (V, E), where V is the set of all
planes of the space V;, of dimension k,1 < k < n, and E < {(u,v)|u,v e V} is
the set of ordered couples of vertices such that dimv = dimwu — 1 and v < w.
Next, let us identify the vertex of the graph with the plane that corresponds to
it.

Note that vertex V,, has only outgoing arcs and planes of dimension lhave
only incoming arcs. Let us call the set of planes of one dimension equal to k,
the k-th tier, 1 < k < n. Let us also note that if two planes corresponding to
vertices vy, vy of one tier do not intersect, then the subgraphs formed by the
vertices to which there is a directed path from v; and vy, respectively, do not
have common vertices.
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floor vertex count

n—k 2721
2 Hz]_Qk

Figure 1: The properties of G.

Let us note some properties of the specified graph following from the stan-
dard linear algebra statements.

Statement 1. The number of vertices on the k-th (k = 1,...,n) tier of the

graph is equal to
21 1
n—Fk
2 H 2k — - 1°

Statement 2. The number of outgoing arcs for any vertex on the k-th (k =
2,...,n) tier of the graph is 2"1 — 2.

Statement 3. The number of incoming arcs for any vertex on the k-th (k =
1,...,n—1) tier of the graph is 2" % — 1.

Statement 4. . For any two vertices uy,us on the k-th (k = 2,...,n—1)

tier, there 1s at most one vertex v on the k — 1 tier such that there exist arcs
(u1,v) € E and (ug,v) € E.

For convenience, these properties are summarized in Figure 1.
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5.2 The number of unbalanced planes

Throughout this section, for the Boolean function f € F, let S¢(k) be the
number of planes of dimension 1 < k < n on which the weight of the function
is different from 271, that is, on which the function is unbalanced.

Theorem 2. For a balanced Boolean function f € F,, the number of unbal-
anced hyperplanes is equal to twice a number of non-zero Walsh-Hadamard co-
efficients. In other words,

Sin—1) =2 [{ue Vo[Wy(u) # 0}].

Theorem 3. For a Boolean function f € F, of the weight w, the number of
unbalanced planes of dimension 1 is equal to

S,(1) = w(w2— 1) N (2" — w)(22” —w — 1)'

Theorem 4. Let f € F,. If for some k, 2 <k <n—1, S¢(k) =N > 1, then
the number of unbalanced planes of dimension k — 1 satisfies the inequality

@@—1)%-(2’@—1)—%,

where t = min(2¥ — 1, N — 1).

Knowing the value of the number of unbalanced planes of dimension n — 1
for a balanced function (see Theorem 2), applying Theorem 4 recursively, we
can obtain non-degenerate estimates of the number of unbalanced planes on the
k-th tier, 1 < k <n —2.

Thus, according to Theorem 2, for the balanced function f = 00017FFF,
the number of unbalanced planes of dimension n — 1 is 8. Applying Theorem 4
recursively, we obtain the following estimates (values in parentheses are the real
values that can be found in Appendix 1): there are at least 105 (270) unbalanced
planes of dimension 3, 21 (490) unbalanced planes of dimension 2 and 3 (240)
planes of dimension 1.

5.3 Some estimates of the function weight on planes

Definition 1. The plane weight characteristic pwey (f) of a function f of order
d, 1 <d <mn, is a vector of length 2471 + 1, the w-th component of which is
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equal to the number of planes of dimension d on which the weight of function
f is equal to either 2771 —w or 2471 +w (0 < w < 27°1).

For example, for functions of 5 variables identically equal to 0 and 1, planar
weight characteristics of order 3 are the same and equal (0,0, 0,0, 620). For the
function f(x1, z9, 3, x4) = Tox3 + 173 + 129, the planar weight characteristic
of order 2 is (70,64, 6), and of order 3 is (22,0, 8,0,0).

The following statement holds.

Theorem 5. [6] Let f € F,,, L < V,, be an arbitrary subspace and a,b € V,, be
arbitrary vectors. Then,

Z (_1) f(@)@e(bxy _ 2d1mL n <a b Z Wf <u a> (3)
rea®L ueb® L+

Given that (—1)/®) =1 — 2f(2), from Theorem 5 we obtain a relation for
the weight of the function f on the plane a @ L (in relation (3) we assume
b=0"):

1um ]‘ u,a
Wt (flagr) = 277! — o 3 W) (=)™, (4)
ueLt

Theorem 6. Let natural n and k be such thatn > 2 and 1 < k <n—1. Then
for any Boolean function f of n variables, any subspace L of the space V,, of
dimension k and any vector a € V,,, the following inequality is valid

wt ()] (1 - in_k> (21— nl(f)). (5)

wt (f|a€r)L) o on—k

Let us note that for a balanced Boolean function f, inequality (5) allows
to estimate the deviation of the weight of the function f on an arbitrary plane
a ® L from half of its power |a @ L| /2 = 2871,

A corollary of the Theorem 6 is the following statement on the relation
between nonlinearity and the order of algebraic degeneracy (see |7, 3|) of the
Boolean functions.

For a Boolean function f € F, the order of algebraic degeneracy AD (f) is
the maximum value of k, for which there exist a subspace L < V,, of dimension
k, such that the function f is constant on each coset of L.
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Corollary 1. For Boolean function f € F,, such that wt(f) < 271, the
following inequality holds:

AD (f) < n —log, (2”‘17Vt—(£1)(f) + 1) :

This estimation is achieved, for example, for non constant linear functions

(then wt (f) =21 nl(f) =0 and AD (f) =n —1).

Now consider properties of the affine functions related to planar approxima-
tions. For natural n > 2 and k, 1 <k <n—1, let P, ;. be the number of planes
of dimension k of the space V,,. That is

) ]ﬁ on _ 22'—1
Pn,k - 2n— . ﬁ
i=1 28 =2

For affine functions, the properties of planar weight characteristics are described
by the following statement.

Theorem 7. Any non-constant affine function f € F, Fn on any plane is
either balanced or constant. Also

pwe,_1(f) = (2" —4,0,...,0,2),
forany k, 2 < k< n — 2, the following ratio is true

pwck(f) = (Pn,k‘ -2 Pn—Lk?; 07 07 ) 07 2- Pn—l,k‘)-

6 Numerical characteristics of Boolean functions of 5
variables

This section presents the numerical results of an analysis of the weight dis-
tribution of Boolean functions of 5 variables over planes of various dimensions.

This problem has been resolved exhaustively in the sense that the Appendix
contains all possible values of the number of unbalanced planes for functions
of 5 variables. And for balanced functions, the most interesting in terms of
cryptography, all possible values of planar weight characteristics are given. It
was possible to obtain and present the indicated results in a form convenient
for analysis because the planar weight characteristic is invariant relative to
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some generalization of the complete affine group, namely, the group &(V},)$o.
Problems related to transformation groups of a set of Boolean functions and
classifications, are discussed in detail in [6].

Let BU(V,,)94 be a set of triples (A, b, h), where A is a nondegenerate n x n-
matrix over the field Fo, b € V,,, and A is a function from F,, such that degh < d.
If « =(A,b,h) e BUV,)HNq, and f € F,, then let f* be a function of F,, such
that f*(z) = f(Az @) @ h(x). Thus, each element of &LU(V,,)H, corresponds
to some transformation of the set F,,. The set of such transformations is a group
with respect to the superposition operation.

Theorem 8. For any function f € F,, any natural d,1 < d < n, , and any
element o € BU(V},) 9o the planar weight characteristic pwey (f) and pweg (f©)
coincide.

[t is easy to see that the set JF,, is split into non-overlapping sets {f*|a €
&U(V,)Ha} called equivalence classes with respect to BLU(V,)9H, and denoted
by {f}euw,)s, Any function from such a set is called a representative of this
equivalence class (the entire equivalence class can be obtained using the action
of the elements of the group BU(V,)$, on this function). The compilation of the
classification of the set F,, with respect to a group BU(V,,)$, is understood as
the compilation of a list that includes one representative of each of the existing
equivalence classes. An example of such classification can be found in [13, 2]|.

The Appendix provides a classification of Boolean functions of 5 variables
with respect to the group &U(V5)$Hg. For each of these functions, the values of
parameters are given, which coincide for all functions from the corresponding
equivalence class. Namely, the power of the equivalence class, the algebraic
degree, the nonlinearity and the number of unbalanced planes of dimensions
4,3,2,1. . From the definition of a group &U(V},)$ it follows that the same
equivalence class contains the same number of functions of weight w and 2" —
w. Therefore, the entire classification is divided into 17 tables, each of which
includes equivalence classes containing weight functions w and 2° — w for w =
0,1,...,16. The tables show global and local numbering. The minimum and
maximum values in the columns containing the numbers of unbalanced planes
of various dimensions are in bold. The representative function itself is specified
in the form of a truth table written in hexadecimal notation, and the function
values written in the lexicographical order of its input arguments from left to
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right:
£(00000) £(00001) £(00010) ... f(11101) f(11110) f(11111).

For example, the function f = 80018003 takes on a value 1 only on vectors
(00000), (01111), (10000), (11110), (11111).

Let us note some features of the obtained classification. It contains 210
functions, 38 of which are balanced. Among the balanced functions for the
function 0000FFFF, which is a representative of the class of affine functions,
the minimum number of unbalanced planes is achieved at the same time for all
dimensions under consideration. In this case, for any affine function, if the plane
is unbalanced, then the function is a constant on it. The function for which the
number of unbalanced planes is maximal for each dimension does not exist (for
the function 011F37BC, the maximum is reached for dimensions 4,2 and 1).

7 Numerical Characteristics of Some Boolean Functions

7.1 Numerical characteristics of Bent functions of 6 variables

In [16] the classification of Bent functions of 6 variables under the group
&U(V)H1 was proposed. The classification consists of 4 equivalence classes,

for each of which below are the quantity of unbalanced planes of dimensions
5,4,3,2,1.

Ne f deg f |nl(f)| 5| 4 3 2 1

111E111E111EEEE] 2 28 | 63| 1659 | 5175 | 6636 | 1008
005533660F5A3C96 3 28 | 63| 1659 | 7415 | 6636 | 1008
033055660C3FA569 3 28 | 63| 1659 | 7975 | 6636 | 1008
066A503C09655FCC 3 28 163 ] 1659 | 8255 | 6636 | 1008

=~ W DN —

Note that for these Bent functions, the addition of arbitrary linear functions
does not change the number of unbalanced planes of any dimension. However,
an arbitrary Boolean function does not have this property.

7.2 Numerical Characteristics of filter function of LILI-128

Let n = 10, f; € F, be the filter function of LILI-128 cipher [8]. This
function is balanced (wt (fy) = 512) and the nonlinearity nl(f;) is equal to
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480.

The series of practical experiments of random planes of various dimensions
generation and calculation the weight of the function on them for the function
fa were carried out. The results are shown in the following table. The first
column contains the dimension of the plane, the second column contains the
theoretical boundaries of the function weight on the planes of the corresponding
dimension, according to Theorem 6. The third column contains the boundaries
of the function weight on the planes obtained as a result of direct counting for
specific planes generated during the experiment, the fourth column shows the
number of experiments.

dim | theoretical wt (fi|r@q) | experimental wt (fy|r@e) | number of tests
9 256 = 16 256 £ 16 210
8 128 + 24 128 + 24 218
7 64 + 28 64 £ 20 218
6 32 £ 30 32 £ 20 222
5 16 + 16 16 £ 16 222

The results given in the table show that the inequality from the Theorem 6 is
best possible in the general case (the boundaries are reached for the dimensions
9 and 8).

8 Conclusion

The results obtained in this study mainly relate to the properties of Boolean
functions, and not the cryptographic properties of filter generators. The clear
need for the results obtained from cryptanalysis was explained in detail in Sec-
tion 1. At the same time, this study does not demonstrate the application of
these results to obtain applied cryptographic conclusions about the resistance
of the filter generator. This is the main unresolved issue that the authors intend
to make the main topic of further research.

However, there are problems concerning the specific features of the structure
of Boolean functions in terms of the location of their units on the planes of the
space V,,. Here are some of them.

— The issue of whether affine functions attain the minimum number of un-
balanced planes for all dimensions k, 2 < k < n — 1 remains open.
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— Refinement of the inequality from Theorem 4, which is required to obtain
more accurate estimates of the number of unbalanced planes for dimensions
that are not available for complete enumeration, is of considerable interest.

— In addition, there are interesting relations connecting the weight of a func-
tion on planes or the number of unbalanced planes with various crypto-
graphic parameters of Boolean functions, for example, with an algebraic
degree.
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A Appendix 1. Quantities of unbalanced planes of func-

tions of 5 variables

Function of the weight of 0 and 32

Ne | Negocal f { S ouss,| | degf nl(f) | 413 | 2 |1
1 1 00000000 2 0 0 62 | 620 | 1240 | 496
Function of the weight of 1 and 31
Nel Nooear f |{f}®ﬂ(%)ﬁo‘ deg f nl (f) 4 3 2 1
2 1 00000001 64 5 1 62 | 620 | 1240 | 465
Function of the weight of 2 and 30
Ne Nglocaul f |{f}®ﬂ(V5)5’Jo‘ deg f nl (f) 4 3 2 1
3 1 00000003 992 4 2 62 | 620 | 1225 | 436
Function of the weight of 3 and 29
Ne NQlocaul f |{f}®ﬂ(vs)55o‘ deg f nl (f) 4 3 2 1
4 1 00000007 9920 5 3 62 | 620 | 1198 | 409
Function of the weight of 4 and 28
Ne | Nojocal f {f eumsel [degf I nl(f) | 4] 3 | 2 |1
5 1 0000000F 2480 3 4 62 | 613 | 1156 | 384
6 2 00000017 69440 4 4 62| 619 | 1162 | 384
Function of the weight of 5 and 27
Ne Nglocal f ’{f}®ﬂ(v5)ﬁo| deg f nl (f) 4 3 2 1
7 1 0000001F 69440 5 5 62| 614 | 1114 | 361
8 2 00000117 333312 5 5 62| 615 | 1120 | 361
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Function of the weight of 6 and 26

¥ [N | 7 |1 euvnol [dea (nl() | 4 [ 3 | 2 [ 1
9 1 | 0000003F 34720 4 6 |62)|602|1057 | 340
10| 2 | 0000011F 833280 4 6 |62|609| 1069 | 340
11 3 00000356 55552 3 6 |62]| 6051075 | 340
12| 4 00010117 888832 4 6 |62]| 6051075 | 340
Function of the weight of 7 and 25
¥ [N | T | Joutaml [deg/ 01D 4] 3 [ 2 [ 1
13 1 | 0000007F 9920 5 7 |62|578| 988 | 321
14| 2 | 0000013F 833280 5 7 162|597 | 1012 | 321
5 3 00000357 555520 5 7 162603 | 1018 | 321
16| 4 |0001011F | 4444160 5 7 162|594 | 1024 | 321
170 5 00010356 888832 5 7 162|585 (1030 | 321
Function of the weight of 8 and 24
N [Nt | 7 [/ Jeuvml | degf [nl(j) [ 4 [ 3 [ 2 | 1
18 1 | 000000FF 1240 2 8 159]536|904 304
19| 2 0000017F 238080 4 8 61 | 578 | 946 | 304
20 3 0000033F 104160 3 8 61 | 574 | 952 | 304
21 4 0000035F 1249920 4 8 61 | 590 | 958 | 304
22| 5 0001013F 6666240 4 8 162|577 | 970 | 304
23| 6 00010357 8888320 4 8 162|578 | 976 | 304
24| 7 00030355 555520 3 8 162|578 | 976 | 304
25| 8 00030356 3333120 4 8 |62 564 | 982 | 304
Function of the weight of 9 and 23
Ne NQlocal f |{f}®ﬂ(V5)5’Jo‘ deg f nl (f) 4 3 2 1
26 1 | 000001FF 29760 5 7 160|550 | 868 | 289
27| 2 0000037F 833280 5 7 |62 569 | 892 | 289
281 3 00000777 555520 5 7 |62|575| 898 | 289
29| 4 0001017F 1904640 5 9 60 | 557 | 910 | 289
30 5 0001033F 1666560 5 9 61 | 548 | 916 | 289
31 6 0001035F | 19998720 5 9 61 | 559 | 922 | 289

Continued on the next page
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Function of the weight of 9 and 23

Ne NQlocal f |{f}®ﬂ(V5)5§0‘ deg f nl (f) 4 3 2 1

32 7 00030357 13332480 5) 9 62 | 555 | 928 | 289
33 8 00030567 | 13332480 5! 9 62 | 551 | 934 | 289
34 9 00031556 4444160 5) 9 62 | 536 | 934 | 289
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Function of the weight of 10 and 22

¥ [N | 7 | [ ouvaml [ desf [0l ()] 4| 3 [ 2 | 1
35 1 000003FF 104160 4 6 60 | 542 | 817 | 276
36| 2 0000077F 833280 4 6 62 | 549 | 829 | 276
371 3 0000177E 55552 3 6 62 | 545 | 835 | 276
38| 4 | 000101FF 238080 4 8 61 | 536 | 841 | 276
39 5 0001037F | 13332480 4 8 61 | 535 | 865 | 276
40| 6 00010777 8888320 4 8 62 | 536 | 871 | 276
41 7 0003033F 166656 4 10 | 57| 500 | 865 | 276
421 8 0003035F 9999360 4 10 | 59 | H27 | 877 | 276
431 9 0003056F 3333120 3 10 | 59 | 533 | 883 | 276
441 10 | 00030577 | 39997440 4 10 | 60 | 533 | 883 | 276
45| 11 | 00031557 4444160 4 10 | 59 | 532 | 877 | 276
46 | 12 | 00031558 | 39997440 4 10 | 61 | 524 | 889 | 276
471 13 | 00035556 634880 3 10 | 59 | 508 | 883 | 276
48 | 14 | 0003555A 1666560 4 10 | 61 |494 | 889 | 276
491 15 | 00071356 5332992 4 10 | 62| 530 | 895 | 276
Function of the weight of 11 and 21
¥ [N | F [ Jeutvgeel [degf [0I(D][ 4] 3 | 2 | 1
50 1 000007FF 208320 5 5 60 | 514 | 754 | 265
51 2 0000177F 333312 5 5 62 | 515 | 760 | 265
52| 3 | 000103FF 1666560 5 7 61 | 512 | 802 | 265
b3 | 4 0001077F | 13332480 5 7 60 | 509 | 814 | 265
54| 5 0001177E 888832 5 7 162|500 | 820 | 265
55| 6 0003037F 3333120 5 9 59 | 491 | 826 | 265
56| 7 0003057F | 19998720 5 9 61 | 507 | 832 | 265
57| 8 00030777 | 26664960 5 9 58 | 503 | 838 | 265
581 9 0003155F | 39997440 5 9 b8 | 508 | 838 | 265
59 | 10 | 0003156F | 39997440 5 9 60 | 504 | 844 | 265
60| 11 | 00035557 634880 5 9 62 | 515 | 820 | 265
61| 12 | 00035558 | 13332480 5 9 60 | 494 | 844 | 265
62| 13 | 0007133D | 19998720 5 11 | 57| 490 | 850 | 265
63| 14 | 00071357 | 63995904 5 11 | 57| 505 | 850 | 265

Continued on the next page
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52

Function of the weight of 11 and 21

N local

f

S eunnl | degf | nl(f) | 4| 3 | 2 |1
64| 15 |0007333C | 333312 5 | 11 |57 430850 | 265
65| 16 | 00073356 | 13332480 | 5 | 11 |59 | 506 | 856 | 265




Function of the weight of 12 and 20

¥ [N | T [ Tourvnl [deaf [0l()[ 4| 3 [ 2 |1
66 1 00000FFF 17360 3 4 56 | 461 | 676 | 256
67 2 000017FF 208320 4 4 60 | 467 | 682 | 256
68 3 000107FF 3333120 4 6 59 | 479 | 754 | 256
69 4 0001177F 5332992 4 6 o7 | 475 | 760 | 256
70 5 000303FF 416640 3 8 05 | 457 | 772 | 256
71 6 000305FF 2499840 4 8 59 | 483 | 778 | 256
72 7 0003077F 19998720 4 8 99 | 470 | 790 | 256
73 8 0003157F 53329920 4 8 57 | 481 | 796 | 256
74 9 0003177D 6666240 3 8 o1 | 481 | 796 | 256
75| 10 0003177E 6666240 4 8 95 | 467 | 802 | 256
76 11 0003555F 6666240 4 8 59 |1 490 | 790 | 256
7 12 0003556F 19998720 4 8 55 | 477 | 802 | 256
78| 13 00070777 4444160 4 10 09 | 467 | 802 | 256
79 14 0007133F 9999360 4 10 59 | 477 | 802 | 256
80| 15 0007135F 79994880 4 10 o7 | 483 | 808 | 256
81| 16 0007137D 79994880 4 10 55 | 474 | 814 | 256
82| 17 | 0007333D 6666240 4 10 05 | 449 | 814 | 256
83| 18 00073357 79994880 4 10 05 | 479 | 814 | 256
84| 19 00073567 03329920 4 10 53 | 485 | 820 | 256
85| 20 | 000F333C 27776 2 12 147|335 | 820 | 256
86| 21 000F'3355 1666560 3 12147 | 455 | 820 | 256
87| 22 000F3356 4999680 4 12 51 | 481 | 826 | 256
88| 23 00171B56 5332992 3 12147 | 485 | 820 | 256
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Function of the weight of 13 and 19

¥ [N | [ [ euwnel [deaf [nl(H [ 4] 3 [ 2 [ 1
89 1 00001FFF 69440 5) 3 56 | 400 | 598 | 249
90 2 00010FFF 277760 5) 5) 59 | 436 | 694 | 249
91 3 000117FF 3333120 5) 5) 53 | 437 | 700 | 249
92 4 000307FF 4999680 5) 7 o7 | 434 | 742 | 249
93 5 000315FF 6666240 5) 7 51 | 455 | 748 | 249
94 6 0003177F 26664960 5) 7 54 | 446 | 754 | 249
95 7 0003557F 13332480 5) 7 54 | 461 | 754 | 249
96 8 0003567F 13332480 5) 7 48 | 452 | 760 | 249
97 9 0007077F 4444160 5) 9 56 | 427 | 760 | 249
98 10 0007137F 79994880 5) 9 53 | 454 | 772 | 249
99 11 00071777 53329920 5) 9 56 | 455 | 778 | 249
100 | 12 0007177E 17776640 5) 9 50 | 436 | 784 | 249
101 | 13 0007333F 3333120 5) 9 59 | 453 | 766 | 249
102 14 0007335F 39997440 5) 9 56 | 460 | 778 | 249
103 | 15 00073377 19998720 5) 9 53 | 469 | 772 | 249
104 | 16 0007337D | 39997440 5) 9 50 | 446 | 784 | 249
105 17 0007356F 13332480 5) 9 50 | 456 | 784 | 249
106 | 18 00073577 | 159989760 5) 9 50 | 461 | 784 | 249
107 19 | 000F333D 555520 5) 11 53 |1 392 | 790 | 249
108 | 20 000F3357 19998720 5) 11 53 | 452 | 790 | 249
109 | 21 000F 3567 13332480 5) 11 |47 | 468 | 796 | 249
110 | 22 0017173D 13332480 5) 11 53 | 442 | 790 | 249
111 | 23 | 00171B3D | 39997440 5) 11 47 | 463 | 796 | 249
112 | 24 00171B57 | 106659840 5) 11 53 | 462 | 790 | 249
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Function of the weight of 14 and 18

¥ Mo | F [ [ ouran [deg/ [nl()[ 4] 3 [ 2 |1
113 1 00003FFF 14880 4 2 48 1 312 | 505 | 244
114 2 00011FFF 1111040 4 4 47 | 389 | 637 | 244
115 3 00030FFF 416640 4 6 51 | 384 | 697 | 244
116 4 000317FF 9999360 4 6 49 | 411 | 709 | 244
117 5) 000355FF 1666560 4 6 49 | 431 | 709 | 244
118 6 000356FF 1666560 3 6 33| 427 | 715 | 244
119 7 0003577F 13332480 4 6 48 | 427 | 715 | 244
120 8 000707FF 1666560 4 8 49 | 378 | 721 | 244
121 9 000713FF 9999360 4 8 47 | 425 | 733 | 244
122 | 10 0007177F 53329920 4 8 49 | 422 | 745 | 244
123 ] 11 0007337F 39997440 4 8 49 | 437 | 745 | 244
124 | 12 0007357F 79994880 4 8 48 | 438 | 751 | 244
125 13 00073777 53329920 4 8 48 | 448 | 751 | 244
126 | 14 0007377D 53329920 4 8 47 1 434 | 757 | 244
1271 15 000F1777 13332480 4 10 51 | 434 | 757 | 244
128 | 16 000F177E 4444160 3 10 35 | 410 | 763 | 244
129 | 17 | 000F333F 277760 4 10 | 53| 422 | 745 | 244
130 | 18 000F335F 9999360 4 10 51 | 449 | 757 | 244
131 19 000F 337D 4999680 4 10 49 | 416 | 769 | 244
132 | 20 000F356F 3333120 3 10 35 | 455 | 763 | 244
133 | 21 000F 3577 39997440 4 10 | 49| 446 | 769 | 244
134 | 22 0017173F 19998720 4 10 51 | 429 | 757 | 244
135 23 0017177E 6666240 4 10 149 | 396 | 769 | 244
136 | 24 | 00171B3F 19998720 3 10 35 | 445 | 763 | 244
137 25 | 00171B5F | 159989760 4 10 50 | 445 | 763 | 244
138 | 26 | 00171B7D | 79994880 4 10 | 49| 436 | 769 | 244
139 | 27 | 00171F3D | 159989760 4 10 49 | 441 | 769 | 244
140 | 28 00173D3D | 13332480 4 10 50 | 455 | 763 | 244
141 29 | 00173D5B | 79994880 4 10 | 48 | 452 | 775 | 244
142 | 30 011717BC 6666240 4 12 47 | 443 | 781 | 244
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Function of the weight of 15 and 17

¥ Ve | T [ [ ouvanl [dea/ [nl()[ 4] 3 [ 2 |1
143 1 00007FFF 1984 5 1 32 | 200 | 400 | 241
144 2 00013FFF 238080 5 3 39 | 333 | 568 | 241
145 3 00031FFF 1666560 5) 5) 39 | 369 | 664 | 241
146 4 000357FF 6666240 5 5 43 | 395 | 670 | 241
147 5) 00070FFF 277760 5) 7 35 | 308 | 688 | 241
148 6 000717FF 13332480 5) 7 41 | 387 | 712 | 241
149 7 000733FF 4999680 5 7 41 | 407 | 712 | 241
150 8 000735FF 9999360 5) 7 45 | 413 | 718 | 241
151 9 0007377F 79994880 5 7 44 1 419 | 724 | 241
152 1 10 00077777 4444160 5 7 44 | 434 | 724 | 241
153 11 0007777B 13332480 5) 7 48 | 425 | 730 | 241
154 | 12 000F177F 13332480 5 9 42 | 405 | 730 | 241
155 | 13 000F337F 4999680 5) 9 41 | 426 | 736 | 241
156 14 000F357F 19998720 5) 9 45 | 437 | 742 | 241
157 | 15 000F 3777 13332480 5} 9 44 | 443 | 748 | 241
158 | 16 | 000F377D 13332480 5) 9 48 | 424 | 754 | 241
159 | 17 0017177F 13332480 5 9 41 | 396 | 736 | 241
160 | 18 | 00171B7F 79994880 5 9 45 | 422 | 742 | 241
161 19 00171F3F 79994880 5 9 45 | 432 | 742 | 241
162 | 20 00171F77 | 159989760 5 9 44 | 428 | 748 | 241
163 | 21 00171F7E | 53329920 5) 9 48 | 414 | 754 | 241
164 | 22 00173D3F 79994880 5 9 44 | 438 | 748 | 241
165 | 23 | 00173D5F | 159989760 5 9 48 | 434 | 754 | 241
166 | 24 | 00173D7E | 39997440 5) 9 48 | 439 | 754 | 241
167 | 25 | 001F373D 13332480 5 11 47 | 425 | 760 | 241
168 | 26 001F3757 | 106659840 5) 11 47 | 440 | 760 | 241
169 | 27 0117177E 888832 5) 11 47 | 335 | 760 | 241
170 | 28 | 011717BD | 39997440 5 11 47 | 415 | 760 | 241
1711 29 | 01171BD7 | 63995904 5) 11 47 | 435 | 760 | 241
172 30 |01171BFC | 39997440 5 11 51 | 441 | 766 | 241
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Function of the weight of 16

¥ [V | [ [ ouranl [deg/[l(N] 4] 3 [ 2 |1
173 1 0000FFFF 62 1 0 2 | 60 | 280|240
174 2 00017FFF 15872 4 2 32 | 270 | 490 | 240
175 3 00033FFF 59520 3 4 16 | 326 | 616 | 240
176 4 00035FFF 833280 4 4 40 | 362 | 622 | 240
177 5 00071FFF 555520 4 6 32 | 342 | 682 | 240
178 6 000737FF 9999360 4 6 40 | 394 | 694 | 240
179 7 000777 7F 8888320 4 6 44 | 410 | 700 | 240
180 8 000FOFFF 8680 2 8 8 | 204 | 664 | 240
181 9 000F17FF 1666560 4 8 36 | 366 | 706 | 240
182 | 10 000F33FF 312480 3 8 20 | 402 | 712 | 240
183 11 000F35FF 1249920 4 8 44 | 418 | 718 | 240
184 | 12 000F377F 9999360 4 8 42 | 425 | 730 | 240
185 | 13 000F7777 555520 3 8 26 | 446 | 736 | 240
186 14 000F777B 1666560 4 8 50 | 432 | 742 | 240
1871 15 001717FF 833280 3 8 20 | 362 | 712 | 240
188 | 16 00171BFF 4999680 4 8 44 | 398 | 718 | 240
189 | 17 00171F7F 53329920 4 8 42 | 410 | 730 | 240
190 | 18 00173D7F 39997440 4 8 46 | 426 | 736 | 240
191 19 00173F3F 9999360 4 8 42 | 425 | 730 | 240
192 | 20 00173F5F 39997440 4 8 46 | 426 | 736 | 240
193 | 21 00173F7D 9999360 3 8 26 | 426 | 736 | 240
194 | 22 00173F7E 19998720 4 8 50 | 422 | 742 | 240
195 23 00177ETE 1666560 4 8 50 | 432 | 742 | 240
196 | 24 001F1F77 13332480 4 10 40 | 422 | 742 | 240
1971 25 001F373F 9999360 4 10 |40 | 432 | 742 | 240
198 | 26 001F375F 79994880 4 10 44 | 438 | 748 | 240
199 | 27 001F377D 39997440 4 10 48 | 429 | 754 | 240
200 | 28 0117177F 444416 4 10 32 | 360 | 730 | 240
201 29 011717BF 19998720 4 10 40 | 412 | 742 | 240
202 | 30 011717FE 6666240 4 10 48 | 384 | 754 | 240
203 | 31 01171BDF | 53329920 4 10 44 | 428 | 748 | 240
204 | 32 | 01171BFD 79994880 4 10 48 | 424 | 754 | 240

Continued on the next page
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Function of the weight of 16

¥ [Nown| 7 1/ ouvanel [deg s [0l()] 4 [ 3 [ 2 [ 1

205 | 33 | O1171FF6 | 39997440 4 10 | 48 | 429 | 754 | 240
206 | 34 | 01173DED | 31997952 4 10 | 52 | 440 | 760 | 240
207 | 35 | 011F377C 1666560 12| 32| 400 | 760 | 240
208 | 36 | 011F37BC 1666560 12 |56 | 436 | 766 | 240
209 | 37 | 011F37D6 5332992 12| 32 | 440 | 760 | 240
210 | 38 | 033F566A 27776 12| 32| 240 | 760 | 240

DO QO | W

B Appendix 2. Plane weight characteristics of function
of 5 variables

Function of the weight of 16 with plane weight characteristic

Ne f dim | 0 1 2 13145678
1 | OOOOFFFF 1 256 | 240 | - S I U
2 1960 O [280| - | - | -|-|-]| -
3 560 O 0 0160|-1]-1]-] -
4 60 0 0 010 (0]0]0]| 2
2 | 00017FFF 1 256 | 240 | - S I
2 7501280210 - | - | -|-|-| -
3 1350210 O {3030 |-1|-|-1| -
4 30 | 30 0 0]010]0[2]0
3 | 00033FFF 1 256 | 240 | - S
2 1624 (448 168 | - | - | -|-|-| -
3 1294224 56 |32 |14 |- |-|-| -
4 46 0 1410 ,01(]0]2]0] 0
4 | 00035FFF 1 1256|240 | - I I
2 1618456166 - | - |- |-|-| -
3 | 258 (272 44 |32 |14 |- |-|-| -
4 22 | 32 6 0]010[2[0]0
5 | 00071FFF 1 256 | 240 | - S
2 | bh8 (536|146 - | - | -|-|-| -
3 127812101 96 {30 6 |-|-|-| -
4 30 | 24 0 6 |0 ([2]0[0| 0

Continued on the next page
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Function of the weight of 16 with plane weight characteristic

Ne f dim| 0 | 1 | 2 | 3]4|5[6|7| 8

6 | 000737FF 256 | 240 | - | -

546 | 552 | 142 | -

226 | 276 | 84 | 28

S| O !

22 | 28| 8 | 2

7| 0007TTTF 256 1240 - | - | - |-|-]-]| -

540 | 560 | 140 | -

2101294 | 84 | 26

S| O !

18 | 30 | 12 | O

8 | 000FOFFF 256 | 240 | -

576 | 512 | 152

416 | 0 | 192

OO
—_
[\

54 | 0 0

9 | O00F17FF 256 (240 | - | - | - |- |-|-] -

534 | 568 | 138 | -

254 | 222 | 120 | 18

6 |-1-1-1 -
26 | 280 0 | 4]4]0/0[0]O0

10 | O00F33FF 256 | 240 | -

528 | 576 | 136

218 | 256 | 136

OO !
—_
O

42 1 0 | 16

11 | O00F35FF 256 (240 - | - | - |- |-]-]| -

522 | 584 | 134 | -

202 | 288 | 108 | 16

= O 1
O
()
()
)

18132 8 |0

12 | 000F377F 256 1240 | - | - | - |- |-|-]| -

510 | 600 | 130 | -

1951290 | 116 | 14

DO| Ot 1

20 | 28 | 8 | 4

13 | 000F7777 256 | 240 | -

504 | 608 | 128

174 1 312 | 120

S QO DN | O DN R R WIN R W R W A WN AW N W N -

S| 0ot
DO Oy !

36 | 0 | 24

14| 000F777B | 1 256240 - | - | - |-|-|-]| -

Continued on the next page




Function of the weight of 16 with plane weight characteristic

Ne f dim | 0O 1 2 1314 |5]6|7|8

498 | 616 | 126 | -

188 1292 | 124 | 12

DO | W~ 1

12 | 32 | 16 | O

15| 001717FF 256 (240 | - | - | - |-|-|-] -

528 | 576 | 136 | -

258 | 224 | 104 | 32

DO !
O
)
)
)

42 10 |16 | 0

16 | 00171BFF 256 (240 | - | - | - |-|-|-] -

522 | 584 | 134 | -

222 1272 | 92 | 32

= DO !
(a») 1

(a») 1

(e}

(e}

I8 132 8 |0

17 | 00171F7F 256 (240 | - | - | - |- |-|-] -

510 | 600 | 130 | -

210 | 278 | 104 | 26

DO DO !

20 1 28| 8 | 4

18 | 00173D7F 256 1240 - | - | - |- |-]-]| -

504 | 608 | 128 | -

194 1296 | 104 | 24

DO DO !

16 | 30 | 12 | 2

19 | 00173F3F 256 (240 | - | - | - |- |-|-] -

510 | 600 | 130 | -

1951290 | 116 | 14

DO Ot

20 1 28| 8 | 4

20 | 00173F5F 256 1240 | - | - | - |- |-]-]| -

504 | 608 | 128 | -

194 1296 | 104 | 24

DO DO !

16 | 30 | 12 | 2

21| 00173F7D 256 (240 | - | - | - |- |-|-] -

504 | 608 | 128 | -

194 1296 | 104 | 24

DO DO !

36 | 0 | 24]0

RSN WIS W R B WIND R R WIN R WIN R R WIN W N

22| 00173F7E 256 1240 - | - | - |-|-]-]| -

2 14981616 (126 | - | - |- |-]-| -

Continued on the next page




Function of the weight of 16 with plane weight characteristic

Ne f dim | 0O 1 2 1314 |5]6|7|8

198 | 284 | 116 | 20 | 2

12 132116 1 0]2]0[0/0]0

23 | 00177ETE 256 1240 | - | - | - |- |-]-]| -

498 | 616 | 126 | -

188 1292 | 124 | 12

DO | W~ 1

12 | 32 | 16 | O

24 | 001F1F77 256 (240 | - | - | - |-|-|-] -

498 | 616 | 126 | -

198 | 284 | 116 | 20

IO !
)
[} I
=)
O

22 124 | 8 | 8

25| 001F373F 256 1240 | - | - | - |- |-]-]| -

498 | 616 | 126 | -

188 1292 | 124 | 12

O =]

22 1 24| 8 | 8

26 | 001F375F 256 (240 | - | - | - |- |-|-] -

492 1624 | 124 | -

182 1302 | 116 | 18

OO !
()
[} I
=)
=)

18 126 | 12 | 6

27 | 001F377D 256 1240 | - | - | - |- |-|-]| -

486 | 632 | 122 | -

191 | 286 | 124 | 18

O =
(e}
O
(e}

(=}

14 | 28 | 16 | 4

28 | 0117177F 256 (240 | - | - | - |-|-|-] -

510 | 600 | 130 | -

260 | 210 | 120 | 30

OO

30 | 20 | 12 | O

29 | 011717BF 256 (240 | - | - | - |- |-|-] -

498 | 616 | 126 | -

208 | 276 | 108 | 28

| O)

22 1 24| 8 | 8

30 | 011717FE 256 (240 | - | - | - |- |-|-] -

DO [ WIN R WIN R WIN R WP WD R WD R RRWND AW

486 | 632 [ 122 - | - |- |- |- ]| -

3 1236 (122144 |18 0 |- |- |- | -

Continued on the next page




Function of the weight of 16 with plane weight characteristic

Ne f dim | 0O 1 2 1314 |5]6|7|8

14 128 116 |1 4]01]0]0/0]0

31| 01171BDF 256 | 240 | - | -

492 1624 | 124 | -

192 1294 | 108 | 26

OO

18 126 | 12 | 6

32 | 01171BFD 256 (240 | - | - | - |- |-|-] -

486 | 632 | 122 | -

196 | 282 | 120 | 22

| O

14 | 28 | 16 | 4

33 | 01171FF6 256 1240 - | - | - |- |-]-]| -

486 | 632 | 122 | -

191 | 286 | 124 | 18

O =
o
O
(e}

e}

14 | 28 | 16 | 4

34 | 01173DED 256 (240 | - | - | - |- |-|-] -

480 | 640 | 120 | -

180 | 300 | 120 | 20

| O

10 | 30 | 20 | 2

35 | 011F377C 256 240 | - | - | - |- |-]-]| -

480 | 640 | 120 | -

220 | 240 | 144 | 16

OO

30 1 321] 0 |0

36 | 011F37BC 256 (240 | - | - | - |- |-|-] -

474 1 648 | 118 | -

184 1 288 | 132 | 16

| O

6 [ 32|24 |0

37 | 011F37D6 256 1240 | - | - | - |-|-]-]| -

480 | 640 | 120 | -

180 | 300 | 120 | 20

OO

30 32| 0 |0

38 | 033F566A 256 (240 | - | - | - |- |-|-] -

DNO| = WIN| R WIN WP WD R WD R R WD RWIND

480 | 640 [ 120 - | - |- |- |- | -

3 380240 0 | O[O |-|-]-]| -

Continued on the next page




Function of the weight of 16 with plane weight characteristic
Ne f dim | 0O 1 2 |3 14|5/6]7]8
4 13013210 [0]00[0l0]O0

C Appendix 3. Proofs of the propositions

C.1 Proof of the Theorem 1

Proof. All further reasonings are given for an arbitrary fixed function f.

First, let us prove that if there is an unbalanced plane of dimension k > 1,
then there are unbalanced planes of all smaller dimensions. It is enough to show
that there is an unbalanced plane of dimension k& — 1. For an arbitrary plane
L@®a of dimension k, let us consider an arbitrary subspace L' < L of dimension
k—1.Then Lda= (L'®a)u (L'®ad®b), where b € L\L'. Since the function
f is unbalanced on the plane L @ a, then at least on one of the planes L' ® a
and L' ®a @ b having dimensions k& — 1, the function f will also be unbalanced.

Let us show that for any Boolean function f there is a hyperplane on
which the weight of the function is different from 2" 2. Each linear func-
tion [, corresponds to a partition of the space V, into two hyperplanes:
LY = {z € V,[{z,uy = 0} and L} = {z € V,[{z,u) = 1}. Let vl = wt (f]10)
and wy = wt (f|z1). Then dist (f,1,) = vl + (2" ' —w}) = 2" 4+ wl) — w).
Considering that Wy(u) = 2" — 2 - dist (f,1,) (see. (1)), Wr(u) = 2+ (wd —w)).
). It follows from Parseval equality (2) that there exists a vector u € V,, such
that Wp(u) = 2 (wd — wl) # 0. It follows that w? # w), i.e. wd # 2772 or
wl # 272 Thus, there is at least one hyperplane on which the function f is
unbalanced.

Since for any function f f there is a hyperplane, i.e. a plane of dimension
n — 1, on which the function is unbalanced, then, as shown above, there are also
unbalanced planes of all smaller dimensions for it. H

C.2 Proof of the Theorem 1

Proof. . The number of vertices on the k-th tier of the graph G G is equal
to the number of different planes of dimension k of the space V. There are
Hle % different subspaces of dimension k of the space V,,. For any two
subspaces, their adjacent classes do not coincide. In this case, for any subspace

there are exactly 2" % distinct adjacent classes. ]
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C.3 Proof of the Theorem 2

Proof. Let u u be a vertex on k-th, k = 2,...,n, , tier of the graph G, which
corresponds to the plane L @ a, dim L = k. Vertices v entering into arcs (u, v),
are in one-to-one correspondence with the hyperplanes of the space L. According
to Statement 1 the number of such hyperplanes is

k—1

H 2k — 2i_1 — 2]<}+1 -9
2k—1 — 9i—1 )
=1

C.4 Proof of the Theorem 3

Proof. Let us estimate the number of incoming arcs to the vertex v € V on
the k-th tier, K = 1,...,n — 1, which corresponds to the plane L @ a, where
dim L = k,a € V,,. Let {v1,... v} is a basis of the subspace L.

If there is an arc (u,v) € F, then, by definition of the graph, the vertex u
corresponds to the plane M @b, where dim M = k+1,b€ V, and Lpa < M Pb.
Let us note that if Lddac M @b, then a e M @b, hence M @b = M P a and
L c M. Since L « M, the subspace M could be represented as: L U {L@®vi,1}.
Hence, one of the bases of the subspace M M is the union of the basis {vy, ... v}
and the vector v, 1.

The number of different vectors vy, ¢ L is 2" — 2%, and addition of any
vector from L @ v;.,1 to the basis of the subspace L leads to the same subspace
M . Hence, the number of different ways to define subspace M is 2n27€2k — ok

1. []

C.5 Proof of the Theorem 4

Proof. To prove this statement, it should only be noted that the intersection
of two planes is a plane. Therefore, the maximum intersection of two planes of
dimension k can be a plane of dimension k£ — 1, which will be a vertex adjacent
to both vertices on the k-the tier. ]
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C.6 Proof of the Theorem 2

Proof. As already noted in Theorem 1, Wy(u) = 2" —2-dist (f, l,0) = 2 (wu0—
w,1), where w)) = wt (f|z0) and w} = wt (f|z1), while L! = {z € V,|{z, u) =
b}, b e {0,1}. Since the function f is balanced, then w! + wl = 2771,

If Wi(u) = 0, then w) = w) = 2"2 that is, the function is balanced on
hyperplanes. If We(u) # 0, then w? # w). Without limiting generality, let
w? =272 4+d 0 <d<2"? Then w} = 2"2 — d, since w) + w} = 2771,
Therefore, on both hyperplanes, the weight of the function f differs from 272
by an amount equal to d. ]

C.7 Proof of the Theorem 3

Proof. To prove this statement, it is sufficient to note that any pair of vectors
from the carrier of the function f e F, or from the set V;,\1; forms a plane of
dimension 1, on which the function takes the value 1 or 0 respectively, that is,
is constant. Since under hypothesis |1¢| = w, the number of such pairs is

(w)+<2n—w> ww-1) @ -w)@—w-1)

9 9 T 9 9

C.8 Proof of the Theorem 4

Proof. According to Statemt 2, the number of outgoing arcs from the vertex on
the k-th tier is 2- (2 —1). Let us note the following two facts. When partitioning
an unbalanced plane of dimension k£ into two subplanes of dimension k£ — 1, at
least one of them is unbalanced. Two vertices on the k-th level can have at most
one vertex on the k — 1-th level adjacent to each of them (Theorem 4).

Let the number of vertices corresponding to unbalanced planes on the k-th
tier be equal to N. Let us consistently estimate the «contributions of each such
vertex to the total number of unbalanced planes of dimension k& — 1. When
considering one such vertex, we can say that there are at least 2F — 1 vertices
on the k — 1-th tier, which correspond to unbalanced planes. When considering
each next vertex, it is necessary to take into account that the unbalanced planes
on the k — 1-th tier being added have already been taken into account when
considering the previous vertices. Thus, consideration of vertex v;,1 <17 < NN,
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increases the total number of unbalanced planes on k — 1-th tier by no less than
(28 — 1) — (i — 1) (in the worst case, one intersection occurs with each vertex
taken into account when considering each of the previous i — 1 vertices). Let
t = min(2¥ — 1, N — 1). Then, after considering all N vertices on the k-th tier
for the value Sy(k — 1), the following estimate is valid:

Sik—D =" -+ -1 -1+ -1)—2+... +2"-1)—-t=

C.9 Proof of the Corollary 1

Proof. For a Boolean function f, such that wt (f) < 2", the inequality (5)
does not contradict that f can be constant on planes of dimension k if

This holds for k, such that £ < n — log, (% + 1). Exactly such values

2n—1_n]

of k the parameter AD (f) can take. O

C.10 Proof of the Theorem 6

Proof. Let’s use the ratio (4). Given that Wy(u) = 2" —2-dist (f, ), we obtain
the equality

wt (f‘a@L) -

— okl # (2“- (=1 — 2. Y dist (f, L) (—1)<u’a>> .

ueLt uelt

With a ¢ L, 3, ;. (—1)® =0 is valid, and with a € L, Y ;. (—1)®® =
2"k is valid (see. [6]). Hence

1
Wt (flaor) = 2871 + Sy Z dist (f,1,) (1) with a ¢ L, and

ueLt
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wt (f|r) = =271 4 281 4 2 dist (f,1,),with a € L.

ueLt

Let us consider the case of a € L. Let us note that —27—1 4 2k=1 — _on-1.
(1 —1/2"*). Since dist (f,1,) = nl(f), the following inequality is valid

e WE() 27—
wt (f]p) =28t — 20t ¢ 2n(_k)+ el =

S (- 55) e o)

Given that dist (f,1,) < 2" — nl(f), we obtain an inequality

wt (f|z) <21 —2n 7t 4 V;Ez(—{:.) + (1 — in_k> (2" —nl(f)) =
St (1 - L) (2 nl(f)).

Thus, the following inequality holds true

wt (f) B (1 B 2n1k> L2 =l (f)). (6)

(f'L) on— Ton—k

Let us consider the case of a ¢ L. The following relations are valid

wt (f‘a@L) =

t 1 1
_ k=1 4 V;n(—]/:) + = Z dist (f,1,,) — o Z dlst f L,
i=1

W 2n—k—1 -1 on— k 1
P e () - e ) =

W) (1 _ QL) 21— nl(f)).

Similarly, the lower estimate wt (f|.,pr) is obtained, which coincides with the
estimate obtained for wt (f|z).

27z—k—1_1 on— k—1

—1
< 2F

Thus, the required estimate is proved for an arbitrary a € V,,. H
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C.11 Proof of the Theorem 8

Proof. Multiplication by a nondegenerate matrix and addition of an arbitrary
vector from V,, takes an arbitrary plane of the space V,, to some plane of the
same space, and the dimensions of these planes coincide. Thus, the number of
planes on which the weight of the function f has a given value does not change.

Adding a function h of degree not greater than 0 means either adding zero,
which does not change the value of the function on any of the arguments, or
adding a function identically equal to 1, which leads to the inversion of all
values of the function. At the same time, the planar weight characteristic of
the function does not change, since it depends on the absolute value of the
deviation of the weight of the function on the plane from the half cardinality of
the plane. H

C.12 Proof of the Theorem 7

Proof. Any non-constant affine function f = [,, € F, takes the value a on
the subspace L = {0", u}* of dimension n — 1 and its opposite value a @ 1 on
the plane L' = V,,\ L. Since the intersection of the planes is a plane, any other
planes of dimension n — 1 intersect with L and L’ exactly on half of the vectors,
therefore the function f on these planes is balanced. Thus, it is proved that
pwen_1(f) = (2" —4,0,...,0,2).

Let us prove a statement for dimensions k, 2 < k < n — 2. Since L and
L' do not intersect, the planes of smaller dimensions contained in them also do
not intersect (in terms of the graph introduced in Section 5.1, this means that
the sets of vertices that can be reached from vertices corresponding to L and
L', do not intersect). The numbers of planes of dimensions n —2,n —3,...,2,
contained in L and L', coincide and are equal to Pp_1,-2, Pn—1n-3, - -, Pn_12
respectively. And the function f is constant on all these planes. Moreover, any
plane on which the function f is constant is a subset of either L or L'

To complete the proof, it remains to show that for the function f there is
no plane on which f is non-constant and unbalanced. Indeed, if such a plane
exists, then the cardinality of at least one of its intersections with the planes
L and L’ will be different from the cardinality of two (intersection powers are
2F=1 — w and 287! 4+ w, where w # 0), which is contrary to the fact that these
intersections are planes. ]
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Abstract

In this paper we study the MOR cryptosystem with finite Chevalley groups. There
are four infinite families of finite classical Chevalley groups. These are: special linear
groups SL(d, q), orthogonal groups O(d, q) and symplectic groups Sp(d, ¢). The MOR
cryptosystem over SL(d, ¢) was studied by the first author, “A simple generalization of
the ElGamal cryptosystem to non-abelian groups II, Communications in Algebra 40
(2012), no. 9, 3583-3596”. In that case, the hardness of the MOR cryptosystem was
found to be equivalent to the discrete logarithm problem in F 4. In this paper, we show
that the MOR cryptosystem over Sp(d, q) has the security of the discrete logarithm
problem in F 4. However, it seems likely that the security of the MOR cryptosystem for
the family of orthogonal groups is quz.

Keywords: MOR cryptosystem, Chevalley groups, public-key cryptography.

1 Introduction

This paper is a study of the MOR cryptosystem using the orthogonal and
symplectic groups over finite fields of odd characteristic. We only study
split orthogonal groups in this paper and refer to it as orthogonal groups. This
paper follows a paper by the first author [13] and uses a Gaussian elimination
algorithm developed by Bhunia et. al. [3]. It is recommended that the reader
reads |3, Sections 4] or |2, Appendix A| before reading this paper. In an earlier
paper [13], we saw that the security of the MOR cryptosystem over SL(d, q) rests
on the discrete logarithm problem in Fg . Though this information is useful,
however it says that there is no point in using the MOR cryptosystem over
SL(d, ¢) — one might as well use the ElGamal cryptosystem over matrices of size
d over F,. We would refer to this situation as an unusable MOR cryptosystem.
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In this paper, we show that the MOR cryptosystem over symplectic groups is
unusable. However, the MOR cryptosystem over orthogonal groups have good
potential. This paper was published as a part of a book chapter [2].

This paper is in the direction of generalizing the ElGamal cryptosystem
with the hope that something practical and useful will come out of this gen-
eralization. This line of research is relevant today in the light of Joux’s attack
on the discrete logarithm problem in finite fields of small characteristic [1, 10]
and recent developments in building quantum computers. Several attempts to-
wards non-abelian cryptography were made by many eminent mathematicians.
To name a few, Maze et. al. |7, 8] developed SAP and Shpilrain and Zapata
developed CAKE [18], both work with non-abelian structures. There is an in-
teresting cryptosystem in the work of Climent et. al. [5] and an interesting key
exchange protocol in Kahrobaei et. al. [11] and Glukhov [9].

1.1 Notations and terminology

We have used X to denote the transpose of the matrix X . This was necessary
to avoid any confusion that might arise when using X ~! and ZX simultaneously.
In this paper, we use K and F, interchangeably, while each of them is a finite
field of odd characteristic. The matrix te;; is used to denote the matrix unit
with ¢ in the (i, 7)™ place and zero everywhere else. All other notations used
are standard.

2 The MOR Cryptosystem

This section provides a brief introduction to MOR cryptosystem. For further
details a reader can consult |14, Section 3|.

2.1 The MOR cryptosystem

Let G =<{g1,92,-..,9s) be a finite group. Let ¢ be a non-identity automor-
phism.

— Public-key: Let {¢(g:)};_; and {¢™(g;)};_; is public.
— Private-key: The integer m is private.

Encryption:
To encrypt a plaintext 9T € G, get an arbitrary integer r € [1,|¢|] compute ¢*
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and ¢™. The ciphertext is (¢*, o™ (9N)).

Decryption:

After receiving the ciphertext (¢*, o™ (901)), the user knows the private key m.
So she computes ¢™ from ¢* and then computes 9. It is known [14, Theorem 3]
that the hardness to break a MOR cryptosystem depends on the Diffie-Hellman
problem in the automorphism group. In a practical implementation of a MOR
cryptosystem there are two things that matter the most.

a The number of generators. As we saw, the automorphism ¢ is presented as
action on generators. Larger the number of generators bigger is the public-
key:.

b Efficient algorithm to solve the word problem. This means, given G =
{g91,992,--.,4s) and g € G, is there an efficient algorithm to write g as
word in ¢1,¢s,...,9s! The reason of this importance is immediate — the
automorphisms are presented as action on generators and if one has to
compute ¢(g), then the word problem must be solved.

The obvious question is: what are the right groups for the MOR cryptosys-
tem? In this paper, we pursue a study of the MOR cryptosystem using finite
Chevalley groups of classical type; in particular, orthogonal and symplectic
groups.

3 Description of automorphisms of classical groups

This paper studies the MOR cryptosystem for split orthogonal and sym-
plectic groups over a field of odd characteristics. As we discussed before, MOR
cryptosystem is presented as action on generators of the group. Then to use an
automorphism on an arbitrary element, one has to solve the word problem in
that group with respect to that set of generators.

The generators and the Gaussian elimination algorithm to solve the word
problem is described in Bhunia et. al. |3, Section 5]. We will be very brief here.

Let V' be a vector space of dimension d over a field K of odd characteristic.
Let 8: V xV — K be a bilinear form. By fixing a basis of V' we can associate a
matrix to 5. We shall abuse the notation slightly and denote the matrix of the
bilinear form by 3 itself. Thus (z,y) = By where x,y are column vectors.
We will work with non-degenerate bilinear forms and that means det 5 # 0.
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A symmetric or skew-symmetric bilinear form 3 satisfies 5 = 1B or f = -3
respectively.

Definition 1 (Orthogonal Groups). A square matriz X of size d is called or-
thogonal if XX = B where 3 is symmetric. It is well known that the orthog-
onal matrices form a group known as the orthogonal group.

Definition 2 (Symplectic Group). A square matriz of size d is called symplectic
if IXBX = B where B is skew-symmetric. And the set of symplectic matrices
form a symplectic group.

We write the dimension of V as d = 2l + 1 ord = 2] for [ > 1. We
fix a basis and index it by 0,1,2,...,[,—1,—2,...,—[ in the odd dimension
and by 1,2,...,l,—1,—2,...,—[ in the even dimension. We consider the non-
degenerate bilinear forms 5 on V' given by the following matrices:

a: The odd orthogonal group: The form S is symmetric with d = 2] + 1 and

2.0 0
B={0o o0 1|
01 0

b: The symplectic group: The form [ is skew-symmetric with d = 2] and

0 I
()

c: The even orthogonal group of classical type: The form ( is symmetric with

dz?l&ﬂdﬁ:(? g)
!

where [; is the identity matrix of size [ over K.

We now describe the automorphism group of the orthogonal and symplectic
groups. This helps us in picking the right set of automorphisms for the MOR
cryptosystem.

Definition 3 (Orthogonal similitude group). The orthogonal similitude group
is defined as the set of matrices X of size d as follows: GO(d,q) =
{X e GL(d,q) | XBX = pB,pe qu} where d = 21 + 1 or 2l and B is of type
a and c respectively.

Definition 4 (Symplectic similitude group). The symplectic similitude group
is denoted by GSp(2l,q) = {X e GL(2l,q) | 'XBX = pB, e ]qu} where (B is
of type b.
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Here p depends on the matrix X and is called the similitude factor. The
similitude factor p defines a group homomorphism from the similitude group
to I and the kernel is the orthogonal group O(d, q) when f is symmetric and
symplectic group Sp(2l, ¢) when [ is skew-symmetric respectively [12, Section
12]. Note that scalar matrices AI for A € F belong to the center of similitude
groups. The similitude groups are analog of what GL(d, q) is for SL(d, ¢). For
a discussion of the diagonal automorphisms of Chevalley groups we need the
diagonal subgroups of the similitude groups.

Definition 5 (Diagonal group). The diagonal groups are defined to be the group
of non-singular diagonal matrices in the corresponding similitude group and are
as follows: in the case of GO(2l + 1,q) it is

{diag(auAb"'7)\l7lu)\1_17“'7:UJ>\Z_1)‘)\17"'7)\17042:M€F;}
and in the case of GO(2l,q) and GSp(2l,q) it is
{dlag(Ala 7)\l7:u)\1_17”' 7M>\l_1)|)\17"'7>\l7u€]]?;}'

Conjugation by these diagonal elements produce diagonal automorphisms in
the respective Chevalley groups.

To build a MOR cryptosystem we need to work with the automorphism
group of Chevalley groups. In this section we describe the automorphism group
of classical groups following Dieudonne [6].

Conjugation Automorphisms: For ¢ € G the map given by g — tgt ! is
an automorphism of GG, called an inner automorphism. More generally if N
is a normal subgroup of G then the conjugation maps n — gng~! for n € N are
called conjugation automorphisms of G.

Central Automorphisms: Let y: G — Z(G) be a homomorphism to the
center of the group. Then the map g — x(g)g is an automorphism of GG, known
as the central automorphism. There are no non-trivial central automorphisms
for perfect groups, for example, the adjoint Chevalley groups SL(I + 1, K) and
Sp(2l, K), |K| = 4 and [ = 2. In case of orthogonal group, the center is of two
elements {I, —I}. Any map x maps Q4(K) to identity. This implies that there
are at most four central automorphisms in this case.

Field Automorphisms: Let f € Aut(K). In terms of matrices, field au-
tomorphisms amount to replacing each term of the matrix by its image under

f.
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Graph Automorphisms: A symmetry of Dynkin diagram induces such
automorphisms. This way we get automorphisms of order 2 for SL(l + 1, K),
[ = 2and O"(2l,K), Il = 4. We also get an automorphisms of order 3 for
O"(4, K).

In the case of SL(d, q) for d > 3, the map z — A~1Tr~1 A where

[ 0 0 0 0 1)
0 0 0 -10
0 01 0 0
A= 0 -10 0 0
\(-1)" - 0 0 0 0

explicitly describes the graph automorphism.

In the case of O(2l,q) for [ = 5, the graph automorphism is given by z +—
B~12B where B is a permutation matrix obtained from identity matrix of size
21 x 21 by switching the {'" row and —{*"
automorphism.

row. This automorphism is a conjugating

Theorem 1 (Dieudonne). Let K be a field of odd characteristic and [ = 2.

1. For the group SL(l + 1, K) any automorphism is of the form tv6 where ¢
is a conjugation automorphism defined by elements of GL(I+ 1, K) and ~y
s a graph automorphism for the special linear group.

2. For the group O(d, K) any automorphism is of the form c,t0 where ¢, is
a central automorphism, v a conjugation automorphism by GO(d, K) ele-
ments (this includes the graph automorphism of even orthogonal groups).

3. For the group Sp(2l, K) any automorphism is of the form 10 where v is a
conjugation automorphism by GSp(2l, K) elements.

In all cases 6 denotes a field automorphism.

In the above theorem, conjugation automorphisms are given by conjugation
by elements of a larger group and it includes the group of inner automorphisms.
We introduce diagonal automorphisms to make it more precise. The conjugation
automorphisms ¢ can be written as a product of ¢, and d where ¢, is an inner
automorphism and ¢ is a diagonal automorphism.
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Diagonal Automorphisms: The adjoint Chevalley group L£(K) is nor-
malized by H which is a subgroup of Aut(Lg). Thus for h(x) € H which is
not in H gives an automorphism ¢ — h(x)gh(x)™! (which is not an inner
automorphism). Such automorphisms are called diagonal automorphism. The
explicit action on generators is as follows: h(x)z,(t)h(x)™t = z,(x(r)t). The
group G is identified in |17, Chapter III, Section 6] with corresponding simil-
itude group. In the case of special linear groups, diagonal automorphisms are
given by conjugation by diagonal elements of PGL(I + 1, ¢) on PSL(I+1,¢q). In
the case of symplectic and orthogonal groups, diagonal automorphisms are given
by conjugation by corresponding diagonal group elements defined in Section 5.

Let K be a finite field and G = L(K) be an adjoint Chevalley group over K.
Steinberg described the automorphisms of these groups. We have the following
theorem [4, Theorem 12.5.1] and [19],

Theorem 2 (Steinberg). Let G = L(K) where L is a simple Lie algebra and
K(=TF,) is a finite field. Let ¢ € Aut(G). Then there exist inner, diagonal,
graph and field automorphisms, denoted by v,9,~y and 6 respectively, such that

¢ = 10780.

4 Security of the proposed MOR cryptosystem

The purpose of this section is to show that for a secure MOR cryptosystem
over the classical Chevalley groups we have to look at automorphisms that act
by conjugation, like the inner automorphisms. There are other automorphisms
that also act by conjugation, like the diagonal automorphism and the graph
automorphism for odd-order orthogonal groups. Then we argue what is the
hardness of our security assumptions.

Let ¢ be an automorphism of one of the classical Chevalley groups G:
SL(I + 1,q),0(2 + 1,q),Sp(2l,q), or O(2l,q). The automorphisms of these
groups are described in Section 3. From Theorem 1 we know that ¢ = ¢, 070
where ¢, is a central automorphism, ¢ is an inner automorphism, ¢ is a diagonal
automorphism, v is a graph automorphism and 6 is a field automorphism.

The group of central automorphisms are too small and the field automor-
phisms reduce to a discrete logarithm in the field F,. So there is no benefit
of using these in a MOR cryptosystem. Also there are not many graph auto-
morphisms in classical Chevalley groups other than special linear groups and
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odd-order orthogonal groups. In the odd-order orthogonal groups these auto-
morphisms act by conjugation. Recall here that, our automorphisms are pre-
sented as action on generators. It is clear [13, Section 7| that if we can recover
the conjugating matrix from the action on generators, the security is a discrete
logarithm problem in F 4 or else the security is a discrete logarithm problem in
F .

So from these we conclude that for a secure MOR cryptosystem we must look
at automorphisms that act by conjugation, like the inner automorphisms. Inner
automorphisms form a normal subgroup of Aut(G) and usually constitute the
bulk of automorphisms. If ¢ is an inner automorphism, say ¢,: © — grg™', we
would like to determine the conjugating element g. For the special linear group,
it was done in [13|. We will follow the steps there for the present situation too.
However, before we do that, let us digress briefly to observe that G — Inn(G)
given by g — ¢4 is a surjective group homomorphism. Thus if G is generated
by g1, g2, - .., gs then Inn(G) is generated by ¢4, ..., 4. Let ¢ € Inn(G). If we

T

can find g;,j = 1,2,...,r, generators, such that ¢ = [] ¢, then ¢ = ¢, where
j=1

,

g = [1g;.- This implies that our problem is equivalent to solving the word
j=1

problem in Inn(G). Note that solving word problem depends on how the group

is represented and it is not invariant under group homomorphisms. Thus the

algorithm described earlier to solve the word problem in the classical Chevalley

groups does not help us in the present case.

4.1 Reduction of security

In this subsection, we show that for special linear and symplectic groups,
the security of the MOR cryptosystem is the hardness of the discrete logarithm
problem in .. This is the same as saying that we can find the conjugating
matrix up to a scalar multiple. We further show that the method that works for
special linear and symplectic groups does not work for orthogonal groups. Let ¢
be an automorphism that works by conjugation, i.e., ¢ = ¢, for some g and we
try to determine g. For a description of the generators (elementary matrices)
we refer to |3, Section 5.

Step 1: The automorphism ¢ is presented as action on generators x,(t) =
I + te, where r = (i,7); i # j, 1 < i,j < d for the special linear group. For
symplectic group r = (7,7);4,7 € {£1,£2,...,xl}. For the even orthogonal
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group, 7 = (4,7);4,5 € {£1,+2,..., £l}; +i # +j. For the odd orthogonal
group r = (i,j); =l <i<land je {1, £2,... £ 1}; +i # +j.

Thus ¢ (z, () = g(I + te,)g~! = I + tge,g~!. This implies that we know
ge,g~! for all possible r. We first claim that we can determine N = gD where
D is sparse, in fact, diagonal in the case of special linear and symplectic groups.

In the case of special linear groups, write g = [G1, ..., G, ..., Gy], where G;
are column vectors of ¢g. Then ge; ; = [G1,...,Gqle;j = [0,...,0,G;,0...,0]
where G; is at the % place. Multiplying this with ¢~ on the right, i.e., com-
puting ge; jg~* determines G; up to a scalar multiple d; (say). Thus, we know
N = gD where D = diag(dy, ..., d;:1).

For the symplectic groups, we do the similar computation with the
generators [ + te; ; and I + te_;;. Write g in the column form as

[Gl, .- Gl, G_l, .- .,G_l]. NOW,

L [G,...G,, G q,...,G]ei_i=]0,...,0,G;,0,...,0] where G is at —i'h
place. Multiplying this further with ¢! gives us scalar multiple of Gj;, say
d;G;.

2. [G1,...G;,G_4,...,Gq]e_;; = [0,...,0,G_;,0,...,0] where G_; is at
ith place. Multiplying this with ¢~ gives us scalar multiple of G_;, say
d_;G;.

Thus we get N = gD where D is a diagonal matrix diag(dy, ..., d;,d_1,...,d_;).
For the even orthogonal, write g = [G1,...G;,G_1,...,G_;]. Now comput-
ing ge,g~! gives the following equations:

1. [Gl, e Gl, G_l, N G_l] (61'7]' — €_j7_2‘)g_1 =
[0,...,0,G4,0...,0,G_;,0,...] g7 where G; is at j™ place and G_;

is at —i'" place. This gives us a linear combination of the columns G; and
G_;.
2. [Gl, e Gl, Gfl, cey Gfl] (62'7*]' — Gj’fi)g_l =

[0,...,0,G;,0...,0,G;,0,...] g7 where G; is at —j™ place and G
is at —i*™" place. This will give us a linear combination of the columns Gj
and Gj.

3. [Gl, e Gl, G_l, Cey G_l] (e_m' — e_j,i)g’l =
0,...,0,G_4,0...,0,G_;,0,...]g7' where G_; is at j™ place and
G_jis at i'h place. This will give us a linear combination of the columns
G_i and G_j.

7



W X
Y Z
matrix, Y anti-diagonal, X has first column nonzero and Z has the last column

Thus we get N = gD where D is of the form with W a diagonal

nonzero. This is not a diagonal matrix. One can do a similar computation for
the odd-orthogonal group.

Step 2: Compute N'¢(z,.(t))N = D g~ (gx,.(t)g')gD = I + D e, D
which is equivalent to computing D~ 'e, D for r € ®.

In the case of special linear groups we have D a diagonal. Thus by
computing D~ 'e; ;D we determine di_ldj for © # j and form a matrix
diag(l,dgldl, e ,dl_ldl) and multiply this to N we get di;g. Hence we can
determine g up to a scalar matrix.

For symplectic groups, we can do similar computation as D is diagonal. First
compute D7Y(e; ;i —e_; ;)D to get d; *d; and d_;d_; for i # j. Now compute
Dilei,_iD, Dfle_mD to get did:}, d_idi_l‘ We form a matrix

diag(1,dy dy, ..., d; 'dy, d"1d_o.d"3da.dy ' dy, . .., d—jd_1.d”1dy)

and multiply it to N = gD to get dyg. Thus we can determine g up to a scalar
multiple and then the attack follows [13, Section 7.1.1].

However, in the case of orthogonal groups, the matrix D is not a diagonal
matrix and the above method to determine g does not work.

Remark 1. An observant reader would ask the question: why does this attack
works for the special linear and symplectic groups but not for orthogonal groups?
The answer lies in a closer look at the generators (elementary matrices) for
these groups.

In the special linear groups the generators are the elementary transvections
of the form I +1te; ; where ¢ # j and t € IF,. Then the attack goes on smoothly as
we saw earlier. However, when we look at generators of the form I+te; j—te_; _,
where t € IF, and ¢ # j; conjugating by them gets us a linear sum of the i™ and
™ column, not scalar multiple of one particular column. This stops the attack
from going forward. However in the symplectic groups there are generators of
the form I +e; ; and I +e_;; for 1 <4 <. These generators make the attack
possible for the symplectic groups. However there are no such generators for the
orthogonal groups and so this attack turns out to be impossible for orthogonal
groups.
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5 The case for 2-generators and prime fields

One serious objection against a MOR cryptosystem is the size of the key 15,
Section 7]. The reason is simple: we saw that in a MOR cryptosystem the
automorphisms are presented as action on generators. Now bigger the number
of generators, larger the key-size.

On the other hand, many of the finite simple groups can be generated by two
elements. However, a set of generators is not enough. We must be able to com-
pute the image of an arbitrary element. When the automorphism is presented
as action on generators, we need an efficient solution to the word problem in
order to do that. We have demonstrated [3, Section 5] that we have one set of
generators, the elementary matrices, for which the word problem is easy.

The theme of this section is that for symplectic and even-orthogonal groups,
there are two generators and for the odd-orthogonal group there are three gen-
erators. Over the prime field of odd characteristic one can easily compute
the word corresponding to the elementary matrices over these generators.

So one can present the automorphisms ¢ and ¢™ as action on these few
generators and then compute the action of these automorphisms on the ele-
mentary matrices later. This substantially reduces the key-size. To do this we
use the technique of straight line programs, which is popular in computational
group theory. These are programs, but in practice are actually easy to use for-
mulas. Say for example, we want to compute x; ;(t) for some t € F,. We have
loaded matrices w'™'zy5(-)w( =Y in memory in such a way that this formula
takes as input ¢ and put it in the (1, 2) position of the matrix 1 2(-) and do the
matrix multiplication. This is one straight line program. Since these programs
are loaded in memory, computation is much faster. This is somewhat similar
to a time-memory trade-off. We have built a series of these straight line pro-
grams, where one straight line program can use other straight line programs
and have written down the length of these programs. The length is nothing but
the number of matrices in the formula.

Using the symplectic group in the MOR cryptosystem is straightforward.
However, using orthogonal groups is little tricky because of the presence of A in
the output of the Gaussian elimination algorithm [3, Section 5]. It is well-known
that the elementary matrices without w; — the row interchange matrices, gen-
erate {2 the commutator subgroup of a orthogonal group. However in between
the commutator and the whole group there is another important subgroup,
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W = (Q,w;) for some i. From the algorithm point of view, it is the subgroup
of all the matrices for which the X\ is a square. Now once the A is a square,
and we can efficiently compute the square root, we can write this matrix down
as product of elementary matrices and it is easy to implement the MOR cryp-
tosystem. It is well known that if p = 3 (mod 4), then it is easy to compute
the square root. Only for this reason, in the latter part of this section and for
orthogonal groups we concentrate on p = 3 (mod 4).

5.1 Symplectic group Sp(2l,p)

Let p be an odd prime. It is known [20] that the group Sp(2l, p) is generated
by two elements:

r= w12(1) (1)
w = (—1(2)1_1 é) (2)

We will refer these two elements as Steinberg generators. However in the
context of the MOR cryptosystem we need to know how to go back and forth
between these two generating sets — Steinberg generators and elementary ma-
trices [3, Section 5]. To write w as a product of elementary matrices is easy,
just put this generator through our Gaussian elimination algorithm. Here we
demonstrate the other way round, that is, how to write elementary matrices as
a product of z and w. In what follows, we denote the length of SLP’s by L(n, 1),
wheren =7 —7and 1 <1< j <.

n=1, z;;(t) = w tzt)w Y,
n=2, z;;(t)= [v;-1(t), r;-1;(1)],
n=3, w;(t)= [rij-1(t),z;-1;(1)],

n=1=1 z;(t) = |rij-1(t), zj1,;(1)]

Here

L(ﬂ)@,):{Qz—l forn =1,

2L(n—1)+4(i+n)—6 formn=2,3,...1—1.
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0 I
—1, 0
is L(n,i) + 2l. Hence we get all z; j(¢) for 1 < i # j < [. Number of SLP is [.
Next observe that,

Now w! = (—1)-1 and z;;(t) = w'z; j(—t)w™!, so length of this SLP

elements | indices equation length
ry(t) w1 (Hw™! 20-1
nl) |2<i<i—1 | [ul, o (] 20— ii) +2—1)
zi_;(t) [2<i<li-—1 [zi1(t), x1,—;(1)] 2(L(i—1,1) + 41— 1) j=1
(t+1<j<l 2(L(i — 1,1) + 2L(1 — 4,9)
+61 — 2) J#l

zi—i(t) | i=1,2,...,0 =1 [2ii11(5), 2 —+1)(1)] | 2(2L(1 —2,1) + 100 —5) i=1—1
2(L(1,4) +2L(i —1,1)+ 1#£1—1
AL(1— (i+1),i+1)
+121 —4)

a:l7,l(t) [a:u,l(%), J;l,17,l(1)] 2(2L(l — 2, 1) + 121 — 5)

So we generate all z; _;(t) for 1 < i < j <l and z; (t) for 1 < i < L.
Now w'z; ;j(t)w™ = z_;;(t) for 1 < i < j <l and wla; ;(H)w™ = z_;;(t)
for 1 < ¢ < [, then we get x_;;(t) and z_;;(t). Total number of SLPs is
[+ (3+1)+(2+1) =1+ 7. Hence we generate all the elementary matrices
[3, Section 5| using only two generators x and w. It is shown in Ree [16] that
elementary matrices generate the symplectic group Sp(2l, p). Hence Sp(2l, p) is
generated by only two generators x and w.

5.2 Orthogonal group O(2l, p)

Let p = 3 (mod 4) be a prime. It is known [20] that the group O(2[,p) is
generated by two elements:

T = x19(1), (3)
( 0 --- 0|0 1\
1 .- 0] 0 0
~1 0|0 0
=170 10 0 (4)
0 0] -1 0
\ 0O --- 0] —1 ())
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We will refer these two elements as Steinberg generators. As we discussed
earlier, in context of the MOR cryptosystem we need to know how to go back
and forth between two generating sets — Steinberg generators and elementary
matrices |3, Section 5]. To write w as a product of elementary matrices is easy,
just put this generator through our Gaussian elimination algorithm. Here we
demonstrate the other way round, that is, how to write elementary matrices as
a product of x and w. In what follows, we denote the length of SLP’s by L(n, ),
wheren =7 —dand 1 <1< j <.

n = 1, .fi’j(t) = wi_1x1,2<t>w_(i_1)7
n =2, ZC@J(@ = [xi,j71<t>axj*17j(1)]7
n =3, xi,j(t) = [ZUi,j—l(t)axj—l,j(l)]?

n=1-1 z;(t) = [zij-1(t), 7j1,;(1)].
Here
L(n,i) = 2t — 1 forn =1,
YTV 2L —1) +4(i+n)—6 forn=23,...1—1.

0 —I
1 _ /1 1\l-1 l
Now w' = (—1) <—Iz 0

SLP is L(n,i) + 2. Hence we get all z; ;(¢) for 1 < ¢ # j < [. The number of
SLPs is [. Next observe the following:

) and z;,;(t) = wlz; ;(—t)w™!, so length of this

elements | indices equation length

$1’,l(t) wr]—1 l(t) -1 20 —1

mit) [2<i<i—1 | [wu(),er (0] | 2L, + 20— 1)
wij(t) | 2<i<l—1 | [z1(t),21,—5(1)] | 2(L(i —1,1) + 2L(I - 7,5)

61— 2) jA
(i+1<j<l) 2(L(1 —1,1) + 41— 1) j=1
So we generate all z; ;(t) for i < j. Now wlz; ;(tH)w™ = z_;;(t), and

we get x_;;(t) and the total number of SLPs is [ + 4. It is shown by
Ree [16] that elementary matrices z;;(t) generate Q(2l,p), the commuta-
tor subgroup of O(2l,p). Hence we generate €2(2l,p), using only two ele-
ments x and w. Since we generate z;;(t) and w;; as a product of z; ()

and w = wya(l)wes(l)... wi—1;(1)w;, so we are able to generate w;. Here
w; j(t) = x; j(O)z;i(—t Va; ;j(t) fori # jand wy =T —ey —ey+e+eyy.
Now we know w1 = wywy;—1(1)w;—1, (1), so we generate w;_;. Hence by
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induction, we generate w; = w1 Wit (L)w; —G4ny(1) for @ = [ —1,..., 1.
Here w;_;(t) = w;_;j(t)(1)x_; j(t )a; _;(t), for i < j. Hence we generate
all the elementary matrices defined earlier [3, Section 5| using only two gen-
erators z and w. So we generate a new subgroup W€Q(2l,p) of O(2l,p),
which is a normal subgroup of O(2[,p). In our algorithm output matrix is
d(\) = diag (1,1, -+, A\, 1,1, A If N e FpXQ, say A = t? (mod p), then

p+1

t=X71 (mod p), since p=3 (mod 4). Then

d(A) = dlag (17 7t271>"' 7t_2)
= wl—l,l(l)diag (17 e 7t27 17 17 e 7t_27 1)wl—l,l(_1)
= wi—(Dwimy (D wi— (= 1)wi—y i (H)wi—y —1(—=1)wi—11(—1).

Hence we generate W2(2l, p) using only two generators x and w.

5.3 Orthogonal group O(2l + 1,p)

Let p =3 (mod 4) be a prime. It is known [20] that the group O(2] + 1, p)
is generated by these elements:

T = 20.1(1), (5)
—1 0 0

w = 0o 0 -1}, (6)
0 —Iy O

w = [ — e — € +e +tey;. (7)

We will refer these two elements as Steinberg generators. However in context
of the MOR cryptosystem we need to know how to go back and forth between
these two generating sets — Steinberg generators and elementary matrices de-
fined earlier [3, Section 5|. To write w as a product of elementary matrices is
easy, just put this generator through our Gaussian elimination algorithm. Here
we demonstrate the other way round, that is, how to write elementary matrices
as a product of w and x. First we compute, zo;(t) = w' 'z (1)w™ "1 which
is of length 2¢ — 1 for 1 < i < [. Now
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and z;(t) = wlro;(—t)w for 1 <4 < [ and length of this SLP is 2 + 2i —
1. So we get x;0(t) and z,(t) for i« = 1,2,...,1. Again we have z12(t) =
[21,0(%), 202(1)] and length of this SLP is 41+ 8. In what follows, we denote the
length of SLP’s by L(n,i), wheren =j —iand 1 <i<j <.

Here

L(n, i) — 21+ 4l + 6 for n =1,
ol 2L(n—1,40) +4(i+n+20+2) forn=2,3,...1—1.

As x;,;(t) = wlz; j(—t)w™, so the length of this SLP is L(n,i) + 2{. Hence we
generate all z; j(¢) for 1 < i # j <[ and the number of SLPsis 3+ (I—1)+1 =
[ + 3. Next observe that,

elements | indices equation (SLP) | length

x1,—(t) wxl_u(t)w_l 6l + 6

1117_1'(25) 2<i<l—1 [xi,l(t)’xl,—l(l)] 241 + 20 i=1-—1
2L(1 —4,4) +12(1 + 1) i#l—1

zi—i(t) |2<i<l—1 | [za(t),z1-;(1)] | 2L(i—1,1)+4L(—j—n,j—n) | j<l—1
+4(71 + 6)

(i+1<j<l) 2L(1 —1,1) + 4(71 + 5) j=1-1

2L(i—1,1)+ 10l + 6 j=1

l -l

So we generate all z; _;(t) for ¢ < j. Now w'z; _;(t)w™ = x_;;(t), and we
have z_; ;(t). The total number of SLPs is [ + 7. It is shown in Ree [16] that
elementary matrices z; ;(t)’s generate Q(2[ + 1,p), the commutator subgroup
of O(2] + 1,p) which is of index 4. So we generate 2(2[ + 1,p), using only
two generators x and h. Now we know w;_1 = wjwy;—1(1)w—1 (1), so we gen-
erate wj;_;. Hence inductively we can generate w; = wipwit1,i(1)w; —(41)(1)
for i = 1 —1,...,1. Here w;;(t) = x;;j(t)x;;(—t 1)z ;(t) for i # j and
wi —i(t) = x;—;j(t)x_;;(t )z —;(t) for i < j. Hence we generate all the ele-
mentary matrices defined earlier [3, Section 5| using only two generators = and
w and an extra element w;. Hence we generate a new subgroup WQ(20 + 1, p)
of the orthogonal group O(2l + 1,p), containing 2, which is indeed a nor-
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mal subgroup of O(20 + 1,p). In our algorithm the output matrix is d(\)
diag (1,1, -+, A1, ) A1) If X e prz, say A = t? (mod p), here t = \
(mod p), since p =3 (mod 4). Then

]
“fF
=

d(\) = diag(1,1,---,¢%,1,--- ,t?)
= wl—l,l(l)diag (17 17 o 7t27 17 17 T 7t_27 1)’(1}[_1’[(—1)
= wi—1(Dwimy (Dwi— (= 1)wi—y (O wi—y —1(—=1)wi—1,(—1).

Hence we generate W(2l + 1, p) using x,w and wy.

Remark 2. Let d(¢) = diag (1,1,---,¢, 1, , Y, where ¢ is non-square in
. Then the group {WQ,d(C)) is the orthogonal group.

6 Conclusion

This section is similar to [13, Section 8]. An useful public-key cryptosystem
is a delicate dance between speed and the security. So one must talk about speed
along with security.

The implementation of the MOR cryptosystem that we have in mind uses
the row-column operations. Let (g1, ¢2,...,9s) be a set of generators for the
orthogonal or symplectic group as described before. As is the custom with a
MOR cryptosystem, the automorphisms ¢ and ¢ are presented as action on
generators, i.e., we have ¢(g;) and ¢ (g;) as matrices for i = 1,2,...,s.

To encrypt a message in this MOR cryptosystem, we compute ¢". We do that
by square-and-multiply algorithm. For this implementation, squaring and mul-
tiplying is almost the same. So we will refer to both squaring and multiplication
as multiplication. Note that multiplication is composing of automorphisms.

The implementation that we describe in this paper, can work in parallel.
Each instance computes ¢"(g;) for i = 1,2,...,s. First thing that we do is
write the matrix of ¢(g;) as a word in generators. So essentially the map ¢
becomes a map g; — w; where w; is a word in generators of some fixed length.
Then multiplication becomes essentially a replacement, replace all instances of
gi by w;. This can be done very fast. However, the length of the replaced word
can become very large. The obvious question is, how soon are we going to write
this word as a matrix. This is a difficult question to answer at this stage and
depends on available computational resources.

Once we decide how often we change back to matrices, how are we going
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to change back to matrices? There can be a fairly easy time-memory trade-
offs. Write all words up to a fixed length and the corresponding matrix as a
pre-computed table and use this table to compute the matrices. Once we have
matrices, we can multiply them together to generate the final output. There are
also many obvious relations among the generators of these groups. One can just
store and use them. The best strategy for an efficient implementation is yet to
be determined. It is clear now that there are many interesting and novel choices.
The benefits of this MOR cryptosystem are:

This can be implemented in parallel easily.

This implementation doesn’t depend on the size of the characteristic of the
field. This is an important property in light of Joux’s recent improvement
of the index-calculus attacks [1].

For parameters and complexity analysis of this cryptosystem, we refer to [13,
Section 8]. Assume that we take a prime of size 2!, and we are using two
generators presentation of ¢ for the even-orthogonal group. Then the security is
the discrete logarithm problem in dez. Now if we take d = 4, then the security
better than Fazse. Our key size is about 8000 bits. Comparing with Monico |15,
Section 7|, where he says an ElGamal will have about 6080 bits, our system is
quite comparable. Moreover, the MOR cryptosystem is better suited to handle

large primes and can be easily parallelized.
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Abstract

In this paper, we investigate pseudorandom number generators based on random
permutations which in cryptographic applications are modeled by block ciphers with
random keys. We give a simple method to calculate upper and lower bounds on the
probability to observe a collision in an output sequence of finite length given the re-
spective bounds on conditional probability of the next symbol to appear given a prefix.
We found that the difference between the upper and lower bounds on collision proba-
bility can be made extremely small for any practical parameters of interest. Moreover
the collision probability for a true random number generator (RNG) always lies within
these bounds. This implies that the investigated generators will pass the collision test,
i.e. they are indistinguishable by this test from a true RNG.

Keywords: pseudorandom number generator, permutation, unpredictability, collision, block
cipher.

1 Introduction

Random numbers are of crucial importance for cryptographic applications.
True randomness is obtained from some nondeterministic physical processes.
However, it could be a problem to find a true source of randomness, which is
fast enough, without memory, and with uniform output distribution. So typically
deterministic pseudorandom number generators (PRNG) are used in applica-
tions to generate randomly looking numbers. It is assumed that they produce
sequences which are indistinguishable from truly random ones by any polyno-
mial statistical test. In practice they must at least pass batteries of particular
statistical tests.

There are different techniques for designing PRNGs [1]. One of the most
widely spread is to use a block cipher in counter mode of operation — the well-
known CTR_DRBG generator [1|. In fact, a block cipher with random key just
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models a random permutation. In this paper, a PRNG based on two permuta-
tions is considered. To generate an output symbol the outputs of two permuta-
tions are XORed together.

We will show that using two permutations allows the PRNG to pass the
collision test for output sequences of practical lengths. If only one permutation
is used and the output symbol is a half of the permutation output we get similar
results.

2 PRNG Description

Let V, be the set of all binary strings (vectors) of length n with the bitwise
eXclusive OR addition defined on it. To every string z, 1||z,_2|| - - . ||z0 from V},
we put into one-to-one correspondence the integer 2" 1z, + 2" 2z, 9 + ... +
221 + 29, which is an element of the residue ring Zy = {0,..., N — 1}, where
N =2"

A permutation o on V,, is a one-to-one mapping of Zy to itself.

Consider the following PRNG, call it G2I, which is based on two permu-
tations. For this PRNG the counter count is initialized by a randomly and
uniformly chosen I'V € V,,, and as an input an integer s and 2 independent and
randomly chosen permutations oy and o9 are given. The output will be n-bit
symbols xg, x1,...,Ts 1.

G2I: for ¢ from 0 to s — 1 do:

count := (IV +1i) mod 2";

x; = o1(count) @ oy(count).

The output sequences of G2I are periodic with period of N = 2". In the
following, we consider output sequences of length at most N. So we neither
consider practical details of initializing (seeding) the generator, nor the details
of reseeding it.

This type of a generator was partially investigated in [2]. It was shown that
for G2I the value of IV is not important when security is concerned, found
the number of different output sequences and the conditional probability of the
next output symbol to appear given a prefix. In this research, we go further and
investigate collisions in output sequences.

89



3 Collision Test

In [2] it was established the following lemma.

Lemma 1. In case s < N/2 for G2I the conditional probability

P(xs|xs—1,...,20) of the next output symbol xs to appear given a prefix
(Ts—1,Ts—2,...,%0) is bounded as
Pst1) =~ 2 _p | < TS pst 1
1(8+ )—m\ (xsxs_l,...,xg)\m— 2(S+ ) ()

From Lemma 1 it follows that for s/N « 1 this conditional probability is
close to Py = 1/N, which is the probability for the next symbol to appear for a
true RNG.

Moreover, for a generalized variant of the generator based on R > 2 permu-
tations it was shown [3] that the difference between the conditional probabilities
for the investigated generator and for a true RNG decreases exponentially fast
with R for a prefix of fixed length. So the construction of a PRNG, where
outputs of multiple permutations are XORed together, is effective concerning
unpredictability. However, the smaller R we could take, the more computation-
ally efficient will be the generator. So the most interesting case is R = 2.

Usually, in practice, PRNGs are assessed through a battery of statistical
tests. They try to distinguish the RNG under investigation from a true RNG.
And each particular test tries to highlight a certain flavor of nonrandomness.
One of the most known statistical tests for RNGs is the so called collision test.
The collision test counts the number of occurrences of identical symbols in the
output sequence. An RNG fails the test if the number of collisions falls outside
a predefined interval.

However, for quite a good RNG with output symbols from a large alpha-
bet it would require a huge amount of data to store or handle before at least
once a collision could be found. So more typical approach is to estimate the
critical length of output sequences when the investigated RNG might become
distinguishable from a true RNG. Having collision test in mind, a common dis-
tinguishing criterion is the difference between the collision probabilities, i.e. the
probability to find at least two identical symbols in a sequence of finite length,
for the investigated generator and a true one. The critical length is when this
difference become large enough, say compared to 1. This could be qualitatively
explained as follows. Suppose we observe output sequences of length exactly s
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of the generator. And the collision probability is Po(s). After observing the se-
quence we re-initialize the generator randomly. We can consider different starts
to be independent. Then every start is a Bernoulli trial in which the probability
of success is Po(s). We expect that after m trials we observe mPg(s) sequences
with collisions. With some degree of certainty we could distinguish this gener-
ator from a true RNG if mPo(s) — mPr(s) ~ 1, where Py(s) is the collision
probability for a true RNG. If Po(s)— P;(s) < §(s) for some security parameter
d(s) = 1/m, then the adversary cannot distinguish the generators after process-
ing s/d(s) symbols or sn/d(s) bits. So if we allow only one start, here m = 1,
the critical length s* is determined as a length when Po(s*) — Pr(s*) ~ 1.

For any particular instance of the RNG the length of output sequences is
deliberately limited far before the critical length is reached. The larger this crit-
ical length, the better the RNG. The exact value of the admissible probabilities
difference highly depends on the application or system’s security requirements.
More important, however, the functional dependence of the probability on the
output length.

We are going to estimate the collision probability for G2I.

In [4], using provable security approach, it was proven that the sum of R ran-
dom permutations XORed together gives a pseudorandom function, essentially
a PRNG, when s « O(N 1%) queries to the oracle are allowed. In our paper
we describe a simple computational technique to estimate a bound for collision
probability having a bound for conditional probability for the next symbol to
appear and whenever the latter is expressed as HTf(s), where f(s) « 11is a poly-
nomial with zero constant term. Compared to [4|, where only a lower bound
for collision probability is given, we were able to obtain both lower and upper

bounds.

In [5], using probabilistic and combinatorial arguments, it was shown that
G2I is secure when s « O(N1), and even s <« O(N). Our results are obtained
much easier, they are much simpler to follow, and can easily be used to have a
particular security treatment. In a sense they are close to [5] concerning security,
see further Section 6.

Evidently, our results are valid under collision test setting only, while the
above mentioned ones are valid against arbitrary distinguisher. Nevertheless
we think that they might be generalized to provable security setting. They are
essentially based on double-sided estimations of conditional probability for the
next symbol to appear which does not depend on particular test. However, a
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discussion on this topic would go far beyond the scope of this paper.

4 Collision probability

Bounds (1) give us the conditional probability P(xs|zs_1,...,xo) for the
s + 1-th symbol x4 to appear provided we observed a prefix (xs_1,...,xq) of
length s. Suppose now that all s symbols of the prefix are different. Let us
estimate the probability P;(s + 1) that the s 4+ 1-th symbol is different from all
the previous ones:

Pi(s+1) = P(:Cs ¢ {xs_l,...,x0}|:ci # X1 # Jii,] = 0,5 — 1).

Proposition 1. The probability Py(s + 1) to have all different elements in a
prefiz of length s + 1 for G2I is bounded as
s(N —s) s(N — 2s)
l——5<PF N<1l— ——+. 2
Proof. The possible outcomes for z; are that it is either equal to a particular
symbol in the prefix or differs from all of them. All these outcomes are mutually
exclusive. Evidently

s—1
Pi(s+ 1)+ Z P(zs = xj|xs—1,...,20) = L.
i=0
Since estimation (1) is valid for any prefix, including the one with
x; # xj;1 # 731,57 = 0,5 — 1, and any next expected symbol x, we obtain that
foranyi€0,...,s—1

N —2s < p( ‘ ) < N —s
(N—S)Q\ xs_xlx8—17x8—277x0 \(N—8>2

Hence 1 — sPy(s+ 1) < Py(s +1) < 1 — sPi(s + 1) which leads immediately
to (2). O

Using the general formula for the probability of joint events through condi-
tional probabilities, it is easy to see that the probability Pp(s+1) that all s+1
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output symbols are different is

Pp(s+1) = P(x; # aj3i # jii,j = 0,8) = | [ Pali + 1). (3)

1=0

The probability Po(s + 1) to encounter a collision after observing s + 1
output symbols of the generator is

Pc(8+1) = I—PD(S-i-l). (4)

Using (2), (3) and (4) we get
a i(N — 21) ° i(N —1)
1H<lm><Pg(s+1)<lﬂ<l(N )2) (5)

Using the Taylor series expansion of the exponential function e* =1+ 2z +
’22—2 +0(2?), we take the first-order approximation: e ~ 1 + z for z « 1. Consider

(N —q) N

now ¢ < s « N/2. In this case both W ( ) are much smaller
than 1. Therefore,

) i(N — 2i)

-\ 2 i(N—Qi) _(N_Z')Q

Now from (5) we obtain
* V(N — 2i) *i(N — 1)
l—exp|—) — | < FPo(s+1)<l—exp|— ) — |-
p( ;)(NW) c(s +1) p( ZZ(:)(NZ)Q)

Let us compute the sums. Using the Taylor series expansion for the function
(1+2)*=1+az+ (a olal) ;2 + 0(2?) we get

S (e () (@)

B a1 () ol6)
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We take the known formulas for the sums

Zs:i— 22 s(s+1)(2s+1 Z s+1)

1=0 i=0

to obtain

(N —14) s(s+1) s(s+1)(2s+1) s*(s+1)2

;(N—W: oN 6N? NG

+o(s/N?),

N —2i) s(s+1) s*(s+1)* s
Z T VI + o(s”/N”)

Assuming that s is large we come to the following lemma.

Lemma 2. For G2I the probability Po(s + 1) to find a collision in an output
of length s + 1 is bounded as

s(s+1) st
L=exp | =y~ T s S

5+1 <

<1 —exp

s—l— 33 s ) | (6)

A
%
|
W
e

provided s « N /2.

Recall that for a true RNG the collision probability after observing s + 1
symbols is estimated as

Pr(s+1)~1—exp (S(Z;\}l)> :

We see that Pr(s + 1) lies within bounds (6).

It is clear, that the described technique for calculating bounds on the colli-
sion probability is easily applicable when the conditional probability P(xg]...)
is expressed as ( ) , where f(s) « 1 1is a polynomial with zero constant term.
For instance, the colhslon probability bounds for a generator based on R per-
mutations [3] can be straightforwardly calculated.
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5 A PRNG on a Single Truncated Permutation

As we mentioned earlier, the collision probability for CTR_DRBG is strictly 0.
Can this PRNG can be improved concerning collisions? Fortunately, the answer
is yes.

Let us consider permutations > on V5,. And we build a PRNG G1LI on a
single permutation Y by selecting some ¢ bits out of 2n in every output, and
discarding the other 2n — ¢ bits by the function T}():

G1LI: for ¢ from 0 to s — 1 do:

count := (IV +1i) mod 2%
x; := Ty(X(count)).

The output sequences of G1LI are periodic with period of N? = 22",

Lemma 3. The conditional probability P(xg|xs_1,...,x0) of the next output

symbol xs to appear given a prefiv (Ts_1,Ts o,...,2To) for G1LI is bounded as
N?/2t — s N?/2t
W<P($s|$s—1,ﬂfs—2,---;xo) < NQ—S‘ (7)

Proof. 1t is easy to see that the operation of G1LI corresponds to a random
sampling without replacement from a multiset of cardinality 2> which consists
of all elements of V; each repeated 22"~ times. Hence it is evident that we may
select any t bits by T;.

Clearly the random sampling gives us bounds (7) on the conditional proba-
bility. ]

Consider the case ¢ = n. In this case we discard half of the permutation
output. As a result we will have n-bit symbols in the output. We get the corollary
of Lemma 3

Corollary 1. Ift = n, for G1LI the conditional probability is bounded as

N —s N
NQ—_S < P($s|$5717 Ls—2y . 7330) < NQ—_S (8>

It is interestingly to note that G1LI with ¢ = n is exactly the same gen-
erator as the one on a single random permutation, where the output symbol is
computed by XORing two n-bit halves of .
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Both bounds in Corollary 1 are tight. The lower bound is attained when the
expected symbol and all the symbols in the prefix are the same, while the upper
bound is attained when the expected symbol differs from any symbol in the
prefix. In Lemma 1 only the upper bound in definitely tight, and this happens
when the expected symbol and all the symbols in the prefix are the same.

Evidently, for G2I the lower bound in (1) turns to 0 when s = N/2, while
for G1LI the lower bound in (8) turns to 0 when s = N. Consequently one
may assume that G2I is worse than G1LI. It seems, however, that the lower
bound (1) is not tight. In [2] it was proven that for G2I any first N —1 elements
in the output are possible. In other words, for any prefix of length N there is
at least one pair of permutations that give that prefix being XORed together.
This means that P(xs|zs_1,...,20) > 0 for any s < N —2. Furthermore, this in
particular means that recursive computation xs = F(zs_1,...,25-1,) for G2I
is only possible for p = N — 1, and the function F is just XORing of all N — 1
output symbols. This does not contradict the lower bound in (1). The way the
lower bound is obtained just shows that there are pairs of permutations which
being XORed together give prefixes of length N /2 such that certain elements
of V,, cannot be observed after those prefixes.

By applying the technique from section 4 to bounds (8) it is quite straight-
forward to obtain the bounds on collision probability for G1LI.

Lemma 4. In case t = n for G1LI the probability Po(s+ 1) to find a collision
i an output of length s + 1 is bounded as

52 83 82 53
1— I 1) <1— 2 ). (9
Pl 9§ T oa2 cls+1) P\ ToN T3N3 )

From Lemma 4 it is clear that G1LI has got a similar to G2I behavior
concerning collisions. This is defined by the term % in the exponents. If we
assume that computing X of 2n bits is as twice as more expensive as o of n bits,
we will see that both G1LI and G2I have the same performance. However, while
increasing length of internal values twice, computing the output will typically
require 4 times more operations. The last assumption could be justified if X is
implemented as a 2n-bit cipher, and o — as an n-bit cipher. In this case G2I

looks a bit more preferable.
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6 Security Discussion

Now we estimate when the difference between the upper and lower bounds
in Lemma 2 is negligible. Evidently it is true for the range s*> < 2N. So we are
interested what happens for s> > 2N. In this case the difference of the bounds

is estimated as exp (—%) (eXp (%) — exp (—3‘% - %)) If
st <AN3,

then the value in brackets does not exceed e, so the difference is no greater than
exp (—%)
The difference §(s) = |Po(s + 1) — Pr(s + 1)| is no greater than the differ-

ence between the upper and the lower bounds. In particular, one can estimate

that for s = VN we get § < O(1/N), for s = v/N: § < O(1/+/N), for
32\3/N2:5<O<6_\/2ﬁ),and fors:\4/N3:5<O<e_@>.

As we discussed, if d(s) came close to 1, then a distinguisher could be built.
Therefore, it is hardly possible to construct a distinguisher which for any fixed
ratio s/N, provided s « N and s < v4N3, could tell the difference between
G2I and a true random number generator by looking for collisions. In other
words, the G2I, an idealized version of the PRNG on two block ciphers, will
surely pass the collision test.

This result contrasts greatly with CTR_DRBG generator, for which the collision
probability is exactly 0 whatever s is. Indeed d(s;) = Pj(s;) for CTR_DRBG

and d(sy) < exp (—%) (exp (%) — exp (—38—]\3/.2 — %)) for G2I. If we fix
security conditions by d(s1) = d(s2) « 0, then s; and so will be connected by
the following equation

51 S, S 55

>l mTtTs | XP | —5

2N 2N3  3NZ2 2N
provided % « 1 and ]f[—% < 1.

Consider two examples. Let N = 204 § = 273% Then for CTR_DRBG we
obtain admissible s; ~ 2!% while for G2I we get sy > 2%

Let N = 2128 § = 2758 Then for CTR_DRBG we obtain admissible s; ~ 239,
while for G2I we get sy > 263
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7 Conclusion

In this paper, we investigated pseudorandom number generators based on
random permutations. We estimated upper and lower bounds for the probability
to find at least two identical elements is an output sequence of a finite length.
The difference between the upper and lower bounds is extremely small, and
the collision probability for a true RNG always lies within these bounds. We
showed that the PRNG on two n-bit permutations could pass the collision test
for output sequences of lengths far beyond the birthday bound. Similar security
and performance is achieved when a single 2n-bit random permutation is used
and only a half of bits is used as output.
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Abstract

We studied the applicability of differential cryptanalysis to cryptosystems based on
operation of addition modulo 2". We obtained an estimate (accurate up to an additive
constant) of expected value of entropy H,, in rows of DDT of corresponding mapping.
Moreover, the k-th moments of 27 are explored. In particular, asymptotic inequalities
that describe the behavior of values E2% and D2"» as n — oo were obtained.

Keywords: modular addition, differential cryptanalysis, entropy of distribution.

1 Introduction

A number of cryptographic schemes use the operation of addition modulo
2" for some n > 1. Denote Zy the ring modulo N. The first function under
consideration is f : Z3., — Zan defined by f(z,y) = x @, y, where [, denotes
addition in ring Zo», i.e. modulo 2", and @ is bitwise exclusive-OR. We are
interested in study of the function P,(Az, Af) : Z3, — Ny:

Pubr,Af) = i y) € B Af =[x Az,y) @ (. 0)}|

(it is analogous to a special case of the differential probability of addition modulo
2" studied in [1]).

In this work we study the properties of this operation through the concept
of entropy. The article [2] investigated the function 2" - P,(Ax, Af), but all the
results are similar in these two cases, therefore we will briefly describe what is
already known.

The table of values of the function P,(Ax, Af) is called a difference distri-
bution table (DDT). The rows of this table are indexed by Az and columns by
Af. In [2] it has been shown that this table has a special form: the table for
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addition modulo 2"*! is naturally expressed through a similar table for addition
modulo 2". That is, if the matrix for P,(Az, Af) has the form

[

then matrix P, has form

24 B| 0 B
p 1l CcDlCD
"7 o9l 0 B[24 B
C D|C D

It was also shown that A = D and B = C'. This led to the following recurrent
representation for the matrix P,:

[

2An1‘Bnl _1 0 Bnl]
An_2|: nlAn1] Bn_ [Bn—lAn—l .

2
When considering P, (Az, Af) as a part of a cryptosystem from the point
of view of differential cryptanalysis the following problem arises: for a given (or
randomly chosen) Az it is necessary to determine the minimum cardinality K.

of the set of numbers {Afy,..., Afk,} such that

where

(2)

C

D PuAz,Afy) = ¢

=1

where ¢, 0 < ¢ < 1, is some fixed constant. The value of K, corresponds to the
“degree of branching”, that is, the coefficient by which the number of considered
variants is multiplied when moving to the next round of the cryptosystem. In
practice, it was found that for the distributions in DDT rows the described value
K ! does not exceed 27 where H is the entropy of this distribution (this is not
true in the general case, for arbitrary distributions, it is enough to consider an
example distribution {%1, 2%, ey 2n} for sufficiently large n).

Therefore in this article we research the quantities H and 2 since analysis
of K, seems much less trivial.
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2 Main results

By definition the entropy in the i¢-th row of matrix P, may be found accord-
ing to the formula

2n—1

Hj = — > Py(i,j)logy Pa(i,j), i = 0,...,2" — 1.
j=0

For convenience we denote

2”7171 2n7171
o= > Aig), Bi= > Buli.j)
§=0 §=0
and
2n—1—1 2n—1—1
ap = Z O‘Za ﬁn = Z ﬁ;z
1=0 =0
Lemma 1.
;o HPmed if ie[2vh2n —1]u 3.2t vt ],
n+1 Hrz'lmon” + Bzmon"’ Zf = [0’ 2n—1 _ 1] U [2n7 3. 2n—1 o 1]

Proof. From (1) and (2) it is clear that for i € [2771 2" — 1] U321 2" —1]

the i-th row has the form 1 [a b a b] and thus the entropy can be written as

2
2" —1 . .. 2" —1 ..
7 Pn(l,]) Pn(Z,j) .. Pn(Z,]>
7=0 7=0
2" —1 2"—1 .
= — Y Puli, j)1ogy Pa(i, ) + Y. Pa(i,j)logy2 = H™* 4 1.
7=0 7=0

On the other hand, for i € [0,2"! — 1] U [2",3 - 2"~ — 1] we have the row of
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form L [2@ b 0 b] and thus

on—l_1 2n—1

; o o P(i, ) P(i, j)
H = Z P,(i,7)logy P(i,7) — 2 - Z TlogQ 5 =
j=0 j=2n-1
.| n—1
(i, 5)10gs Pu(i, ) — > Puli, 4)logs Pu(i, )+ ) Puliyf) =
]:0 j:2n—1 j:2n_1
_ Himod?” + Bimon".
]
Lemma 2. For everyn > 1
n Bn 63 62
EH,j1=—+—+ -+ —+ —.
R BT S
Proof. Taking into account the previous lemma, we can write:
T 1 7 . 1 2=
EHn1 = 50 Hy iy = on > (Hy+ B+ on > (H,+1) =
i=0 i=0 i=2n1
2"—1 |
1 | -1 Bn 1
=— > H +— )+ - =FEH, + —+ -
2" ;) A ZZ:(:) & 2 2n 2
It remains to “unroll” this equality and note that H; = 0 and 5, = 0. ]

Lemma 3. For every n = 1
1 n—1 1-n

Proof. Obviously, !, + 8% =1, s0 a,, + 3, = 2" L. From (2) it follows that

Q
ﬁn—kl = Bn + ?n

From the last two equalities it follows that

P

6n+1 = 2n—2 + 9
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Unrolling this equality we come to

_ ﬁn ) 1 Gn—1 -2 —4 ﬁn—l
=22 on _<n_ );2” on Ut
Bt + 3 + 5 (P + =5 + + =
2n—2 1 — 2—2 n 1
—on2 ot 40T (1_2(2 ))=§-2”(1—4‘").

Theorem 1. EH, = 2n + O(1) as n — .

Proof. Let us substitute values obtained in Lemma 3 into the representation of
[KH,, .1 obtained in Lemma 2:

n 1 1 on

1 2
EH, = 21— (14 = 24 2y 24t = 2 0(1).
s =5+l ) 5 )=5+5T3( ) =3n+0(1)

So EH, = 2(n—1)+ O(1) = 3n + O(1). [
Now we will consider the g-th moment of a random variable 29»:
E(27)" = E29" = 1 Qf grens — L 2§1 Qi
2 5 |

where e, ; is the entropy in ¢-th row of matrix P, and () denotes 29. To avoid
multilevel exponentiation we will use the notation Q(x) = Q*.

Corollary 1. E2¢7» = Q) (Cﬁ”)

Proof. Tt is sufficient to use the inequality of arithmetic and geometric means
and the result of Theorem 1:

2"—1 2™
EQan — 2in Z 2qen,1', > 2" H 2(1671,,1' — QE(an) — 2%(]71 . Q(]_) — Q (Q%Tt) .
1=0 k=1

Lemma 4. Fori=0,...,2" ' -1

B = {0’ e 3)

9—(n=1=llog;il) " otherwise.
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Proof. Let us prove by induction. For n = 1 the proposition is obvious as
B, = [ 0 ] Now let’s suppose that it is also true for 3 =0,...,2" 21
and let us prove it for 3.

n—1y ¢

For 2% < i < 2"7!' — 1 from (2) we get 3. = 1 as the sum in any row of
matrix | B, ‘ A,_1 | is 1. This agrees with (3) as |logyi] =n — 2.

For 0 <i < 2" 2 —1 from (2) we have
T
ﬁn = 567171
and by the inductive hypothesis we come to (3). O

Remark. The vector of values 3% has the following form.:

0 1 1 1 1 11 11 1
P gnl g2 g g R g |
| S A S — N e N N
1 2 gn—4 on—3 on—2

For convenience we extend the definition (3) for 27! < i < 2" — 1. Then
according to Lemma 1,

61 mod 271 62 mod 272 4t 61 mod 4
Moreover, obviously, e; g = e;1 = 0. For k € {0,...,n —2} let us introduce sets
Zy={ieZ:2"" T <i<2v b -1},

The set Z; consists of integers which binary representation has the form
0...01 %% Let us denote w, = Yoy ' Q(en;). Then
N~ Y~

k n—k—1
2"—1 —
Z Qenz :Z 2 Q(Z Zm0d2n0+en kz)+1_
k=01i'eZy
n—1 k
-2, 2.9 (Z S ) Qen—ri) +1
k=0i'eZy c=1
n—1 -1 n—1
LS e N
k=0 =0 'eZy, k=0
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Obviously,

E(2H) = 2. 4
()" = 5t ()
Thus we need to investigate the following recurrence relation:
n—1
fln) =3, f(0) - Q2 —27""1) + 2, (5)
=1

First, we compare it with the similar relation:

f(n) = Z_] fO)-Q2—27"" ) n =2
=1
f(1) =2.
Let us denote A(n) = f'(n) — f(n).

Lemma 5. A(n) < f(n).

Proof. Let us prove by induction. Obviously,
0=A() < f(1) =2

Suppose the proposition is true for all £ < n (i.e. A(¢) < f(¢)) and write down

Flnt 1) =3 F(0) + Q@ — 2" (1),
/=2
Aln+1) = Zn] A(l) + Q2 — 27" A1) + 2.

T
[\

For n > 2 we have Q(2 —27""3) > 1, from which and the inductive hypothesis
follows:

Aln+1) <) f(O)+Q(2—2"" A1) +2 <
(=2
<O FOF0+2< ) f(O)+Q2—27" (1) = fn+1),
(=2 (=2
and it is the required inequality. H
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With the use of Lemma 5 we estimate f'(n) as

f(n) < f'(n) = f(n) + A(n) < 2f(n),

and will work with homogeneous equation (6).

Let us note that coefficients Q(2 — 27"++1) = Q227" are bounded from

above by the number Q(2). Then let us consider the next family of recurrence
relations:

—k—
Z 9~ n+€+1> Z
fr(1) =

solutions to which bound f(n) from above. Denote

NG @)
/=1

o
Z — Y (F(0) — By — 1)) + Q@) Fy(n — k — 1),

Fp(1) =2. (8)

Note that this recurrence relation has constant “length” and can be solved using
well-known methods. Let us first find the form of the characteristic polynomial
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corresponding to this relation:

)\k-i—l o )\k _
n—1
_ Z (/\Z—n+k+1 . /\Z—nJrk)Q(Q o 2fn+€+1) + Q(Q) _
l=n—k
n—1 n—1
_ Z )\E—n+k+1Q(2 . 2—n+£+1) _ Z )\E—n+kQ(2 _ 2—n+€+1) + Q(Q) _
l=n—k l=n—k
n—1 n—2
_ Z )\é—n+k+1Q( 9 n+€+1 Z )\K n+k+1Q(2 9- n+€+2) + Q( )
l=n—k l=n—k—1
_ Q(1)>\k+1_1 . Q(2 . 2—k—1+2)+
n—2
+ Z )\é—n+k+1 (Q(2 o 2fn+€+1) _ Q(2 _ 2fn+€+2)) + Q(Q)
l=n—k

Thus the final form of the characteristic polynomial is

Au(0) =
k—2
_ )\k+1 . (1 + Q(l)))\k . Z Q(Q) (Q(_2fk+€+1) . Q(_27k+€+2)) )\€+1_
=0

-9Q(2) (1-o(-27"1).
We will denote @4 the coefficient of A*. Let w,...,yry1 be the roots of this
polynomial. It is known [3] that the solution to the equation (8) has form
Fy(n) =y1 + -+ + Wr1¥i (9)

for some constant 7;.

On the other hand, coefficients Q(2 — 27"**1) decrease with growth of ¢
and reach the minimum value on the interval ¢ € [1,n — k — 1] at the point
¢ =n—k—1, where the coefficient is Q(2 — 27%). From this considerations we
obtain a new family of recurrences limiting the original one from below:

—k—
fr(n) = Q2 — 27" Y f(0) + Q(2 - 270 Z
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Just as it was done above we introduce

Fn) = 3 Filo). (10
/=1

Fy(1) = 2. (11)

In this case the characteristic polynomial has the following form:

Hy(A) =
k—2
)\k—i—l . (1 + Q(l)))\k . Z Q(Q) (Q(_2—k+€+1) . Q(_Q—k+£+2)> )\€+1_
(=0

- Q(2) (27" - e(-27"1) . (12)

We will denote @ the coefficient of A*. The solution to the equation (11) has
the following form:

Fr(n) =y +- + Vet 1Yj 415 (13)
where y1, ..., yri1 are the roots of fvlk()\) and 7; are some constants.

Consider the following family of polynomials (¢ € [0, 1]):
W) =M L+ QN —t- G N — o =t G (14)

and the similar one for @; (denote it @;(A)). We will prove the following lemmas
describing these families (note that ¢; = @; for i > 1).

Lemma 6. For every t € [0, 1] the polynomials u;(\) and @ (N):
(a) have no root in the annulus 1 < |\ < 2, if Q = 2;
(b) have no root A such that |\| = % + 1, if Q > 2.

Proof. We prove the case (a) by contradiction. Assume that u;(\) has a root A
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such that 1 < |[A| < 2. Then taking absolute values in both parts in the equality
N G N 5, = 30
and applying the triangle inequality, we get
AP b G A - o = 3R
Then
AFTH (AP =3I+t Prt) = —t - Graf AF2 = =t §y.

Since the branches of the parabola y(|\|) = |A\J* — 3|A| + ¢ - $p_1 are directed
upwards, it reaches its maximum on one of the boundaries of the considered
segment. In our case

y(1) =y(2) = =2+ 1 Pr1.
That is,
A =241 Gra) = —t- Graf A2 = — - G,

Dividing by |A|*~! we get
2> —t-Qp_q —t- Qo] AT = =t oA

Noting that simultaneously ¢+ < 1 by premise and [A\|~! < 1 in the considered
annulus, we arrive at:

2<@r1+ Pra2t -+ Po. (15)
At the same time it is easy to prove that for () = 2
Or—1+ Pr—2+ -+ oo = 2,

so we have come the contradiction with (15). The same line of reasoning works
for 7;(\) except that instead of the last equality we get strict inequality.

We turn to the case (b): @ = 4. If under this condition there is a root such
that |A| = & + 1, then

k+1 k—1 k
(%Jrl) +(%+1> 't'@k1+"'+t'@0>(Q+1)'<%+1)'
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As far as max®; = Pp_1 = Q2 — Q and t < 1 then
7

<%+1>k+1—(Q+1)<%+1>k+%(Q3—Q) (%+1>k>0

(vVQ-2)* <0,

which contradicts Q > 4. Absolutely the same arguments work for @;(\). O

or

Lemma 7. None of the derivatives of uy(X) and U;(\) have a root A such that
A =4 +1.

Proof. We firstly note that polynomials ;(A) and () differ only in the con-
stant term, which implies equality of derivatives

AN =4 (\) for all s > 1. (16)

So we will prove the lemma only for w;(

A).
Suppose that there exists A, |A\| = % + 1, such that a§8)(>\) = 0. Then
similarly to Lemma 6 we get:

k+1—s
(k:+1)3-<%+1) +

k—1—s —s
+(k—1)5-<9+1) -t@k_1+---+05-<9+1> - tPo

2 2
k—s
> (Q+ 1)k*- (%Jrl)

\%

(here % denotes x(z —1) ... (x —s+1)). As noted above, max &; = Q2 —Q, so

k-v@i-Q)- 5(%+ 1) .

k—s k+1-s
>(Q+1)k5-<%+1> —(k+1)5-(9+1> :
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therefore,

(k—s)(k—s+1)(@§—Q)-%>k(k—s+1)(Q+1)—k(k+1)(%+1>.

This inequality can be viewed as

a(Q, s)k* + b(Q, s)k + ¢(Q, s) = 0.

a(@,s) <0, if Q # 4,
a(@,s) = 0, otherwise.

Moreover, in the case of @) = 4, it is true that b(Q, s) < 0. Thus, there exists a
certain number k starting from which this inequality will not be satisfied. [

Lemma 8. The polynomials u;(\) and u(\) have exactly one root A such that
A > % + 1.

Proof. For the considered polynomials it is known [4| that their roots are con-
tinuous functions of variable £. As

Uo(A) = To(A) = A — (1 + Q)"
these two polynomials have 0 as a root of multiplicity & and (1 + @) as a root

of multiplicity one.

By Lemma 6, @;(A) and @;(A) do not have roots in the annulus 1 < |A\| < 2
(for @ = 2) or the circle |A| = % + 1 (for @ > 4). Thus, all curves corresponding
to the first k£ roots do not leave the circle |A| < 1 (for @ = 2) and the circle
A < % + 1 (for @ = 4). The curve corresponding to the last root does not
leave the sets |A| > 2 and |\| > % + 1 respectively. O

Note that ﬁ[k(Q + 1) < 0 since

HQ+1)=Q+1D" —(Q+1)-(Q+ 1) =1 (Q+ D1 — &,
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and @; > 0, 7 € [0,k — 1]. On the other hand, ¢; < Q2 —Q forie [0,k —1], so

H(3Q) = (3Q)" —(Q + D)(BQ)F — Zr1 - (3Q) 1 =+ — o >
> (3Q) = (@ +1(B3Q)" — (@~ @>3%Q_) 17
> 3(5’;2_)1 (6@2 0f — 40 — 1) 3%@—) QP —4Q — 1) > 0

for () = 2. Absolutely similar statements are true for fv[k(Q + 1) and ﬁk(SQ).

Hence by the intermediate value theorem both functions Hj(\) and Hy())
have a real root on the segment [Q + 1,3Q] which can be found by halving
the segment. In this case, for n steps the root can be found with an accuracy

0@2™).

Then equalities (9) and (13) take form:

Fi(n) = 300 + pi(n), (17)
F(n) = 5507 + pr(n), (18)

where ¥, U are maximum (by the absolute value) roots of polynomials H k(M)
and H k(\) respectively (they are real, positive and lie inside [@ + 1, 3Q] as we
have proved). 7y and Jj are some real positive constants. Next, we note that if
Q = 2 then pr(n) = O(1) and pr(n) = O(1) as n — . If Q > 4 then

aw=-o((3+1) ). nw-o((2+1))
The case () = 2 is illustrated on Fig. 1.
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Figure 1: Trajectories traversed by roots of H, 5(A) with ¢ from 0 to 1; the round mark corre-
sponds to t = 0, the square mark corresponds to ¢t = 1

Lemma 9. The difference y;, — y. tends to zero as k — oo.

Proof. Using Lemma 7, similarly to the proof of Lemma 8, it can be shown
that the first and second derivatives of the functions Hi(A) and Hy(\) have

exactly one root, whose module exceeds % + 1. We denote them by y; and y;

respectively (by (16) these values are the same for Hy and Hy).

Since the function Hj(\) can take negative values, min Hy(\) < 0 and
arg min I\-jk()\) < ¢i. At the same time arg min I\{Tk()\) = ;.. Thus y;. < U

Carrying out similar reasoning, but considering H 1.(A) instead of Hi(N), it
is easy to show that y; < y;.. Then starting with some number k the following
inequalities are held (see Fig. 2 for Q = 2):

@ <yl <y <h<fi<3

5 < Up <Yp < Uk <Yk < 3Q.

Therefore functions ﬁ[k()\) and ﬁk()\) are convex functions on [y, ¥k, so
for any 0 € [0, 1] holds the convexity inequality:

Hy (8y; + (1= 8)5i) < SHy(yj) + (1= ) Hi(Gi)-
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Note that

~ kE — Yk
Ue = 0yp, + (1 —0) Ui for5—y y
yk_yk

therefore, finally we get the following chain of inequalities:

() < 08 @) + (1= 8) B = 220, () <
yk_yk
yk‘_'yk Q
= (5 N 1),

where at the last inequality we used the fact that H. 1(y;) is the minimum value

of function Hj on the ray [% + 1,+00) and also that g — v}, < % — 1. For

function vy introduced in Lemma 7 the equality Hy(g;) = —v obviously holds.
Then we finally get:

=0

(—% + vk
Hy(§ +1)
It remains to show that the right part o

Yk — Yk S

f the last inequality tends to zero

100

50

-0

Figure 2: The plot of the function H5(\)
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at k — oo. This follows from the tendency of v, to zero and also from the fact
that

ﬁk<%—|—1) =
k+1 k k
=(%+1) —(1+Q)<%+1> _Cpk1<%+1) — Yo =

k k
Z—%(QJrl) —gok_1<§—l—1) — - — g — —0 as k — 0.

N
Now we can estimate the value of E27n,

Theorem 2. For all e > 0 and all g € N there exist real positive numbers z, Z,
c1 and co such that |Z — Z| < ¢ and

15" < E29n < 02" as n— oo.

Proof. According to Lemma 8 polynomials [:\Ik()\) and ]\:[k()\) have exactly one
root greater than (% + 1). From (7) and (17) (also (10) and (18)) it follows
that

1 A~ A

fr(n) = Fip(n) = Fi(n — 1) ~ 3(ge — DY = Nk,
fk(”) = ﬁk(n) - ﬁk(” — 1) ~ (g — 1)%1—1 _ X/ m

At the same time,

S

SO
Tk < f(n) < %
Tk < f1(n) < 29%0¢ = A0
Finally,
vn_v/'y_I?<E2an<A//.%_ on
C12 =7 on ~ = Vk 271—0227

moreover, Lemma 9 guarantees that zZ and Z can be made arbitrarily close. [J

Let us use the result of Theorem 2. Chose ¢ = 1072°, Then such 7 and
Uk exist that |yp — Jx| < €, that is they are both equal to § with the specified
accuracy. This value will correspond to 2 = . Moreover, value logy§ — 1 is
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interesting as

~~

Cl2n'(10g2 g—l—&‘) < ]EQqHTL < Cy - 2”'(10,%2 g_1+5).

J 7 log, 7 — 1
3.30921306134212177240 1.65460653067106088620 0.72648818154049951037
5.80027271324371478340 2.90013635662185739172 1.53612073348070167305
10.53733221939675028493 5.26866610969837514246 2.39743775493525848727
19.61999911051941379160 9.80999955525970689580 | 3.29425307103935297681
37.19179236569642652549 | 18.59589618284821326274 | 4.21691237160283720288
64 | 71.45569997172021204310 | 35.72784998586010602155 | 5.15897719358341460680
128 | 138.69767829225482267831 | 69.34883914612741133915 | 6.11579982787398693748
256 | 271.32073664755570805747 | 135.66036832377785402874 | 7.08385550468282259524

512 | 533.89365096936984102274 | 266.94682548468492051137 | 8.06040858243800754807

85 ok O

Table 1: Approximate values associated with EQ¥» for different values of Q

Now we can evaluate the variance of the value 2Hn:
D2 = E(2)* — (E2)? = E22Mn — (R2M),

It is easy to observe from this table that (]EZH")2 = o(E2%*#+). Thus, the
variance D27 can be estimated by the second moment:

d - 9(15361-e)n < pyoHn < &, - o(1.5361+¢)n

Finally we estimate the probability of deviating from the expectation E2».
We use Chebyshev’s inequality:
D2n
a?

P([2™ — E2™| > a) <

Choose a = v"vVID2H» v > 1 then

1
P([2™ — E2™| > v"VD2M) < — — 0 asn — .
v n

Thus with probability tending to one
21 < E21m 4 o™/ D2

or, for example,
ol _ , (20.76807n) as 71— 0.
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Abstract

This work presents a generalisation of some known ways to construct 2n-bit permu-
tations using mn-bit ones. Some new ways of constructing permutations on the basis of
two well-known constructions will be proposed. Some new approaches presented in the
work give a way to build permutations with low differential uniformity, high algebraic
degree and high nonlinearity.

Keywords: S-box, permutation, boolean function, bent function.

1 Introduction

Permutations (or S-boxes) are core part of a huge class of modern crypto-
graphic primitives such as block ciphers, hash functions and some stream ci-
phers. In recent years new ways of constructing permutations with low differen-
tial uniformity, high algebraic degree and high nonlinearity have been published
1, 2, 3, 15, 15]. Most of these works are devoted to the methods of constructing
new classes of permutations on the basis of existing ones.

There are a lot of ways to build permutations from smaller one: constructions
based on Feistel network [4, 5, 6], Misty network [7, 4, 8], SPN network [9, 10, 11]
and some other constructions [12, 13, 15|. The first approach for constructing
permutations is based on the so-called T'U-decomposition [13, 14|, which in
can be considered as a generalisation of the Feistel network. Permutations built
on this principle will be called “F-constructions” (Feistel-like constructions).
The second approach is based on a way of representing an arbitrary permu-
tation as a composition of transformations over spaces of smaller dimension.
Permutations built on this principle will be called “G-constructions” (Gener-
alised constructions). We will study some new ways to build permutations with
low differential uniformity, high algebraic degree and high nonlinearity using
these two approaches.
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2 Definitions and Notations.

We will use the following notations and definitions. Let Fon be a finite field
of size 2" and V;, be the Boolean vector space of n elements.

Remark 1. Every a € Fon could be presented as a n-bit vector a =
(ag, a1y .- an-1), a; € Fy, i € 0,n — 1. In this work we suppose that there
15 a bijective mapping from the field Fon to the vector space Vi,.

For any a, b € Fon operation {a, b) is a dot product: Z?z_ol a;-b;. For a boolean

function f:V,, — Vi we can define the value ||f|| = #{z e V,, : f(z) = 1}.

Let S be any function S : Fon +— Fom. The security of the cryptographic
functions strongly depends on the cryptographic properties of the used permu-
tations, and properties of a permutation are the measures of resistance against
known methods of cryptanalysis.

Definition 1. The Walsh-Hadamard Transform (WHT) chb of a function S
for fized values a € Fon, b € Fom is defined as follows:

WS, = 3 (—1)@0esE,

QTEFQn

Definition 2. The nonlinearity of a function S is denoted by Ng and defined

by:
1
Ng=2""1—— b)| .
s max [Ws(a, b)]
The linearity Ls of a S is defined as follows:
1
Lg = - b)|.
s = 5 max|[Ws(a, b)]

Definition 3. A function S : Fou — Fom s called a bent function when its
nonlinearity is equal to 2"~ — 27/2-1,

Let n = 2m, z,y € Fon. The Maiorana—McFarland construction [13] is
the way to construct 2n bit bent-function from n bit functions and finite field
multiplication: every function g : V,,, x V,,, — V,, that has the following form is
a bent function:

9(@,y) = m(x) - Uy) + f(z),
where 7 : Fom — Fom is a permutation, [ : Fom — Fom is a linear permutation

and f : Fom — Fom is a function.
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Definition 4. The algebraic degree deg(S) of a function S is the minimum
among all maximum numbers of variables of the terms in the algebraic normal

form (ANF) of {a,S(x)) for all possible values x and a # 0:
deg(S) = min deg ({(a, S(x))).

GEFQm\O
For any permutation on Fo» the maximum value of the algebraic degree is
n— 1.

Definition 5. For a given a € F9u\0,b € Fom we consider
ds(a,b) = #{x e Fom|S(xz + a) + S(xz) = b} .
The differential uniformity of a function S is

ds = max dg(a,b).

S GEFQR\OJ? S( )
We will say that two permutations S7 and Sy are linear equivalent if there
exist two linear permutations L; and Ls: S1 = L1050 Ly. We will also say that
two permutations are affine equivalent if there exist two affine permutations A;

and Agi Sl = Al ) SQ o AQ.

3 Chosen constructions and their properties

In this work we will build permutations over Fom and in our notation (see
remark 1) it is equivalent to build permutation over Va,,. We can represent Vo,
as a product: V,, x V,,, as follows: T € Vo, T = (Zoy- -+, Tyt Ty -+ - s T2m—1),
T = (T1,T9), where Ty = (zg,...,Tm-1), T2 = (T, ..., Tam—1). Moreover we
will suppose that T; is a representation of an element of the field Fom.

3.1 Base constructions

In this work we will study two kinds of construction. The first one is based
on the well-known TU-decomposition [13, 14|. Let F' be a mapping V;,, x V,,, —
Vip X Vi, and Fy, Fy @V, x V,, — V,, be the functions with the property:
for any fixed value Ty the function F;(v1,72), ¢ € 1,2 is a bijection. Then the
definition F{l (T2,79) = 7, is correct and the following equations define the
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T 5
G,
= | G,

| J y,

Y, Y,

Figure 1: F' construction Figure 2: G construction

mapping F(T1,%2) = (¥, %) (see fig. 1):

Uy = F1(T1,70)
Ty = F5(Yy, )

(1)

It’s easy to show that the mapping F' is correctly defined and F'is a bijection
[13, 15].

Proposition 1. The amount of permutations 1L‘hat can be build by using the
m+
F-construction (see eq. (1)) is equal to (2™1)°

As we can see we can only build a limited number of permutations using
F-construction. That’s why we will also study the second type of construction.

Len G (T1,%2) = (U;,Ys) — be a permutation. Then we can define the map-
pings G7 and G4 as follows:

{?1 = G1(71,T2) )

Yo = G2(Y1, Yo)

Obviously, by defining mappings G;, i € 1,2 in a special way we can construct
any permutation over V,, x V;, (see fig. 2).
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3.2 Cryptographic properties of the chosen constructions

In this work we will study the ways to choose functions F; and G;, i € 1,2
to build a permutations with high nonlinearity and low differential uniformity
and high algebraic degree. Cryptographic properties of a permutation depends
on it’s sub-functions F; and G;, i € 1,2.

Let §'(x,y) be a function V,,, x V,,, — V,,,. We will call a punctured set of
function s'(z,y) the set of y such that s'(z,y) is not a permutation of x € V,,:

Y = {y|#{s'(x,9), 2 € V;,} <27}

The value y € Y we will call a punctured value of a function s'.

If function s’ have punctured values we can redefine it and construct a new
function s(x,y) such as s is a permutation of x € V,, for every fixed value
ye Vi

S(r,y), y¢Y;
s(z,y) =< _ : ; (3)
Wy(x)a y € Y;

where 7, (z) are permutations over V,,,.

In this work we will focus on functions s’ with only one punctured value
y. The general case can be examined similarly. Let’s consider the following
construction:

s'(z,y), m(y) # 0;

3($7 y) — YA ) (4>
w(x), 7(y) = 0;

where 7, 7 are permutations over V,,, s'(z,y) : Vo, — V;, is a bijection for all

fixed y # 7 1(0). Let g(z) be the function that is equal to the function s(z, ).

3.2.1 Nonlinearity

s'(z,y), m(y) # 0;

m(x), m(y) = 0;
mutations over Vi, s'(x,y) : Vau, — Vi is a bijection for any fived y, y # 1y, y
is an punctured value of the function s(x,y).

Let s(z,y) = g(z). Then the Walsh-Haramard Transform of the function

Proposition 2. Let s(x,y) = { ., where 7w, T are the per-
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s(xz,y) can be calculated as follows:

Waso + (_1)@@ (Wa, —Wg,). a#0;
e = 3 Wiisn + D 2]y, g(2))| = 27), a=0,v#0; (5)
015,0° a=0,7=0.

Proof. To prove the proposition we’ll use the definition of the WHT:

;“57 — Z (_1)<O"z>+<67y>+<755(x’y)> —
7 Y€V
= 3 (D)oo 4 S (_q)laa iR
m,yEV"m {I,‘EVm
Y7y
— Z (_1)<a’$>+<ﬁ7y>+<%8’(ﬂf,y)> + (_1)<ﬂ,y> Z (_1)<0é,$>+<%7?($)>__|_
m,gi‘;m IEVm
+ (—1)B9) Z (—1)fem+irg@) — ojlﬁm + (=)W (ng — Wagﬁ) .
€V,
If both v and «y are equal to 0 then W(f”ﬂ 0= Wgﬁﬁo.

Let’s consider the case when o = 0 and v # 0:

S5 = Wilsn + (=129 (2 (v, g(2))] — 27) .
[]

Remark 2. We can get the upper bound for the WHT of s(x,y). If a # 0 then
‘Wjﬂﬁ‘ < ‘Waslﬂﬁ‘ + ‘ng‘ T }Wgﬁ‘ '

And if a« =0 and v # 0:
W] < [Wilaa| + 127 = 2- lg@I.

According to the equations above we can suppose that more punctured val-
ues potentially lead to lower nonlinearity:.
Let’s consider the case when the function g(z) is equal to 0.

(z,y), m(y) # 0;

(2). 7(y) = 0 , where w7 € S(V,),
r), my)="4Y;

/
Corollary 1. Let s(x,y) = {i
T
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s'(xz,y) : Vam — Vi is a bijection for all y, m(y) # 0. Let y = 7 (0) be
the punctured value of the function s and s' (x,y) = 0. Then the WHT of the
function s(x,y) can be calculated as follows:

Wia, + (0P WE - a #0;
ozSHﬂ,'y = 07 a = 077 7 07 (6>

Proof. To prove it we can construct the similar reasoning as in the proposition 2:

5“57 — Z (_1)<a,m>+<6,y>+<%s(a§,y)> —

Y€V,

= Wéhﬂﬁ + (1) ( jﬁ _ Z (_1)<a,w>> .

Let’s notice that

S apen - £ T

veV, 0, otherwise.
and it that case
WQW =0, ifa=0,v+#0,
WO?Z’Y - 2m’ 1fOé = 077 = O

/

Let’s show that if v # 0 then W

—_om . (_1\{B.9).
5y = 2" (=1)100:

/

0= 3 (P

z,y€Vim
— Z (1)) Z (—1) @ = gm . (_1)(B),

yeVm €V,

[]

Remark 3. Without loss of generality we’ll suppose that y = 0. According to
equations (1),(2) we can choose F; (or G;), i = 1,2 independently that’s why if
we have a function s(x,y) with one punctured value y # 0 then we can consider
an affine-equivalent function with punctured value y = 0.
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Remark 4. If Ny is a bent function then Ny < Ny < Ng + Lz, otherwise
Ng — Lz < Ng < Ny + Lz.

3.2.2 Differential uniformity

According to the equations (1),(2) we choose two functions. We can choose
both functions to be equal to the following two functions s1, s9 : Vi, X Vi, — Vi,
and s; has one punctured value that is defined by permutations ;:

Smrwz{%@whﬂﬂﬁ#&
| i), my) =0,

Wy){s b (4. 51(2,9) ™ (s1(2,)) # 0
T R), masi(ey) = 0;

where for all 1 € 1,2 m;, 7 € S (Vin), si(z,y) : Vay, — Vi, is a bijection for all
y # m;(0).

It is still an open question how to calculate WHT for a linear combinations
of functions si(z,y) and so(x,y) but we can proof the proposition that will
help us to build permutation S(x,y) = si(z,y)||s2(x,y) with low differential
uniformity.

Proposition 3. Let ay,as,b1,bs € V,,, then the number of solutions of the
following system of equations (number of pairs x,y € Vi, ):

s1(x,y) ®s1(x®ay,y®as) = b
so(x,y) D sa(x D ar,y D ag) = by

greater or equal to the number of solutions of the following system:

1. as # 0:
(71(y) #
m(y@ag)
< 7r2(3,1( )) # 0 7
mo(si(x®a,y®as)) #0
si(z,y) ®si(z @ ar,y@az) = b
s5(y, 51(z,y)) @ sH(y @ ag, s1(z D ay, y @ az)) = by
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2. a1 # 0, ag = 0 the number of solutions of the system (7) and the number
of solutions of the following system.:

{”f(ylo - ) )
s5(y, 1 (x)) ® sh(y, Ti(x @ ay)) = by

The proof of the proposition is quite obvious.

In fact the equations (7) give us the way of choosing functions s} (z;, ;)
and s5(y;,y,) and (as we can see later) help to reduce the number of possible
constructions. The equation (8) gives us the limitations to the permutation 7o
for the fixed function sh(y;, y,). If we consider the permutation S~! we can try
to make the same limitations for the permutation 7y for the fixed function sj.

3.2.3 Algebraic degree

Let us consider the algebraic degree of the function (4).

(a,s(z,y)) = <a, s'(x,y) - To(y) + n(x) - Io(y)> ,

where Iy(y) is a function that is equal to 1 only when 7(y) = 0, and equal to 0
otherwise, and function Iy(y) is equal to 0 only when 7(y) = 0 and 1 otherwise.

[t’s quite easy to show that deg (Iy) = m because 7(y) is a permutation. At
the same time 1 < deg (m) < m — 1. In fact that Iy(y) depends only on y, and
m(x) depends only on x and if deg (m) = m — 1 then deg(s) = 2m — 1. This
property specifies the way of constructing functions with high algebraic degree.

3.3 Omne way to choose coordinate functions

As we described above the cryptographic properties of permutations £ and
G that are defined by the equations (1) and (2) respectively depend on crypto-
graphic properties of coordinate functions F; and Gj, i € 1,2. In this work we
decided to consider only coordinate functions with one punctured value.

The corollary 1 says that we should choose function §'(z,y) : V,, x V,,, — Vi,
and permutation m with highest possible nonlinearity. The section 3.2.3 says that
such a coordinate function will have a high algebraic degree. The proposition 3
says how to choose a couple of coordinate function for constructing permutation
to have smaller differential uniformity. Without loss of generality we suppose
that 7(0) = 0.
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In this work we will focus on the constructions that are similar to the well
known Maiorana-McFarland construction: s'(z,y) = ¥ (x)-¢(y), where ¢, ¢ are
the permutations over V,, and “-” is a multiplicative operator of the finite field
Fom. If either ¢ or ¢ is a linear permutation, then s’ is a bent-function.

4 Some examples of constructions and their crypto-
graphic properties

This section provide some ways to build permutations based on equations
(1) and (2). There is not a full list of possible constructions. We will lead the
following plan:

— study their cryptographic properties but focus on the differential uniformity
of the constructions;

— consider the monomial choice of some parameters to simplify the construc-
tion;

— find some parameters that provide a way to build permutation with rather
good cryptographic properties in some special cases;

— focus on the most interesting way m = 4.

4.1 Construction “0”

Let us consider the F-construction (see eq. (1)). Let’s choose the functions
F1 (Z1,72), F5(¥;,7s) on the following way:

7)) To, Ty # 0;
T ey

™ (fl), fz = O

A~

_ 72 (Y1) - Uy, Yo # 0;
E : =
2 (91 y2) {72 @1)’ Ty = 0.

Then according to the equation (1) 7, = F (T1,T2), To = F5 (71, 7y). As we
can see both F; and Fy are bent functions and could have rather high nonlin-
earity (with the proper choice of ;).
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Let’s find how to calculate ¥, using ¥y, Ty. First, we consider the case:
Ty # 0, 7 # 0, then

Ty =1 () o =m () m (T1) To=7 =7y <7T1 (Tl)_l) :

As we can see the value 7; does not depend on ¥3 and be a function of ;.
It means that such a construction certainly has far from optimal cryptographic
properties.

This example shows us that even the best choice (in terms of nonlinearity)
of coordinate functions Fj, i € 1,2 can make the whole construction have far
from good cryptographic properties.

4.2 Construction “A”

Let’s consider functions F (Z1,73), Fb (¥;,7,) in the following way (“AA”
construction in [15]):

= 200 20

1 (fl), fg == O

A~

7' (T1), Up = 0.

Let’s find the formula to calculate 7. First we consider the case 7, # 0:

1 /— —1 =
. Ty (Y1) Vg » Yo # 0;
F2 (y17y2) _ { 2 ( 1) 2 2

52:7@*1@1),@;1:}@,@22751@1):}@1:m(@,%)_

If y2 = 0 then @1 = %2 (Tg)
Now we can denote the permutation Sy : V,, x V;,, — Vi, x Vi, Sa (T1,T2) =
(71,75) by the following equations:

_ {m (T1) - To, Ty # 0;

1 (fl), fg = O

~

7= T2 (T2 Yz) s Yo # 0;
1= N
T (T2), Yo = 0.

We can correctly define the function y; = F{l(@, Us). According to the remark

128



4 and the fact that m (1) - Ty is a bent function:
21 — 2"V < Ny < Nyyzyym + Ly

Let’s consider the value 7, as a function of two variables &y, @s:

o ((332) m (@)) . Ty # 0,7 # 7 H(0);
7 — < o (To - 71 (T1)) Ty = 0,7 # 7, (0);
o (Ta) Ty # 0,7 = 7, 1(0);
| T2 (T2), Ty = 0,7 = 7, (0). 9
(75 ((T2) - ™ (fl)) . Ty # 0,7 # 7 H(0);
_ ] m(0), Ty = 0,71 # 7 ' (0);
7o (T2) , Ty # 0,7 = m  (0);
| 72 (0), Ty = 0,71 = 7, 1(0).

And the last cases means that 7, as a function of two variables F, ! (T, T») has
two punctured values. As we mentioned earlier more punctured values poten-
tially leads to lower nonlinearity. If 71 (0) # 71(0) then 7, is equal to a constant
(2 (0)) for 2™ —1 values T; # 7; *(0). That fact says that differential uniformity

is rather high:
5F{1 (0”&2,7’(’2(0)) = 2 — 2.

So later to simplicity we will consider that m;*(0) = 7;*(0) = 0 in that
case:

1. equation (9) has a simple representation:

{m (@) m@), =

Ty (T2) , T =

Yy =

2. using remark 4:
Nes(@rm@n) = b < Nipt < Noy(@pm @) T L

According to our suppositions we denote that 0 is a fixed point of the all
permutations m;, T, i € 1,2
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Definition 6. Let T1,To € V,,, then the permutation Sa = (§y,7Ys), where

7 - {; g) ) mes (10

S (11)
we will call “A”-type permutation.

Proposition 4. Let the permutation m from equation (10) is a linear permu-
tation. Then it has differential uniformity larger than 2™ — 2.

Proof. Let’s Ty # 0, Ty # ag. T1 # 0, Ty # a; in the equations (10), (11):

{m (T1+a1) - (T2 + a2) + ™1 (1) - T2 = o
9 ((fz + CL2)2 - T (fl + CL1)> + o (f% - T (fl)) = 61

Let’s consider the case a; = 0, ay # 0. We know that my is a permutation and
a9 # 0:

=

{m (T1) - (Ta 4+ a2) + m (T1) - T2 = So
e <(Eg + a2)2 - (E1)> + 9 (Eg T (fl)) = B
{Wl (T1) = B2 - ay
mo (73 + a3) - m1 (T0) + 73 - m (71)) = By
{771(?1)—62-%1 =>{7T1(Tl)_52'a21
m (a3m (T1)) = B T (a2 - B2) = B

The value 7; is not equal to two values: 1 # 0, ¥1 # a; that’s why the
differential uniformity is greater than 2™ — 2. ]

=

As in the case of “0”-construction if 79 is a linear permutation than
o ((52)2 L (El)) is a bent function and F, ' potentially has larger nonlin-
earity in comparison with the case when my is a nonlinear permutation. At the

same time if 79 is a linear permutation than the whole “A”-type permutation
has rather large differential uniformity:.
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There is still an open question how to choose 7;, 7;, i € 1, 2. Let’s consider a
monomial choice of permutations ;, i € 1,2 and focus on the most interesting
case m = 4.

We will study permutations x ~— % GCD (d,2™ —2) = 1 and following
the Fermat’s little theorem d < 2™ — 2. Equations (10), (11) has the following
representation:

’

7, = TY - Ty, T2 # 0
2=V~ —\ _
7T1(5131),$2=0.
. @-29), =20, (T3 7m0
1_ P — — - P R —
7o (T2), T1 = 0. 7o (To2), T1 = 0.

The proposition 4 says that permutation z” should not be a linear one. There
are only 8 d such as GCD (d, 20 —2) = 1: d € {1,2,4,7,8,11,13,14} and if
de {1,2,4,8} then 2¢ is a linear permutation.

Let'sae {1,2,4,7,8,11,13,14} and 5 € {7, 11,13, 14}. For any « the func-
tion Z{ - T is a bent function and f.

8< Lp, <8+ Lz =12,

because for any 7; it’s linearity is equal to or greater than 4. And similarly

for Fy;'. The considered function (Eg -ff‘)ﬁ is not a bent function and it’s

nonlinearity is equal to 16 and
12 < Ly < 20.

We've implemented such a construction to build a permutation S4 and
founded out that for av € {1,2,4,7,8,11,13,14} and g € {7,11,13,14} we can
find 7;, i € 1,2 such as the permutation S4 has:

— Ly =12,

~ Ly =20,

— Lg, = 20,

— dg, = 6,

— deg (S4) =T.
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We also experimentally founded out that 7; could be any nonlinear monomial
permutation.

We know that Ng, > max {NF17 NF2_1} so we've found permutations that
have the best nonlinearity among all that have N Ft = 20.

It must be noted that m;, 7;, ¢ € 1,2 may not be monomial permutations
and using a personal computer and proposition 3 permutations with the same
cryptographic properties could be easily found (an example can be found in

[15]).

4.3 Construction “B”

Let’s the functions Fy (T1,732), F5(7;,7s) from the equation (1) are equal
to:

)

F (f :C_): fl'ﬂl(fg), Wl(fg)#o;
P 7(@1), m (T) = 0.

A

Ty (1), ™2 (Fa) = 0.

According to equations above both F; and F, are bent functions.

— — \—1 —
T , T # 0;
Py (5, 75) — {y 2 (7)™ (7)

Definition 7. Let 71,72 € V,,, then the permutation Sp = (Yy,7,) that is
defined as follows

T m(Yy), m(Ya) #0;

ne {w @), m@) -0 .
_ ) Tom (7), m (T) # 0;

2T {%1 @), m (T>) = 0. (13)

we will call “B™-type permutation.

It’s easy to show that an inverse permutation for an “B”-type permutation
is a “B’-type permutation:

Ty = {yl T (72) " 2 (T2) # 0 (14)

751 (7)), T (Ps) = 0.
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_ {yQ-m(@)l,m(@)s&o; ; (15)

w1 (@), ™ (T2) = 0.
As earlier we will suppose that 7;(0) = 0, 7;(0) =0, i € 1, 2.

Proposition 5. Let H < S (V,,,) — be the group of linear permutations. Than
if tye H or my € 7 'H then §°% > 2™ — 2.

Proof. First, we consider the case my € H. Let aj,b1,bo € V,, and 75 # 0,
T1 # a1, T1 # 0. Let’s find the number of solutions of the following system:

{zl o (Te) + (Ty + 1) - (T2) = by
To * 9 (fl el (fg)) + X9 - o ((fl + CL1) - (fg)) = by

Using the fact that 7 is a linear permutation:

{fl'ﬂl (52)+(51+a1)-7r1 (fg)=b1 _

To * T (fl - T (fg)) + Xo - o ((fl + CL1) -1 (TQ)) = by

ay - 71 (T2) = by
= ——1
9 (bl) = bg * Ly
And if we set any value to Ty # 0 and if a; = by - 7 (fg)_l, o (b1) - b;l = f;l
than the system above is true for any 7, # a1, 71 # 0.
The case m € 271 H can be considering similar using equations (15), (14).
[]

Let’s m; and 7 be monomial permutations: m = x%, m = 2” where «, 5:
GCD (o, 2* —2) =1, GCD (8,2* — 2) = 1. Then

’

_ El ' Ega EQ # 07
Y=~ _ _
1 (331), i) = 0.

_— T (71-79)", T #0773, T A0
1= Y~ —\ — =V~ —\ -
Up) (:192), I = 0. 79 (:EQ), I = 0.
And we will focus on the most interesting case m = 4. According to the
proposition 5 a € {1,2,4,8}, g € {7,11,13, 14}.

Proposition 6. Let m = 4 and m = 2% m = 2’ where a,p:
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GCD(a,2*—2) = 1, GCD(B,2* —=2) = 1. Than if af + 1 # 14 then
b5, =2 — 2.

Proof. The value a5+ 1 could be equal to 0, 8, 12 or 14. We'll consider af+1 =
12 (if af+ 1 is equal to 0 or 8 the proof is similar to the proof of the proposition
5).

LetT; # 1,7; # 0,4 € 1, 2. Let’s find the number of solutions of the following
system:

=

Z1-25+ (T +1)- T2+ 1) =1
TR+ (@ + 1) (T + 1) =1
T =19
—~ Y -Ba —12 =f 5 = 12 =
Ty Ty + (Ty +1°) - (T + 1) =1
Ti+1=(T2+ 1)
Ty TR+ (T + 1) (T + 1) =1
T1+1=(T2+ 1) T1+1=(T2+ 1)
= =
T+ (T + 1) =1 1=1

=

It’s easy to show that if 1 is any possible value then 75 is not equal to 0 and 1.
]

The proposition 6 gives us only 4 possible constructions:

1. m(z) = x, m(z) = 23,

= 2%, my(z) = 2™,

11

We've implemented such a construction to build a permutation Sp and
founded out that for all possible constructions we can find 7;, ¢ € 1,2 such
as the permutation Sp has:

— Lg, = 20,
- 55,4 = 67
— deg (S4) =T.
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We also founded out that 7; could be any nonlinear monomial permutation.

It must be noted that by analogy with “A”-type permutation m;, 7;, i €
1,2 may not be monomial permutations and using a personal computer and
proposition 3 permutations with the same cryptographic properties could be
easily found.

4.4 Construction “G”

Let’s consider the construction that is defined by the equation (2). Let’s show
that using such a construction and propositions 1, 3 we can find a permutations
with rather good cryptographic properties.

Let G1 and G9 be defined as follows (originally proposed in [16]):

Gy (71.72) = 71 = m (Y1 (ZT1) - 91 (T2)), @1 (T2) # O;

P ! T (71), ¢1 (T2) = 0. (16)
Gy (70, 72) = = Ty (V2 (Z1) - @2 (T2)), w2 (T1) # 0;

PRI TR TS @), Vs (1) = 0.

where 7;, 7, ¢;, Vi, 1 € {1,2} are permutations.
Let’s consider the most simple case, when 7;, ¢;, ¥;, i € {1,2} are monomial
permutations:

0 B -
. _ :L.a * Loy, ) #* 07
G1(71,72) =7y { b

T (Z1), T2=0.

(17)

. T T, T #0;
Gy (T, To) =To =1 2

79 (SUQ) , I1 = 0.
[t’s easy to show that (17) is not always a permutation. The equation is defined
a permutation (17) then and only then when

has a solution for any ai, as € V,,.

Let’s consider the most interesting case m = 4. There are 8 sets of
(cr, B,7,0) but using equation (7) we can cut this list to 748 possible con-
structions.
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[t’s easy to show that set («, 3,7,0) is linear equivalent to the following
sets:

—(a - d (mod 2™ — 1), [ - d (mod 2™ — 1), v - d (mod 2™ — 1),
§-d (mod 2™ — 1)) for any d € {1,2,4,8};

- (Oé,ﬁ,’}/,é), (77570576)7 (/87057577)7 (57776705)'

And using linear equality we can enumerate the following 48 classes of permu-
tations:

a| Bl d|a|B| vy o]a] B y| oo B v 0
L1 7(an a4l 7l oo 71311l 71 7
1] 7luaf 14 7lal o4l 1141111
1113 rlaf1] 711 13] 7] 1][14]13]13
11131 1laflf 1114l 1]14a]14]14
tl2) 7] 7ffal7] 7] 2ff1]13] 7] 8l 7] 7] 7]11
L2 731l 7l 113 7l 7] 7] 7]14
vl ol 7fan] ol o314l 7] 7[11]13
1211 f1af 1) 7f1l3)1j13f1] 7| 7] 7/13]14
1213 717l & 1]13]13] 2 7[11] 7]13
1211313 1] 7]13lwal 1131311 7[11]11]14
1l2(1af1r1|7/14a] 4 1]13]1a] 1| 7]11]13] 7
tl2f1af1af 1| 7lal 7 1]3fal3]7[11l14al11

We've implemented such a construction to build a permutation and founded
out that for all possible constructions we can find 7;, ¢ € 1,2 the permutation
has:

— Lg, = 20,
- 55,4 = 67
— deg (S4) = 7.

We also founded out that 7; could be any nonlinear monomial permutation.

It must be noted that by analogy with “A”-type and “B”-type permutation
that m;, ¢;, 14, i € {1,2} may not be monomial permutations and using a
personal computer and proposition 3 permutations with the same cryptographic
properties could be easily found.
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As example, if m = 3 then if (17) is a permutation then the equation (7) has
too many solutions. But if we try to make a permutation GG using the equation
(16) we can build a permutation that has Ng = 10, é¢ = 4 and deg (G) = 5.

Conclusion

In this work we theoretically proved the cryptographic properties of the per-
mutations that was originally proposed in [15]. It became possible to construct
a new class of permutations using new results and theoretically proved their
cryptographic properties.
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Abstract

Let f be a transformation on a space P" over a finite field P, n > 1, and f is given by
the functions fy, ..., fn—1. We define the ternary matrix of nonlinearity Meg(f) = (m ),
0 <i<n,0<j <n,the element m;; is equal to 0, or 1, or 2, if f; depends on
x; fictitiously, or linearly, or nonlinearly. For any transformations f4), ..., f® on P",
t = 1, we prove the following inequality: Mg (fM) ... f0) < Mg(fM) ... - Me(f®).
So the right side is the estimation of nonlinearity characteristics for the transformation
fO.. .. f® The ternary matrix M is called (2)-primitive, if each element in M* equals
2, t € N, the smallest t is called (2)-exponent of matrix M ({2)exp M). The criterion
is proved: ternary matrix M is (2)-primitive if and only if M is primitive and contains
the element “2”, thereby, 0 < (2)exp M — exp M < n. We obtain the universal bound
(2yexp M < n? —n + 2, and bounds for (2)-primitive digraphs with circuit of length ,
and also with loops.

Keywords: (2)-primitive matrix (digraph), (2)-exponent of matrix (digraph), cryptographic
transformations, matrix of nonlinearity.

1 Introduction

Nonlinearity properties are necessary for the functions applied to protection
of the data in information security systems. Differently the confidential param-
eters of the system (for ex., the keys) can be opened by the adversary by means
of the quite simple decision of the system of linear equations.

Due to the wide usage of the composition of nonlinear functions in crypto-
graphic algorithms, the task of calculating or evaluating the characteristics of
the composition is relevant. Matrix-graph approach (MGA) is actively used for
the estimation of the essential variables sets for the composition of nonlinear
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transformations on the vector spaces. Mathematical basis of the MGA is made
by the criteria of primitivity and local primitivity of sets of 0,1-matrices (or
digraphs) and estimation of its exponents. The main results of this scientific
direction, the history of which dates back to 1912 with the formulation of the
problem by Frobenius, are presented in the review [1].

In this paper, the MGA is generalized and developed for estimation the
characteristics of nonlinearity for the composition of transformations on the n-
dimensional vector space. The proposed approach is based on the properties of
ternary matrices of size n x n over the multiplicative semigroup {0, 1,2}, and
the properties of corresponding n-vertex digraphs, which arcs are labelled by
the elements of the semigroup.

In this paper, we use the following notation:

N — the set of positive integers;
exp M (exp ') — exponent of the matrix M (of the digraph I');
(,7) — arc in digraph I'; which incident at the vertices i and 7;

lenw (len ¢) —length of the path w (of the circuit ¢) that equals to the number
of the arcs in w (in ¢);

wew' — concatenation of the paths w and w’, where the last vertex of the path
w coincides the first vertex of the path w’;

0<1t,j7 <nmeansthat 0 <7 <nand 0 <j <n;

<= —"if and only if*.

2 Multiplicative monoids of ternary matrices and corre-
sponding labelled digraphs

Let us consider a commutative semigroup G = {0, 1,2}, where 70 = 0
for any 7 € G, 70 = max{r,o} for any 7,0 # 0. A matrix of any size over
G is called the ternary matriz. We denote (2),, the matrix of size n x n, in
which each element equals 2. Call the ternary matrix singular if it contains
all-zero row or all-zero column. Define the multiplication for ternary matrices
A = (a;;) and B = (b;j): AB = C = (¢;j), where C is a matrix of size
nxn, ¢ j =max{a;1bij,...,a; b, }, and the multiplication is performed over
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the semigroup G for any admissible ¢, j. Hence, A(2), = (2),A = (2), for the
non-singular matrix A (the matrix without all-zero rows and all-zero columns).

Denote M, the monoid of all non-singular matrices of size n x n,n > 1
(the multiplication in M, is associative, the identity matrix is neutral by the
multiplication). Define a partial order over the set of ternary matrices: A <
B < a;; < b;; for any admissible pairs (7,7). Let A < B if A < B and
a;; < b;; for some admissible pair (7, j). Fort e N, A, A", B, B’ € M, it follows
from the rule of multiplication of ternary matrices that if A < B and A’ < B/,
then AA’ < BB’, hence A < B'.

For n > 1, 0 < 7,5 < n, there is the bijective correspondence between the
ternary matrix M = (m; ;) of size n x n and the labelled n-vertex digraph I,
which arc (4, j) is assigned by the label “m;;”. The label “0” is equivalent to
the absence of an arc in the digraph. The matrix M over the semigroup G is
called the matriz of labels of the digraph I' and denoted by M (I"). The non-
singular matrix corresponds to the digraph, in which each vertex has non-zero
in-degrees and non-zero out-degrees. We denote I';, the multiplicative monoid
of all labelled digraphs with the set of vertices {0, ...,n —1}. The digraph with
n isolated vertices with loops is the identity (neutral) element in I',.

In I' e T';, we denote (¢, m;j, j) the arc (7, 5) with the label m; ; € {0, 1, 2}.
The semigroup multiplication operation for the digraphs I' and I is defined as
follows: if there is the arc (¢,m;,,r) in I' and there is the arc (r, p4,;,j) in 1",
then there is the arc (¢, m;,p,j, j) in I, where the multiplication of the labels
is performed over G.

Due to the bijection I',, < M,,, the arc (i,m;;,j) in I corresponds to the
element m; ; in M, where m; ; is placed in the ¢th row and jth column. The
path (vg,...,v) of length ¢ from the vertex vy to the vertex v; is labelled by
the word (my, ..., m:), where my is the label of the arc (vs_1,vs),s =1,...,t.
The product m® = m; - ... m, (which is calculated in the semigroup G) is
called the value of label of the path (vg, ..., v;). So, any path in I' corresponds
uniquely to the value of the label equals to 1 or 2. The path in I' does not exist
<= the label of the path contains “0”, i.e. the value of the label equals to 0.

Theorem 1. LetI'e I',, M(I') = M = (m, ), t € N, then

M) = M = (mgtj)), where mgtj) — the greatest value of the labels of all paths
of length t from i to j.

Proof. Use the inductive proof. For any pair (¢, ) and ¢t = 1, the proposition is
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obvious, and mglj) = m; ;.

Suppose the proposition is true for k < t, where t > 2, and show that it is
true for k = t.

Denote E(j) the set of all vertices from which the arcs go to the vertex
j = 1,...,n. Without restricting the generality, let E(j) = {1,...,r} for any
fixed j, then m; ; = 0 as i > r. It follows from the equation M* = M'"'M that

(t) 1)

m, = max{m(t_ my m!Ym } =
i i1 Mgy e My "M iy =

t—1) (t-1)

(
= max{mi’l Mgy ..My, my.;}.

In accordance with the inductive hypothesis, mEtS_ Y ig equal to the greatest

value of the labels of all paths from ¢ to s of length ¢ — 1. This means that

the product mgtS_ b. ms; is equal to the greatest value of the labels of all paths

from 7 to j of length t(;))rovided that the vertex j is preceded by the vertex
t

s,s =1,...,r. Then m;; is the greatest value of the labels of all paths from 4

to j of length t. ]
Corollary 1. In T the arc (i,j) has the label with the value:
1. 07 < in I the vertex j is not reachable from the vertex i in t steps;

2. “17 < in T the label of any existing path from i to j of length t consists
of t units;

3. “27 <= in I the label of some path from v to j of length t contains the
symbol “2”.

3 Nonlinear properties of transformations on the vector
spaces

We denote {f;(zo,...,2n-1),j = 0,...,n — 1} the set of the coordi-
nate polynomials of the transformation f: P" — P" . Let us associate the
nonlinearity property with the characteristics of the coordinate functions. For
0 < i,7 < n, we construct the ternary matrix Me(f) = (m; ;) of size n x n,
where the element m; ; in Mg(f) equals 0, or 1, or 2 <= fj(zo,...,z,_1) de-
pends on x; fictitiously, or linearly, or nonlinearly . The corresponding labelled
digraph I'e(f) with the set of vertices {0,...,n — 1} is called the digraph of
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nonlinearity of the transformation f. The function f is called quite nonlinear if
Mo(f) = (2),. Note, that any function satisfying the strict avalanche criterion
is quite nonlinear [2, p.182.

For 0 < i,j < mn, s = 1,...,t, we denote ) the transformation on
P {f;s)(aro, ..., Tp_1)} and {f][s] (zg,...,7n_1)} — the sets of coordinate poly-

nomials of the transformations f® and fM) . ... . f&): Mg(f®)) = (mz(sj)),
Mo(fV ... f©0) = () Mo(f) ... Mo(f®) = (m()).

Theorem 2. For any transformations fO, ..., f® on P™, t > 1, the following
inequality is true

Mo(f ... f0) < Mo(fM) - ... Mo (f").

Proof. Use the inductive proof. For s = 1,...,t, 0 < 2,7 < n, in the given

sh < o]

notations, prove that fi; ; ii
For t = 1 the theorem is obvious. For ¢ = 2 by the rule of multiplication of

ternary matrices we get

[2]

]

1 2 1 2
) (2) (1) (2) }) (1>

— (
m — maX{mZ 0 : mo’j, . e ,mi’n_l ‘ mn_ld

)

and by the rule of multiplication of transformations we get
(o, amt) = PP @os o tact)s oo S (00 2ast)). (2)

Let fj@)(:z:o, ..., Zp_1) be a constant function, then due to (2) the function

f][z] (20, ...,2,_1) is a constant too. Hence, ,uZ[QJ] = 0, i.e. the theorem is correct.
Let fj@) (0, ...,2y—1) be a linear function, which essentially depends on
arguments, for example, on xy, ..., z,, where r < n, and for r < n — 1 does not

essentially depend on x,41,...,2,_1. Then it follows from (2) that

f}Q](xoa 1) = aofs (@0, 1) o o f D (@, Tat),  (3)

where ag, ..., a, — non-zero coefficients of the field P. On the condition,
m((f; == mf?]) =1 m?) == m51221,j = 0 for r <n — 1, and from the
equation (1) we get

m”l = max{m{y,...,m{")}. (4)
If the functions fél)(:vo, ey L)y ffl)(xo, ..., Ty_1) do not essentially de-
pend on z; (i.e., fictitiously depend on x;), then from the formula (3) it follows
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that f]p] (g, ..., Ty_1) does not essentially depend on z;. So, ,u[Q] = 0, and the

theorem is correct. If some of the functions ’

fo(l)(azo, e D)y f}gl)(xo, ..., Ty_1) essentially depend on z;, then there is

the linear or nonlinear dependence. Let for [ < r, the functions

fél)(xo, e T 1) s fl(l)(:zzo, ..., Zp_1) linearly depend on z;, and for | <r,

the functions fl(i)l(azo, e 1)y e f}(l)(xo, ..., Zy_1) nonlinearly depend on
(1) (1) (1) (1)

x;. Then for I <r,m;g=---= m;; =1, and m; . = =m;, =2 Hence,

for [ <r, m?j] = 2 due to (4), so the theorem is correct. For [ = r due to (4)
m?]] = 1, and due to (3) fjm (xo,...,x,—1) fictitiously or linearly depends on
x;. Therefore, MZ[QJ]

Let fj(Q)(xO, ..., Tp_1) be a nonlinear function, which essentially depends on
the arguments: for 0 < p < r < n, there is nonlinear dependence on z, ..., x,;
for p < r — linear dependence on x,1,...,x,; for r < n — 1 — fictitious de-
pendence on X1, ...,%, 1. Then for 0 < i,7 < n, and p < r, the formula (1)

transforms to

< 1, and the theorem is correct.

ml2 = maX{QmZ(-}O), comM ot m(l)}, (5)

1,7 1,p? " Pi,p+10 »
and for p = r, the formula (1) transforms to

m?]] = maX{ng’lo), e ,27'%(17?} (6)

At the same time, it follows from (2) that
fj[z](x()? ORI xn—l) = f](2)(f(§1)<x07 oo 7xn—1)7 cevy f?“(l)(x()a <. 7xn—1))' <7>

If the functions fél)(l‘o, U A D fr(l)(xo, ..., Ty_1) fictitiously depend
2 _ g

by

on z;, then due to (7) f]p](:vo, ..., Tp_1) fictitiously depends on ;. So, p
and the theorem is correct for t = 2.
Let some of fél)(:co, e T 1)y fﬁl)(:co, ..., Ty_1) essentially depend on

x;, i.e. there is linear or nonlinear dependence. If some of the functions

fo(l)(xg, e L), flgl)(ajo, ..., Ty_1) essentially depend on x; or for p < r
some of flgi)l(xo, ey 1)y f,n(l)(:vo, ..., Tp_1) nonlinearly depends on z;,
then it holds from (5) and (6) m?j] = 2, and the theorem is correct. If for p < r,
fél)(xo, ey Tp1), e flgl)(:co, ..., xy_1) fictitiously depend on x;, and some of
fjgi)l(:z;o, ey Tp1)y e j}gl)(xo, ..., Tp_1) linearly depends on z;, then due to
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(5) mz[zj] = 1. Moreover, it follows from (7) that fjm (g, ..., x,_1) fictitiously or
linearly depends on z;. Then uZ[QJ]

Thus, the theorem is correct for any two transformations on P". Sup-
pose, that the theorem is true for ¢t — 1, where ¢t > 2. Let we prove that
the theorem is true for ¢. Denote by h the product f1) . ... . f=1 Then
fO O = b fO and Me(fY - .- fO) = Me(h - f®). It is proved
above that Mg(h - f)) < Meg(h) - Me(f"). By the induction hypothesis,
Meo(h) < Me(fW) - ... Me(f* V). Hence,

< 1, and the theorem is correct for t = 2.

Mo(h - fY) < Me(fM) - ... Mo(f").

O
Corollary 2. If Mg(fM)-...- Me(f®) # (2),, fort =1, then
Mo (fM ... fO) = (2),.
From Corollary 1 and 2, we obtain that the transformation f0..... f® ig

not quite nonlinear, if the multigraph Te(fM) U --- U Tg(f®) is not strongly
connected.

4 Generalized primitivity of ternary matrices and corre-
sponding labelled digraphs

For t € N, the matrix M € M, is called the (2)-primitive if M* = (2),,.
The smallest ¢ with this property is called the (2)-exponent of the matrix M
and denoted by (2)exp M. For t € N, A, B € M, such that A < B, it holds
from A" < B!, that if A is (2)-primitive, then B is {(2)-primitive too, and
(2yexp A = (2)exp B; if B is not (2)-primitive, then A is not (2)-primitive
too.

Example. Consider the ternary matrix M =

— o O O
o O O =
o O = O
o = O O
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Calculate (2) exp M:

0010 1200 1 22 2
0001 0120 2 2 2 2
2 A 12 _
M” = 12OO’M 0012’”M 2 2 2 2|
0120 2201 2 222

M = (2)4. Hence, (2)yexp M = 13.

The labelled digraph T" is called the complete (2)-graph and denoted by
F,<12>, if the corresponding matrix of labels M (I") = (2),,. For t € N, the labelled
digraph T' € T, is called (2)-primitive if T'" = T{¥. The smallest ¢ with this
property we call the (2)-exponent of the labelled digraph T" and denote by
(2yexpI'. Since T',, is isomorphic to M, we see that the digraph I' is (2)-
primitive <= the matrix M (I") is (2)-primitive, and (2yexpI' = (2)exp M.
Hence, (2)exp I is equal to the smallest natural ¢, such that for any pair of
vertices (7,7) in I" there is the path of length ¢ with the label “2” from i to j.

Denote U(I") the digraph obtained from I' by removing the all labels. For
0 <1i,7 <n, w,;(l) denotes the path of length [ from the vertex i to the vertex

7 w?] — the shortest path from 7 to the nearest vertex £(7), that is the startpoint
of the arc (£(i), s(i)) with the label “2”; dl?l = max{len w([)z], ..., len UJEL}- The

vertices £(7) and s(i) are generally ambiguous.

Theorem 3 (The criterion of (2)-primitivity). The labelled digraph T € T, is
(2)-primitive <= I contains the arc with the label “2” and U(T") is primitive,
thereby expU(T) < (2expl <1+ d? + expU(D).

Proof. Necessity. Suppose, the labelled digraph I' is (2)-primitive. For t € N, T’
contains the path from ¢ to j of length ¢ with the value 2 of the label. Then, I"
contains the arc labelled “2” and for any 4, 7, U(I") contains the path of length
t from i to j. Hence, the digraph U(I") is primitive.

Sufficiency. Let U(I") be primitive, and t = exp U(I"). Then, for any i,j =
{0,...,n—1}, T"and U(T") contains the paths from i to j of length ¢, t +1,....
Let we construct the path w; ; from ¢ to j, such that:

wij = wi e (£(i), 5(1)) » wyy (1),

where I; = t + di?l — len w?] >t,i,j €{0,...,n—1}. The path wy; ;(;) exists
because t = exp U(T). Then lenw; ; = d? + 1 +¢ > t, hence, for any i,j in T
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there is the path from ¢ to j of length d?! + 1 + ¢ with the value 2 of the label.
Hence, (2)exp T’ < 1 + d? 4 t. The upper bound is proved.

Taking into account the definition of the primitive digraph, if 7 < exp U(T"),
then for some i,7 € {0,...,n — 1}, U(I") and I" have no path of length 7 from
t to 7. So, the lower bound is correct. ]

Corollary 3. If the labelled digraph T is (2)-primitive, then
(2yexpl <n+expU(T) <n?—n+2.

Proof. The left inequality follows from the Theorem 3, because dl?! <n —1 in
the (2)-primitive digraph. The right inequality is correct due to the universal

Wielandt bound |[3]. [
Theorem 4. 1. If (2)-primitive digraph T contains the circuit C of length

[ > 1, then
(expl <d +1+n+1(n-2). (8)

2. If the circuit C' of length | passes through the arc with the label “27, then
2expl' <n+1l(n—-1). (9)

Proof. 1. Suppose that the digraph I'! is (2)-primitive and contains at least
loops. Then, I'" contains the path w, ; of length no more than n — 1 from for
any vertex z with a loop to any vertex j. Hence, I' contains the path u, ; of
length I(n — 1) from any vertex z of circuit C' to any vertex j.

Denote v; , the shortest path in I' from ¢ to the nearest vertex z of the circuit
C. We see that lenv; , <n —1, soI' contains the path

Ui, = wZ[Q] o (£(i),5(i)) ® wy()., of length no more than d?) + 1 +n —;
u; » passes through the arc with the label “2”. Therefore, for any vertices ¢ and
J the path u; . e u. ; passes through the arc labelled “2” and has the length at
most d?! + 1+ n 4 I(n — 2). Hence, the bound (8) is correct.

2. Suppose that the circuit C' passes through the arc with the label “2”. Let
us attach the loop m(z) to the beginning of the path w,; in T'. We get that I"
contains the path 7(z) @ w, ; of length no more than n with the value 2 of the
label. Then, I' contains the path wu, ; of length no more than In labelled “2”.
Then, for any vertices ¢, j in I' there is a path v; .  u, ; of length n + {(n — 1)

from 7 to j with the label “2”. Hence, the bound (9) is correct. O
Corollary 4. If d?! > I, the bound (8) is greater than (9).
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Example. Suppose that the labelled digraph I' contains the Hamiltonian
circuit (0,...,n — 1) and the circuit (0,...,0 — 1), 3 < < n. If the label “2”
belongs to the only arc (n — 1,0), then d? = len w([)z] =n— 1> 1, and the
bound (8) is greater than the bound (9). If the label “2” belongs to the all arcs
(i,i+1), where i is odd and i < 2, then d2 = lenw!” | < 2 < I, and the bound
(8) is lower than the bound (9).

Denote 7¥(z) the loop in the vertex z passing k times, k > 0,0 < z < n.

Theorem 5. 1. If the (2)-primitive digraph T contains p > 0 loops, then

(2yexpl < d? + 2n — p.

2. If the (2)-primitive digraph T contains m > 0 loops with the label “2”, then
2yexpI' < 2n —m.

Proof. 1. Denote ws(;) . the shortest path of length 7 from s(i) to the near-
est vertex z with a loop; w.; — the shortest path of length 6 from z to
j. For p > 0 and 4,5 € {0,...,n — 1} construct the path w;; passing
through the arc with the label “2” and through the vertex z with a loop:
w;j = wz[Q] o (&(7),5(i)) ® wy(;y. @ T (2) @ w, j, where k > 0. Then 7 < n — p,
0 <n—1,and lenw;; < d? +2n —p+ k,p > 0. Since i, j are arbitrary, and
k>0, then (2)expI’ < d® +2n —p.

2. Denote by w; . the path of length no more than n —m from the vertex
i to the nearest vertex z with the loop and label “2”; w, ;— the path of length
no more than n — 1 from 2z to j (if z = j then the path w,; is empty). For
m > 0 and 7,j € {0,...,n—1} construct the path w; ; passing through the loop
with the label “2”: w; ; = w; , @ 7(2) e w, ;. If k > 0, then the path w;; passes
through the loop with the label “2”, and lenw; ; < 2n —m — 1 + k. Since 14, j
are arbitrary, and k > 0, than (2)exp I’ < 2n — m. O

5 Applications

The proposed approach is applied to the estimation of (2)-exponents of
the ternary matrices, which constructed for the round transformations of block
encryption algorithms DES and GOST 28147-89 (the Diploma thesis at the
Department of Cryptology and Cyber Security at National Research Nuclear
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University “MEPKI”, 2019). The obtained values coincided with the values of
the exponents of mixing matrices for the round transformations.
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Limonnitsa: Making Limonnik-3 Post-Quantum
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Abstract

We propose Limonnitsa, a quantum secure authenticated key exchange (AKE)
scheme which brings together the standardized Limonnik-3 AKE scheme and the super-
singular elliptic curves isogeny cryptographic framework. We discuss Limonnitsa’s basic
cryptographic properties and preliminary choice of its basic parameters that conforms
with another standardized cryptographic primitives.

Keywords: authenticated key exchange, isogenies, Limonnik-3, post-quantum cryptography,
supersingular elliptic curves.

1 Introduction

An emerging threat of quantum computers leads cryptographers to review
many of existing public key cryptographic systems. For example, cryptanalysis
of the schemes based upon the factorization problem, such as RSA and Rabin,
as well as discrete logarithm based schemes, including Diffie-Hellman-Merkle
and ElGamal, is reduced to a polynomial-time quantum algorithm.

Thus, although the prospectives of the construction of a powerful enough
(from a cryptanalyst’s point of view) quantum computer are unclear, many
researchers are concerned about creating “post-quantum” schemes which are to
withstood both “classical” (that is, based upon the Turing-style computations)
and “quantum” cryptanalysis. We mention the NIST proposal for the post-quan-
tum family of cryptosystems which has brought anomalous amount of research
into the post-quantum field.

In 2017, Russia officially accepted a family of AKE protocols designed by
the author as recommendations for standardization (that is, a candidate to
become a national standard). This family includes Echinacea-2, Echinacea-3
and Limonnik-3 protocols!.

L9zunaves (Echinacea purpurea) and Jlumonnux (Schizandra chinensis) are medicinal herbs extensively
used in Russian complementary medicine.
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Both the protocols are based upon the elliptic curve Diffie-Hellman scheme
and are thus quantum-insecure. The Echinacea-3 protocol is built from the ISO-
STS-MAC [9], using KEA+C [18] ideas. The Limonnik-3 protocol is built from
the MTI/AOQ protocol [19] with influences by [6] and [20].

Unlike Echinacea, Limonnik-3 does not require digital signatures, it may be
viewed as the outputs of two elliptic curve Diffie-Hellman processes, each one
mixing a static and an ephemeral key, hashed together to build a shared secret
key. Thus, we choose this scheme for post-quantum conversion, replacing the
Diffie-Hellman protocol by its post-quantum analogue.

Amongst the multiple post-quantum proposals, we have chosen SIDH, the
supersingular elliptic curves isogeny-based Diffie-Hellman key exchange protocol
[7] for the following reasons.

— Unlike most NIST competitors, the protocol allows for static keys (see,
however, [12, 17| for discussion of several attacks against static keys), which
are mandatory for an AKE scheme;

— the protocol, for a given security parameter, provides keys of moderate size;

— the protocol may be implemented quite efficiently with a well-studied mech-
anisms.

We proceed with a general description of the Limonnik-3 and basic ideas of
supersingular elliptic curves cryptography:.

2 Limonnik-3

We choose protocol parameters hsg, hsy as two fixed distinct non-empty
strings. The function 7 : F(GF(p)) — V* represents the point’s z-coordinate as
a binary string, KDF(. . . ) is a key derivation function, for example, the one speci-
fied by |2]. MACk (. .. ) is a message authentication code defined in [4], encg(. .. )
is the «Kuznyechik» encryption [3] using the key K.

An optionally used information connected to the session (timestamps, 1P
addressess, previously shared secret strings etc) which may be used during key
generation is denoted 0I. Concatenation of strings a, b is denoted by a || b.

A party A’s identity is denoted by I D 4. We suppose that the communicating
parties A and B are using two (possibly different) elliptic curves E4(GF(pa)
and Ep(GF(pp)) defined over corresponding prime fields GF(pa), GF (pp).
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A party’s curve has the following parameters important for the description:
—my = [Eal;
— P4 is a point of large prime order g4, qa|ma;
— ¢4 = ma/qa is the cofactor.

Static key pairs (s4,S54) and (sp,Sp) are defined as S4 = s4Pa, Sp =
spPpg, where 0 < s4 < g4, 0 < s < ¢, and certified by Cert 4, Certp.

Limonnik-3

A kaer[1,q5 —1]
A— B ID4,Cert, kaPp
B : kper|l,qa—1],Q = cakpSa, R = cpspkaPp

K || M = KDF(r(Q), 7(R), ID4 || 1D[]| 01])
tagp = MACM<h2, kpPa, ksPg,IDp, IDA)
B— A IDp,Certp, kpPa, tagp
A QZCASA]{BPA,RZCB]CASB
K || M = KDF(r(Q), 7(R), ID4 || 1D[]| 01])
If tagp # MACM(hQ, kpPa, ksPpg, IDp, IDA),
terminates the session with an error
tagy = MACM(hg, kaPp,kpPy,IDy, IDB)
A— B taga
B If taga # MACM(hg, kaPp,kpPa,IDy, IDB),
terminates the session with an error

We also assume that any party verifies validity of certificate received and
correctness of elliptic curve points, terminating the session with an error if an
invalid certificate or a “bad” point (i.e. not belonging to the given elliptic curve
or having a small order) is provided by another party.

If the scheme succcessfully completes, the parties A and B are mutu-
ally authenticated and provided with an implicitly verified shared secret key
K = Ky p = Kpa. Note that the key M is used only for the purposes of key
confirmation and must be destroyed after the session is established, see [14].

2.1 Isogenies and cryptography in brief

Consider an elliptic curve E(F) defined over a field F, char F # 2,3,
E,b(F):y* =2+ azx +b.
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Definition 1. Let E,;, E,, 5, — elliptic curves over K. A rational map E,y to
Eq p, — 15 a map

¢ = ¢(37»y) - (fl(mvy)7f2(xay))7

where fi(x,y), f2(x,y) € F(Euy), such that for any point (zo,yo) € Eup where
the functions are defined, implies that ( f1(xo,yo), f2(x0,y0)) € Eay b, (F).

Definition 2. A rational map defined in every point of E,4(F), is a morphism.

Definition 3. If v — is a morphism and (O) = Oy, then ¥ is an isogeny. If
such a map exists, the curves are isogenous.

Definition 4. For any 1sogeny Y B — E' there exists an unique dual isogeny
U E'— E such that ¢ o) = [m|g and ¢ o ) = [m] g, where m is the degree

of an isogeny .

Definition 5. Considering three elliptic curves E(F), E'(F), E"(F) and iso-
genies ¢, : ¢ : E — E' 1 : E' — E" we define composition of isogenies
b B B

We have that wAgb = @@@ and deg ¢ = deg 1) deg ¢.
Let now char F = p.

Definition 6. If E[p°] = {O} for anye = 1,2,..., the curve E is supersingu-
lar.

There are about |p/12] distinct supersingular curves defined over GF(p?),
see |[7] — that is quite enough for cryptographic applications.

2.2 Computation of isogenies

One can use Vélu's formulae [23] to compute isogenies ¢ with a given kernel
(i.e. a subgroup G < FE), ¢ : E — E' = E/G. Given curve coefficients a, b
for £/, and all of the z-coordinates x; of the subgroup G < E, Vélu’s formulae
output a’, b’ for E’, and the map

¢0: F—FE =FE/G,
fi(z,y) f2($>y)>.

91(z,y) ga(z,9y)

(z,y) — (
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The complexity of computation of isogeny of degree [ is O(l) field operations.
For isogenies of smooth degrees, however, the complexity may be lowered by
decomposing it into a composition of isogenies of small degrees.

We recall that isomorphic curves have the same j-invariant. Since construc-
tion of an isomorphism is a simple task, the isogeny problem is actually the
problem of finding isogenies between classes of isomorphic curves, every one of
which is represented by its j-invariant.

3 Supersingular Isogeny Diffie-Hellman

We proceed with the description of the Supesingular Isogeny Diffie-Hellman
scheme (SIDH), following [7].

We fix the public parameters: p = [l - f £1, where [ 4, [ are distinct small
prime numbers (e.g., l4 = 2 and lg = 3), (I4, f) = (I, f) = 1, a supersingular
elliptic curve Eo(GF(p?)) and bases {P4, @4} and {Pg,Qp}, which generate
correspondingly Ey[l'] and Ey[l5’], i.e. (Pa,Qa) = Eo[l'] and (Pp,Qp) =
Eo[l7].

The party A chooses two random elements ma,n4 €r Z/l'Z, not both
divisible by [ 4, and constructs an isogeny @4 : Ey — E4 with the kernel K4 :=
{[ma]Ps + [n4]Qa). The party A also computes the image {©a(Pg), va(Qp)}
and sends these points to the party B together with Ey.

Simultaneously, the party B chooses two random elements mpg,ng €p
Z/I13Z, not both divisible by lp, and constructs an isogeny ¢p : Ey — Ep
with the kernel Kp := {{mg|Pp + [np]@p). The party B also computes the
image {¢p(Pgp), vp(@p)} and sends these points to the party A.

Having received the party B’s set FEp,op(Pp),¢p(Qp), the party
A constructs an isogeny ¢y : Ep —  Eup with the kernel

{{malep(Pa) + [nalep(Q4)); the party B operates in a similar way.

The shared key may be computed as the j-invariant of the curve

Eap = pp(pa(En)) = ©u(es(Ey)) =
= Eo/{{ma]Pa + [na]Qa, [mp]Pp + [nB]QB) .
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We have a following commutative diagram:
E — E/P)
1 | 1)
E/{Q) — E/{P,Q)

where ©, 1) are random walks in the graphs of isogenies of degrees equal to
powers of [ 4, [g.

The protocol implements an analogue of the Diffie-Hellman scheme over this
commutative diagram, where the party A chooses ¢, and B chooses 1.

4 Putting things together: Limonnitsa

In this section we describe an AKE scheme that is derived from Limonnik-3
by merging into it the ideas of supersingular elliptic curves isogenies crypto.
The new protocol is named Limonnitsa®.

So, we fix two (possibly distinct) sets of the public parameters for the parties:

_ pA — 2611236(13 — 1’
~ En(GF(pY)) :y? = a* + .

— linearly independent points Pas, Q42 € F49[2%2] (that is, | {(Pa2, Qa2)| =
22¢a2) and linearly independent points Pa3, Qa3 € Eao[3%3] (that is,

| (Pa3, Qasz) | = 3%)

For the party B, we have:
— pp = 20238 — 1,
— Epo(GF(p%)) : y* = 2% + =,

— linearly independent points Ppo, Qp2 € Fpo[29?] (that is, | (Ppe, Qp2) | =
22¢2) and linearly independent points Pgs, Qp3z € FEpo[3°?] (that is,

| (Pgs, Qps) | = 3%)

Now, the party A selects its secret static key as an integer s4 such that 0 <
s4 < 2%2 constructs the isogeny @4 : Fqg — Fa/{Pas + [s4]Qa2), calculates

2 JTumonnuya (limonnitsa) stands for a brimstone butterfly (Gonepteryz rhamni) in Russian.
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Eao = Eao/{Pas+ [54]Qa2), Px = ©a(Pa3), Qa = pa(Qas3), sets its static
public key to {E4, P4, @4}, and acquires a certificate Cert 4.

B selects its static key as an integer (sp such that 0 < sp < 2%2
constructs the isogeny pp : Ep — Ep/{Pps+ [sp]|@p2), calculates Ep =
Epo/{Pp2 + [s8]@B2), P = vp(Pp3), @p = ¢p(@p3), sets is static public
key as {Ep, Pp,@p}, and acquires a certificate Certp as well.

We shall use SIKE [15] modification to the original scheme and generate
kernels of the isogenies for public key calculation in the form (P + [k]Q), that
is, we generate a single random value. As shown by Galbraith [11, 12|, the
corresponding computational problems are equivalent.

Limonnitsa

A ka€r[1,3%],Sap = Pps + [ka]@ps,
vap : Ep — Ep/{Sap) — an isogeny with the kernel {(Ssp)
Eap = Epo/{Sap) (that is, Eap = pap(Epo))
Ka={FY,0a5(Pp2),pap(@p2)} — A’s ephemeral public key
A— B IDA,CertA,ICA
B : kg €r [1,3°%],Spa = Pas + [k]Qas,
vpa: Ea — Ej/{Spay — an isogeny with the kernel {(Spa)
Epa = Exo/{(Spa) (that is, Eps = ppa(Ea0))
Kg ={E%, ppa(Pa2), ppa(Qa2)} — B’s session public key
Tup = Ps+ [kB]Qa
Thp = ¢ap(Pp2) + [sBloan(@p2)
Yap : By — E'/{Tap) — an isogeny with the kernel (T4p)
Vg Eg — Ep/{T)z) — an isogeny with the kernel (T 5>
Eap = ¥ap(E)Y); Eyp = Yap(Ep)
K || M = KDF((Eap) || j(Flp) || T4 || 05[] 0T])
tagB = MACM(hQ, ’CB, ’CA, IDB, IDA)
B—- A IDB,CertB,ICB,tagB
A Tpa = ¢a(Pa2) + [5a]lppa(Qa2)
Tpa = Pp+ [kal@p
Wi By — E/{(Tpay — an isogeny with the kernel (Tpa)
pa: Ex — Ea/{T},) — an isogeny with the kernel (T ,)
Epy = Vpa(ER); Epa = Vyp(Ea)
K || M =KDF(j(Ep4) || 1(Epa) || ID4 || IDg[]| OI])
If tagB # MACM(hQ, ICB, ICA, IDB7 IDA>,
terminates the session with an error
tagA = MACM(hg, ’CA, }CB, IDA, IDB)
A— B taga
B If taga #MACM(hg,K:A,]CB,IDA,IDB),
terminates the session with an error

Our protocol reminds Galbraith’s variant of the NAXOS protocol from [10];
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however, in our setting (provided that the parties’ parameters may differ) the
ephemeral-to-ephemeral shared key which is employed in NAXOS key genera-
tion cannot be produced.

The protocol is a combination of static-to-ephemeral sessions, and thus may
be subject to an attack against static keys by [17]. In order to thwart the attack,
a party must ensure that the public keys it receives are valid, i.e. elliptic curves
are built as prescribed by the protocols, the generators are chosen at random and
are of prescribed order and linearly independent. Several validation techniques
are described in [12]. The paper [22] states that the key validation problem may
be equivalent to the CSSI problem (see below); thus, we would rather use the
following variant of a trick from [16].

Instead of choosing random ephemeral secret key k4, the party A chooses a
single random seed 74 € V* and uses a pseudo-random function prf to output
ks = prf(ra). Then, taga is calculated as

taga = encyr(ho, 74, Ka, Kp,ID4, IDp).

The party B, having calculated the session key, recovers the seed r4 and repeats
A’s computations in order to verify that the keys were constructed as prescribed,
otherwise, terminates the session. The parties B and A proceed vice versa.
Note that in this setting a party’s ephemeral secret key is uncovered to
another party, thus, it becomes the party’s responsibility to generate unique
value each time. Now many practical issues arise (for example, storing and
searching through a database of any previously generated values in a secure
manner may be too expensive). We propose to use a secure PRNG instead.

5 Analysis

The security of the protocol relies on the hardness of the following problem.

Problem 1. Computational Supersingular Isogeny — CSSI: let ¢y : Ey — E1 —
an isogeny with the kernel [mi]Ry + [n1]S1, where my, ny are chosen uniformly
at random from the interval [1,17"], and are not both divisible by l. Given E;

and images ¢1(Rz), $1(S2), find the generator of {{m1|Ry + [n1]51).

Note that we choose the j-invariants of the elliptic curves resulting from two
SIDH processes with different parameters and hash them together with a KDF
function to obtain a shared secret value. Then, a very naive deduction implies
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that an adversary has to solve two distinct instances of CSSI, which should be
twice as hard.

It is believed that the best classical algorithm to attack the problem has the
complexity is O(v/1%), where 1% = min(I¢', I5?), while the claw-finding quantum
algorithm [21] has the complexity O(~/1¢). Recent research [5, 16| show that
the actual quantum complexity of breaking the isogeny problem is estimated by
O(y/p) operations, but we choose to be a little on a safe side. We discuss the
choice of parameters in the following sections.

Note that the protocol inherits implicit key confirmation, KCI- and UKS-
immunity from Limonnik-3 [14]. The protocol provides forward security against
A,B (but not A AND B, since if long-term keys of the both parties are compro-
mised, all the sessions involving them both are compromised, too; this property
arises from the basic structure of the MTI/AO protocol [19].

6 Security arguments

Consider the following computational problem |7, 22].

Problem 2. Computational isogeny Diffie-Hellman, SSCDH: let ¢4 : Ey — E4
— an isogeny with kernel (Pa + [na]|Qa4), and vp : Ey — Ep — an isogeny with
kernel (Pp + [np]@p), where na is chosen uniformly randomly from Z/I'Z
and np is chosen uniformly randomly from Z/I57Z. Given E4, Ep and the

images ©A(Pg), vA(QB), ¢(Pa), v5(Q4), find the j-invariant of the curve
Eo/(Pa+ [na]lQa, P + [np]Q@B)-

The decisional version of the problem may be stated as follows.

Problem 3. Decisional isogeny Diffie-Hellman, SSDDH: Given a tuple sampled
with probability 1/2 from one of the following two distributions

- (EA7 E37 @A(PB% @A(QB)? QDB(PA)y SOB(QA), EAB), where
(EA7 EBa QOA(PB)v @A(QB)v QOB(PA)v SOB(Q/O —as b6f07"6,

Eip ~ E0/<PA + QA, [m]PB + [n]QB>,

— (B4, Ep,0a(Pr), pa(@B), ¢8(Pa), p5(Qa4), Ec), where
(Ea, Ep,0a(Pp), 0A(QB), vB(Pa), pp(Qa) — as before, and

Eo =~ E0/<PA + [n’]QA, Pp + [n’]QB>
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where m',n’ are chosen at random from from Z/IJZ);
determine from which distribution the tuple is sampled.

We cannot state an analogue of the Diffie-Hellman problem (GDHP) for
the supersingular isogeny case, since decisional problems here are equivalent to
computational. Thus, security arguments for Limonnik-3, proven secure under
the GDHP hardness assumption, cannot be directly transformed for Limonnitsa.
However, as pointed out by Galbraith, we may consider a weaker adversary
model.

We state now a weaker version of the security definition adapted from [6].
We allow an adversary M to perform any of the following queries.

— Initiate a session between any chosen parties.

— Send messages from a party to another, which is followed by a correct
(prescribed by the protocol) response.

— Fxecute a correct session between any chosen parties.

— Corrupt a party (that is, to learn any secret keys, as well as all generated
shared keys and any local state information).

Note that M cannot perform any Reveal queries.

Define as A(n) the set of all Limonnitsa public parameters for a chosen
security parameter n: that is, all primes of an appropriate form with bit-lentgh n,
all possible supersingular elliptic curves defined over the corresponding primes.

Definition 7. A key agreement protocol is said to be weak-AKE-secure if the
following conditions hold:

1. If two honest parties complete matching sessions then, except with negligi-
ble probability, they both compute the same session key.

2. No polynomially bounded adversary M defined above can distinguish the
session key of a fresh session from a randomly chosen session key with
probability greater than 1/2 plus a negligible fraction.

Then the following theorem holds.

Theorem 1. Let the SSDDH problem for A be computationally hard. Let KDF be
modelled by a pseudorandom function, let MAC be secure against forgery attack.
Then Limonnitsa is secure in the sense of Definition 7.
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Proof. The proof repeats the analogous result for Limonnik-3 [14] in a weaker
security model. ]

7 Choice of parameters

Consider primes of the form py = 2%23% — 1. In order to keep up the classic
and quantum (see [8]) complexity with the standardized block cipher Kuznyechik
[3], which has 128-bit block size and 256-bit keys, we choose the parameter p as
the smallest prime of the form p4 = 2°3% — 1 such that log, p/6 > 128 and the
factors 2,3 are balanced: e ~ e3/log, 3. Thus we obtain the Limonnitsa-prime
py = 28132 1: log, py ~ 902.

Note that SIKE NIST proposal [15], following NIST requirements and esti-
mations of the quantum security of AES, provides a 964-bit prime for the same
classical security level. Limonnitsa allows for distinct parameters of the parties;
this means that, for example, a party with a SIKE public parameters may run
a Limonnitsa session with a Limonnitsa-prime-based party. The only practical
problem here may be mutual public parameter verification.

Elliptic curve operations may be implemented by various techniques; for
example, Montgomery or Edwards forms of an elliptic curve may be used.

The protocol execution takes (almost) exactly twice the complexity of exe-
cuting a SIDH protocol with analogous choice of parameters. Its feasibility for
embedded systems may be a subject of discussion as well as that of SIDH /SIKE.

8 Conclusion

We have proposed a post-quantum variant of the officially adopted key ex-
change protocol. We have studied its basic cryptographic properties. We have
shown that the protocol is both classical and quantum-secure and conforms to
the cryptographic requirements.

However, implementation and efficiency issues of Limonnitsa, including pa-
rameters optimization for specific processors, as well as side-channel attack pro-
tection, are yet to investigate.
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Abstract

We study the possibility of applying related key attacks on cryptographic devices
which use quantum key distribution (QKD), in case on compromise of «quantums» part.
We consider the simplest way of XORing quantum key and long-term key.

We review several known attacks on QKD systems in order to assess the probability
of recovery of a quantum key by an attacker, which turns out to be close to 1 in many
cases. This leads to increase of success probability when applying related key attack.

As a result we propose the usage of key derivation functions for key update.

Keywords: QKD, quantum key distribution, related key attack, Magma, Kuznyechik, attacks on
QKD systems, block cipher, key derivation.

1 Introduction

Traditionally, it is desirable to obtain information-theoretic security proof
for quantum key distribution protocols, which implies an assessment of the
statistical distance between the uniform distribution and the distribution of key
bits. The following three types of attacks are generally considered (in the order
of increase of the eavesdropper capabilities):

— Individual attacks in which the eavesdropper makes independent measure-
ments of photon states transmitted between legitimate users.

— Collective attacks in which it is assumed that the eavesdropper has quan-
tum memory and has the ability to store measurement results for further
processing.

— Coherent attacks in which the eavesdropper is assumed to have the broadest
range of capabilities, including adaptive attacks (depending on the results
of previous measurements).
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Under this approach, encryption using the obtained keys should also be secure
from the information-theoretical point of view. From a practical point of view,
this leads to the need to use the Vernam cipher, which, however, does not allow
to achieve an acceptable speed of information processing, since it is limited by
the speed of key generation by quantum cryptographic key distribution systems
(QKD systems).

As a compromise variant in the majority of existing systems, the use of QKD
often consists in their integration into the existing cryptographic devices. In this
case, the encryption key of the cryptographic device is periodically updated with
the use of the key generated by the QKD system.

If the above mentioned Vernam cipher is used for updating the cryptographic
device key (bitwise addition of the quantum key with the cryptographic device
key), it is also possible to achieve in some cases information theoretic security in
case of compromising the cryptographic device key or the quantum key. In each
of these two cases, the compromised (known) key is encrypted using another key,
which prevents the attacker from identifying the key used directly for encrypting
the information.

Taking into account that up to now the assessment of practical security of
the QKD systems remains questionable (first of all, regarding the attacks on
the technical implementation of the quantum protocols), it is assumed that in
case of compromising quantum keys, the mentioned approach will allow to keep
the security of the information transmitted with the use of the cryptographic
devices at the «initial» level.

At the same time, for some existing encryption algorithms the proposed ap-
proach can lead to the possibility of implementation of related keys attacks.
In this regard, it is important to study the possibility of using such a method
for Russian standardized encryption algorithms in case of successful implemen-
tation of an attack on the quantum component. We study the possibility of
application of related key attacks on block ciphers, including those defined by
the standard GOST R 34.12-2015, as well as assess their effectiveness depend-
ing on the parameters of attacks on the technical implementation of the QKD
systems. We will consider attacks on modules implementing the most widely
studied quantum BB84 and CV protocols.
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2 Related key attacks on block ciphers

One of the known principles of cryptographic analysis is the so-called «Ker-
ckhoffs’s Law», which can be formulated as follows: «The cryptosystem should
provide security even in a case when all information except a key (keys) is
known to the attackers. Here, the expression «all information except for a key»
means not only that the attacker does not know value of a key, but also that
the attacker does not possess any indirect information on a key. More strictly
the Kerckhoffs’s law can be formulated in the form of an assumption that the
encryption key is a realization of a uniformly distributed random variable. In
practical means of cryptographic information protection the volume of the pro-
cessed data with one key is often essentially limited for a number of reasons,
thus for processing of big volumes of data periodic change of encryption keys is
made. Hence the attacker has a set of ciphertexts encrypted with various keys,
and the number of these keys can be rather large. In this case, we are dealing
with a multikey attack model, and the Kerchhoft’s principle can be reformulated
as follows: the encryption keys are realizations of independent and uniformly
distributed random variables on the key set.

A related key attack on encryption algorithms was proposed in [2]. In the
related attack it is assumed that the attacker works in a multikey model, i.e.
has data encrypted with different keys. At the same time, the values of the
keys themselves are unknown to the attacker, but the attacker has information
about some dependencies between these keys. Let’s assume that the encryption
is performed on the set of keys

(Kl, cee Km)7Ki € Vk,

where V}, is the key set. Let’s call mapping R : V;™ — {0, 1} as m-arity predicate,
which is associated with a satisfiability set of this predicate

In general, the related key model assumes that the attacker has the infor-
mation that the predicate for the set of keys (Ki,..., K,,) is satisfied, i.e.
R(Kj,...,K;) = 1. And the predicate itself and the satisfiability set is chosen
by the attacker or is known to him. A special case is the so-called functional
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predicates:

17 KZ = fZ(K1)7 1= 27ma

R(Kh ceey Km) - { O’ otherwise,

where f; : Vi — V} is a set of predefined or known functions, i.e. when the
functional relations between the analyzed encryption keys is known (or chosen).
In turn, a particular case of a functional relation between keys is the differential
relation, which is often used in related keys differential attacks. In this case, it
is assumed that
filz) = v @ A,

where @ is a bitwise XOR in Vi. The values A; are set by the attacker (or
known to him).

Suppose that the encryption system uses a hybrid scheme for obtaining en-
cryption keys K by adding a long-term key K* with the keys K ZQ distributed
via QKD system, i.e. K = K*® KZQ Then, if the QKD system has been
compromised, the keys KZ-Q are known to the attacker. In this case, the en-
cryption keys KX are not known to the attacker because the long-term key is
unknown. However, the attacker has information about the differences between
the encryption keys:

Kf—K*@K¢ = Kjf@Kf@Kf = KT @0y,
where all
0ij = K @ K

are known to the attacker. So we fall into the situation of a differential func-
tional relation between the keys described above, which can lead to a significant
reduction in the security of encryption algorithms.

3 Related key attacks for Magma

Related key attacks on GOST 28147-89 (Magma) was considered in [4,5]. In
[4] the method of determining the key using the enhancement of the differential
attack - the «<boomerang» attack with related keys - was proposed.

The «boomerangs attack uses four plaintext/ciphertext pairs, where each
of the ciphertexts is obtained by encryption on its own key. The basic attack of
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[4] uses four encryption keys with the following relation
K, Ko =K1 ®A, K3 =K ®A, Ky = K1 @A D Ao

The attack recovers 31 bits of the first round key with time complexity of about
212 encryptions and the same number of adaptive chosen plaintexts. The paper
also suggests generalizations of the basic attack which recovers 192 bits of the
key (6 round keys out of 8), while the remaining 64 bits are proposed to be
determined by a brute force search. In this case, the attack complexity is about
271 encryptions, and the data complexity is 2?® pairs of chosen plaintexts. A
generalized attack requires a set of 14 related keys.

In [5] a combination of differential attack and boomerang method is pro-
posed. The «boomerang» attack described in [4] is used to recover the first two
round keys. For further recovery of round keys it is proposed to use the differen-
tial attack with related keys. The attack requires 12 related keys to be mounted.
In the worst case scenario, the complexity of the attack is 2% encryptions, and
the data complexity does not exceed 2*3 chosen text pairs.

4 Related key attacks for Kuznyechik

The analysis carried out in |7, 8| did not reveal any related key attacks for
the full round Kuznyechik cipher, primarily due to its complex key schedule.
Hence it is now believed that the related key attacks are not applicable to this
algorithm.

5 Required related keys number and attack probability

In many cases, the application of related key attacks assumes that the re-
lation between the keys used is set by the attacker. However, in the situation
described above when compromising the QKD system, the relation between the
keys is known to the attacker, but is not set by him. The value of

0ij = K @ K

is the sum of the two keys generated from the QKD system, which are gener-
ated by a random bit generator. Thus, the values in general can be considered
uniformly and independently distributed.
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Then, when mounting a related key attack, the following problem arises.
Suppose that we need to use m related keys (K7, ..., K,,) to perform the attack.
The relation is defined by the differential functional predicate, i.e.

Ki=K ®A; i=2,m,

where the values A; are fixed. We need to estimate the number of encryption
keys M: K ]H , 7 =1, M such that among them there is a subset with the neces-
sary relation on the keys: R(K f oo K J]i ) = 1 with the required probability.

Let’s consider the simplest case, when an attack requires two keys: K7 and
Ky = K1 @ A. The whole key set is divided into a set of key pairs with the
difference A. Now the key set can be divided into two disjoint classes, such
that if one of the keys of the pair lies in the first class, the other one lies in
the second one. At the same time, the number of encryption keys K JH in each
class will be the same on average due to the uniform distribution of encryption
keys and equal cardinality of classes. Then the estimation of the probability of
finding a key pair K7 and Ky = K1 @ A among K JH is essentially the problem
of estimating the probability of a collision in two samples.

It is known from the generalized «birthday paradox» that the probability
of collision in two subsets of N elements, where the subset sizes are equal to

71V N and vV N can be estimated as
1 —e 7172

when N — co. Then, assuming
M
TIVN ~ VN ~ oR

we get that the probability of guessing the key pair K JH , satisfying the required

relation is
M2

PQ =1- €_W,
where N = 2% is the cardinality the key set.

Consider the situation that arises when using the «boomerang» attack with
related keys. In this case, four related keys are used:

Ki, Ko =K @A), K=K @Ay, and K4y = Ki ® A1 @ As.
As before, the key set can be divided into 4 disjoint classes of equal size, and
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the estimate of the probability of finding the four related keys can be obtained
through the estimate of the probability of 4-multicollision. In [3] Wagner pro-
posed an efficient algorithm for solving the problem, which gives us the corre-
spondence between the desired probability and the amount of data need. As a
result this allows us to correlate the number of related keys available to the at-
tacker with the probability that there exists a subset with the required property;,
and hence, to evaluate the success rate of the attack.

In classical assumptions, when keys are assumed to be uniformly and in-
dependently distributed, the attacker acts under the assumption that the keys
are related. Therefore, the probability of the attack includes a factor that cor-
responds to the probability of this assumption being fulfilled which is equal

to
2—k‘(7“—1)

when using r keys. This factor makes the overall success rate of the attack
almost zero.

In the case of a compromised QKD system, when the differences between
the keys are known and uniformly distributed, and when the attack applicable
to one particular relation predicate is known (as in the above attacks for the
Magma cipher), the number of encryption keys required for the attack is quite
large: to achieve success rate close to 1 for an attack with two related keys the

attacker needs about
VN = /[Vi| = 2"
encryption keys. For an attack with four related keys:
(Vi) =2'%.

Hence if the attacker has a small number of encryption keys, the probability
estimates will be almost the same as in the classical assumptions.

6 Practical attacks on quantum key distribution systems

In this section we will briefly review some known practical attacks exploit-
ing implementation weaknesses of optical modules of QKD systems. We focus
mostly on systems implementing widely studied BB84 and CV QKD systems.
Our goal is to to assess the a posterior probability of the quantum key bits, or,
in other words, the probability with which the eavesdropper knows the quantum
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key, after the attack. It should be noted that in order to provide information-
theoretic security of the quantum key privacy amplification techniques should be
performed after error correction. This is usually done by means of 2-universal
hash functions family [14]. That means, that quantum key, which is possibly
eavesdropped, is loaded into the cryptographic device after some functional
transformation. Since the procedures of error correction and privacy amplifica-
tion of the key is determined, it is enough to estimate such probability P for
the raw (before error correction) key.

6.1 Photon-number splitting attack

One of the main problems for QKD systems is to implement a single-photon
source in practice. In majority of implementations a weak coherent pulses are
used, which means that source emits multi-photon pulses with non-zero prob-
ability. In this case, Eva has the ability to split the photon beam in order to
intercept one of the photons without affecting other and store it in quantum
memory. After legitimate users announce their bases, Eva has the ability to
measure the stored photon and get the encoding.

In [15] a thorough study is performed. The probability for eavesdropper to
get a correct key depends on the transmission efficiency of a quantum channel
1, mean photon number p and proportion of the pulses containing one photon
k. The probability of correct key guessing for Eve as a function of disturbance
D which is introduced for the information channel between the legitimate users
is described as:

P(D) = l—e 1+p)+(1—k)ue1/2++/D(1—D)]

1 —e (1 + pur)

The probability depending on the parameters could be up to 1, which means
that the eavesdropper knows the whole key.

6.2 Detector laser damage

In [16] an attack based on high voltage laser damage of photodetectors is
proposed. In the worst case the attacker by destroying detectors is able to get
the full control over the process of quntum key generation. That means the
probability P could be equal to 1 in this attack.
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6.3 Trojan horse attack

In this type of attack, the eavesdropper irradiates the laser of the encoding
module and receives information about the coding of the photon by analyzing
the reflected signal. In [1] the practical application of the attack for two QKD
systems is shown. The research suggests that it is possible to correctly determine
the key bit with a probability of P > 0.99.

6.4 Bright illumination attack

This type of attack can be used against avalanche photo detectors [13].
During the attack, the photo detector is irradiated by a powerful beam of light,
which leads to the transition of the detector from geiger mode to linear mode. As
a result, an eavesdropper can carry out a meet-in-the-middles attack by measur-
ing the photons sent by initiator and inducing, according to the measurement,
the response of the corresponding photodetector on the receiver side. As a re-

sult, an eavesdropper receives full information about the key being transmitted
P=1.

6.5 Time shift attack

In order to minimize the effect of dark readings in a number of systems an
activation of photon detectors on the signals of synchronization is implemented.
The possibility of an attack arises from the fact that the detection efficiency
profiles of photon detectors are not the same. In this case, an eavesdropper
can measure photons, and then change the synchronization signal to activate
the receiver’s photo detector according to his measurements in order to con-
trol detection efficiency according to her measurements. In the worst case, an
eavesdropper can get all the information about the key [10].

6.6 Wavelength attack

Many of QKD systems implement beam splitter on the receiver side. The im-
perfectness of the beam splitter’s wavelength dependent optical property could
be exploited by the eavesdropper. The study [17] suggests that the eavesdropper
after measuring the photon resend it to the receiver at the wavelength depending
on the measured state and the account optical properties of the beam splitter.
In the worst case the eavesdropper could get all the information about the key.
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7 On the possibility of related key attack and counter-
measures

The review, presented in the previous clause, suggests that many of prac-
tically possible attacks on QKD make it possible for the eavesdropper to have
the full knowledge of quantum key. At the same time the main problem with
the implementation of related key attack from the attacker viewpoint is the
impossibility of imposing desired keys to legitimate subscribers. Even when the
eavesdropper is able to get full control over optical parts of the legitimate users,
the process of encoding photons on sender side is beyond his control. As a result,
after the application of the key correction and privacy amplification procedures,
the eavesdropper will not be able to impose the keys with the specified ratios.
As a result, even if the raw key is compromised, the eavesdropper will be able
to expect the related keys to appear only with the specified probability.

At the same time, taking into account the fact that in the conditions under
consideration the eavesdropper is able to detect the fact of appearance of related
keys, which increases the reliability of the attack, and, in general, reduces the
security of the cryptographic device, it seems reasonable to use methods key
derivation that exclude the possibility of considered attacks.

The most effective countermeasure in this case is the use of the key derivation
functions, for example, defined by the recommendation for standardisation |6,
18]. The key derivation functions kdf(S,T, L, P...) described in [6] consist
of two stages. At the first stage, an intermediate key K1) = kdf((T,S) is
produced, which is obtained by hashing of the original secret key S using «salt».
T - the vector which is supposed to be uniformly distributed on some set and, in
general, is considered known to the attacker. At the second stage, the derivative
keys K = kdf® (KW, L, P, ...) are generated from the intermediate key using
the cryptographic transformations, where L is the length of the key sequence
produced, and P - additional information.

In order to provide the security of cryptographic device in case of the QKD
system compromise, it is proposed to use the key derivation function, where the
keys obtained as a result of the quantum protocol are used as salt K ZQ and the
long-term key of a cryptographic device K* is used as the secret key.

As a result of this approach, even in the case of compromising the quantum
keys K ZQ , the security proofs of [9] about the computational indistinguishability
of the keys produced by K = k:df(K*,KZ-Q,L,P...) from the sequence of
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independent, equal-probable random variables remain valid.

8

Conclusion

We studied the possibility of applying related key attacks to hybrid cryp-

tographic devices which uses QKD for updating the long-term key in case of

quantum channel compromise.

For the key update method, which consists in bitwise XOR of quantum and

long-term key, it is shown the increase of success probability of the related key

attack in comparison with the classical conditions.

A variant of the key update method based on standardised key derivation

functions, which excludes the possibility of application of the considered attacks,
is proposed.
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Abstract

The work is devoted to the study of ways to implement S-boxes in the form of
quantum circuits with a minimum number of logical qubits and logical quantum gates,
without using ancilla qubits. New quantum circuits that implement the S-boxes of the
GOST R 34.12-2015 "Magma” on 4 logical qubits have obtained. We have concluded that
for substitutions s € S(V},) with a large number of cycles there are quantum circuits on
n logical qubits that implement the substitution s with fewer logical quantum gates,
compared with substitutions g € S(V},) with a small number of cycles.

Keywords: S-box, quantum circuit, resource estimates.

1 Introduction

The theory of quantum computing has been developing since the end of the
20t century. A number of formal quantum computing models are constructed
in which some computational problems, for example, [1, 2, 3|, are solved more
efficiently than in the classical computational model [4]. Actual information
about the current level of quantum technologies development in the field of
quantum computing is presented in [5, 6].

In [7] we consider a method for implementing S-boxes GOST R 34.12-2015
and AES in the form of quantum circuits without using ancilla qubits, based
on an algorithm for implementing an arbitrary unitary operator in the form
of a quantum circuit by decomposing the corresponding unitary matrix into a
product of two-level unitary matrices ([8, sec. 4.5]). Quantum circuits that im-
plement S-boxes of GOST R 34.12-2015 and AES without ancilla qubits were
constructed taking into account the optimization, based on the removal of se-
quences of quantum operations that equival to the identical transformation.
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For the implementation of GOST R 34.12-2015 "Magma" S-boxes 4 log-
ical qubits are enough, and for the implementation of GOST R 34.12-2015
"Kuznechik" and AES S-boxes 8 logical qubit are enough, while in [9, 10] the
implementation of AES S-box requires 40 logical qubits. In [10] a method for
constructing quantum circuit is described, which implements the AES S-box on
9 logical qubits, but it is argued that in comparison with 40 logical qubits case,
this implementation requires approximately three times more quantum gates.

In this work for constructing quantum circuits (Fig. 1-8) we have used gen-
eralized CNOT(C|t) gates (|8, 11]), in which qubit ¢ is controlled by the set
of qubits C. Generalized gates CNOT(C|t) can be implemented without us-
ing ancilla qubits (|8, p. 184]), therefore, we will consider generalized gates
CNOT(C|t) as one self-independent logic gate, which is consistent with the
techniques of assessing the quantum resources described in [12, 13].

2 Construction of quantum circuits implementing
S-boxes without ancilla qubits

In this section, we present an algorithm for constructing quantum circuits
that implement S-boxes without ancilla qubits, based on the decomposition of
the substitution into independent cycles.

Table 1 presents the results of our implementation of Algorithm 1.

S-box |data’ — sequences of elementary qubit states transformations

mo  |(14,15)(13,14)(11,14)(10,13)(9,14)(8,14)(7,9)(6,11)(12,0)(4,10)(3,6)(2,6)(1,4)
T (10,14)(11,12)(9,14)(7,12)(1,8)(6,10)(5,10)(4,9)(6,0)

o (1,3)(9,1)(13,9)(5,15)(7,13)(10,7)(6,10)(14,6)(2,5)(4,2)(8,14)(11,4)(0,11)

s |(14,15)(13,14)(12,15)(11,13)(9,12)(8,15)(7,15)(6,15)(5,13)(4,13)(3,8)(1,8)(12,0)
my  |(5,1)(0,7)(2,5)(8,0)(14,2)(4,8)(13,4)(10,3)(11,14)(12,11)(15,12)

w5 (12,13)(11,13)(10,11)(9,10)(8,11)(7,10)(5,15)(6,12)(4,9)(2,15)(3,6)(5,0)(1,13)
T |(13,15)(9,14)(12,13)(6,14)(5,9)(11,15)(10,11)(4,6)(3,5)(8,15)(1,14)(7,12)(8,0)
(T3 LD0,1)(,0)(8,4)(6:8)(11,6)(14,11)(2,14) (15,2)(9,15)(12.9) (13,12)

Table 1: Data from algorithm 1 for implementing S-boxes without ancilla qubits.

In Fig. 1-8 the quantum circuits are presented that implement the S-boxes
of GOST R 34.12-2015 "Magma". Optimization of quantum circuits that imple-
ment S-boxes GOST R 34.12-2015 "Magma'" was carried out by "brute force",
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Algorithm 1

Input: Substitution s € S(V},).
Output: Quantum circuit for s € S(V,,) without ancilla qubits.

1:

Represent s as a product of independent cycles and remove fixed points. As a result, we
obtain k£ € N independent cycles, s = 5155 ... sg;

Consider each cycle s;, i € 1, k as an independent substitution, find the decomposition of
the unitary matrix U, corresponding to the cycle s;, 7 € 1, k, into the product of two-level
matrices (see |7, 8]):

U, =V} ...V}

By the found matrices V{ - ... - V{ we could determine all possible pairs of states
data; = {(:cﬁ,y;) : Vj\:c;> = |y§>,z el k,jelt, :c; # y;}

Lists data; can be simply written according to the cycles of s;,i € 1, k, by restoring
the transition table of s;. Description of formation of lists data; through two-level matrixes
is given in order to define data; strictly and unambiguously.

For each pair (2}, y}) € data,, i € 1,k,j € 1,1, define the list of bit numbers numb c

. , ahyh)
{1,2,...,n}, where 2} is different from y;.

Denote data = Ule data;. It is required to sort the elements of data in such a way that

|data|—1

Z [numb(g,, .,y O UMDz, 1 4. 1)| — Maz,

w=1
moreover, the transitions (x;, y;) obtained through the cycle s; must preserve the relative
order (otherwise, instead of the cycle s; we will get some other cycle s’). This stage can
be implemented using random search with restrictions. As a result of this sorting of data
we get data’.
To each element (z’,y’) € data’ still corresponds some two-level matrix, i.e. each element
of data’ could be easily implemented using some simple quantum circuit (see [7, §]|).
The implementation of two-level matrices in the form of quantum circuit can be am-
biguous. Let d(, .y be the Hamming distance between the binary representations ' and
y', then there exists exactly d(, ! various quantum circuits consisting from quantum
gates CNOT and generalized CNOT(C]Jt), that implement the transition (z’,y’) (see [8]).
Among them there are only d(,s,) quantum circuits that differ significantly, which are
determined by the number ¢ of the controlled qubit in quantum gates CNOT(C|t) that
occurs during the implementation of two-level matrices.
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7: We assume that the quantum circuit that implements the transitions of data’ could be
optimized by independent parts. Then the search for an optimized quantum circuit for
s € S(V,,) can be organized using the following procedure:

a: Initialize an array of |data’| elements memory = {1, ..., 1}. In memoryliter| we will
write the number of implementation of the two-level matrix that implements the

transition (2., Y., ) € datd’, iter € 1, |data’|. Set iter = 1.

b: Set the search depth, for example, depth = 3. Until iter < |data’| do:

i

i: Search for a quantum circuit with minimum length that implements transitions
(Titers Yiter)s - - - (Thter +depth—1> yl{ter-‘rdepth—l) by iterating over all possible variants
of quantum circuits that implements (‘r;tem ygtev’)’ t (‘T;ter+depth71’ ygtererepthfl)'
Write the founded numbers of implementations of the two-level matrices to
memoryliter|, ..., memoryliter + depth — 1|.

ii: iter = iter + depth; The depth of the search is determined by the available

computing power.
c: Repeat this procedure starting at iter = 2 and the same value of depth.

8: As a result, we obtain a quantum circuit that implements s € S(V},) without using ancilla
qubits, with the minimal number of quantum gates.

i.e. for Magma in Algorithm 1, we have set depth = |data’| — 1. Comparison
of the number of quantum gates in quantum circuits, at [7] and pic. 1-8, that
implementat the S-box without ancilla qubits is given in table 2.
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Figure 1: Quantum circuit for 7o = (12, 4, 6, 2, 10, 5, 11, 9, 14, 8, 13, 7, 0, 3, 15, 1).
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Figure 2: Quantum circuit for m = (6, 8, 2, 3, 9, 10, 5, 12, 1, 14, 4, 7, 11, 13, 0, 15).
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Figure 3: Quantum circuit for m = (11, 3, 5, 8, 2, 15, 10, 13, 14, 1, 7, 4, 12, 9, 6, 0).
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Figure 4: Quantum circuit for 73 = (12, 8, 2, 1, 13, 4, 15, 6, 7, 0, 10, 5, 3, 14, 9, 11).
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Figure 5: Quantum circuit for 7, = (7, 15, 5, 10, 8, 1, 6, 13, 0, 9, 3, 14, 11, 4, 2, 12).
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Figure 6: Quantum circuit for 75 = (5, 13, 15, 6, 9, 2, 12, 10, 11, 7, 8, 1, 4, 3, 14, 0).
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Figure 7: Quantum circuit for mg = (8, 14, 2, 5, 6, 9, 1, 12, 15, 4, 11, 0, 13, 10, 3, 7).
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Figure 8: Quantum circuit for 7, = (1, 7, 14, 13, 0, 5, 8, 3, 4, 15, 10, 6, 9, 12, 11, 2).

Source code for verifying correctness of quantum circuits in the quantum
simulator Quipper [14], example for 4.

import Quipper

import QuipperLib.Simulation
import System.Random

import Quipper.Printing
import Quipper.QData
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subl :: ([Qubit]) -> Circ ([Qubit])

subl (input)

= do

let [q0, ql1, g2, g3] =

gnot_at qil
gqnot_at g2
gnot_at q3
gnot_at qil
gnot_at qil
gnot_at q3
gnot_at g2
gnot_at q0
gnot_at qil
gnot_at q0
gnot_at q0
gnot_at qil
gnot_at q3
gnot_at qO
gnot_at qO
gnot_at q3
gnot_at qil
gnot_at q3
gnot_at g2
gnot_at q3
gnot_at qil
gnot_at q3
gnot_at q2

‘controlledf
‘controlled®
‘controlledf
‘controlled®
‘controlled?
‘controlled®
‘controlledf
‘controlledf
‘controlledf
‘controlledf
‘controlled®
‘controlledf
‘controlled®
‘controlledf
‘controlled®
‘controlledf
‘controlled®
‘controlledf
‘controlledf
‘controlledf
‘controlledf
‘controlled®
‘controlledf

input
(q0.==
[q1]
[q1]
(q0.==
(q0.==
[q1]
[q1]
(ql.==
[q0]
(ql.==

(q1,q2.

[q0]
[q0]

(q1,92.

(ql.==
[q0]
[q3]
(q0,q1
[q3]
(q90,q1
[q3]
(90,91
[q3]

return ([q0, ql, 92, g31)

testl_circuit ::

0 O

testl_circuit = do
putStrLn "Quantum Cirquit in Adobe Reader..."

print_generic

testl_exec ::

10 O

testl_exec = do

.0,92.==.

.0,92.==.
.0,92,93.
.0,92.==.

.0,92,q93.
==.0,q3.

.0,92,93)

,92)
,92.==.0)

,92.==.0)

==.0,93.=

Preview (subl) (replicate 4 qubit)

putStrLn "Substitution functionality test:"
print_generic GateCount subl
g <- newStdGen

--Here are only 2 states, but you could check all 16:
print $ run_generic g(0.0::Double) subl ([True,True,True,False])
print $ run_generic g(0.0::Double) subl ([True,True,True,True])

--Run--
main = do

testl_circuit

testl_exec

(replicate 4 qubit)
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S-box 1\1:1;/211256 rlI;) : Total ga'tes 'in Total gates %n new
S-box quantum circuit |7] quantum circuit
o 2 33 29
m 3 29 23
T2 2 37 97
3 1 29 29
Ty 3 31 23
s 2 35 29
T 2 31 25
7 1 31 29

Table 2: Comparison of the number of quantum gates in quantum circuits, at [7] and Fig. 1-8,
that implement the S-box without ancilla qubits.

3

Conclusion

We have obtained new quantum circuits for implementation GOST R 34.12-

2015 "Magma" S-boxes on 4 logical qubits with fewer logical quantum gates
than in [7]. The obtained results allow to draw a conclusion that the more
cycles in substitution, the less the length of the quantum circuit implementing
this substitution can be.
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Appendix 1

The algorithm for constructing quantum circuits of an arbitrary unitary
operator is described in [8], Section 4.5.

Definition 1. Let N = 2", ne N, and ey, eo,...,en be the basis of the vector
space Len over field of complex numbers C. The unitary matrices U € Can on,
nontrivially acting on no more than two basis vectors ey, es,...,en, are called
two-level unitary matrices (see [8], section 4.5.1 ).

Let’s construct a quantum circuit that implements
m = (6,8,2,3,9,10,5,12,1,14,4,7,11,13,0, 15).

The substitution m € S(V}). Denote y = m(z), x,y € Vy. The states |x), |y)
are vector-columns from L., the action of the operator Ulz) = |y) is a multi-
plication of the column vector |x) by the matrix U € Caa ga.
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1. The unitary matrix for 7y:

SO DD DD DODDODDODDOHHIDODODODODODODO OO
SO DD DD ODOH OO OO
[=NeleoleolNoloNeoleoNeoloBeoloBol =N
[=NeloleoNeoleoNeoNeNeleBaeNal ==
SO DD DD OHDODIDODIDODDODDODODODODO OO
S OO OO H OO OO O OoOO0o
S OO OO0 OO0 OO OO0 OO
eNeNel S oNeNoNeNoeNoNoNoe o No N Nao)
=NelolololoBoloBaoloBoloBok =
O R O OO OO o oo oo oo
OO OO OO OO OO OO OO OO
SO DD DD DODDODOHHODODODODODOoOODO OO
SO OO OO0 OO0 OO0 oo
S OH OO0 oo oo oo
=N eloleolNeoloNoNeoNeololeololoNoNal S
H OO ODODIODIDODIDODIDODIDODDODDODOooOo OO

2. The matrix U;, can be represented as a product of two-level unitary
matrices:

Uy =Vi- Vo - Vo Vi V5 - V- Vo - Vg - Vg

1

The table 3 contains two-level matrices Vi, ..., Vy, participating in the de-
composition U, states s and ¢, on which two-level matrices act nontrivially,
and quantum circuits implementing two-level matrices Vi, ..., Vy. Matrices are
written as a list of strings, each row is a vector v; € Vig, ||[v;]| = 1,4 € 1,16 and
written in hexadecimal notation.
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Vi = {200, 4000, 2000, 1000, 800, 400, 8000, 100, 80, 40,20, 10,8,4,2, 1} 5 = \|8(1)58§
_ i
V2 = {8000, 80,2000, 1000, 800,400, 200, 100, 4000, 40, 20, 10,8, 4,2, 1}| ¥ — \|?8855 %
Ix}
_ ) R L
V3 = {8000, 4000, 2000, 1000, 40, 400, 200, 100, 80,800, 20, 10,8, 4,2, 1} ¥ = ﬂ%g?; e
Vi = {8000, 4000, 2000, 1000, 800, 20, 200, 100, 80, 40,400, 10,8, 4,2, 1}| ¥ = ﬂ%%i - ? -
V5 = {8000, 4000, 2000, 1000, 800, 400, 20, 100, 80, 40, 200, 10,8, 4,2, 1} ¥ = ‘“1%%8; B
_ s =0111) T
Vs = {8000, 4000, 2000, 1000, 800, 400, 200, 8,80, 40,20, 10,100, 4,2, 1} §  |7}5¢
= e
Vz = {8000, 4000, 2000, 1000, 800, 400, 200, 100,80, 2, 20, 10,8, 4,40, 1} ¥ = H?%i S A
s =]1010)
Vs = {8000, 4000, 2000, 1000, 800, 400, 200, 100, 80,40, 2,10,8,4,20, 1 § |1}
Vo — s =[1011) i
5 = {8000, 4000, 2000, 1000, 800, 400, 200, 100, 80,40, 20,8, 10, 4,2, 1}  Z |1 -

Table 3: Representation of the matrix U, as a product of two-level matrices U, = V; - V5 -
Va Vi Vs V- VoV Vs

Since |yy = Ulx), lyy =Vi-...- (Vs (Vo - |z))), the quantum circuit of Uy,

is as follows:
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Figure 9: Quantum circuit m = (6, 8, 2, 3, 9, 10, 5, 12, 1, 14, 4, 7, 11, 13, 0, 15).

After optimization of the quantum circuit in the figure 9, we obtain the
quantum circuit in the figure 2.
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Related-key Attack on 5-Round Kuznyechik

Vitaly Kiryukhin

JSC «InfoTeCS», Russia
vitaly.kiryukhin@infotecs.ru

Abstract

The first related-key attack on 3-round (of 9) Kuznyechik with 2-round (of 8) key
schedule was presented in CTCrypt’18. This article describes a related-key attack on
5-round cipher with the same key schedule. The presented one also has a practical
complexity (232 operations, 230 memory, 2'¢ related keys) and verified in practice. We
obtained result due to the simultaneous use of the integral properties of the cipher
transformations and the key schedule.

Keywords: Kuznyechik, related-key attack, integral cryptanalysis.

1 Introduction

The setting of a related-key attack on cipher was introduced in [6]. Informally
this model assumes that adversary has access to several encryptors with different
unknown keys, but it knows a certain simple relationship (for example, bitwise
xor) between these keys.

In some cases the related-key model is quite consistent with reality. A good
example is an iterative hash function using block cipher as part of compression
function. In this case, adversary has a possibility of manipulating the encryption
keys. Some cryptographic protocols may use related keys by design. One such
related-key protocol CTRR was proposed at CTCrypt’18 [2].

In the same publication [2], the first related-key attack on a reduced variant
of block cipher Kuznyechik [1] was proposed. This approach exploits the ability
of attacker to manipulate keys, and the similarity of the functions in encryption
and the key schedule procedures.

In this paper we present a related-key attack on 5-round (of 9) Kuznyechik
with 2-round (of 8) key schedule. Main result obtained due to the integral prop-
erties [4, 5] of encryption and the key schedule. We also used some approaches
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from [3|. The simplified versions of Kuznyechik are described in the next section
(equations (2) and (3)).

The  presented attack was verified in  practice with  the
help of C++ implementation. Source codes can be found at
https://gitlab.com/v.kir/rk-5R-kuznyechik.

Comparative characteristics of attacks are presented in table 1.

’ Cipher rounds \ Key schedule rounds \ Operations \ Keys \ Memory \ Source ‘
3 2 212 212 ~ 2]
5 2 232 216 230 Section 4

Table 1: Related-key attacks on Kuznyechik

2 Definitions

Let Fos be a finite field as defined in [1|. Each element of Fos can be inter-
preted as an integer or binary vector. Field elements are indicated by lowercase
letters: a, b. Denote vector space of dimension n € N over Fos by ;. Ele-
ments from Fi will be denoted by capital letters: A, B. Blocks of plaintext and
ciphertext also belong to .

Denote bitwise xor operation by symbol @. Let we have a sequence of blocks

By, ...,Bge Fi,d e N,
then we refer to sequence
AB = (By® B1,By@® By, ..., By® By) € (Fys)" (1)

as a difference. Throughout the article we always use d = 2% — 1. Differences
are indicated by bold: k, AK.

The transformations over Fis (or sets of elements from ]Fg‘g) are denoted by
Sans Serif font: f, S, L. Such characters may mean a bijective transformation
of blocks (f(A), A € Fis) or non-bijective transformation of differences to the
set of differences (for example, S(k) is a set of differences, k € ( gs)d). The
notation LS indicates a composition of transformations, where S applies first.

The difference A € (Fgg)d can also be interpreted as n «columns» of d
bytes each: A € (Fgg)n. If i-th «column» (i = 1,2,...,n) a € FY contains
all different non-zero bytes, we say that ¢-th position has an integral property
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All (A). Similarly, if xor of all bytes is equal to zero, then i-th position of the
difference has an integral property Zero (0). Obviously, the property A implies
the property 0. If at least one byte in such «column» is non-zero, we say that
-th position is active, otherwise inactive.

Kuznyechik

Kuznyechik [1]| consists of a sequence of 9 rounds and a post-whitening key
addition. Each round contains three operations:

X — modulo 2 addition of an input block with an iterative key:;

S — parallel application of a fixed bijective substitution to each byte of the
block;

L — linear transformation defined as an LESR over [Fys.

The block size is 128 bits (n = 16 bytes), the size of key K is equal to 256
bits.

Key schedule uses round constants C; € Fjs, i = 1,2,...,32.

Round keys K; € Fls, ¢ = 1,2,...,10 are derived from a master key K as
follows:

K = K1HK27
(Kait1, Koiro) = F[Csiim1yss] - - - F[Cg(i—1)1] (Kai—1, Ky;) , i = 1,2,3,4,
F[O] (Al, AQ) = (LSX[C](Al) &) AQ, Al) , C, Al, AQ € Fgg.

We define 3-round Kuznyechik as in [2|. Each round of the key schedule has

only 2 rounds of basic cipher’s Feistel rounds.
Er, i, (A) = X[ Ky JLSX[ K3 |LSX[ K |LSX[K1](A), (2)

(K3, Ky) = F[Co]F[Ch] (K, K2)
K3 = K1 @ LSX[Ch] (K> @ LSX[C1 (K1),
Ky = Ky @ LSX[Cy](K).

b-round Kuznyechik is defined in a similar way:

Ey i (A) = XK LSX K5 JLSX [ JLSX[ IG5 JLSX [, JLSX ] ().
(K3, Ky) = F[Co]F[C1] (K4, Ka) (3)
(K5, Kg) = F[C4]F[C5] (K3, Ky) .
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Denote also the block before addition of the key K; by P; (for example
Py = LSX[K1](A)).

3 Technical lemmas and concepts

The polytopic cryptanalysis was first introduced in [3]. We will use some
techniques from this concept along with integral cryptanalysis [4].

In particular, we use the difference (1) as «d-difference» in [3]. Let’s consider
how cipher transformations change this difference.

It’s easy to see, that adding a same round key does not change the difference.
The attack presented in section 4 uses non-equal keys. In this case, the difference
between the round keys is added to the difference between the intermediate
states. Note that if both such differences A, k € ( gs)d have integral property
0, then A @ k has the same property.

Suppose that the difference A € ( gg)d has only one active position, then
after the S-transformation we have no more than 2° possible differences. Indeed,
all inactive positions remain inactive. We have one non-zero «columny» o =
(c1,¢9,...,¢q) € ng and after substitution layer:

s(a) ={(s(z®Dc1) Ds(x),s(xDc2) Ds(x),...,s(xDcy) Ds(x)), x € Fos},

where s : Fos — Fas is cipher Sbox. Obviously, the number of differences s(a)
does not exceed the number of x. In most cases, these numbers are equal. If all
bytes in a are different, all bytes in s(a) are also different (the bijective Sbox
preserve the integral property A). If we know a and &’ € s(a), we can easily
find the corresponding .

The L-transformation bijectively maps one difference to another:

A= (A1, As .. Ag), LIA) = (L(A]), L(A), ..., L(Ay).

If only one position in input difference is active then all positions in output
difference are active (this is true if L is MDS matrix). Under the same conditions,
if one position has the property A, then all output positions will have this
property. The integral property 0 is preserved by L-transformation:

d
=1

d d
Ai=0, PLA)=L ( Ai> — 0.
=1 =1

1 )
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We will use the so-called integral property [4, 5] of LSXLSX transformation.

Lemma 1. Let one position in the difference A € (]Fgg)d has integral property
A and all other positions are inactive (so-called §-set). Then any difference
from LSXLSX(A) has the integral property O.

Proof. Adding a round key does not change the difference. Thus, we have
LSLS(A). After the first substitution layer, one position will have the prop-
erty A and all others will remain inactive. The first linear transformation will
make all bytes active. Each of them will have the property A. The second S
transformation will preserve A and consequently the property 0. Hence, after
the last linear transformation we have the property 0 in each position of the
difference. N

Equivalent representation of the last two rounds

The presented attack uses an equivalent representation of the last two
rounds.

Let A,B € FJ be a plaintext and ciphertext -correspondingly.
Ki,...,K,, K, areround keys, K; e s, i =1,2,...,r + 1.

The original cipher has the form

B = X[K,1|LSX[K,] .. . X[K1](A) = E,.1 (A).
Apply the inverse linear transformation to the known ciphertext

L' (B) = L™ (X[K,1JLSX[K, ] ... X[K1](A)) .
L1 (B) = L1 (K, 1) ® SX[K,] ... X[K](A).

We denote B = L™' (B), K; = L™' (K;), then the cipher has the form
B' = X[K, ]SX[KLSX[K, 1] ... X[K1](A).

Similarly, for the penultimate round. Let’s consider the transformation
X[KL(A) = K, ®L(A) =L (AL (K,)) = LX[K,] (A).
Therefore, the cipher transformation can be represented by the formula
B' = X[K,.,|SLX[K,JSX[K, 1] ... X[K1](A).
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4 Related-key attack

Let’s represent 5-round Kuznyechik (3) in equivalent form

Er e, (A) = X[KLSLX[KLISX[KA|LSX[ K |LSX[K]LSX[K1](A),
(K3, Ky) = F[CoF[Ch] (K1, Ka),

Ky =Ky ® LSX[] C1](K),
K3 = K; @ LSX[Co](Ky),
(K5, Ko) = FIC4|F[Cs] (K3, Ky)
K¢ = Ky @ LSX[Cs](K3), Ky = L7 (Kg),
K5 = K3 ®LSX[C4](Kg), Ky = L Y(K5).

The attack consists of the following steps:

1. Adversary chooses 2° collections of related keys, 2® keys in each collection.
One plaintext C (first constant in the key schedule) will be used.

2. For one of these collections, the special easy verifiable property (integral
distinguisher) is true.

3. The round keys Kg, K5 are recovered by using integral and polytopic prop-
erties.

Let’s describe these steps in more detail. We denote

the difference between keys K. The set LS(k) contains 2° differences. The
collection of the related keys looks like

(K1, K3) and set (K1 ® kK, Ko ® k"), where k” € LS(k).

It is easy to see that each collection contains the «main» key and a set of 255
related keys. Adversary does not know the keys, but it know all relations (k
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and K" € LS(k)) between them. Adversary encrypts only one plaintext C; and
gets 28 ciphertexts for each collection of keys. In total we have 1 + 28- (28 — 1)
different keys and different ciphertexts correspondingly. In the same collection
we refer to the difference between ¢-th round keys K; as AKj;, for example
k =AK; and k" = AK,.

4.1 Integral property

Figure 1 shows the propagation of differences, which is true for only one
collection of keys (for only one k” € LS(k)). Active Sboxes have a gray back-
ground. Integral properties are indicated in red bold (A — all bytes are different,
0 — bitwise xor of all bytes is zero). More detailed pictures are presented in
Appendix B.

(&
AP, 0
A BEBEONERENE BB AK; AK,
W AAAAAAANAANAAAAA A
il 2 o - i k € LS(x) [
BEEBEEEEREREEEEREEE : "
= = - — P, K € LS(x) 1. K
[ L | ———{L[5}4
AP AAAAAAAAAAAAAAAA « eLSK) S S p e
AK, BB BB EEEREBREBG SO e
0 N o =
[s[s|sls[sls[sls[s[s[s[s[s[s]s[s] 1 . ,1 0
- L ] - Lsk€
AP 0 U
AP BRHBRODODDDOED® PR R ST
A l
ARy AKS
[sTsTs[sIs[s[S[S[sIS[SIS[SIS[S[S] A
[ L | (&)
AP: ABAAAAAARAAAAAAAA LSk k" € LSk
A, 60B 0000008006066 e L[Sk
AAAAAAAAAAAAAAAA cLSK) =_ -
BEEEEEEEEEEEEEEEE| e
: —_— 4 =
AP, AIAAAIAAAAAAAAAAAA = SLS(K) ® Gy
A ¢ 9 9 9 9 0 DO RO P OB O DD ) g i .,L K
AF. @ AK; D00/0'0/0/0/0/0 0000000 = (5L50k) @ 5LS(k) @B L (k) AKs LSt AK,
[ L | 0000000000000000 AAAAAAARAAAANAAA
L(AP, @ AK!) D000 000000000000 =5(A8S(x) ek ) @x
BEEBEEEEEEEEEEEEE ]
AP, & AB @ SiKk) AK] AK} _
AK! 00 0000 EP0RERDREE 00000000 DOOODODOOD A £ 5(k)
AR I £ SLS(k) & L' (x)

Figure 1: Related-key attack on 5-round Kuznyechik

Let’s see the key schedule. After the first LS(C) @ K7) transformation we
have difference K’ € LS(k). This difference is the same for all collections of keys,
but only for one k” = k' is true. If so, we have AK,; = 0 and AK3 = K.
The difference k has one active byte. In the difference k” € LS(k), all bytes are
active and have an integral property A.
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Similarly,
AKg = k" € LS(k)
and
AKs;elS(K")Y @k ={0Dk, d €LS(k")}.

We use the equivalent representation of the last two rounds, therefore we con-
sider difference between the keys K = L~'(K) instead K3, and K = L™ (Kj)
instead Kg. Thus we obtain that AKj belongs to S(k) (correspondingly
AK, € SLS(k) ®L7Y(k)).

All bytes of AK ; are active and have an integral property 0 (see lemma 1).
The difference AK; has one active byte with the property A.

Now let’s consider the encryption functions. We use only one plaintext Cf,
therefore the difference AP, is equal to zero. Note that the first round of en-
cryption also has the form LS(C) @ K7). Because of this, the difference between
the blocks is also equal to /'

If in the key schedule k' = k” = AKj, then the difference between the
blocks becomes zero and also AP3 = 0.

The addition of the third round key K3 adds the non-zero difference k. We
do not know the exact value of the difference AP,, but we know that AP,
belongs to the set LS(k). Similarly, after the following substitution layer, we
have AP; € SLS(k). All bytes of AP;} have an integral property A and conse-
quently property 0. The second one is also true for AK /5 Therefore, their sum
APE/) ®AK ;.) has an integral property 0. The linear transformation preserves
this one.

Obviously, we know the corresponding ciphertexts and the difference AB
between them. The difference AK, é € S(k) has one active byte.

Let’s propagate the difference through S=1. For each of 15 Sboxes we have
2% possible differences and for 16’th Sbox we get 26 differences due to AK, ;3 €
S(k).

Let’s check the integral property 0 for each obtained difference. If we cor-
rectly guessed k”, then there must be at least one such difference for each Sbox.
Otherwise, if we do not guess it correctly, then there is at least one Shox for
which there is no such difference. Generally speaking, it is possible that a «false»
collection of the related keys will satisfy this property. The probability of the
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existence of the such «false» collection is approximately 0.23 (for more details
see Appendix A). It does not lead to the failure of the attack. We will be able
to distinguish this case through the next step.

We also expect that for each of 15 Shoxes about 2 differences have integral
property 0. For the last Sbox about 2° differences have such property. Thus,
the set STH(AB @® S(k)) will contain about 21° - 28 = 223 possible differences,
each of them has the property 0.

4.2 Recovering of the round keys

Let’s consider the last linear transformation. We know that AP; e SLS(k)
and AK, € SLS(k) ®L7!(k). The difference before the linear transformation
is the sum

AP, ® AK, € (SLS(k) ®SLS(k) ® L (k)) =
{01 D62 @ L~ (k), 81 € SLS(k), 85 € SLS(k)} .

On the other hand we have the set of possible differences ST} (AB @ S(k))
after the linear transformation.
The intersection of sets

(SLS(k) ®SLS(k) ®L (k) nL7ISTHAB ®S(k))

must contain at least one element. We use only one byte position to determine
the inequality of elements from these two sets.

After checking the integral property in the set L™!S™1(AB @ S(k)) there
will be about 223 possible differences.

Recall that the set S(k) contains 2% elements. The linear transformation
does not change the number of differences (LS(x) contains 2% elements). After
another substitution layer we have 2% possible differences at each Sbox. The
difference & is known, therefore L™!(k) is also known. Consequently, the set

SLS(k) ®SLS(k) ® L 1(k) contains

216 . (216 _ 1)

+1 <23
2

possible differences at each Sbox.
Select the position of one of the block bytes. Recall also that each dif-
ference contains 2° — 1 vectors and consequently difference in one position
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contains 2% — 1 bytes. We store in memory all possible differences from
SLS(k) ® SLS(k) @ L™Y(k) for selected position. Let’s iterate through all dif-
ferences v in L™1S7Y(AB @ S(k)). If v matches one of the stored differences
then we assume that v = APE; ®AK /5 We can expect that ~ is the only such
element even if we compare on eight bytes of a difference rather than 2% — 1.
Note that if the collection of the related keys is «false» (k" # k'), the match
will probably not be found.

At this step we know AP, ® AK,, L(AP, ® AK,), AP,, AK,, AB.
Block

Y :SYAP,) = L(AP,® AK,)
can be easily found. Let By be first ciphertext, then Ké = By @Y. The entire
set of related keys Ké can also be obtained by adding with AK&. Therefore, it
is possible to decipher all 2 ciphertexts through the last round.

We know that APy € LS(k), AK, € S(AK,) ®L }(k) and also AP, @
AK,. Let’s iterate through possible 7 € S(AK) ® L™}(k) and propagate
AP;(—BAK;(—BT through S~1. If we guess 7 = AK;) then Sfl(AP;(—EAK;@
7) = SYAP,) € LS(k). Otherwise, we expect that STH (AP, ® AK, ®T) ¢
LS(k). In the matching process, each Sbox can be viewed independently of
the others. After that we will know the differences APy, AP;), AK:.,,. The
ciphertexts after 5’th round are also known. Therefore, the keys Ké can be
found in the same way as Ké. Due to the reverse key schedule, the master key
K = Kj|| K5 can be easily obtained.

4.3 Complexity

As mentioned before, the attack requires 14 2% - (28 — 1) < 210 related keys
and one chosen ciphertext.

The integral property for all 2% related key collections can be checked in
about 28 - (15 - 28 + 216) ~ 221 operations.

The most time-consuming stage is the construction of the set SLS(k) @
SLS(k) ® L71(k). We construct this set for only one Sbox, and store only eight
bytes for each difference. It requires about 23! operations and 23! -8 = 234 bytes
of memory. These constructed differences are stored in a hash table. The set
L~1S"H(AB®S(k)) contains much fewer elements. Checking for a single element
in a hash table requires constant time. Therefore, the complexity of constructing
the hash table will be the most important. The difficulty of recovering the keys
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K is also small: 16 - 28 - 28 + 2% ~ 2%0 gperations.

232 230

The total complexity does not exceed memory access operations and
memory (in sixteen-byte blocks). We also note that the attack is deterministic.

We modeled the attack with a non-optimized C++ implementation. The
average attack time is about 5 minutes on a common PC. The amount of used
memory did not exceed 17 GB.

5 Conclusion

In this paper we present the related-key attack on 5-round Kuznyehcik with
2-round key schedule. The attack has a practical complexity (232 operations,
230 memory, 2° related keys) and has been verified with the help of C+-+
implementation. The experiments confirmed the correctness of the attack.

Source codes can be found at https://gitlab.com/v.kir/
rk-5R-kuznyechik.

The main result was achieved by using the well-known integral property of
LSX-transformations. We were able to use this property both in the cipher itself
and in the key schedule.

We did not use any specific properties of the linear transformation and the
Sbox. We think that through the use of such properties it is possible to obtain
new results. Another possible way is the use of integral distinguishers for a
greater number of rounds.

The presented attack also shows a significant security margin of the
Kuznyechik’s key schedule.
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A Probability aspects and experimental verification
«True» and «false» collections of the related keys

We know that there is at least one «trues collection. What is the probability
that the integral property (section 4.1) will be correct for the «false» collection?

Assume that all ciphertexts are equally probable and independent of each
other. We propagate the difference of each Sbox thorough nonlinear layer. For
each of 15 Sboxes we’'ll have 2% possible differences and for 16’th Sbox we get
216 differences. We also assume that the sum of the elements of any difference
is uniformly distributed. Hence, the probability of the property 0 is equal to
p = ﬁ for each difference of any Sbox. Denote the probability of the opposite
eventbyq=1—p=%.

Thus, we have:

q28 = 0.367... — there is no difference that has the property 0 for one Sbox;

11— q28 = (0.632... — there is at least one such difference;

(1 —¢*)' = 0.001... — there is at least one such difference for each of the
15 Sboxes.

The probability that one collection of the related keys has the integral prop-

erty is
15 )
r=(1-¢") - (1-¢*") = 0.001..,

We have 28 collections of keys and only one «trues collection. The probability
that «falses collections do not exist is

(1—7)"" =0.765....
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The opposite probability is
1—(1—r)" =0.234....

We performed N = 5000 experiments. The number of cases where collections

11
exist is equal to 1179. The obtained value 50;3

= 0.236 is close to theoretical.

Number of possible differences

Let we have «true» collection of the related keys. We estimate the number
of possible differences in the set L"'ST{(AB ® S(k)).
Each Shox gives at least one possible difference. The probability of the prop-

erty 0 is equal top = %6 for each difference of any Shox. We also have 2® possible

differences for each of 15 Sboxes and 2!6 for 16’th Sbox.
Thus, average number of elements in the set is equal to

1 15 1
1+ — (282 -1 1 — (216 1)) & 2% « 231,
( * 356 )) ( 356 )) «

The average experimental value is 2?27. The maximum value among all N ex-
periments is 22%.

Matching differences

The intersection of sets
(SLS(k) @ SLS(k) ® L Hk)) nLISTHAB®S(k))

must contain at least one element. We use only one position to determine the
inequality of elements from these two sets.

One position of the first set contains no more than 23! differences. The
number of elements of the second set is approximately 223. We also assume that
the elements of these sets are random and equally probable.

Only the first 8 bytes (64 bits) of the difference are stored in memory. Then
the average number of «false» matches can be estimated as

231 . 223

964 27,

A «false» match can be easily detected by an additional check. In N = 5000
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experiments, we got only 7 cases of it.

Eight-byte numbers were chosen for ease of implementation.

B Detailed pictures
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Figure 2: The difference propagation through the key schedule
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Figure 3: The difference propagation through the cipher
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Abstract

It is shown that the linearity and differential uniformity of the substitution mul-
tiplied by transposition can be calculated with time complexities O (22") and O (2")
respectively. Some heuristic algorithms of constructing s-boxes are optimized in this

paper.

Keywords: s-box, substitution, heuristic optimization, linearity, linear spectrum, linear
approximation table, differential uniformity, differential spectrum, difference distribution table.

1 Introduction

Constructing s-boxes with excellent cryptographic properties is one of the
important problems in modern cryptography. One approach to solve this prob-
lem is based on heuristic optimization of some given s-box. The heuristic opti-
mization methods include genetic algorithms (see [3, 9] ), hill climbing methods
(see |7, 8]), methods of gradient descent (see [6]), spectral-linear and spectral-
differential methods (see [4, 5]).

The main problem of using heuristic methods is the high level of their time
complexity. The d,-parameter and the p,-parameter of s-box g are the most
difficult to calculate. In this paper we introduce new techniques for calculating
linearity and differential uniformity of the substitution A € S (V},) such that
h = (x,y)g where z,y € V,,, g€ S (V,).

The rest of the paper is organized as follows. Section 2 gives the basic defini-
tions and notations. In section 3 we derive the main propositions and algorithms.
The cryptographic applications of the results are discussed in Section 4. Finally,
Section 5 presents our conclusions.
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2 Definitions and Notations

Let V,, (2) = V,, be n-dimensional vector space over the field Fy. Suppose
that V. = V,\{0}. Let S (V,) be the symmetric group on set of 2" elements.
The cardinality of a set A is usually denoted |A|.

We shall use the following operations and notations:

— exclusive-OR (or XOR) is denoted @,
— logical AND is denoted A,

— the scalar product of two elements x = (x,_1, ..., x¢) and y = (Yp_1, ..., Yo)
of Fy is denoted o and is equal to x oy = @?:_01561' A Vi

Now, we give some basic definitions.

Definition 1. The linearity of s-box g is defined as the absolute value of the
bias:

5, = max &7
g a7BeVn>< 067/8

where

52’5 =2"" . zeV,|roa=g(zx)oB}.
The Linear Approximation Table (LAT) of s-box g is a 2" x 2" matriz Ty such
that Ty (o, B) = 6, 4-

S-boxes with small value of d,-parameter offer better resistance against linear
attacks.

Definition 2. The differential uniformity of s-box g is defined as

g
Py = Mmax p
g 057,Bevn>< a75,

where

Phs=2"HreV,lg(x®a)®g(r) =B}
The Difference Distribution Table (DDT) of s-boz g is a 2™ x 2" matriz Ty such
that Ty (o, B) = piﬁ.

S-boxes using in cryptographic primitives must have a low p,-parameter
value to provide high resistance to differential cryptanalysis.
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According to [4] we define the linear and the differential spectra of substi-
tution g.

For g € S (V,) and for elements p € P,,_1 and 6 € P,_5, where
P = {%]izO,l,...,Qj},\Pj\ =24+ 1,5e{n—2n—1};

we define the sets

D(g.p) = {(@.8) e V;\ x 1

pi,ﬂ =p},
:5}.

Definition 3. The differential spectrum of s-box g is defined as

D(g)={(p, |D(g,p))|pe Pur},|D(g)] =2"" + 1.

L(g,9) = {(a,B) eV} x V!

g
5a,,6’

Definition 4. The linear spectrum of s-box g is defined as

L(g) =1{(0|L(g:0)])]6 € Pz}, |L(g)] = 2" + 1.

3 Main results

This section deals with the change in linear and differential characteristics
of substitution multiplied by transposition. This issue has been studied in [10].
The authors showed that for h = (z,y) g such that g, h : V,, — V,, we get:

6y — 22 < 0y < 0y + 2277,

Py — 25" < pp < pg+ 207
In [7] the similar properties of boolean functions are used to optimize the hill
climbing methods.

In this section we describe two new algorithms for calculating linearity and
differential uniformity of substitution h € S (V,,) such that h = (x,y)g. We
also formally prove the correctness of the new algorithms and study their time
complexity:.
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3.1 Efficient computation of the elements in linear approximation
table

The first subsection deals with the relationship between elements of linear
approximation tables for the substitutions g, h € S (V,,) such that h = (z,y) g.

Algorithm 1.

Input.  Substitution g € S (V},); the elements z,y € V,,; the LAT T (g);
the linear spectrum D (g).

Step 1. For each element ¢+ = 0,...,n — 1 do the following items:

— calculate elements « = x @y and f = g (x) ® g (y);
— if o4 > 0 then add 7 to the list Iy;
— if B o2 > 0 then add 7 to the list Is.

Step 2. For each ordered pair (a, ) € I; x I5 do the following items:

— calculate |L (g, 5gﬁ> = |L <g, 5(“;,6) —1;

— calculate value ¢, ; = J7, 5 + (—1)ecr®Peg@)®L, 92-n.

— calculate |L (g, (5gﬁ> = |L (g, 5§75> + 1.

Step 3. The algorithm stops after calculating h = (z,y)g and D (h) =

D (g).
Output. Substitution h € S (V) such that h = (z,y) g; the linear spectrum
L (h).

The correctness of the algorithm 1 is presented in the first proposition.

Proposition 1. For substitutions g,h € S (V,,) such that h = (x,y) g we have

0, if either(x@y)oa=0or(g(z)®g(y)op =0

5h - 59 = o o
af ™ Yap { (-1 1@Feg@)®L  92=n in the converse case

Proof. Consider the following sequence of equations
on5—0%,=2P{zoa="h(z)of}—2P{zoa=g(z)o B} =
— ({zlz0a=h(z) 0B} ~ |{zlz0a=g(x) 0 B}]) - 2" =
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_ (z 1 zoa®h(108) - Y (1zoa@g(2)06)> g

2V, zeV,
= (roa®@g(@)of—roa®g(y)of+
+tyoa®@g(y)of—yoadg(z)op) 27"
It is easily shown that if rtoa =yoa or g(z)o =g (y)o S then

ﬂﬁ—ﬁﬁzu
rToa# Yo« yoa=(roa)®1
Suppose that { g(2) 0B % g(y)op ({ () f = (g(z)0f)@®1 )

Note that in this case we have

(foa@g(x)Oﬁxoa®g(x)Oﬁ®}+

(_1)51?004@9(1)05@1

+§ooz@9(f€)Oﬁ—xoa@g(x)oﬂ@g 2 =
(_1)xoagg(w)oﬁ®l
= (—1)7eSeseL g2,
This completes the proof. [
Let us denote by t; the complexity of an algorithm 1.
Proposition 2. As n — oo we obviously have

ty=0(2").

Proof. We see that |I;] = || = 2"1. The complexity of algorithm is the dot
product of the following values.

— the number of the iterations of step 2 is || - |[o] = 222
— constant number of operations on the step 2 of the algorithm.
[]

Remark 1. The algorithm 1 is nearly n times faster than the classical algorithm
of calculating the linearity.
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Example 1. Consider the following substitutions g, h € S (V3) such that h =
(1,2) g:

(01234567 h_01234567
9" \24103567) " \21403567)
The results obtained by algorithm 1 are presented in Table 1 (all changing

elements of the matriz are in bold).
In particular, using preposition 1, we obtain

1. Since (1®2) 03 =0 we see that for any 5 € Vi it follows that

0y 5 — 09 5 =0
2. 01y — 87, = (—1)UeNOIeOt [92-3 _ 9.

)

3. 8l — 03y = (—1)ENSOVRL g2i o)

Table 1.

Substitution g Substitution h

24103567 21403567

LAT of g LAT of h
1 o o0 o O O O O|1 0O O O O 0 0 O
00 -3 - L -3 0o o0 L -} 0o o -} -1 o0
o o o o o o0 -1 o0/[0-% o -2 1 o0 -1 o0
0 0 -5 3 b b 0 o0 0o -F L 1 3 0 o0
o 3 3 0 3 0 o0 -%+2]0 3+ L+ 0o L 0o o0 -1
0 -3 0 -} o f o -3|0 0o 0 o -} } -1 -}
o 3 -+ o -+ o o-3]0 o0o-3% -+ o o I -1
o ¢+ 0 -4 o0 3 O 3]0 3 0 -3 o0 1 0o 1%
5 0 : 1 5 0 : 1
IL(g,0)] | 24 24 1 IL(g,6)| | 21 28 0

3.2 Efficient computation of the elements in difference distribution
table

The second subsection deals with the relationship between elements of differ-
ence distribution tables for the substitutions g, h € S (V},) such that h = (z,y) g.
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Algorithm 2.

Input.

Step 1.

Step 2.

Output.

Substitution g € S (V},); the elements z,y € V,,; the DDT T (g);
the differential spectrum D (g).
For each element o = 1,...,2" — 1 such that a # x @ y do the
following items:
calculate elements
Bo=g@)@g(x@a)and fo=g(y) Dg(y®a);
Let us consider 2 cases.
Case 1: assume that fy = [o; then
— calculate element 51 = g (y) ® g (z ® «);
— for each element 7 = 0, 1 calculate values:

P(92s)] = [P (970)

0 (ot 40 =D (0 440

_1’

Case 2: suppose that By # B9; then
— calculate elements

Bi=gy)®grd@a)efz=g(x)Dg(yda)

— for each element 2 = 0, ..., 3 calculate values:

P(o72s)] =[P (97)

D (st 2 ) = [ (0 2o,

_17

The algorithm stops after calculating h = (z,y) g and D (h) =
D (g).

Substitution h € S (V,) such that h = (z,y) g; the differential
spectrum D (h).

Let us denote the indicator function

1, if =
Ig(x) =< 1 g x,where B,xeV,.
0, ifg#x

The correctness of the algorithm 2 is shown in the following proposition.
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Proposition 3. For substitutions g,h € S (V},) such that h = (x,y) g we have

ho e _ [ Oifa=zdy
P Z 008 T (1 (1) + T (w2) = Iy (5) = I () - 2177, otherwise

where 11 = g (@)@ g (y), 12 =g (Y@ ) D g (z), 13 =g (r D) D g (z),
ra=gy®a)®yg(y).
Proof. Let us consider the following transformation sequence
Pog—Phg=P{h(z@a)®h(z) =5}~ Plg(: @)@ g (2) = f} =
= ({zlh(z@a)@h(z) =B} - {z]lg (@)D g(2) = B}]) - 27

Z(ZIB( (z@a)Dh(z Zlﬂ (z@a)Dg(z )))-2”=

ZE‘/” ZG‘/n

=27 Y (L (h(z@a)@h(2) ~ I (g (@) @ g (2)))

ze{r,y}

It can easily be checked that if @ = x @ y then pgﬁ — p“‘o’[ﬁ = 0.
Assume that a # x @y, then we get

(g @@a)®gW) + L1 (9 (y D) @ (x)) -

_Iﬁ(g($®@)@g($))—Iﬁ(g(y@a)@g(y))> Jol-n _

= (Is (x1) + Ig (w2) — L5 (w3) — Iy (w4) ) - 27
This concludes the proof. [

Let us denote by ¢y the complexity of an algorithm 2.
Proposition 4. As n — oo we obviously have
to =0 (2").
Proof. The complexity of algorithm is the dot product of the following values:
1. the number of the iterations of step 1 is 2" — 1;
2. constant number of operations on the steps of the algorithm.
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Remark 2. The algorithm 2 is nearly 2" times faster than the classical algo-
rithm of computing the differential uniformity.

Example 2. Consider the following substitutions g, h € S (V3) such that h =
0,1) g

(01
7= \5 6
The results obtained by algorithm 2 are presented in Table 2 (all changing

elements of the matriz are in bold).
In particular taking into account preposition 3 we can conclude

1. Since o = (0@ 1) = 1 we see that for any B € V3 we obtain
Pif,ﬁ - pi],ﬁ = 0;
2. Py —pia=(Ie(4) + L(1) = I(7) = 14(2) - 27% = 1/4;

3. p}7l75 —pg’5 = (15 (6) + ]5 (6) - I5 (5) — ]5 (5)) : 2_2 = —2/4

Table 2.
Substitution g Substitution h
56172430 65172430
DDT of g DDT of h
1 00 0 00 0 O 1 0 00 0 0 0 0
00 0 2 00 2 0 00 0 2 0 0 2 0
02 00 2 000 o+ 1 90 2 0 0 %
o0 2 000 0 2 o+ 1 9o 2 0 0 %
00 2 000 0 2 o 2 0% o0 o0 2
02 00 2 000 o ¥+ % 0 % 0o o0 %
000 2 00 2 0 000 2 0 2 0 0
0000 01 0 0 00000 2 2 g
P 0 % % % 1 p 0 i % % 1
|D(g,p)|| 36 |0 |12 |0 |1 ID(g,p)| |25 |16 |6 |0 |0
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4 Cryptographic applications

The results of this paper can be applied to optimize some heuristic methods
of constructing s-boxes. It is well-known that the most heuristic methods are
based on swap operations (for example, see [1], 2], [3], [4], [5], [6], [9]). We can
optimize some of this methods using algorithms of this paper. Let’s show this
for the spectral-linear and spectral-differential methods of generating s-boxes

(see [4], [5]).
Let tg be the computational complexity of algorithm 2 described in [4].

Proposition 5. As n — o we have the following
ta=0(2").
Proof. In the paper [4], it is proved that
tg =0 (n : 27”) .
The complexity of algorithm is the product of the following values:

24n

1. the complexity of step 2 is ¢; - -n, ¢; = const;

2. the maximum number of iterations of the step 2 is ¢y - 23", ¢y = const.

Using algorithm 1 of this paper we obtain the following complexity bounds

24n

of step 2 ¢; - 2*"". This completes the proof of proposition. ]

The reader will easily prove the following proposition.
Let tsq be the computational complexity of algorithm 1 described in [4].

Proposition 6. As n — o we obviously have
tsd =0 (TL : 26n) .

Suppose t,e 18 the average execution time of the modified algorithm, .4
is the average execution time of its original version. For n (n = 5, ..., 8) table
3 includes the value ; tad of spectral-linear and spectral-differential methods In
particular from table T we obtain the following:

1. if n = 7 then modified algorithm is nearly 4 times faster than its original
version (see Algorithm 2 in[4]);
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2.

5

if n = 8 then modified algorithm is nearly 28 times faster than the old one
(see Algorithm 1 in [4]).

Table 3.

n 5 |6 |7 |8

w0
s
&y

Spectral-linear method (see Algorithm 2 in[4]) 2

Spectral-differential method (see Algorithm 1in [4]) |5 |8 |16 | 28

Conclusions

The results of our paper can be summarized as follows.
The dp-parameter (the linear spectrum L (h), the LAT T3 (h)) of an s-box h €

S (V,,) such that h = (z,y) g can be computed with time complexity O (22").
This is effected by using the algorithm 1 which described in this paper.

The pp-parameter (the differential spectrum D (h), the DDT T5 (h)) of an

s-box h € S (V,,) such that h = (x,y) g can be calculated with time complexity
O (2™). This is effected by using the algorithm 2 which described in this paper.

We optimized some heuristic methods of generating s-boxes. The optimized

methods can be applied for generating of big-size s-boxes.
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Abstract

Theorems on the exact values of linear and differential characteristics are proved
based on the separation of the cipher functional scheme into nonlinear part and linear
medium. The example of universal functional scheme demonstrates a significant range
of possible errors using the current way to estimate the characteristics of probabilistic
relations. It is stressed the difference in obtaining complexity estimates in linear and
differential cryptanalysis in comparison with some other types of cryptanalytic tech-
niques and the importance of proper way to implement experiments in order to verify
the estimation values of the relations characteristics to their true values. The point
of view of finding relations under the condition of a fixed cipher key is insisted. The
duality of the linear and differential cryptanalysis based on the concept of the linear
medium is exposed and formulated mathematically strictly. The degrees of diffusion in
linear medium are defined which maximization is one of the basic principles of ciphers’
design. By that, the qualitative property of high diffusion of the cipher formulated by
K. Shannon is formalized.

Keywords: linear cryptanalysis, differential cryptanalysis, linear medium, block ciphers.

1 Introduction

The point of view on linear and differential cryptanalysis presented here
was formed independently of their numerous representations in cryptographic
literature. These methods should be called local linear and local differential
cryptanalysis more correctly.

This paper is devoted to a technique for constructing a probabilistic linear
and differential relations of functions F' : Viy — V), defined by a functional

schemes. Here Vy = GF(2)Y, Viy = GF(2)M are arithmetic vector spaces over
the field GF(2).
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Let Vy denotes the set of all Boolean column vectors of length N. Suppose
a is a random vector with the uniform probabilistic distribution on Vy. The
non-strict equation al’ ~ bL" a € Vi, b = F(a) € V), is called a probabilistic
linear relation defined by column vectors L' € Vi, L" € V}; if the measure of
its strictness 6/ = 55, o =2P{aLl’ = bL"} — 1 is defined. The value 07/ 1 is
called a linear characteristic of a probabilistic linear relation.

Let D' € Vi, D" € Vyy are any fixed vectors, aV), a® e Vi, bW 5?2 e Vy, are
any vectors such that b)) = F(a(D), b2 = F(a®). A non-strict implication "if
al+a? = D’ then bV 453 = D" is called a probabilistic differential relation
and denoted by (D', D"). A measure of strictness of this implication pp pr =
Piyv.pr = P{F(a+ D') + F(a) = D"} is called a differential characteristic of a
differential relation.

Probabilistic linear and differential relations are used in attacks on crypto-
graphic keys of the ciphers usually defined by functional schemes. In the next
section we'll give some definitions related to functional schemes.

2 The linear medium of a functional scheme

The function F' : Vy — Vi, Vv 3 a — b = F(a) € V), defined by any
cipher with any fixed key is called a cipher transformation. It is specified using
the functional scheme F, i.e. the sequence of linear and nonlinear mappings.
This sequence may be considered as the computer program without cycles.

Let the nonlinear mappings f; : V., = Vi, @ — y; = fi(z), i = 1,... Kk,
be performed in this program by definite order. By z; € V,, we denote the
argument of the function f;. This argument is expressed using a € Vy as the
result of applying some previous operations. The linear operations are used
between nonlinear ones. Any linear operation may be expressed using additions

modulo 2 and reproduction nodes with several outputs x — (z, ..., ).

We won'‘t consider linear operations of the cipher separately. It suffices to
say that for any Boolean m; x n; matrices ¢;j, ¢ = 0,1,...,k, 7 =1,... .k, k+1,
my = N, npy1 = M, we can write x; = acy; + Zf:_ll vicij, j = 1,...,k, b =

acor+1 + Zleyici7k+1. Let ¢;; = 0 if ¢ > j. Then it's possible to construct a
matrix C' of size (N + Zle mz) X (Zf_l n; + M) with blocks ¢;; such that

(a,y1, ..., yp)C = (21, ..., T, b). (1)
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The matrix C' is said to be a matrix of linear medium of the functional
scheme F. It integrates all linear operations of the cipher transformation. The
linear medium is denoted by the same letter C' and is also a functional scheme. It
is obtained from the functional scheme F by deletion of all functional elements
fi, o =1,.... k. As a result all n; Boolean inputs of any functional element f;
becomes the outputs of the linear medium C' and all m; Boolean outputs of
this element becomes the inputs of the linear medium C'. The linear medium C
determines a linear mapping C' : V), — VZlem- L In accordance with
(1).

Thus the functional scheme F is represented by the linear medium C' in
which the nonlinear elements f; : V,,, — V., ¢ = 1,..., k, are embedded. As
a result we are able to study separately properties of the linear medium C' of
the cipher transformation I’ and properties of its nonlinear part consisting of
separate functions f;, ¢ =1, ..., k.

The representation of the cipher transformation by a functional scheme is
ambiguous. The cryptanalyst himself chooses a certain functional scheme deter-
mining the cipher transformation F'. If he chooses local elements f;, 7 = 1, ..., k,
too large, then the analysis of each element will be difficult, but this will reduce
their number and simplify the linear medium. On the other hand, if he chooses

+Zf:1 my;

elements f; too small up to Sheffer functions, it will increase their number and
will complicate the linear medium.

3 Chains of conformal local linear relations

The main aim of linear cryptanalysis is to construct a pair of column vectors
L' e Vy, L" € Vi;\{0} such that absolute value of linear characteristic o7/ » =
07 g = 2P{aLl’ = bL"} — 1 of linear relation aL’ ~ bL" is as high as possible.
Here b = F(a) and the vector a € Viy has the uniform probabilistic distribution
on V.

The probabilistic linear relation al’ ~ bL” or, what is the same thing,
all + bL” ~ 0 is obtained by formal addition modulo 2 of local probabilistic
linear relations z;l} + y;l! ~ 0, Ul € V., I/ € Vi, vi = filzi), i = 1,...,k,
characterized by linear characteristics §; = 52’;%, = 2P{x;l] = y;l!} — 1, where
each vector x; has the uniform probabilistic distribution on V;,,.

The set £ = ((I},17), i = 1,..., k) should be conformal in the sense that for

17 71

some L' € Vi, L' € V}, we have the equality S (20! + y;l") = aL’ + bL", or
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the following chain of equalities

HM?v

/
(il + yil!) + al’ + OL" = 2l + yl" + oL’ + bL" = (a,y) (?,) +

.t ( 1) = tan (1) + @nc (1) = @n | () v ()]

with respect to variables x;, y;, i = 1, ..., k (as if under independent a,y). This
variables are related with vectors a and b only by linear relation (1) excluding
equations y; = f;(x;). In the equalities above © = (z1,...,2%), ¥ = (Y1, .-, Yk)

and [’ € VZ*]k " is a concatenation of vectors [}, similarly " € VI, is a
1=1""7 =1 T
concatenation of vectors I7, i = 1,..., k. Thus the set £ = ((I,I!), i =1,...,k)

27 71
is conformal iff

()-(¢)

for some L' = Ly € Vi and L" = L € V}i;.
Let us consider a product § = d; - ... - 0 as a rough approximation (approx-
imate value) for the linear characteristic dz/ z». This is motivated by the next

reasoning.

Assume that if the random input a € Vy is uniformly distributed then
random variables z; € V,,, for all i = 1, ..., k, are uniformly distributed. Suppose
that the Boolean random variables n; = x;l; + y;l7, ¢ = 1,..., k are statistically

independent. Then 5L/7L~ = J.
Let 2Q0(L', L") be the set of all solutions of the system (2) with respect
to £ = (({,I),1 = 1,...,k) given L' € V3, L" € V}; (the vectors L', L"

are called boundary conditions). Let 20 = Upeys prevs (L', L") and WO =
(LeW"=0=10=0,i=1,..,k} If £ W\W, then d¢ = 0, where
0g = Hle 5;2%,. To construct the required linear relation we should find a set
£ e 2O for which the product \Sg\ is as high as possible. The factors equal to
one are preferable in the product de. This factors can appear if ! = 0. Suppose
£e WO Let 0 = |{i e {1,...,k}| 17 # 0}| be the number of factors in product
d¢ possibly not equal to one. To maximize |d¢| sometimes it is necessary to find
a number 6¢ = mingcgyon ¢o0¢ called a degree of diffusion of the linear medium
C with respect to linear cryptanalysis. The sets £ € 20 are called a chains
of conformal local linear relations if only nontrivial (when [ # 0) local linear
relations x;l} ~ y;l7, i = 1,..., k, are considered.
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The technique described in this section can be applied for searching mul-
tidimensional (s-dimentional) linear relations [1]. In this case it is necessary

to consider matrices with s columns instead of column vectors L', L”, I}, 17
1=1,.., k.

4 Chains of conformal local differential relations

If we consider equations (1) for two inputs a!), a® € Vi of the functional
scheme and subtract one from the other, we will get

(D' dY,....,d})C = (d,...,d, D"). (3)

i =1,...,k Here bV = F(a), b® = F(a®) and ;UZ(-l), x§2) are the function
f; argument values, if ¥ and a® are the inputs of the functional scheme,
V= fiaM), o = fi@?), i= 1,k

The main aim of differential cryptanalysis is to construct a pair of vectors
D" e Vy\{0}, D" € Vs such that the differential characteristic pp pr = p§,7 pr =
P{F(a + D') + F(a) = D"} of non-strict implication o) + a® = D' =
b + b(®) = D" is as high as possible.

Let D' e Vy, D" € Vi, di e V., d! € V,,., i = 1,..., k, is an arbitrary
set of vectors, satisfying the conformity condition (3). Since C'is a block upper
triangular matrix, then from implications ZEZ(-I) + SUZ(-2) =d = yz( )+ yZ = d!
for all i = 1, ..., k, it follows that a®) + a® = D’ = p() 4+ p2) = D"

Let us have the set of local differences ® = ((d},d}), i =1,..., k), d; e V,,,
d? €V, satisfying the condition (3) for some boundary vectors D' = D5 € Vy,
D" = D e Vi Consider a product ]59 = Hk ) p£§ & of differential charac-

teristics pg, v =P { fz( 1 d )+ fl( ) dy } of local differential relations
(1)

(d, d), where each vector x;

where D' = o) +a®, D" = ) 4 p@) q@! = ygl) +y? d, = :1351) + xl(.z),
(

has the uniform probabilistic distribution on V/,,.

The product pp is a rough approximation for the differential characteristic
p’fx p of the differential relation (D', D") € Vy x V. This is motivated by
the next reasoning. Let a® = a(!) + D’. Suppose the uniformity of distributions
of random variables xgl) e Vo, % = 1,...,k, follows from the uniformity of

distribution of the random input ) € V. Also suppose that the events ygl) +
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y,” =d7,i=1,.. k, are independent. Then, using (3), we have

Py + P = i=1,. k)=

STTP {5 () + (o0 ) =t} = 5o

Let W (D', D") be the set of all solutions of the system (3) with respect
to ® = ((d},d!), i =1,...,k) given boundary differences D' € Vi, D" € V.
Let W = UD/eVMD,,eVM W(D',D") and W = (D e W|d, = 0 = d! =
0,i = 1,....k}. f © € W\W®©, then j» = 0. To construct the required
differential relation we should find a set © € W(© for which the product pp =
Hk 1p§i @ is as high as possible. The factors equal to one are preferable in
this product. This factors can appear if d; = 0. For any ® € W© let 0y =
{i € {1,...,k}|d; # 0} be the number of factors in product pes possibly not
equal to one. To maximize pp sometimes it is necessary to find a number 6, =
mingywon (o3 called a degree of diffusion of the linear medium C' with respect

to differential cryptanalysis. The sets ® € W are called a chains of conformal
local differential relations if only nontrivial (d} # 0) local differential relations
among (d;,d!), i =1, ..., k, are considered.

5 Theorems about exact values of linear and differential
characteristics

Theorem 1. If L' e Viy, L" € Vi, then Oppr = X econ(r 1) Og.

Theorem 2. If D' e Vi, D" € Vy;, then

pD/ pDr =

1 /177 nrn ~ ~
~ D'L'+D"L
LS G L
DeW (D’,D") (L, L"MeVExV £1,89€0 (L, LM):
L1#L,

The theorem 1 have been proved in special cases (see [12],[14]). The theorem
2 follows from the theorem 1 and the fact from [12] about the links between
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linear and differential characteristics of Boolean mappings. In the light of this
theorems, the search of linear and differential relations (see sections 3 and 4)
is performed by maximizing the absolute values of individual summands |dg|
and pp in formulas for exact values 0y r» and pp pr. But this maximizations
are carried out for all £ € WON\{0} and for all ® € WO\{0}. This fact is an
additional motivation for choice dg and po as rough approximations for o/ p
and DD D"

Also due to theorems 1 and 2 we can see the disadvantages of the technique
of linear and differential cryptanalysis described above. Here are the main dis-
advantages:

1. We are searching for relations that we can find, not the best ones.

2. General results about the exactness of the approximations for linear and
differential characteristics are not available.

3. If we focus on problems of finding § = maxgem(m\{oﬂgg\ and p =
maXgepy o) (0)Po, then we have to leave the domains containing the values
0= maXL’eVA”;,L”GVJ\";\{O}|(5L’,L”‘ and p = MaXprevy\{0},D"eVy PD',.D"-

Let’s explain the last. The problems of finding 5 and p are related to min-
imization of characteristics f¢ and 0%. If we decrease fg and 6%, then the car-
dinalities [20(L', L")|, |W (D', D")| (see theorems 1 and 2) will reduce and the
values [0, rs| and pp, py will probably decrease.

We have to put up with these disadvantages because the problems of max-
imazing the values |0z 1»| and pps pr is much more difficult then the problems
of maximazing the values |d¢| and pp as it can be seen from theorems 1 and 2.

Of course, the assumptions about the uniformity of random variables x; €
Vi, @ =1,...,k, and on the independence of events in motivations formulated
above are not satisfied as a rule. Nevertheless, SOMETIMES we have § ~ 4,
P~ p, for example, 37 < 0/|6] < 3, 107" < p/p < 10. We can verify this with
the help of empirical estimations 0%, p* and appropriate confidence intervals.
If we exceed characteristic threshold of measurement accuracy, then this can
lead to the study of phenomena not related to the essence of the measured
value. The characteristic SOMETIMES refers to a sets of all possible cipher
transformations and chains of conformal local probabilistic relations obtained
by the cryptanalyst.

If the values |Sg|, po are small, then the verification of the approximate
equalities Sg SS) Ly Ll DD ~ Ppy py 18 complicated due to limited computing
resources. In this case we have to consider a close analogues of the investigated
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cipher. According to the authors, the best analogues are those ciphers that have
the same linear medium, even with the same number of iterations. In this case
the equalities in theorems 1 and 2 have the same form. A verification must be
carried out as many situations as possible. For this purpose for the fixed n; and

m; the functional elements f; : V,,, — V,,,, ¢ = 1,..., k, should be varied so as to
increase [0g|, po. And for any i € {1, ..., k} even the inequalities 5;;1'1{, < 5;jil<, ,

pﬁf < pgﬁ o can be achieved. The functional elements f;, i € {1,...,k}, for

which I! = 0,17 =0 or d, = 0, d/ = 0 may also vary.

The characteristics 8, p have advantages and disadvantages, but they are in-
dependent characteristics of the cipher more important then ¢, p. And it doesn’t
even matter that they are close to or far from 4, p. Usually, the characteristics
0, p are in the imagination of cryptanalyst. They cannot be evaluated for the
real ciphers in contrast to 8, p.

A large number of indirect data points to the proximity of 6% and p. For
this reason the linear cryptanalysis is preferable to the differential cryptanalysis
(in some cases). For example, we need about 1/§% known plaintexts to attack
the cipher with linear cryptanalysis and about 1/p chosen plaintexts or chosen
ciphertexts to attack it with differential cryptanalysis, more precisely, about 1/p
pairs (a,6M), (a®,b?)) such that aV) 4 a® = D" or bV 4 b?) = D"

6 The duality of differential and linear cryptanalysis

From the comparison of sections 3 and 4 it follows that the problems of
finding linear and differential relations are identical. It is not accidental [2]. The
equality (2) follows from (lllT, . l;:, L//T> CT = (L/T, . ,l;;T> by transposi-

nT nT

tion or from equality <L”T, l;:, N ZI1T> C* = (lk ey by L/T), where the matrix
C* = HCZ}H, i=0,1,....k j=1,...,k k+ 1, is obtained from the matrix C”

by centrally symmetric permutation of blocks: ¢j; = cgﬂ_ ki

Thus, the problem of finding probabilistic differential relations of the cipher
F' defined by the functional scheme F with the linear medium C' and local
nonlinear functions f; : V,,, — V.., ¢ = 1,..., k, is equivalent to the problem
of finding probabilistic linear relations for a different (for a dual) functional
scheme F* with the linear medium C* and local nonlinear functions such that
Oy =Pl eV 1MeVy i=1k

MEg+1—3) Nht1—4
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Similarly, the problem of finding probabilistic linear relations of the cipher

F' is equivalent to the problem of ﬁndmg probab1hst1c differential relations for
I

a functional scheme F*, for which pg , = 0 ,’f;ldfT, d'" e Vi, d" € Vo, .,
i=1, ..k
The functions f; Vi, — Vo, © = 1,...,k, with such character-

istics may not exist, but it does not matter. The mappings f; are not
used to find probabilistic linear and differential relations. Only the matrices

H ‘5l/ l//

are needed for this.
dle‘/'n/i 7d//e‘/trﬂi

VeV eV, and Hp "

7 Universal functional scheme

Consider two functional schemes f., ¢ € GF(2), with parameters N = 2,
M = 1, k = 2, defined by equations y; = wor1 + (2o + €)(x1 + 1 4+ ¢) =
(1+¢&)xg+ exy. For functional elements (g +¢)(x1 4+ 1+ ) the absolute values
of linear and differential characteristics are equal for all relations and are not
depend on € € GF(2).

A universal functional scheme § for functions Vy — Vi, (aq,...,ax) —
(b, ..., bar), includes M2V schemes f., 2" schemes for each b;, i = 1,..., M.
For any scheme f. we put zyp = a; + a1 = 0, and denote by x; any one of
2NV conjunction of Boolean variables ay, ..., ay. Any b; is a sum modulo 2 of
outputs of 2V schemes §.. We may obtain any function Vy — Vi by selecting
the value ¢ for each of M2Y schemes. Each function corresponds to its own
scheme. Each of the 242" functional schemes has the same linear medium.
The absolute values of linear and differential characteristics are equal for the
corresponing functional elements. If we use this functional schemes and follow
the recommendations from sections 3 and 4, then for all functions Vy — Vj;
we obtain the same "best" probabilistic linear relation and the same "best"
differential relation. This is an extreme example of the first disadvantage from
section 5. The universal functional scheme allows us to obtain exotic examples
of relations both between 6 and ¢ and between p and p.
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8 Mission of cryptographic keys in linear and differential
cryptanalysis

Most authors obtain probabilistic linear and differential relations and es-
timate their characteristics directly for functions ® : Vy x Vg — V),
(a,X) — b = ®(a,X), where X € Vi is a cryptographic key. They often
use various kinds of probability-theoretic models depending on X (besides the
probability distributions on Vy x V).

The authors of this work are deeply convinced of the following. The prob-
abilistic relations used to determine subkey Z that apply before (or after) the
mapping P, should to be constructed for the cipher transformation F': a — b =
®(a, X) in accordance with sections 3 and 4 for each key separately. Sometimes
the relations can be obtained for entire classes of keys X with the help of the
same chains. This relations will be characterized by the same approximations
de, Po. Our point of view is difficult to challenge, for example, for a cipher such
that on every round all components of current block are permuted by some per-
mutation depending on the key X. The characteristics of linear and differential
cryptanalysis used to determine subkey Z are the random values with respect
to random X € V. These random values should be averaged.

Cryptographers who applies linear and differential cryptanalisys are concen-
trated near two poles. One construct chains £ and ® of conformal local linear
and differential relations. They maximize the values d¢ and pp by painstaking
search and may not know true ratio between ) 1,1, and between po, pp. py -
Other cryptographers are trying to prove theoretically the proximity of 8, p
and 9, p. Sometimes they do it in general case. They use different probability-
theoretic models and do not care if the model is relevant to the analyzed cipher.
Such stadies may lead to false conclusions.

9 The importance of linear and differential cryptanalysis
for cipher design.

We may consider the problem of minimizing parameters & and p in cipher
design as a formalization of a rule that always exists to make ciphers nonlinear
as much as possible. This is achieved by decreasing the absolute values of linear
and differential characteristics and by increasing the degrees of diffusion 6 and
0" of the linear medium. The latter explains the transition from SP-networks
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(in which Shannon’s idea of confusion and diffusion were realized in the sec-
ond half of the last century [3]|) to XSL-ciphers. A new cipher design technique
has appeared. This technique is based on guaranteeing high diffusion degrees 6
and @ of cipher’s linear medium. Cipher construction starts with the construc-
tion of a general structure, i.e. a linear medium. The nonlinear mappings are
not specified in the preliminary stage of cipher design. They are considered in
general form. The diffusion degrees of linear medium are evaluated before the
specification of nonlinear mappings. The higher diffusion degrees, the easier it is
to guarantee the security of a cipher against linear, differential and other tech-
niques of cryptanalysis due to careful selection of nonlinear mappings included
in the functional scheme. The degrees of diffusion # and 6’ of the linear medium
(along with the number of rounds and the cardinality of the key set) are unusual
characteristics that are easy to estimate and at the same time allow to make
conclusions about the security of the cipher.

The diffusion degrees 6 and 6" of XSL-cipher with two rounds are the
coefficients of diffusion pp and p/, for separate nonsingular linear transforma-
tion A € GL(n,2) [2]. Similar linear medium’s diffusion degrees related to s-
dimentional linear cryptanalysis are also important. They are more exact diffu-
sion characteristics of permutation matrices used in S P-networks then 6 and ¢’

14].

Another representation of the methods of constructing probabilistic linear
and differential relations without separation of the cipher’s linear medium can
be found, for example, in [5]-[13].

References

[1] Erokhin A. V., Malyshev F. M., Trishin A. E., “Multidimentional linear method and diffusion
characteristics of linear medium of ciphering transform”, Mat. Vopr. Krypt., 8:4 (2017), 29-62.

[2] Malyshev F. M., “The duality of differential and linear methods in cryptography”, Mat. Vopr.
Krypt., 5:3 (2014), 35-47.

[3] Massey J. L., “An introduction to contemporary cryptology”, Pro-ceedings of the IEEFE, 76:5
(1988), 533-549.

[4] Malyshev F. M., Trifonov D. I., “Diffusion properties of XSLP-ciphers”, Mat. Vopr. Krypt., 7:3
(2016), 47-60.

[5] Biham E., Shamir A., “Differential cryptanalysis of DES-like crypto-systems”, LNCS, Crypto’90,
537, 1991, 2-21.

[6] Biham E., Shamir A., “Differential cryptanalysis of DES-like crypto-systems”, J. Cryptology, 4,
1991, 3-72.

224



7]
8]

19]
[10]

[11]
[12]
[13]

[14]

Matsui M., “Linear cryptanalysis method for DES Cipher”, LNCS, EUROCRYPT’93, 765,
1994, 386-397.

Matsui M., “The first experimental cryptanalysis of the Data Encryption Standard”, LNCS,
Crypto’94, 839, 1994, 1-11.

Biham E., “On Matsui’s linear cryptanalysis”, LNCS, EUROCRYPT’94, 950, 1995, 341-355.

Matsui M., “On correlation between the order of S-boxes and the strength of DES”, LNCS,
EUROCRYPT’94, 950, 1995, 366-375.

Nyberg K., “Linear approximation of block ciphers’, LNCS, EUROCRYPT’94, 950, 1995, 439—
444.

Daemen J., Govaerts R., Vandewalle J., “Correlation matrices”, LNCS, FSE’94, 1008, 1995,
275-285.

Borst J., Preneel B., Vandewalle J., “Linear cryptanalysis of RC5 and RC6”, LNCS, FSE’99,
1636, 1999, 16-30.

Daemen J., Rijmen V., “The Design of Rijndael: AES — The Advanced Encryption Standard”,
2002.

225



The CTR Mode with Encrypted Nonces
and Its Extension to AE

Sergey Agievich

Research Institute for Applied Problems of Mathematics and Informatics
Belarusian State University, Belarus
agievich@bsu.by

Abstract

In the modified CTR (Counter) mode known as CTR2, nonces are encrypted before
constructing sequences of counters from them. This way we have only probabilistic
guarantees for non-overlapping of the sequences. We show that these guarantees, and
therefore the security guarantees of CTR2, are strong enough in two standard scenarios:
random nonces and non-repeating nonces. We also show how to extend CTR2 to an
authenticated encryption mode which we call CHE (Counter-Hash-Encrypt). To extend,
we use one invocation of polynomial hashing and one additional block encryption.

Keywords: CTR mode, authenticated encryption, block cipher, polynomial hashing, gamma
overlapping.

1 Preliminaries

Let E be a block cipher with block size n and key space K. It is a multiset
consisting of permutations Fx € Perm(n) which are indexed by secret keys K €
IC.

Here Perm(n) is the set of all permutations over {0, 1}". Elements of {0, 1}"
are called blocks. Let N = 2" denote their number.

We also denote by {0,1}* the set of all binary words of finite length. For
a word u € {0,1}*, let |u| be its length. If u,v are words of the same length,
then u@®w is their bitwise modulo 2 sum (XOR). For a permutation 7 € Perm(n),
let 7 be its ith compositional power (7¥ is the identity permutation). Denote
by ml the ith factorial power of a positive integer m: mll = m(m—1) ... (m—
i+1).
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To extend the action of E from {0, 1}" to {0, 1}*, encryption modes are used.
One of the most popular is CTR. In this mode, a unique nonce S € {0,1}" is
repeatedly transformed by a public permutation next. The resulting sequence

Ci =5, ()= next(C’l), (5 = IleXt(Oz), ..
is encrypted using Fx € E to get the blocks
[y = Ex(Ch), Ts = Ex(Cy), ..

To encrypt a plaintext X € {0, 1}*, the first [|X|/n| blocks are used. They
are concatenated and then truncated to |X| bits. The resulting word I' €
{0, 1}X1 is XORed with X to produce a ciphertext

Y=X&TI.

In the Soviet standard GOST 28147 [7], the word I" is called a gamma. That
is why the notations. The blocks C7, Cy, ... are usually called counters. That is
why CTR (Counter).

Suppose that in two encryption sessions, gammas I and IV overlap. Then an
adversary who has intercepted a plaintext-ciphertext pair (X,Y") in one session
can restore I' = X @Y and then partially reconstruct X’ from Y’ = X’ @®1I” in
the parallel session. Thereby, a gamma overlapping is considered a compromise
of the CTR encryption.

To avoid overlapping, a permutation next is chosen to have long disjoint
cycles in its cycle decomposition. The nonces S of different sessions are picked
from different cycles or a new nonce continues the cycle (actually, the sequence
of counters) from the previous session. This approach, implemented in the stan-
dards |6, 8, 9|, ensures that all counters in all sessions are unique. In other
words, there are no collisions between counters and gamma overlapping is cer-
tainly impossible.

Unfortunately, such strict guarantees of no collisions / non-overlapping
force the nonce management to be rather complicated. One has to use a safe
monotonous timer to generate nonces or a rewritable memory to store them
between sessions. Both options can be difficult to implement on some crypto-
graphic devices. The third option, random generation of nonces, does not match
the approach, at least it is not allowed in the mentioned standards.

Another approach, probabilistic guarantees of gamma non-overlapping, was
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proposed in GOST 28147 and repeated in [15], where a nonce S is first encrypted
and then transformed by next:

) = next(EK(S)),

not C7 = S. (To be completely accurate, GOST’s next is not a permutation: it
acts bijectively on only a 2™/2(22 — 1)-element subset of {0,1}", n = 64.) The
similar scheme

O = Ex(S)

was considered later by P. Rogaway in [14], where the corresponding encryption
mode is called CTR2. We extend this name to the GOST case. It is natural be-
cause the main point there is nonce encryption, the optional invocation of next
is not critical.

Nonce encryption has obvious drawbacks. First, it slightly decreases the
overall effectiveness of the mode. Second, it throws ' at an unpredictable point
of next’s cycle that may cause a collision with other counters.

On the other hand, the probability of collisions is controllable small under
reasonable restrictions on the amount of data processed with a single key. We
confirm this fact in Section 2 in terms of a game called “Battleship on a circle”.
A control over collisions allows us to prove the security of CTR2 in the CPA
(Chosen Plaintext Attack) settings. This is done in Section 3. In a nutshell, we
embed well-known or easily derived combinatorial estimates within the context
of Provable Security. We examine two techniques for the nonce generation: ran-
dom nonces and non-repeating nonces. Note that we do not require that the
nonce management deterministically ensures uniqueness of all counters in all
sessions and thus allow it to be more flexible.

An additional argument in favor of nonce encryption is that it provides an
easy extension of the conventional CTR encryption to authenticated encryp-
tion (AE). In Section 4, we show how to build this extension using polynomial
hashing and one additional invocation of Ex. We call the resulting scheme
CHE, meaning the cascade Counter-Hash-Encrypt. It is actually one of two
AE schemes briefly described in [1]. There the security of only authentication,
not encryption, is considered. In this paper, we fill the gap. We also provide a
detailed description of CHE.

Usually, in AE schemes based on polynomial hashing (perhaps the most
famous of them is GCM [10]), a data-driven polynomial is evaluated at a secret
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point which depends only on K. In some cases (including GCM), this point
can be recovered with the subsequent compromise of all encryption sessions
as soon as a nonce S is used twice. A distinctive feature of CHE is that the
secret point depends on S. Due to this fact, a repetition of nonces in multiple
encryption sessions compromises only these sessions without affecting others.
Thus, CHE provides reasonable security guarantees against nonce-misusing. To
the best of our knowledge, stronger guarantees, the so-called full nonce-misuse
resistance where only completely identical sessions compromise each other, are
only achieved through two passes over data what is difficult to maintain in many
scenarios.

Further we assume that next is a full cycle or almost full cycle permutation.
In other words, if M is the maximum cycle length of next, then M ~ N.
Usually, M = N which is achieved by interpreting blocks of {0, 1}" as integers
modulo N and incrementing these integers in next. Another option for next is
to interpret {0, 1}" as the binary field F' of N elements. Let o be a primitive
element of F' and 8 be an arbitrary element. Then the permutation

next: A — al+ (3

decomposes into a cycle of length M = N — 1 and a loop at 5/(1 — a)). We use
this next in Section 4.

Finally, it should be mentioned that encrypting a nonce S we make the
counters C1,CY, ... secret. An adversary cannot reconstruct any input-output
pair of Ex even after intercepting all the session data (5, X, Y’). Blocking direct
access to Ex complicates attacks to recover K, especially statistical and alge-
braic attacks which usually strongly depend on the complexity of the simplest
accessible cryptographic component.

2 Battleship on a circle

“Battleship on a circle” is played by Navy and an adversary. A game field
is a circle on which M points numbered from 0 to M — 1 are placed. Navy
deploys ships on the circle concealing their locations. A ship of displacement r;
(a positive integer) occupies r; consecutive points. In total, g ships of overall
diplacement r (¢ < r < M) are deployed. The adversary makes ¢ shots on the
ships.

Detailed rules of the game (see Figure 1 for example):
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1. The adversary splits r into a sum r; +ry + ... + 1, of positive integers and
reports ri,rg,...,7, to Navy.

2. Navy deploys ships at random points on the circle. The bow of the ¢th ship
is placed at point C; ; and the whole ship occupies the segment C; 1, C; 1 +
1,...,Ci1+r;—1 (additive operations are modulo M). Collisions of ships,
that is, intersections of their segments may occur. In the case of a collision,
Navy loses and capitulates. Let the event D; mean no collisions.

3. If Navy has not capitulated, then the adversary makes q shots at different
points Si,..., S5, on the circle. If at least one shot hits a ship, then the
adversary wins. If all the shots miss, which is fixed by the event Dy, then
Navy wins.

Further we consider two variants of the game: G; and Gb.

In G1, the ship bows Cj ;1 are chosen uniformly at random independently of
each other. The shot points S; are also chosen uniformly at random with the
only restriction that they must be different. In other words, (Si,...,S,) is a
random g-permutation of M numbers. There are M9 ways to choose it.

In G5, the bows also form a random g-permutation. Shot points are arbitrary
distinct.

Let us immediately explain that the games GG; and G5 simulate attacks on
CTR2 with random and non-repeating nonces respectively. Ships correspond to
sequences of counters. The lengths of the sequences can be chosen by an ad-
versary who needs only to keep the total length, that is, the total amount of
plaintext-ciphertext data. A collision of ships trivially means a gamma overlap-
ping. More subtle are shots. A hit means that a nonce coincides with one of the
internal counters. We will explain further details in the next section.

We are interested in the probability that Navy wins: P {D1Dy} =
P {D, | D1} P{D:}.

Lemma 1. In the games Gy and G,

4q7“—q2—27“—|-q
i )

Proof. Let us start with G;. Navy can deploy the fleet without collisions as
follows:

P{DiDy} > 1-

1) put the bow of the first ship at any of M point on the circle;
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Figure 1: Battleship on a circle (Navy wins)

2) permute remaining ships in one of (¢ — 1)! ways;

3) choose ¢ non-negative intervals between successive ships starting from the
first one. The tuple of intervals is a weak ¢-composition of M — r and,

. (M—r+q—1
therefore, can be chosen in ( e

o1 ) ways.

We repeat here the arguments of V. Nosov reported in [2]. The arguments

yield:

M(g—=D!M5Y (M =7+ g — 1)la
P{D)} = = _ 4 _

t=r—qg+1

Let TDH be the event that the shot S; is successful. We have

Dy} = —

P {@272' M

and, therefore,
P{D2|D1} = 1—P{’D271U...U’D2’Q‘ID1} =

q
>1-Y'P{Dy, | Dy} =1-L
2, i
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In result,
P{Di}P{Dy | D1} =

~ Mg — O
S (1@ -9l-1 @_¢g>>1_4w ¢ —2rtq
oM

which was to be proven.

When passing from G to G, the probability P {D;} does not decrease and
we can use the bound just derived on this probability. We can also reuse the
bound on P {D, | D;} and get the same overall bound as for Gj. O

An interesting question is what is the best strategy for an adversary in Go.
The partial answer is that with gr « M the bound of Lemma 1 is almost reached
when the adversary chooses 11 = r —q+1, 7 = ... = r, = 1 and shoots the
circle with step ry starting from a random point. This tactic leads to the fact
that to satisfy DDy the bow of the first ship must not occupy a continious
segment of length r1q. The second ship must avoid r; + ¢ points, the third ship
must avoid 7y + ¢ + 1 points and so on. In result,

q—1 .
r1q r+q+i1—1
P{D D =<1——) 1— o
tD1D2} M’II( M )

i=1
q—1 .
Nl_@_ZﬁJqurz—l
M M '

The right part coincides with the bound of the lemma. Approximately the same
probability will be achieved, if the adversary chooses 11 = ... = r,_1 = [r/q]
and shoots again with step 7.

Finally, let us point out a fact that will be used in Section 4. Suppose that
the rules of the game are relaxed and an adversary is allowed to choose zero r;
or, in other words, reduce the number of ships while maintaining their total dis-
placement r. Analyzing the proof of the lemma, we conclude that the probabil-
ity P {D;} increases with this reduction and, therefore, the bound on P {D;D,}
becomes better. Of course, this bound will be even better, if the adversary
reduces the total diplacement r.
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3 Security of CTR2

To approve the security of CTR2, we use the standard notions sketched
below (see [13] for further details and references).

1. An adversary (probabilistic algorithm) A gains access to an encryption
oracle O. The adversary interacts with O using the following interface. It
chooses a plaintext X € {0,1}* and a nonce S € {0,1}", sends the oracle
the pair (X, S) and receives a ciphertext Y e {0, 1}/*!. The adversary must
use this interface following one of the two contracts: the nonces S are either
chosen uniformly independently at random (the random nonces contract)
or they are arbitrary distinct (the non-repeating nonces contract). Empty
plaintexts are not allowed in both contracts.

2. The oracle can be implemented in two ways. In the first (real) implemen-
tation, O actually performs the CTR2 encryption using a permutation E
chosen at random from F. This implementation is denoted by CTR2[Ek|.
In the second (ideal) implementation, O picks Y uniformly at random
from {0, 1}X!. This implementation is denoted by p.

3. The adversary sends O arbitrary queries, receives and analyzes correspond-
ing answers. Its task is to distinguish the real implementation from ideal.
The adversary returns 1 (real) or 0 (ideal). Let A9 be the output of A.

4. The distinguishing capabilities of A are characterized by the advantage

AdviIEsre (4) = ‘P facteted —qf —p a1y,
The probabilities here are over the random tape of A and over the random
choice of K and p. If Advgfﬁﬁ?[’z](A) is small, then the two implementa-
tions are hard to distingush, which means the security of CTR2 based on FE
relative to A. The used abbreviation ind-cpa covers the notion of indistin-
guishability and CPA settings: the adversary has access to the encryption

oracle, but not the decryption one.

Let us make a standard simplification replacing Fx, a random represen-
tative of E, with 7, a random representative of Perm(n). This replacement
turns Advé’?ﬁ;@](fl) into the advantage

AdvénTc‘lf_{;r[);erm(n)] (A) = ‘P {ACTR2[F] = 1} —-P {AP = 1} .
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The replacement is motivated by the general assumption that permutations of a
secure F are hard to distinguish from random ones. The replacement is accompa-
nied by a penalty (another advantage) which characterizes indistinguishability
between random representativies of £ and Perm(n). This penalty is formal in
nature (it is never estimated), we do not specify it here for simplicity.

For given non-negative integers q and r, ¢ < r, we are interested in estimat-
ing

ind-cpa
m/?X AdVCTRQI[)Perm(n)] (A) )

where the maximum is taken over all adversaries that make ¢ queries to O
and the total length of plaintexts X in these queries is equal to r. The length
is specified in blocks, possibly incomplete last. Incomplete blocks of different
plaintexts are counted separately.

The advantage of a reasonable A cannot increase if some full block is cut to
incomplete. Therefore, we can assume without loss of the maximum advantage
that all plaintexts and ciphertexts consist of full blocks.

Let us write again how CTR2 works, that is, how plaintexts X, ..., X, and
nonces Si, ..., S, are transformed into ciphertexts

Y;' = CTR2[7T](X1,SZ), 1= 1, .o q.

Let X; consist of blocks X;1,...,X;,,,t=1,...,¢. wherer; > 0and r +... +
r, = r. The corresponding blocks of the ciphertext Y; are

Yij = Xi; ®7(Cij),
where
C¢71 = nextc(ﬂ(Si)), C,"Q = next(Ci,l), N Ciﬂ“i = next(Ci7ri_1).

Here ¢ is an integer parameter of the mode. It equals 0 (the original CTR2)
or 1 (GOST). In this section, the choice of ¢ is inessential. However, in the next
section we use ¢ = 1.

Lemma 2. Let N be a positive integer and q,r be non-negative integers such

that ¢ +r < N. Then
1 . 1 1+7“(2q—|—7°—1) |
(N — )l = N7 2N
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Proof. Consider three fractions: 1/(N +2¢+r—1),1/(N—g—i) and 1/(N —q—
r+1+1d),0<i<r—1. Thesum of their denominators is 3N. Therefore, the
product of the denominators does not exceed N3, the product of the fractions
is not less than 1/N?3, and

1 1 >N+2q+r—1_ 1 1+2q—i—r—1
N—g—i N—qg—r+1+i" N3 - N2 N ‘
Hence,

= 1 1 1 2q+r—1\"
=11 . ) = 1+ =,
! N—-—qg—i N—qg—r+1+i N2 N

from which the result follows. ]

Theorem 1. Let M, the mazxumum cycle length of next, be at least N — 1.
Let an adversary A make at most q queries (X, S) with either random or non-
repeating S. Let r be the total number of X ’s blocks in these queries. Then

ind-cpa T(T - 1)
AdVC'TRQZ[)Perm(n)] <A) S IN T,
where
e =
rir+2¢—1)(4gr —¢* —2r+3¢+2) (r—q)?+r—3q—2
= max | 0, — :
4N? 2N

Proof. The bound obviously holds for g+7 > N (in this case r > N /2). Assume
further that ¢ + » < N, so that Lemma 2 can be applied.

Consider arbitrary nonempty plaintexts Xi,..., X, r full blocks in total,
random or arbitrary non-repeating Si, ..., .S;, and random 7, Yy, ..., Y,. When
we say random, we mean that implied objects are chosen uniformly at random
from prescribed domains, each object independently of others.

Let the event B means that all r blocks I'; ; = X, ; @ Y; ; are distinct. For
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the complementary event B, it holds that

_ r(r—1)
P{B} < T

Introduce the probability
p=P{CTR2[rn|(X;,S;)) =Y;:i=1,...,q| B}

and apply Patarin’s “coefficients H” technique (see [12] and also [4, 5, 11]).
According to this technique, if an inequality p > (1 — €)/N" with some € > 0
holds, then the required advantage is upper bounded by the sum P {B } +e. It
is remains to prove that € from the statement of the theorem indeed satisfies
the inequality.

Consider the following events, each new one provided that previous events
occur.

The event C: all blocks m(S;) fall into the largest cycle of next. The probabil-
ity pc = P {C} equals either M9/N¥ in the case of random nonces or M9 /Nl
in the case of non-repeating nonces. In both cases,

>4 (1-4)
pe =N N/

Indeed,

Me o Mlad Mo (M- 1)l
ﬁ> Nldl :W' (N_l)[qfl]
:M.M—q—l—1>M N—q>M<1 q>'

N N—-1 N N—-1° N

N

The event D: all counters C;; (they are all on the largest cycle according
to C) differ from each other and from nonces Si. The probability of this event
is already estimated in Lemma 1 of the previous section:

dgr —q*> —2r +¢q

=P{D >1—-
PD { \C} Wi

We indeed satisfy the rules of the game described there, if we imagine that
the initial counters C;; are placed on the cycle randomly and after that, in
the case of no collisions, the random permutation 7 either “generates” random
distinct S; = 7 '(next™¢(C;1)) or implicitly transfers the given distinct S;
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into next™(Cj1). It may be that some S; lies outside the cycle. In this case, the
probability pp only increases with respect to the probability treated in Lemma 1
and the bound of the lemma remains valid.

Consider the probability pcp = P {CD} = pepp. Dealing with the case M =
N — 1, we get

dgr —q®> —2r +3q + 2
N 2N '

> 1
2N

q M 4qr—q2—27’+q
pOD?(l—N)<

Obviously, this bound also holds for M = N.

The event £: m maps C;; to I'; ;. The previous events means that all I'; ;
are distinct, all C; ; are distinct, all S; are distinct, C;; differ from Sy, and ¢
images of 7 at points S; are already known. So there are (N — ¢)! ways to

determine remaining images of 7 and exactly (N — ¢ — r)! of them are in favor
of £. Therefore,

1 1 r(r+2q—1)
pE:P{g‘BCD}:(N_q)[r]>Nr(1+ 5N )

Here we use Lemma 2.
In result,

p = P{CDE | B} = pcppr =

_ g2 _ _
>i 1_4qr q°—2r +3q+2 1+r(2q+r 1) |
N7 2N 2N

from which the expresion for e follows. ]

It is easy to verify that € increases as a function of ¢ for ¢ < r. Substitut-
ing ¢ = r into the expressions of the theorem and slightly simplifying them, we
obtain the following bound, uniform in g:

r? 4142 +7°2(97°2+5)
2N AN?

ind-cpa
AdVCTmIEPerm(n)] (A) <

For comparison, a similar advantage in the CTR mode is upper bounded
by r2/(2N) (see [13]). Informally, the transition from CTR to CTR2 is ac-
companied by a penalty, the main contribution to which is made by the term
9r4/(4N?). This penalty is insignificant in the region 7? « N, which is used in
practice.
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Note that the bound 7?/N on the CTR2 advantage is reported (without
proof) in [14] for the case M = N.

4 CHE and its security

In this section, we extend CTR2 to the authentication encryption mode
called CHE (Counter+Hash-+Encrypt). The extended functionality of CHE is
data authentication. CHE follows the Encrypt-then-MAC paradigm (first en-
crypt, then authenticate) which seems to be better than the MAC-then-Encrypt
alternative (see [3]). Not only encrypted data is authenticated, but also associ-
ated data that is transmitted in the plain form. Thus, CHE belongs to the AEAD
(Authentication Encryption with Associated Data) class of the AE schemes.

Let us interpret blocks of {0, 1}" as elements of the finite field F of order N,
Suppose that the usual correspondence between F' and {0, 1}" is used, when the
addition in F'is @. Let

next(\) = a=A@ [,

where « is a primitive element of F', 3 is a nonzero element. Hereinafter we
make the multiplication sign explicit. As we have already noted, the maximum
cycle length of next is N — 1. Moreover, the powers next’, i = 1,2,..., N — 2,
considered as polynomials over F' all have nonzero constant terms.

The CHE mode is determined by the algorithms described below. Their
inputs and outputs are: a plaintext X € {0, 1}*, associated data I € {0,1}*, a
key K € K, a nonce S € {0,1}*, a ciphertext Y € {0,1}/*|, an authentication
tag T € {0,1}". An arbitrary nonzero Ty € F' is used. The operation <- means
splitting a binary word into n-bit blocks preceded by padding to the block size.
The reverse operation < means assembling a word from several blocks followed

m
by truncation to m bits.
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Algorithm Wrap Algorithm Unwrap

Input: X, I, K, S. Input: Y, I, K, S, T.
Output: Y, T Output: X or | (authentication er-
Steps: ror).
Steps:
1. H < Ex(S), C — H,
2. (]1,...,]7n/)<ll. T/<—T().
3. Fori=1,2,....,7" 2. (Iy,..., 1)) & 1.
(a)T(_(TC_D[Z,)*H' 3 FOI“iZl,Q,...,T’
4.(Xy,...,X,) & X. (a) "= (I"® L;) « H
5. Fori=1,2,...,r: 4. (v1,...,Y,) &Y.
(a) C < next(C); 5. Fori=1,2,...,r:
(c) T— (T®Y;)«H. (b) C' <« next(C);
6.7 o (Vi Y0, (c) Xi < Y;® Ek(C).
7.Encode 1| and |x| O X (Kne X
by W e {0,1}". 7. Encode 7| and | X |
8T — (TeW)=«H. by W e {0, 1}".
9. T« Ex(T). 8. T — (T'®@W) = H.
10. Return (Y, 7). 9. T — Ex(T).
10. Return X if T'=T" and L oth-
erwise.

It is assumed that in Step 10 of both algorithms, different pairs (|7], |Y])
give different words W and nonzero |I] or |Y'| gives a nonzero W.
The algorithm WRAP can be explained in the following way.

C. First, the CTR2 encryption is performed: Y «— CTR2[Ek](X,S). The
encrypted nonce H = E(S) is used to build internal counters next’(H),
i=1,2...

H. Second, a polynomial fy.)(A) € F[A] is implicitly constructed from
the pair (Y, 7). This polynomial has a positive degree, its constant term
equals 0, different pairs give different polynomials. The polynomial is eval-
uated at the point H, the result Z = fy,n(H) becomes a hash value
of (Y, I).
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E. Third, the hash value Z is encrypted and returned as 7" along with Y.

Suppose that deg fy,r) < d. In other words, at most d —1 blocks of I and Y’
are processed during a single invocation of polynomial hashing. Suppose further
that d < N—1. The restrictions on structure and degree of the polynomials f(y,y)
and the form of next lead to the following estimates (see [1] for details):

< L

Here (Y, 1) # (Y',I'), 1 <i < d, ais a fixed element of F’| the probabilities are
taken over independent random H, H' € F. These estimates form the basis for
justifying the security of CHE.

Dealing with the security, we keep the model introduced in the previous
section. An adversary interacts with an oracle O: (X,I,S) — (Y,T) which
either implements the WRAP algorithm (the real implementation, CHE[Ek])
or generates Y € {0, 1}¥1 and T € {0, 1}" at random (the ideal implementation,
p). The adversary again follows one of the two contracts: random nonces or
non-repeating nonces. Any of the word X and I can be empty, but not both.

An advantage of the adversary is defined in the standard way. We only
change the abbreviation ind-cpa to priv (privacy). This corresponds to the
tradition when moving from basic encryption to AEAD.

We again idealize E' and replace its representative Ex with a permutation m
chosen uniformly at random from Perm(n).

Theorem 2. Let an adversary A make at most q queries (X, 1,S) with either
random or non-repeating S. Let v be the total number of X ’s and I’s blocks in
these queries. Then

(r+q)(r+q-1)

Adv%rIjILE[Perm(n)] (A) < IN + g,
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where

(2r2 +9qr +2¢*> —3r +2q + 2)(r + q)(r + 3¢ — 1)
4N? +

+7“2+5q7“—q2—27“+3q+2
2N '

Proof. We adapt the proof of Theorem 1 preserving notations and following the
general line. Additional notations: I; — associated data in the ith query, T; —
a tag in the ith answer, I{Z = 7T(SZ'), ZZ = f(Y;,IZ)(HZ)

Let d be the maximum degree of polynomials fy; r,). In other words, d — 1
is the maximum total amount of blocks in (X, I;). It is clear that (d —1)q < .
Therefore, if d > N —1, then r > N —2 and the bound of the theorem obviously
holds. Further we assume that d < N — 1.

We preserve the probabilistic model of Theorem 1 assuming additionally
that T; are chosen uniformly independently at random. Now the event B addi-
tionally means that 7; are distinct and different from I'; ;. It is clear that

+q)(r+q-1)

p By < Utalr izl

For the probability

it is necessary to construct an inequality p = (1 —¢)/N""4. To do this, we again
deal with the events C, D, £.

The semantics of C is not changed. In D, we allow empty X; and that the
total number of plaintext blocks is less than r (r covers both plaintext and
associated data blocks). As we have discussed at the end of Section 2, with
these relaxations the bound on the probability pp becomes even better.

In addition, we block in CD the following collisions:

collisions | quantity | probability
Zi=1Zj |qq-1)/2| <d/N
Zz' = Sj q2 < d/N
Zi = Cjy, < qr < d/N
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With this, the bound on pop becomes weaker:

_4qr—q2—2r+3q+2_ dq(q—1)+dq2+dqr
2N 2N N N )~

pep = 1

Using the inequality (d — 1)g < r, we get

2r2 + 9qr + 2¢°> — 3r + 29 + 2
2N '

In £, we require that 7 not only maps C; ; to I'; j, but also maps Z; to T;. The
previous events mean that all preimages here are pairwise distinct, all images
are pairwise distinct, and ¢ images of 7 at points S; that differ from C}; and Z;
are already known. The total number of preimages is at most r + ¢g. Therefore,

pcp =1 —

g > 1 - 1 1+(r+q)(r+3q—1) |
(N _ q)[r+q] N7+q 2N
In result,
p = PcDPE =
. 1_2r2+9qr+2q2—3r+2q+2 1+(7“4—q)(7“—|—3q—1)
T NTH 2N 2N ’
from which the expresion for € follows. ]

As in the previous section, € increases as a function of ¢ for ¢ < r. Sub-
stituting ¢ = r into the expressions of the theorem and simplifying them, we
get:
ind-cpa _ 92 —r+2 260

AdV Cypiperm(ny (4) < oN Ty
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Abstract

In this work we study the security of the prospective Russian authenticated encryp-
tion with associated data mode that is known as MGM. We examine the mode properties
under the condition that we have O (2”/ 2) queries, where n is the state size of the used
block cipher. Two attacks that are based on birthday paradox are proposed.

Keywords: authentication, birthday paradox, AE, AEAD, MGM.

1 Introduction

The Multilinear Galois Mode (MGM) is an authenticated encryption with
associated data (AEAD) block cipher mode. It was originally proposed in [1]
and was fully described later in [2]. MGM mode was developed by the Technical
Committee for standardization “Cryptography and Security Mechanism” (TC-
26) and now is a prospective Russian standard of AEAD mode [3].

In 2019 the MGM mode was analysed in the paradigm of provable security
[4]. That work shows that the privacy and authenticity of MGM mode is prov-
ably guaranteed (under security of the used block cipher) up to the birthday
paradox bound. The modern level of cryptography allows us to build AEAD
modes that are secure beyond the birthday bound [5, 6, 7, 8, 9]. Thus, on the
one hand, it has been shown that MGM has so-called n/2-bit security, but on
the other hand, no real attack has been published so far even in the unlimited
amount of queries.

This work proposes some attacks on the MGM mode in the case when we
can get O (2”/ 2) queries, where n is the state size of the block cipher. The work
describes two attacks on the MGM mode:

— Nonce reusing attack. We present a simple theoretical attack that shows a
way to proceed an authentication tag in case if nonce can be reused.
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— Attack on Authenticity. We will the way to get an authentication tag for
a special type of messages.

Both attacks are based on the well-known birthday paradox and these attacks
do not threaten the security claims of the MGM mode.

2 Definition and Notations

Let V™ be the boolean (bit) vector space of dimension n. For a vector x € V"
we call the value |z| = n the length of the vector x. For the brevity we denote
the union of all vectors of arbitrary length V*, i > 0 as V*.

In this work we assume that any element of the vector space x € V,, can be
represented as an element of the ring Zo., where “+” and “—" are respectively
the plus and the minus operand in the ring. We also use the representation of
x as an element of a finite field Fon (B, ®).

We denote msb;(x) and lsb;(z) respectively the most and the least [ signif-
icant bits of a vector .

For the brevity we define the following operators. Let z,y € V™% and t €
Z2n/2:

(z|y) B t = (z +t]y);
(zy) Bt = (z —t]y);
(z|y) Bt = (z]y +1);
(zly)Et = (z]y —1t).

First, we remind the MGM mode description following the description in
[3]. Let e be a block cipher with block length n and K € V* be a key. Denote
by ex () the encryption of a plaintext block x under the key k.

The input of the MGM mode based on a cipher e is (K, N, P, A), where:

—~ KeVF —key:

— N e V™! - nonce ;

—~ PeV* 0<|P|<2"? - plain text ;

— AeV* 0<|A|l <2? - associated data.
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The length of the plain text and associated data must be less than |P| + |A| <
22 The output of the mode is (N, A, C,,T), where:

— C e V* |P| =|C]| is a cipher text;
— T e V™ is an authenticating tag.
The cipher text and the authenticating tag are calculated as follows:

1. The plain text and associated data are divided into equal blocks of length
n (perhaps except the last ones):

A=Ay A, A eV, AL e Vi,
P=P1HHP;, PZ-EVn,Pq*EVu,

where j = 1,2,....,h—1,1=1,2,...,q— 1,1 <u<n, 1<t<nand
h+q>0.

2. The cipher text is calculated as follows:

-

Y1 = eK(OHN)v

Yi=Y1H1 2<i<yq,
Ci=P®ex(Vs), 1<i<qg-—1,
|Gz = C @ MSB,(ex(Y)),

3. The blocks A} and Cj are padded till the full block size if needed:

{Ah — Ao,
C, = Cxlom.

4. The authenticating tag is calculated as follows:
h q
T = ek (Z H®A® Z Hy i @ Ci @ Hypg1 ® <|A’C|>) ;
i=1 j=1

where H; = ek (Z;), and values Z;, i = 1,2, ..., are defined as follows:

{Zl :eK(lHN)7 (3)

ZiZZi_lll, 2<2<h+q+1
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Tag verification and decryption occurs in a similar way. For the brevity we
denote (|A|H]C\) as L and call it “length tag”.

3 Nonce reusing

In this section we will show that if we have two different messages with the
same authenticating tags and if we in addition have a possibility to authenticate
an arbitrary message, it is possible to calculate the authenticating tag for the
special message.

Let we have two messages received using MGM mode under the same key
K: (Nl, Al, Cl, Tl), (NQ, AQ, CQ, TQ) And we also suppose that T1 = TQZ

hi q1

2 Hi;@A,;® Z Hip+i@C ;@ Hip4q1 ®Ly =

i=1 j=1

ho G2
= Z Hy; @ Ay ® Z Hypytj ® Coj D Hopyigo41 @ Lo, (4)
i1 =

where Ly and Ly are the length tags. We also suppose that Ly = (n - ki||n - k3)
and Ly = (n- kf|n - k3).

If the left and the right sides of the equation (4) are multiplied by the same
element a of the finite field F§ then we get the correct equation. Let’s make the
following message:

Al=A1,®a, 1<i<h,
{ (5)

/ ; .
Ai+h1 = Cl,i ®Oé, 1 < [ < qi1;

where a can be calculated from the equation:
Li@a=(n-kijn k) @a=(0n- (ki +ky)), ke, je{1,2}.

We suppose that it’s possible to request authenticating tag for the associated
data A" = Aj|...|A

/ .
q1+hy”

ha G2
T =eg ( <Z Hyi @ A2 @ Z Hpy i @ Coj @ Ho iy tgyr1 ® L2> & Oz)

i=1 j=1
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Let’s examine the value Lo ® a = (s1s2). To carry out the attack values Ly
and Ls should meet the following conditions:

L. (s1,82) = (n - k{|n - k5). The propability of meeting this condition is about

P (n|sy,n|sy) ~ n~2.

2. k! + kY < 272,

2n/2—1
1
P (81 + 52 < 2”/2> = o2 Z P (z + 52 < 2”/2> =
i=0
1 2n/2—1
_ n/2 _ 5\
=5 . s (2 z)—1/2+2n/2+1.

3. ho + g2 < K + k.
P(he+q < K| + k) ~ 1/2.
So with the probability P = (2n)~2 the value T” will be a correct authenticating
tag for message (No, C", A" T").
Al =B;, 1<i<k
C{ = Biywr, 1<i<hy+ g
Cl(/:(), h2+QQ<i<kg.
As example: n = 128, ki = 38, k? = 48, ki = 39, k3 = 111. Then
Ly, = 0213000000000000001800, Lo = 0213800000000000003780.
If Foizs = Fg[x]/($128 +a’+ 2+ + 1) then
a = L' ® 022000 = 023¢3 f14aa0b4941e598bccb28951 fe354

and ki = 0xe6b0864cb7a77080, k5 = 028cb53060 fc31¢100.

At the same time if L; = Lo then Pg = 1 and it is possible to implement
the following attack.
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Nonce reusing attack
Let all the messages have the following structure: (N;, A;, C;,T;), where
|A;j| = |A;], |Ci| = |C}|, and all messages are calculated under the same key K.

1. Request D messages. With the probability p ~ 1 — exp {—(2;11)2} two

messages with numbers ¢ and j such as T; = T} will appear.
Make a new message from (N;, A;, C;,T;) using the equation (5).
Ask to authenticate this message.

Get the message (K, N;, a ® (A;|C;), T").

oro W

Make a new message with correct authenticated tag (K,Nj,a ®

(4;1C5), T").

4 Authenticity of data attack

4.1 How to get H;?

All values H; are hidden under encryption algorithm and it’s quite difficult
to get at least one. In this section we’ll propose a way to find such values. As
in the past we assume that all message are calculated under the same key K.

First, we show how to find z and y, such as x,y € V": ex(x) = v.

Let’s consider the following message (N, Ay, C1,T1), where |A;| =0, C; =
0, and |C] is equal to 1. Then

T1 = eK(Hg ® 1) = €EK (GK (6[( (1HN1) Z 1)) .

Let (K, Ny, Ay, Cy,Ty) be another message and P, @ C7 = eg(Y]) =
ex (ex (0]|N2)) is equal to authenticating tag T7. Then we can argue that:

ex (ex (ex (1|N1)EH' 1)) = ex (ex (0]|N2)) = ex(1]||N1) = 0| N2 &' 1.

Then in our notations x = 1||N; — known value, y = O||Ny & 1 — also
known value. Thus, we know the equality ex(x) = y.

According to the MGM mode description ex (1|N) = Z;. Let lsbn(Ny) =
Isbn(N2) there is such a value t: t € Z, t < 2m/2:

Zi 1 =ex(1IN)E t =0||No &/ (t — 1) = (1]| V),
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and it is possible to calculate
Hi 1 =ex (Zi—1) = ex(ex(1]|Ny) e’ t) = ex(1]|NV1) = 0]| Vo = —1.

And in our notations ex(z) = y, where y = H;_; = 0||Ny & —1 and
Tr = thl = GK(lHNl) l t.

If there is a limit of| P| + |A| < 2%/?72, then (since the operation (' changes
only the left side of 0| Ns) the equation ek () = y can be obtained with prob-
ability

P =P (t < 2”/2—A) _ oA

At the same time, if there are no limitations on the amount of processed mate-
rial, this equation exists with the probability equal to P, = 1.

4.2 Double H attack

Let’s suppose that we have two different values H; = ex(Z;), H; = ex(Z;)
and e} (H;), ex (Hj) for some values i < j < 2%2. We also assume that
Isbx(Z;) = lsba(Z;).

Let h,q € Ny and h + ¢ + 1 = j then we can form the following message S
(value x will be determined later):

S=100...,0,200,...,0]|=]A,..., A4, C,...,C,

/

" " "
i—1 j—i—2 j—1

The authenticating tag T" of the message S is calculated as follows:
T=ex(z®@H,®L®H;),

where L = (I(A)|[I(C)) — length tag of message S.
Fixing the values h and g we can calculate the value x using one of the
following equations:

T H,®L®H,; = e (H);
rt@H ®LRH; = ey (H)

and authenticated tag will be equal to H; and H; respectively.
A pair of values h and ¢ can be fixed by any of the j possible values and
which means that we can calculate authenticating tag for 2- 5 messages without
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knowing the secret key K and moreover, half of these messages will have T' = H;
and the other half will have authenticated tag equal to H;. That also means
that in case of j > 1 we can also find a collision.

Double H attack

We suppose that all Isb» (N;) and Isb» (N]') are equal.
1. Get my messages (], AL, CI,T!), where |A}| =0, |C!| = n:

My = {Y1(N:)}i%) = {ex(ex (0| N:))H™, -

2. Get 2-mg messages (N, A7, C?,T}]), where |A]| = 0, |C?| = 1. We suppose
that about the half of these messages is equal to zero C5 = 0 (one bit) and
we have

ma

My = {TJ};’EO - {6K (GK (eK (1HNZ) l))}j:O'
3. With some probability P, we find two equalities:
ex(1[N1) = 0[N ' 1,

exc(1[N3) = 0N &' 1,
le%(Nl) = le%(NQ) = leg(Ng) = le%(Nzl)

4. In accordance with the section 4.1 with the probability P? we can find two
pair of values: Hy,, Hy,, e;* (Hy,), et (Hy,).

5. Without loss of generality we suppose that to > t1. Fixing h, ¢ € Ny by any
values such as: h + ¢ + 1 = t5 form the message:

S = (0,0,...,O,x,0,0,...,O) = (Al,...,Ah,Cl,...,Cq),

o J/
'

1—1 to—t1—2

where x is calculated as follows:

r®@H, ®L®H, = ey (Hy,), L=(hq).

6. The authenticating tag of message S is Hy,.
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4.3 Difficulty and Probability of Double H attack

Let’s find the probability P, from section 4.2.

We have the sets M; and M, such that |M;| = mq, | M| = ms. The elements
of these sets are integers from the set: 0,27 — 1. We can assume that every set
has no identical elements: M; = {Mil, M?,.. .,Mimi} and Ml‘-j1 = M{Q if and
only if 71 = Jo.

The probability that we can find at least one identical element in the sets
My and Ms can be calculated as follows:

)
(i)

At the same time, exactly one identical element will be found with probability:

mimea }

%1—exp{— o

pr=1-

p= on (3;1:11) ‘ (2;;?11) _ mamy - ex {—1 + 2mq + 2my — lemg} .

() G 2 2

And the required probability that more that one identical element will be found
can be calculated using the equation P, = p; — p.
To implement this attack we need:

— mq + 2 - my queries;
— memory O (my).

The attack success probability is equal to P? - P,. In the case of the absence

of restrictions on the amount of material processed the probability is equal to
Ps.

Conclusion

In this paper we examined some aspects of the MGM AEAD mode and
proposed two theoretical attacks that describe some properties of the studied
mode.

Both attacks require about O (2”/ 2) queries, with n the state size of used
block cipher.

The core of the first attack is a possibility of manipulating length tag. If
we have two messages with the same authenticating tag and if we can ask to
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authenticate some associated data with repeated nonce we can make a message
that haven’t been ever encrypted and authenticated.

The core of the second attack is a possibility to find H; which is used to
make authenticating tag. If we have two values H; and Hj, i < j, we can make
J messages that have authenticating tag equal to H; and 7 messages that have
authenticating tag equal to H;.

At the same time a constituent part of both attacks are birthday paradox
and these attacks do not threaten the security claims of MGM |3].
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Abstract

We present and discuss new algorithmic ideas for improving OBDD-attacks against
stream ciphers, which compute the secret initial state by generating a sequence of O(n)

11—
ordered binary decision diagrams (OBDDs) of maximal width O(21+="), where n de-
notes the inner state length and « € (0,1) the compression rate of the cipher. We
propose and experimentally verify the following strategy of avoiding the huge storage

demand of 0(2%"). (1) Generate in parallel two OBDDs P and @ such that P A Q
has only a few satisfying assignments. (2) Compute (P A Q)~!(1), including the secret
inner state, by a new breadth-first-search based algorithm. We show that this approach
improves standard OBDD-attacks drastically.

Keywords: Symmetric Cryptography, Stream Ciphers, OBDD Attacks.

1 Introduction

Stream ciphers are symmetric encryption algorithms intended for the online
encryption of plaintext bitstreams X which have to pass an insecure channel.
The encryption is performed by bitwise addition of a keystream S, which is
generated in dependence of a secret symmetric session key k£ and, possibly, a
public initial value IV. The legal recipient, who also knows k, decrypts the
encrypted bitstream Y = X @ S by generating S and computing X =Y @ S.
In this paper, we consider KSG-based stream ciphers, i.e., stream ciphers that
generate the keystream using a so-called keystream generator (KSG).

KSGs are stepwise working devices that can be formally specified by finite
automata. KSGs are defined by an inner state length n and the corresponding
set of inner states {0,1}", a state update function 7 : {0,1}" — {0,1}" and an
output function out : {0,1}" — {0, 1}. Starting from an initial state ¢ € {0, 1}",
in each clock cycle i = 0, the KSG produces a keystream bit z; = out(g;) and
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changes the inner state according to ¢;+1 = 7(g;). The output bitstream S(qg)
is defined by concatenating all the outputs z12923 - -.

The main security requirement for stream ciphers is the following: when
a secret initial state is chosen randomly, it must be hard to distinguish the
generated keystream from a truly random bitstream. This implies the hardness
of the problem S~!: given a piece z of keystream of length ¢ > n, compute an
initial state ¢ which generates z in the sense that z is a prefix of S(q). In this
paper, we focus on analyzing the security of KSGs with regard to S~!-attacks,
which try to solve the S~!-problem for a given piece z of keystream.

The main building blocks of many KSG-constructions are so-called Feedback
Shift Registers (FSRs). FSRs are defined over a number m of register cells
and a feedback function f : {0,1}"" — {0,1}. In each clock cycle, given the
inner state (by,...,by), the bit by is the output bit and the state changes to
(bay ..y bm—1, f(b1,...,by)). The FSR is called a linear FSR (LFSR) if the
feedback function is GF(2)-linear, and it is called a nonlinear FSR (NFSR)
otherwise.

The output sequences defined by LFSRs with a primitive connection poly-
nomial have several very useful pseudorandomness properties, e.g., the maximal
period of 2™ — 1. However, an LFSR alone does not represent a secure KSG as
the problem S~ can be efficiently solved by inverting an (n x n)-matrix.

Many KSG-constructions use a small number of FSRs (LFSRs or NFSRs) to
generate a secret inner bitstream, which has to pass a nonlinear filter function
to produce the output keystream. This allows to split the keystream generation
process into two parts: (1) the generation of the inner bitstream IB(g) from
an initial state ¢, consisting of the bits produced by the FSRs, and (2) the
generation of the public output keystream S(q) = C(IB(q)) that is generated
from the secret inner bitstream IB(q) using an online compression function C'.
The compression rate of a keystream generator is defined to be a = 1/A |, where
A denotes the average number of inner keystream bits needed to produce one
output bit. Note that the secret initial state ¢ is a part (often the prefix) of the
inner bitstream IB(q).

Concerning S~ !-attacks against stream ciphers, one distinguishes short-
keystream attacks (e.g., OBDD-attacks) and long-keystream attacks (e.g., time-
memory-data tradeoff (TMD-TO) attacks). Short-keystream attacks solve the
S~1-problem where only a small sequence of keystream bits was observed. In
this case, the sequence is usually not significantly longer than n. Long-keystream
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attacks require a lot more keystream bits (e.g., 272 for the TMD-TO attacks
of Babbage [1] and Goli¢ [5]) to solve the S™!-problem.

Ordered binary decision diagrams (OBDDs) are a graph based data structure
for representing Boolean functions. Due to their specific algorithmic properties,
there is a wide range of practical applications of OBDDs, especially in the
field of hardware verification (see, e.g., [9]). OBDD-attacks were introduced by
Krause in [6] and further studied in, e.g., |7], [11], [4]. They represent the most
efficient kind of short-keystream attack against stream ciphers. The number of
necessary keystream bits nearly matches the information-theoretic lower bound,
which corresponds to the unicity distance of the cipher.

OBDD-attacks refer to the decision if for a given initial state ¢, a given piece
of inner bitstream y and a given piece of keystream z it holds that y is prefix of
IB(q) and C'(y) is prefix of z. For many KSGs, this problem can be formulated
as a set R = {Ry,..., R:} of easy relations between the ¢-bits and the y-bits,
and between the y-bits and the z-bits, which all can be tested by small OBDDs.

OBDD-attacks compute the OBDDs Q([I) for increasing subsets I <
{1,...,t}, which test if all relations R;, i € I, are fulfilled. They are based
on certain algorithmic properties of OBDDs:

— The conjunction P A @ of two OBDDs can be computed within time and
space O(|P[ - |Q]).

— OBDDs P can be efficiently minimized in time O(|P)).

— The width of a minimized OBDD P is bounded from above by the amount
of satisfying assignments of P.

In the standard OBDD-attack, one generates a sequence Q(I;) — Q(I3) —

- — Q(I;), where Q(I1) is small and the number of satisfying assignments
of Q(I;) is bounded by 20" For j = 2 to s, I; is derived from I; ; by
adding one new relation from R. This implies that on average |Q(I;)~*(1)| <
20 Q(;-1) (1)) and widsh (Q(1,) < min{2-width (Q(L; 1)), 1Q(;) (1)}

It follows that on average after r = i—gn iterations the maximal width of

(’)(2%”) is reached and that after Zn iterations we obtain an OBDD for which
the secret initial state is the only satisfying assignment, i.e., which solves the
problem.

OBDD-attacks (and their generalization based on free binary decision di-
agrams (FBDDs)) yield the best known short-keystream attacks against sev-
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eral practically used ciphers such as the A5/1-generator included in the GSM-
standard [3], the Ej-generator included in the Bluetooth standard [2], or the
self-shrinking generator [§|.

1.1 Our Results

We propose the following modification of OBDD-attacks for circumventing
the bottleneck consisting in the huge amount of storage needed for the interme-
l1—a

diate OBDDs in the iterations near the critical round number r = Tan.

(1) Generate two disjoint subsets I and J of relations from R in parallel such
that the OBDDs Q(7) and Q(J) are of moderate size and the set Q(I U
J)71(1) of satisfying assignments of Q(I) AQ(J) = Q(IuJ) is small. Then
compute Q(I v J) = Q(I) A Q(J) using the standard OBDD-synthesis
algorithm.

(2) Suppose that strategy (1) leads to sets I and J for which the set
Q(I u J)7}(1) is not just “small” but even comprises of only a single el-
ement. Then compute this satisfying assignment directly from Q(I) and

Q(J) by means of our new breadth-first-search-based algorithm instead of
performing the OBDD synthesis Q(I) A Q(J).

The first part of our experimental results, presented in Section 4, shows that
strategy (1) is a lot more space efficient than computing Q(I U J) using the clas-
sical OBDD-attack suggested in [6] (and employed in all follow-up works since).
Strategy (2) allows us to investigate the complexity of the following Bounded
Synthesis Problem: given two OBDDs P, and P, for which it is known that
P, A P, has only one satisfying assignment, compute this satisfying assignment.

The standard solution is to compute P; A P, using the standard OBDD-
synthesis algorithm and then to minimize the resulting OBDD. Note that for
solving the bounded synthesis problem, it is sufficient to find the only exist-
ing directed path connecting the root to the 1-sink of P A P,, as this path
corresponds to the only satisfying assignment of P; A Ps.

In Section 5, we describe a depth-first-search (DFS) approach and a breadth-
first-search (BFS) approach for solving the Bounded Synthesis Problem. Our
most promising candidate is the BF'S-approach as it allows to identify nodes in
Py A P which do not occur in the minimized OBDD.
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Structure of the paper: The remaining part of this paper is organized as
follows. In Section 2, we first provide the basic information about OBDDs.
We do this by considering a subfamily of OBDDs, so-called leveled OBDDs
(LOBDDs). The reason for considering LOBDDs is that the relevant algorithmic
properties of OBDDs can be explained more easily for LOBDDs, and in our
cryptographic context we obtain LOBDDs in a natural way. Note that all of
our results about LOBDDs hold also for OBDDs. In Section 3, we describe
the classic BDD attack against stream ciphers on the basis of a toy example.
Note that like this toy example, also the generators used in our experiments do
not provide sufficient cryptographic hardness for modern practical applications.
However, due to their feasible inner state size and simple definition, they are
well suited for applying and verifying our algorithmic ideas. In Section 4, we
describe strategy (1) and the intuition behind it in further detail and provide
corresponding experimental results. In Section 5, we present our algorithmic
approaches for the bounded synthesis problem. Finally, in Section 6, we present
the experimental results which compare our DFS- and BFS-approach to the
standard synthesis algorithm, and conclude the paper.

2 Preliminaries

2.1 Leveled Ordered Binary Decision Diagrams (LOBDDs)

Definition 1. An LOBDD P over X, = {x1,...,x,} is a directed acyclic
labeled Graph G = (V, E) with one root and one sink, where V is the set of
vertices and E is the set of edges. The following properties apply to P:

— The set of vertices V' is partitioned into n + 1 pairwise disjoint levels,
Li(P),...,Lys1(P). The nodes in L;(P), 1 <i < n, are labeled ;.

— L1(P) contains only the root root (P), labeled x.
— Lypy1(P) contains only the sink sink(P), labeled 1.

— The edges are labeled with either O or 1. The labels correspond to the
Boolean value of the respective variable.

— For allv e V\{sink(P)}, there are either two outgoing edges with different
labels or there is only one outgoing edge (labeled 0 or 1).
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— For each edge (u,v) € E, there exists some level i € {1,...,n} such that
u e LZ(P) and v € LZ+1(P)

— The size of P is denoted by |P| and it is defined to be equal to the amount
of nodes, i.e., |P|:=|V]|.

— The width of P is denoted by width (P) and it is defined to be equal to the
size of the largest level, i.e., width(P) := gﬂﬁ{\Ll(P)l}

Fix some i € {1,...,n + 1} and fix some node v € L;(P). A path leading
from the root root (P) to v corresponds to a unique {0, 1}-assignment of the
variables {z1,...,z;_1}. Similarly, a path leading from v to the sink sink (P)
corresponds to a unique {0, 1}-assignment of the variables {z;,...,z,}. This
motivates the following definitions:

Definition 2. For alli € {1,...,n 4+ 1} and all nodes v € L;(P), we define
Reachp (v) to be the set of all those {0, 1}-assignments of {x1,...,x;_1} which
correspond to paths from root (P) to v.

Definition 3. For alli € {1,...,n + 1} and all nodes v € L;(P), we define
Satp (v) to be the set of all those {0, 1}-assignments of {x;, ..., x,} which cor-
respond to paths from v to sink(P).

Definition 4. The Boolean function f : {0,1}" — {0,1} computed by P is
defined by

f(z) =1 <= z € Satp(root(P)) = Reachp (sink(P)).

It can be straightforwardly shown that for each Boolean function f :
{0,1}" — {0,1} there exists an LOBDD P over X,, that computes f. Fur-
ther, there exists an efficient algorithm running in space and time O(|P|) that
minimizes P, i.e., it computes the minimal LOBDD that represents the same
function as P. Note that P is minimal if and only if each node of P is reachable
from root (P) and if for all i € {2,...,n} and for all v # v' € L;(P) we have
Satp (v) # Satp (v'). Otherwise v and v’ could be merged into one node. We
refer the reader to [12] for further details.

For any two LOBDDs P and () over X,,, we can define the canonical LOBDD
P A Q) over X,, computing the logical conjunction of the functions computed by
P and Q. For defining P A ), we again consider a graph G = (V| E). The set
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of vertices is partitioned into n + 1 levels L1(G), ..., L,+1(G) and the nodes in
Li(G), 1 < i< n, are labeled by z;.

Definition 5. Let P and Q) be two arbitrary LOBDDs over X,,. The LOBDD
G := P A Q is defined as follows. For allie {1,...,n+ 1}:

— Level i is defined to be L;(G) := L;(P) x L;j(Q).

— There exists an edge ((u,u'), (v,v")) € Li(G) x Li+1(G) labeled b € {0, 1}
if and only if (u,v) is an edge labeled b in P and (u',v") is an edge labeled
bin Q.

It follows directly that Li(G) = {(root(P),root(Q))} and L,.; =
{(sink (P),sink (Q))}. Further, the LOBDD P A @ is formed by all nodes
of G reachable from the root (root (P),root (Q)). It can be easily checked
that P A @ is an LOBDD computing the logical conjunction of the functions
computed by P and (). In general, P A () is not minimal, even if P and () are
minimal. In the worst case, P A @ has the width ©(width (P) - width (Q)).

The above definition can be straightforwardly generalized to compute the
LOBDD Py A -+ A Py for given LOBDDs Py, ..., P.. The LOBDD Py A--- A Py
computes the logical conjunction of the functions computed by P, ..., P;. In
the worst case, it has the width O(width (P) - - - - - width (Fy)).

2.2 Comparison of LOBDDs and OBDDs

In Subsection 2.1, we defined LOBBDs, which respect the canonical

variable ordering (x1,z,...,2,) on all paths from the root to the sink.
Similarly, m-LOBDDs can be defined, which respect the variable ordering
(Z7(1)s Tr(2)s - - » Tr(ny) 0N all paths from the root to the sink, where 7 is some

permutation on {1,...,n}. LOBDDs differ from general OBDDs in two ways:

1. OBDDs are usually defined to have a 1-sink and a 0-sink. Moreover, each
node has exacly two edges, labeled 0 and 1, respectively. A missing edge
in our LOBDD definition is equivalent to an edge pointing to the O-sink.
In fact, this is just a matter of notation.

2. General OBDDs do not have to be leveled, i.e., there may be an edge (u, v)
from a node u labeled x; to a node v labeled x;, where 1 <7 < j <n+1.
If 7 > ¢+ 1, this implies that the subfunction computed at v does not
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depend on the variables 41, ..., 2;-1. In LOBDDs, on contrast, we always
demand 7 =17 + 1.

Each OBDD P can be easily converted to an LOBDD P’ with |P'| < n - |P]:
Consider the edge (u,v), where u is a node labeled z;, v is a node labeled z;,
and j > ¢ + 1. In the LOBDD, (u,v) is replaced by a sequence of j —i — 1
dummy nodes labeled x;41,...,2;_1.

Note that if an OBDD P is satisfying the property that for all z # 2’ €
Satp (root (P)) the Hamming distance between x and 2z’ is larger than one,
then P has to be an LOBDD. As all functions considered in our cryptographic
context have this property, we decided to work with LOBDDs in most parts of
the paper (esp. in Section 4) since minimization and the construction of P A Q)
can be defined more easily in the model of LOBDDs.

3 Classical BDD Attacks against Stream Ciphers

Let us consider the toy example of a simple KSG with inner state size five,

whose secret inner bitstream 1, xs, ... is defined by the feedback relation
Tyys = T D rppo fort =1, (1)
where (z1,...,25) denotes the secret initial state. Moreover, let the output

function of this KSG be given as
2= Ty Typa fort = 1. (2)

[t can be easily checked that for this KSG, the initial state (z1,...,x5) =
(0,1,1,0,1) leads to the keystream prefix (z1,...,27) = (1,0,1,0,1,0,1).
Classical OBDD-based cryptanalysis now proceeds as follows. An attacker

who gets hold of the above keystream prefix starts by turning his information
about step ¢t = 1 into an OBDD. From Eq. (1), he knows that

xl@l’g@xﬁ:o (3)

holds w.r.t. the newly generated inner state stream bit xg. This knowledge is
represented by the OBDD R; depicted in Fig. 1, whose satisfying assignments
(leading to the OBDD’s 1-sink) are those satisfying Eq. (3).

Also at t = 1, the attacker learns from the observed first keystream bit
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Figure 1: OBDDs R; (left), @ (mid.), P, = Ry A @ (right). The solid (resp. dashed) edges
denote that the variable labeling the edge’s source node takes the value 1 (resp. 0).

z1 = 1 together with Eq. (2) that
T3 Ty = 1 (4)

must hold. This knowledge is represented by the OBDD @), in Fig. 1.

Through AND-synthesis of R; and @), the attacker finally obtains the
OBDD P, depicted in Fig. 1, whose satisfying assignments are exactly those
assignments to 1, T3, 5, ¢ which simultaneously fulfill Egs. (3) and (4).

For the next step, t = 2, the attacker proceeds analogously. More precisely,
he builds the OBDDs Ry and () corresponding to the relations zo@zsPx7 = 0
and x4 - x¢ = 0 (as 2o = 0), respectively. The new main OBDD P, is computed
as Py := P A Ry A Q.

The general attack strategy is now as follows. The attacker will treat the
subsequent iterations ¢ = 3,4, ... accordingly, obtaining further growing OB-
DDs Ps, Py, and so on. However, as explained in detail in [6], at some point, the
size of the OBDDs P; will eventually reach a maximum and henceforth (usu-
ally quickly) decrease. Note that this maximum actually dominates the overall
complexity of the attack.

In the case of our toy example, after only seven steps, the main OBDD P
has degraded into a list as depicted in Fig. 2. The only satisfying assignment to
the first twelve bits of the inner state stream can be derived from P; directly as
(x1,...,212) = (0,1,1,0,1,1,1,0,1,0,1,0). The first five bits (x1,...,x5) are
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Figure 2: The OBDD P;, which contains the solution of our cryptanalysis.

the secret initial state that underlies the attacked keystream prefix and, hence,
represent the solution of our OBDD-based cryptanalysis. From this initial state,
an attacker can now generate the full keystream.

4 Attack Improvement and Experimental Results

Instead of building only one main OBDD FP; (see our example in Section 3)
we now suggest to work with ‘two main OBDDs’ P} and P? as follows.

Algorithm 2 A new approach for more efficient, parallelizable OBDD attacks.

X « merging point parameter (see explanation below)
(P}, P}) < (1-OBDD, 1-OBDD)
fort=1to X do
if ¢t is odd then
(Ptlth2) - (Ptl—l A Ry A QtthQ—I)
else
(P!, P?) < (PLy, P2y A Ry A Q)
end if
end for
Px <« Py A P%
te—X
while P, has more than one satisfying assignments do
te—t+1
P, — Py ARy ~Qy
end while
return P,

The intuition behind the efficiency of our new approach is the following. Let
t™** denote the step in which the single main OBDD P, would have reached
its maximum size | Pmax| and remember that for ¢ > ™% the sizes |P| would
henceforth constantly decrease until only one satisfying assignment is left. Then,
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for a properly chosen parameter X (in particular, X > ¢™*) the result Py :=
Py A P% in Algorithm 2 will already have much less nodes than P with
the effect that the respective synthesis operation will have advantageous (as
compared to working with Pimax) expected time and memory consumption. Note
that for the new approach to be actually more efficient than the classical one,
X must be still small enough such that the sizes of the OBDDs Py and P% still
stay significantly below | Pymax|.

In order to assess the efficiency gains achievable with our new approach,
we performed an experimental evaluation using the well-known BDD package
CUDD [10]. As the attack target, we considered a simple KSG of size 39 bits,
whose inner state stream is defined by the relation

Ti139 1= Tt D Tp413 @ Typ5 - Tpp17 @ Tyyo4 - Tyga9 for £ =1,

and whose output function is 2; := 419 ® T4119 D Tyy9, t = 1.

The classical approach described in Section 3 leads to a memory consump-
tion of almost 900 MB and takes about 215 seconds. The single main OBDD
used there reaches its maximum size at t"™* = 17. In contrast, the same attack
using our new approach in Algorithm 2 (with X = 22) requires only about 110
MB of memory and is completed in as few as 8 seconds.

Also note that the OBDDs P! and P? are built on the basis of completely
separate information. Thus, they could as well be easily computed in parallel
on different CPUs in order to further speed up the attack.

5 A Related Special Synthesis Problem for LOBDDs and
Algorithmic Approaches

We have seen in the previous sections that given a piece of keystream z, the
problem of computing the secret inner state o which generates z can be reduced
to computing a sequence Py, ..., P of (L)OBDDs of a moderate size such that
x is a satisfying assignment of P4 A -+ A P, and the number of satisfying
assignments of P; A --- A Py is moderately bounded. In Section 4, we described
a corresponding approach with £ = 2 and verified through experiments that this
approach was indeed significantly more efficient than the classical BDD-attack
described in Section 3.

The standard way of computing the set of satisfying assignments of Py A~ - - A
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Py from Py, ..., P isto construct Py A- - - A Py as described in Subsection 2.1 and
to minimize it. This algorithm needs space and time O(|PyA- - - A P +3% | | B))),
where in the worst case we have |P; A --- A P| = O(IT%_,|P|). The resulting
question is the following:

Can we find more efficient algorithms to compute the set S of satis-
fying assignments of Py A -+ A Py if |S| is small?

We are convinced that this question represents a fundamental open problem in
complexity theory. So far, we cannot yet present an algorithm for this prob-
lem which has an asymptotic worst case running time essentially better than
O(I1¥_,| P;|). Nonetheless, we are able to come up with new algorithmic ap-
proaches which are much simpler than the standard synthesis algorithm and
which explicitly use the fact that the set of satisfying assignments of Py A--- A Py
is small. Our experimental results in Section 6 show that our algorithms are more
space efficient than the standard synthesis.

In the following, we restrict ourselves to the case that k = 2 and |[S| = 1;
i.e., we are given two LOBDDs P; and P, over the set of Boolean variables
X, = {x1,...,3,} for which we know |(P; A P)"1(1)] = 1. The problem is to
compute the only satisfying assignment x of P; A P in a more efficient way than
by the standard synthesis algorithm described above. One obvious consequence
of the assumption |(P A P»)71(1)| = 1 is that we do not have to compute the
complete LOBDD P; A P,. It is sufficient to compute the only path in P, A Py
leading from the root (v}, v9) to the sink (s1, s2).

There are two elementary graph algorithms that compute all nodes of a
given directed graph which are reachable from a given starting point: depth-first
search (DFS) and breadth-first search (BFS). Hence, we present two algorithmic
approaches for computing (Py A P,)71(1): a DES approach and a BES approach.

5.1 The DFS Approach

The underlying data structure is a stack S used to store the nodes of P, A
P,. The stack maintains a pointer head (S) to the node on top of the stack.
During the execution of the algorithm, some nodes of P; A P» will be labeled
gray (discovered) and some will be labeled black (discovered but useless). The
algorithm starts by labeling the root (v{,v)) gray and pushing it on top of
the stack. In each iteration, the node (v,v’) = head (S) on top of the stack
is considered. If there is a successor (w,w’) of (v,v’") which is not black, then
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(w,w") will be labeled gray and pushed onto S, i.e., head (S) = (w,w’). If not,
(v,v") will be labeled black and removed from the stack. The algorithm stops
if it discovers the sink (s1, s2). In this case, the nodes in the stack identify the
only assignment in (P, A P)71(1).

[t is a well known fact that this algorithm has time and space costs of O(| P} A
Py|). While the stack always contains at most n nodes, the space consuming part
of this approach results from the necessity to store all nodes labeled black. In
the worst case, a large part of the nodes of unminimized P; A P, have to be
discovered before finding the path to (s1, s2).

5.2 The BFS Approach

This approach uses the following easy fact resulting from |(Py A P)71(1)] =
1.

Lemma 1. For all nodes (v,v") in Py A Py, the property |Satp, .p, (v,0')]| < 1
is fulfilled, and if |Reachp rp, (v,v")| > 1, then Satp, .p, (v,0") = .

The underlying data structure for BFS is a queue @) used to store the nodes
of P A Py. @ is equipped with the pointers tail (@), pointing to the back
of @, and the pointer head (@), pointing to the front of Q. The nodes (v,v’)
of the LOBDD P; A P, have an additional property (v,v’).path. (v,v’).path
contains the assignment of the Boolean variables corresponding to the only path
in P, A P, from the root to (v,v").

During the execution of the algorithm, some nodes of P, A P, will be labeled
gray (discovered) and some nodes will be labeled black (discovered but useless).
The algorithm starts by labeling the root (v}, vJ) gray and putting it into the
queue Q, i.e., tail (Q) = head (Q) = (v?,19).

In each iteration, the node (v,v’) = head () is removed from Q. If (v, ")
is gray, each successor (w,w’) of @) is processed in the following way: If (w,w’)
was not discovered before, then (w,w’).path is computed by adding the label
of the edge ((v,v'), (w,w")) to (v,v’).path. (w,w") will be labeled gray and put
into the queue @, i.e., tail (Q) = (w,w’). If (w,w’) is gray (already discovered
and contained in @), it is labeled black. The algorithm stops when (s, s2) is
labeled gray. In this case, (s1, s2).path yields the only satisfying assignment of
P1 N\ PQ.

Note that if a node (v, v’) is black, then |Reachp, p, (v,v") | > 1. This implies
Satp ap, (u,u') = & for all nodes (u,u’) reachable from (v,v') in P, A P.
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Consequently, if a black node is dequeued from (@), its successors will not be
enqueued into (). Compared to the DFS approach, it is not necessary to store
nodes removed from (). Hence, the space consumption equals the maximum size
of @. It can be upper bounded by width (P;) - width (P).

6 Further Experimental Results and Conclusion

In order to assess the space reduction achievable with our new algorithmic
approaches presented in Section 5, we performed corresponding experiments
based on size-reduced KSG prototypes. But unlike in Section 4, we could not
use an existing BDD package such as CUDD, which is highly optimized for
real-world usage and would not have easily allowed for the kind of algorithmic
analysis (w.r.t. implementation-independent metrics) required in our context.
Consequently, we had to write our own LOBDD package from scratch in order
to derive experimental results for

— a 28-bit Geffe-generator with three maximum-period LFSRs defined by

liv7 == 1 @ L1, Myg10 1= my @ myy3, and ngi11 1= ny @ nyyo, and the
output function z; := l; - my & my - ny D ny;

— a 26-bit NFSR with feedback function ;196 := 2 ® X113 D Xi45 - Trp17 and
output function z; := 4,9 D Ts419.

As described in Section 5, the relevant memory consumption metrics for our
new algorithms are the maximum size (i.e., number of elements) of the set of
black nodes for the DFS approach and of the queue for the BFS approach. We
compare this to the approach that the LOBDD P; A P, is actually computed in
order to find the only assignment in (P; A P,)71(1). The relevant metric there is
the size (i.e., number of nodes) of the LOBDD before minimization. The results
in the following table are an average based on 100 randomly sampled (Initial
State, Keystream Prefiz)-pairs per KSG:

(black nodes) (queue nodes) (LOBDD nodes)
Gefte-KSG 4003455 667694 6530494

DFS-based BFS-based Synthesis-based

NFSR-KSG 7631335 557169 10977359

Clearly, both of our new algorithmic approaches are more space efficient than
using standard synthesis to compute (P A P)71(1). Especially the BFS-based
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variant seems extremely promising and could initiate a new phase of BDD-based

cryptanalysis. As future work, we suggest to integrate our new approaches into
standard BDD packages like CUDD.
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Abstract

The TLS protocol is the most widely used cryptographic protocol providing secure
communications over the Internet. In 2019 Rosstandart has approved recommendations
for standardization those define the use of the TLS 1.2 ciphersuites based on the actual
Russian cryptographic algorithms. This paper presents security bounds for the Record
protocol defined by the Russian ciphersuites that provides authenticity and confiden-
tiality of transmitted data. The bounds were obtained in the IND-sfCCSA model, which
relevance we pay special attention to, and are presented as a function of the used cryp-
tographic primitives security bounds. When using these bounds to obtain the certain
security parameters of the Record protocol, one must take into account the current state
of research concerning security of the used primitives.

Keywords: TLS protocol, information security, Russian cryptographic algorithms.

1 Introduction

One of the main applications of cryptography is the establishment of a secure
connection, namely provision of an authenticated channel between a client and
a server, ensuring integrity and confidentiality of transmitted data. The most
widely used protocol solving this task is the Transport Layer Security (TLS)
protocol.

The TLS protocol consists of two layers. The Record protocol represents the
low layer and works over some transport protocol (for example TCP) providing
reliable connection with guaranteed delivery of data packets. The Record proto-
col provides confidentiality and integrity of transmitted data and uses keys and
cryptographic parameters those are negotiated during the Handshake protocol
running. The specific modes of operation of the TLS protocol, which determine

270



all its sub-protocols, in particular, the Record and Handshake protocols, are
specified within the framework of the so-called «ciphersuitess.

Due to its use in the vast majority of modern web applications, TLS is the
most researched for the presence of both theoretical [13, 37, 38| and practi-
cal [24, 23, 35, 31| vulnerabilities. Therefore the protocol has changed dramat-
ically from the first versions in purposes of security. In 2018 the TLS protocol
version 1.3 was adopted as the current standard [34], which was designed with all
modern cryptographic principles taken into account. However, the introduction
and distribution of a new solution take a lot of time, so the protocol version 1.2
still remains the current standard. In particular, now it is supported by 95%
of sites in the Internet [1]|. In addition, TLS 1.3 is supported lower than 15%
of sites. So we can claim that more than 80% sites in the Internet supports
only TLS 1.2.

In 2019 Rosstandart has approved recommendations for standardization |[§]
which define the use of TLS 1.2 ciphersuites based on the actual Russian cryp-
tographic algortihms [3, 2, 7, 5, 6]. In this document the following ciphersuites
are defined:

~ TLS_GOSTR341112_256_ WITH MAGMA CTR_OMAC
(0xC1,0x01);

~ TLS GOSTR341112 256 WITH KUZNYECHIK CTR_ OMAC
(0xC1,0x00).

In 2019 TANA has added these ciphersuites to the "TLS Cipher Suite" reg-
istry with the numbers listed above in the brackets.

The main principles of the Handshake protocol almost was not changed
compared to the previous version of the Russian ciphersuites [4]. At the same
time, the Record protocol is not similar to its analogue from the previous version
of the Russian ciphersuites, nor to the foreign versions. It uses all the advanced
developments related to the tasks of providing a secure channel and increasing
a key lifetime (that is, the amount of data processed under a single key). In this
paper, we focus on the security analysis of the Record protocol only, assuming
that the key material produced during the Handshake protocol running and
used by the Record protocol, is chosen at random according to the uniform
distribution on the set of fixed length binary strings.

The Record protocol is based on an authenticated encryption scheme with
associated data that ensures confidentiality and integrity of transmitted data.
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The analyzed ciphersuites use the Mac-then-Encrypt [15] scheme that consists of
the CTR-ACPKM [7]| encryption mode and the OMAC message authentication
code |2]. The MAC-then-Encrypt scheme without the possibility of associated
data processing was analyzed in [28] where its security was proven when using
the stream cipher mode or the CBC mode (only for the data lengths that are
multiple of the blockcipher block length). The security analysis of the Mac-
then-Encrypt scheme with associated data using the CBC mode with a random
initialization vector was carried out in [32], which also took into account the
features of using the message padding procedure. The analysis was made in
the model, that ensures integrity only within the separate messages. To achieve
integrity at the message flow level, it is necessary to consider so-called stateful
schemes. In [22] the sfAE model was introduced for such schemes analysis. Also
the method for constructing secure stateful schemes based on secure stateless
schemes was proposed.

Unfortunately, the results mentioned above cannot be directly applied to
obtain the security bounds for the Record protocol specified by the Russian
ciphersuites. Indeed, the work of [32] does not provide the security analysis of
the stateful Mac-then-Encrypt scheme with associated data that uses arbitrary
basic encryption and MAC modes in the way defined by the TLS version 1.2
protocol standard. The direct application of the results of [22] for the analysis
of the Russian ciphersuites is also impracticable, since this paper consider the
scheme, where the encryption mode uses random and independent of the internal
state values of IV. At the same time, for the Record protocol defined by the
Russian ciphersuites, the nonce-based CTR-ACPKM encryption mode is used
where IVs depend on the current state.

In this paper we analyze a general stateful MAC-then-Encrypt AEAD
scheme that uses nonce-based encryption mode and MAC as it is specified in
TLS 1.2 RFC (see [25], the case of GenericStreamCipher). The analysis was
carried out in IND-sfCCSA model that extends the sfAE model. We focus on
the relevance of the proposed model for analyzing the Record protocol. The
lower bound of the proposed scheme security was obtained as a function of the
used encryption mode and MAC security level in the standard ROR-CPNA [36]
and PRF [16] models, respectively. As far as the authors know, such a bound
has not been previously presented explicitly in the literature. Also this work
presents bounds for a general stateful AEAD scheme with a pseudorandom
generator used for re-keying purpose. The obtained bound are applied to the
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Record protocol defined by the Russian ciphersuites. The resulting bounds de-
pend on the block cipher (Magma or Kuznyechik) security in the PRP-CPA
model and the HMAC function (based on the Stribog hash function) security
in the PRF model.

The paper is organized as follows. In Section 2 and Section 3 basic definitions
and notation are introduced, basic schemes and security models are defined. Sec-
tion 4 introduces the IND-sfCCSA security model, explains its design features.
Section 5 is devoted to the security analysis of the general stateful Mac-then-
Encrypt scheme with associated data and of the general AEAD scheme with
pseudorandom generator. Section 6 describes the main object of the research
— the Record protocol defined by the Russian ciphersuites. In Section 7, the
bound obtained in the previous sections is applied to the analyzed protocol.

2 Basic notations and definitions

By {0,1}* we denote the set of s-component bit strings and by {0, 1}* we
denote the set of all bit strings of finite length including the empty string. For
a € {0,1} let a” be the string, consisting of 7 symbols a. For bit strings a and b
we denote by a|b their concatenation. Let |a| be the bit length of the string a.

For a bit string u and a positive integer | < |u| let msb;(u) (Isb;(u)) be the
string, consisting of the leftmost (rightmost) [ bits of w. For integers [ > 0 and
i = 0 let stry(7) be I-bit representation of ¢ with the least significant bit on the
right. For an integer [ > 0 and a bit string u € {0, 1}! let int(u) be the integer i
such that stri(7) = u.

For any set S, define Perm(S) as the set of all bijective mappings on S
(permutations on S). A block cipher E (or just a cipher) with block size n and
key size k is a permutation family (Ex € Perm({0,1}") | K € {0,1}*), where
K is a key. If the value s is chosen from a set S uniformly at random, then we
denote s <~ S.

If the variable x gets the value val then we denote x < wval. Similarly, if the
variable z gets the value of the variable y then we denote x < y. If the variable

x gets the result of a probabilistic algorithm A we denote A LA (x & A). If we
need to emphasize that A is deterministic than we denote it by A — z (z «— A).
The event when A returned value val as a result is denoted by A — wval

We model an adversary using an interactive probabilistic algorithm that has
access to one or more oracles. The resources of an adversary A are measured

273



in terms of time and query complexities. For a fixed model of computation and
a method of encoding the time complexity includes the description size of A.
The query complexity usually includes the number of queries and the maximal
length of queries or the total length of queries. Denote by Adv'(A) the measure
of the success of the adversary A in realizing a certain threat, defined by the
model M, for the cryptographic scheme S. The formal definition of this measure
will be given in each specific case.

3 Basic algorithms and security models

Standard security model for block ciphers is PRP-CPA («Pseudo Random
Permutation under Chosen Plaintext Attack») (see, e.g. [17]). The formal de-
scription is presented in Appendix A.1.

Introduce the definition of a symmetric encryption scheme SE. In the cur-
rent paper we consider encryption schemes those use an additional initialization
vector. Values of the initialization vector may be restricted by some conditions.

Definition 1. Let K < {0,1}* be a set of keys, M < {0,1}* be a set of
plaintexts, C < {0,1}* be a set of ciphertexts, and IV < {0,1}* be a set of
nitialization vectors. An IV-based symmetric encryption scheme is a set of
algorithms SE = {SE.K, SE.E, SE.D}, where

~SEKS KA probabilistic algorithm outputting a key K € IC.

— SE.E(K,IV,m) — c: A deterministic encryption algorithm taking an ini-
tialization vector IV € IV, a key K € K, and a plaintext m € M as its
inputs. An output of the algorithm is a ciphertext c € C.

— SE.D(K,1V,c) — m: A deterministic decryption algorithm taking an ini-
tialization vector IV € IV, a key K € IC, and a ciphertext ¢ € C as its
inputs. An output of the algorithm is a plaintext m € M.

The standard notion for encryption modes analysis is the ROR-CPNA
(«Real or Random under Chosen Plaintext and Nonce Attacks») model. The
formal description is presented in Appendix A.1l. This model is similar to the
standard ROR-CPA security model [18] but considers nonce-respecting adver-
saries [36]. Informally, in this model the adversary has to distinguish the ob-
tained ciphertexts from the ciphertext of «garbage», having the capability to
adaptively choose plaintexts and nonces (in a unique manner).
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Introduce the definitions of a message authentication scheme MA and an se-
curity model PRF, which is used in analysis of message authentication schemes.

Definition 2. Let K < {0,1}* be a set of keys, M < {0,1}* be a set of
messages, T < {0,1}* be a set of tags. A deterministic message authentication
scheme ia a set of algorithms MA = {MA.K, MA.TAG, MA.VF}, where

~MAKS KA probabilistic algorithm outputting a key K € IC.

— MA.TAG(K,m) — t: A deterministic message authentication algorithm
taking a key K € IC and a message m € M as its input. An output of the
algorithm ia s tag t € T (message authentication code).

— MAVF(K,m,t) — r: A deterministic algorithm verifying a message tag.
An nput of the algorithm is a key K € KC, a message m € M, and a
message tag t € T. An output of the algorithm is a result of tag verifying
to be equal to true in the case of success, and false, otherwise.

The standard notion for message authentication modes analysis is the PRF
(«Pseudorandom Function») model [19]. The formal description is presented
in Appendix A.1. Informally, in this model the adversary has to distinguish
the target mode under a random unknown key from a «truly» random func-
tion, having the capability to adaptively choose messages and obtain their tags.
The distinguishability threat, considered in the model, is «easier> to implement
than the other more intuitively understandable threats, such as key recovery or
typical forgeries (universal, selective, existential).

Introduce the notion of a pseudorandom generator G.

Definition 3. Let I < {0,1}* be a set of states and B < {0,1}* be a set of
blocks. A generator is a pair of algorithms G = {G.K, G.N}, where the deter-
ministic algorithm G.K (key generation algorithm) sets an initial state of the
generator St € IC, the deterministic algorithm G.N (algorithm for calculating
the next state) takes the current state St € K as input and returns a block
Out € B, viewed as the output of this stage, and an updated state, to be stored
and used in the next invocation.

The standard notion for generators analysis is the PRG («Pseudorandom
Generator») model [16]. The formal description is presented in Appendix A.1.
Informally, in this model the adversary has to distinguish the generator output
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string from the string of the same length chosen at random according to the
uniform distribution.

For brevity sake, hereinafter by G.N(St, ) denote the i-th block of the output
sequence of the generator with the initial state St.

4 IND-sfCCSA security model

In order to estimate the security of the protocol from both the confidentiality
and the integrity point of view we introduce the notion of an AEAD-scheme with
internal state.

In the paper we consider only schemes the update function of which can
depend on a previous state only and doesn’t depend on a key, associated data,
plaintext or ciphertext. Also an encryption state and a decryption state are
supposed to be chosen from the same set and to be equal at the beginning of
work.

Definition 4. Let K < {0,1}* be a set of keys, M < {0,1}* be a
set of messages, AD < {0,1}* be a set of associated data, C < {0,1}
be a set of ciphertexts, and S be a set of states. An AEAD-scheme with
internal state (stateful AEAD-scheme) is a set of algorithms sfAEAD =
{sfAEAD.K, sfAEAD.Init, sfAEAD.Upd, sfAEAD.E, sfAEAD.D}, where

— sfAEAD.K() 5 KA probabilistic key generation algorithm outputting a
key K € IC.

— sfAEAD.Init(st) — (stg,stp): A deterministic algorithm for scheme ini-
tialization. An input of the algorithm is an initial state of the scheme st €
S. An output of the algorithm is a pair of initial encryption stp = st € S
and decryption stp = st € S states.

— sfAEAD.Upd(st) — st’': A deterministic algorithm taking a state st € S
(encryption or decryption state). An output of the algorithm is an updated
state st' € S.

— sfAEAD.E(K, ad, m, stg) 3 e A probabilistic algorithm of authenticated
encryption taking a key K € IC, associated data ad € AD, a plaintext
m € M, and an encryption statestg € S as an input. An output of the
algorithm is a ciphertext c € C.
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— sfAEAD.D(K, ad, ¢, stp) — m : A deterministic algorithm of authenticated
decryption taking a key K € IC, associated data ad € AD, a ciphertext
c € C, and a decryption state stp € §. An output of the algorithm is a
plaintext m € M or errpr symbol L.

The stateful AEAD-scheme is correct if for all K € IC, m € M, ad €
AD and st € S such that ¢ <« sfAEAD.E(K,ad, m,st), it is true that
sfAEAD.D(K, ad, ¢, st) = m. We consider only correct schemes.

Introduce an IND-sfCCSA («Indistinguishability under stateful Chosen
Ciphertext and State Attacks») security model to analyze stateful AEAD
schemes. This model takes into account threats related to a message flow
such as replay, dropping and shuffling messages. This model differs from
stateful Authenticated Encryption (sfAE) model defined in [22] and [32]. In the
sfAE model, only protocols that allow no more than one incorrect query to the
decryption oracle are secure. However, there can be protocols which allow the
adversary to forge a message with particular number more than one time. The
IND-sfCCSA model allows adversaries to forge one message multiple times that
extends the class of protocols we can analyze.

Definition 5. The advantage of an adversary A in the model IND-sfCCSA for
the stateful AEAD scheme stAEAD is defined as:

AQVRIASCSH (4) =
— Pr [Bxph2E5 O (4) - 1] - Pr [ExplRis s 0(4) — 1],

where experiments EXpi&DEXfDCCSA_b(A), b e {0,1}, are defined in the following
way:

277



IND-sfCCSA—b
EXpaeap (A)

K < SfAEAD.K()
u<—0, v—20

Oracle Decrypt(ad, c)

m <« sfAEAD.D(K, ad, ¢, stp)
if (m # 1) then
if ((ad, c,v) € sent) then

sent — J
o A dm.j:— 1
(stp, stp) «— STAEAD.Init(st) enat
1/ AEncrypt’Decrypt” stp <« sfAEAD.Upd(stp)
returnb’ ; (f_ vl
. end 1
Or?cle Encrypt’(ad, m) returTm
if b=U then Oracle Decrypt’(ad, c)
end if ’ return..

¢ «— sfAEAD.E(K, ad, m, stg)
sent < sent U (ad, ¢, u)

stp < sfAEAD.Upd(stg)
u<—u+1

returnc

Note that the basic principle of defining experiments in the IND-sfCCSA
model (the contents of the encrypted string and the procedure for the formation
of decryption result) is similar to the principle of defining experiments in the
basic models used for analyzing the schemes that aims to provide confidentiality
and integrity only at the level of a single message. These basic models are
constructed in such a way that epy decryption queries repeated the responses
of the encryption oracle do not give the adversary any new information (such
queries we will call trivial). This makes the model meaningful. Indeed, otherwise
for any scheme there would be an adversary which could realize the threat
in this model, i.e. the model would not allow anything to be said about the
security properties of the scheme. The distinctive feature of the IND-sfCCSA
model is that the decryption queries are trivial only when the message received
in response to the encryption query with the number u is transmitted to the
decryption oracle as the query with the same number (this is implemented
using counters u and v). Thus, the responsibility for detecting replay, dropping
or changing the order of messages now lies on the scheme, and the analysis
in the IND-sfCCSA model reflects this security property of the scheme. Due
to the fact that the counter v of decrypted messages increases only in case of
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successful query processing, the adversary can try to forge the v-th message as
many times as possible, making testing queries. In this case, the adversary can
always change the attacked value of the counter by making the corresponding
trivial query.

The IND-sfCCSA model is relevant only for analyzing unidirectional secure
channels. However, most of bidirectional channels are symmetric and are ob-
tained via establishing two unidirectional channels by the usage of one protocol
on two independent keys. The paper [30] shows that a sufficient condition for
the security of protocols providing a symmetric bidirectional channel running on
independent keys is the security of the basic protocol providing unidirectional
channel in the model similar to IND-sfCCSA. Therefore, models extended in
the case of a bidirectional channel will not be considered in this paper.

5 Security bounds

5.1 Security bound of MtE-AD scheme in IND-sfCCSAmodel

Introduce a stateful AEAD-scheme of type MtE-AD («MAC-then-Encrypt-
with-Associated-Datas ).

Definition 6. Let for sets AD, M, Mwa, Msg, IV, T and finite set S the
following deterministic functions are defined:

— encodepma: AD x M xS — Mma;

—encodesg: M x T — Msgg, decodesg: Mg — M x T, such that
decodesg(encodesg(m, t)) = (m,t) for allme M, te T;

— StateTolV: § — IV;

— Next: § — S.

Let MA be a deterministic message authentication scheme for the sets Kya,
Muwua, T. Let SE be an IV-based encryption scheme for the sets Ksg, Msg,
Cse, IV. Let K = (Ksg x Kma) be a set of keys, M < {0,1}* be a set of
plaintexts, AD be a set of associated data, S be a set of states and Csg <
{0,1}* be a set of ciphertexts, and IV < {0,1}* be a set of initialization vectors.
A stateful AEAD-scheme of type MtE-AD s a set of algorithms sfAEAD =
(sfAEAD.K, sfAEAD.Init, sfAEAD.Upd, sfAEAD.E, sfAEAD.D) where:
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sfAEAD.K : sfAEAD.E(K, ad, m, stg)

Kse < SE.K() m <« encodeua(ad, m, stg)
Kwa < MAK() t — MA.TAG(Kma, M)
returnk IVp <« StateTolV(stg)

_ m <« encodesg(m, t)
sfAEAD.Init(st) : ciSE.E(KSE Vi, )
stp < st sty < sfAEAD.Upd(st )
stp < st returnc

return(stg, st
(stg, stp) SfAEAD.D(K, ad, c, stp)

sfAEAD.Upd(st) : IV « StateTolV(stp)
st «— NeXt(St) m <« SE.D(KSE, ]VDa C)
returnst’ (m, t) < decodesg(m)
m <« encodeya(ad, m, stp)
if MAVF(Kua, m,t) # true then
returnl
end if
Stp «— szEAD.Upd(StD)
returnm

Definition 7. Let IV be a set, S be a finite set. A function StateTolV: S —
IV 1s an injective with according to a bijective function Next: § — &,
if StateTolV(st) # StateTolV(st') for all st # st', st,st’ € S, such that
3 o € N: Next®(st) = st’.

Definition 8. Let AD, M, Mwma be sets, S be a finite set. A function
encodepa: AD x M xS — Mpa is a collision free function with according to a
bijective function Next: S — S, if encodeya(ad, m, st) # encodeua(ad,m’, st')
for all (ad,m, st) # (ad',m’,st"), ad,ad" € AD, m,m' € M, st,st' € S, such
that 3 o € N: Next®(st) = st’.

Definition 9. Let AD, M, Mua < {0, 1}* be sets, S be a finite set. A function
encodepma: AD x M xS — Myua is r-adding, r € N if lencodeya (ad, m, st)| <
lad| + |m| + r for all ad € AD, m € M.

Definition 10. An SE encryption scheme is a CRD-scheme (Collision Resistant
Decryption) if SE.D(K, IV, c) # SE.D(K,IV,) for all K € Ksg, IV € IV and
c#dc,c deCsE.
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Definition 11. Let Next: § — S be a bijective function. Then define the func-

tion a: S — N as follows: a(st) = min .
a: Next™(st)=st

Theorem 1. Let sStAEAD be a stateful AEAD-scheme of type MtE-AD and the
following conditions hold:

1. the IV-based encryption scheme SE is a CRD-scheme;
2. the Message authentication scheme MA is such that the set T is {0,1}7;

3. Next is a bijective function such that iy, = migl a(st);
ste

4. StateTolV s an injective function with according to Next;
5. encodepa s an r-adding collision free function with according to Next;

6. decodesg is injective.

Let A be an adversary for the sSTAEAD scheme in the IND-sfCCSA model with
time complexity at most t, making at most qp < amin queries to the Encrypt
oracle, at most amin—1 trivial queries and at most qp test queries to the Decrypt
oracle with length at most l. Then there exists an adversary B for the SE scheme
in the ROR-CPNA model, making at most qg queries to the Encrypt oracle with
length at most [ + 7, and exists an adversary C for the MA scheme in the PRF
model, making at most qg + qp queries to the TAG oracle with length at most
[+ r, such that

AdvINDAICCSA (4) < 9. AVERF () 4 AdvEOR-CPNA(py 4 g—D
Furthermore, the time complexities of B and C" are at most t+c(qe+qp)(l+r+
7)(Tva + Tse), where Tya and Tsg is computational resources needed to process
data with length at most | +r + 7 by algorithms of the MA and SE schemes
respectively, ¢ is a constant that depends only on a model of computation and
a method of encoding.

The proof can be found in Appendix B.1

5.2 Security bound of MtE-AD scheme with key diversification

Consider a stateful AEAD-scheme of type MtE-AD with key diversification.
We build such scheme (sfAEAD, G) from a scheme sfAEAD and a generator G.
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Definition 12. Let K = B, AD, M, C, S be sets. Let sSTAEAD be a stateful
AFEAD-scheme, G be a generator. A stateful AEAD-scheme with key diversifi-
cation is a set of algorithms

(SFAEAD, G);, =
— {(SFAEAD, G),.K, (SfAEAD, G)j,.Init, (SFAEAD, G),.Upd,
(SFAEAD, G),..E, (sfAEAD, G),.D}

where:
(sfAEAD, G);.K : (sfAEAD, G);.E(K, ad, m, stg)
K < GK() i |stgu/h]
returnk Ki < G.N(K, 1)
_ ¢ < sfAEAD.E(K;, ad, m, stg.st)
(sfAEAD, G);,.Init(st) : returnc

(stg, stp) < sfAEAD.Init(st)

return(stE, 0), (StD’ O) (SfAEAD, G)hD(K? a’dn c, StD)

i — |stg.u/h|

(sfAEAD, G);.Upd(st) : K; «— G.N(K, )

st’.st « sfAEAD.Upd(st.st) m « sfAEAD.D(K;, ad, m, stp.st)
st «— st'u+1 returnm

returnst’

The following theorem shows how key diversification affects the security of
the stateful AEAD-scheme sfAEAD.

Theorem 2. Let A be an adversary with time complexity at most t in the
IND-sfCCSA model for the (sSfAEAD, G);, scheme with fixed h, making at most
qE queries to the Encrypt oracle and at most qp test queries to the Decrypt oracle
with length at most I. Then there exists an adversary B in the IND-sftCCSA
model for the StAEAD scheme making at most min(qg, h) queries to the Encrypt
oracle and at most qp test queries to the Decrypt oracle with length at most |
bits, and exists an adversary D in the PRG model for the G generator, making
the query with value at most N = |[qr/h|, such that:

AVDREEEN(A) < N - AVBRESNB) + 2 - AWER(D),

Furthermore, the time complexities of B and D are at most t + cIN(qp +
qp)Tsiaeap, where Tyapap is computational resources needed to process data
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with length at most | by algorithm of the sfAEAD scheme, ¢ is a constant that
depends only on a model of computation and a method of encoding.

The proof can be found in Appendix B.2.

5.3 Final bounds

Summarizing the results of Theorem 1 and Theorem 2 we claim the following
theorem:

Theorem 3. Let sSfAEAD be a stateful AEAD-scheme of type MtE-AD fulfilling
the Theorem 1 conditions. Let A be an adversary with time complexity at most
t in the IND-sftCCSA model for the (SfAEAD, G);, scheme with fired h making
at most qg queries to the Encrypt oracle and at most qp test queries to the
Decrypt oracle with length at most [ bits. Then there exists an adversary B for
the SE scheme in the ROR-CPNA model making at most min(qg, h) queries to
the Encrypt oracle with length at most | + T bits, exists an adversary C' for MA
the scheme in the PRF model making at most min(qg, h) + qp queries to the
TAG oracle with length at most | + r, and exists an adversary D in the PRG
model for the G generator, making the query with value at most N = [qg/h],
such that:

IND-sfCCSA
AdV(¢aEAD,G), (A4) <

Ngp
on

<2 AdVERS(D) + N - AdvRORCPNA By 1 o AdVPRF () 4

Furthermore, the time complexities of B and C are at most t + c¢(qg + qp)(l +
r+ 7)(Tma + Tse) + N (qe + qp)Tsiaeap and the time complexity of D is at
most t + cIN(qg + qp)Tsaeap, where Tya and Tsg is computational resources
needed to process data with length at most l+1r+1 by algorithms of the MA and
SE schemes respectively, Tsaeap s computational resources needed to process
data with length at most [ by algorithm of the sfAEAD scheme, ¢ is a constant
that depends only on a model of computation and a method of encoding.

6 Russian ciphersuites for TLS 1.2

The Record protocol provides bidirectional secure channel therefore during
a Handshake protocol running, every side generate key material for sending and
receiving messages separately.
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We describe the Record protocol only in the case when the data is transmit-
ted unidirectionally, because the bidirectional channel is symmetrical and the
key material is chosen independent at random according to uniform distribution
(this follows from the Handshake security assumption).

During a correct running of the Record protocol the sender must count sent
messages and the receiver must count received messages. The Record Protocol
takes messages to be transmitted, fragments the data into blocks, forms from
every block a record with the latest number, and transmits the result. Received
data is interpreted as a record with certain number and then decrypted, verified,
and delivered to higher-level protocols according to the header of this record.

The procedure of formation of a protected record in the Record protocol,
defined by the Russian ciphersuites, corresponds to the use of an AEAD-scheme
with internal state and re-keying. Here the MAC-then-Encrypt scheme is used
as a AEAD-scheme with internal state. This MAC-then-Encrypt scheme is
based on the OMAC and CTR-ACPKM block cipher modes of the Magma
or Kuznyechik cipher (further this scheme is called a TLS-REC scheme). The
key tree construction algorithm, defined by the algorithm TLSTREE [§], is used
as a generator for re-keying (further this algorithm is called a TREE generator).

Now assume that a key K = (Kua, Ksg) and IV were produced by the
Handshake protocol, where Kya € {0,1}* is a key for the OMAC mode,
Ksg € {0,1}% and IV € {0,1}"/? are a key and an initialization vector for
the CTR-ACPKM mode, k and n are a key length and block length of the ci-
pher to be used. For processing of the record with sequential number sn, new
keys are generated:

K* = (K, K&) = (TLSTREE(Kwa, sn), TLSTREE(Ksg, sn)) .

Let m be a data block produced during the fragmentation of the original
message which should be protected. Three stages can be distinguished in the
formation process of a protected record PRec, with a sequential number sn,
from m.

1. Formation of the unprotected record header: header = t|v|l, where t €
{0,1}8 is the record type (1 byte), v € {0,1}!% is the protocol version (2
bytes), [ € {0,1}!% is the byte representation of the byte length of m (2
bytes).

2. Formation of the protected record header: header’ = t|v|strig(int(l) +
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imacl).

3. Formation of the protected record: PRec = header’|c, where ¢ is calculated
by the following way: ¢ = TLS-REC.E(K*", header, m, (IV, sn)).

(a) Formation of the unprotected record Rec = header|jm.

(b) Calculation of the message authentication code: mac =
OMAC.TAG(Ka, strea(sn)|| Rec).

(c) Calculation of the current initialization vector: [IV*" =
str,o((int(IV) + sn) mod 2"/2).

(d) Encryption of the unprotected record payload and the mes-
sage authentication code from the previous step: ¢ =

CTR-ACPKM.E(KE, IV*", m|mac).

The receiver decrypts the protected record P Rec with the sequential number
sn by the following way:

1. Formation of the header header’ = t|v|l of the protected record PRec and
verification of correctness of its format. If the result of verification is error,
then the error code unexpected message or decode error is sent, and
the connection is terminated by the receiver.

2. Verification of the following condition on the value [ from the header: the
length int(l) doesn’t exceed 2! + 16 bytes. If the verification result is
error, then the error code record over flow is sent, and the connection is
terminated by the receiver.

3. Accumulation of the data of length int(l) by the receiver to form a cipher-
text c.

4. Formation of the unprotected record header: header = t|v|strig(int(l) —
imacl).

5. Formation of the record Rec = header|m, where m is calculated by the
following way: m = TLS-REC.D(K*", header, ¢, (IV, sn)):

(a) Calculation of the current initialization vector: [V =
str,,»((int(IV) + sn) mod 2"/2).

(b) Decryption of the record payload and the message authentication code:
m|mac = CTR-ACPKM.D(KZE, IV*", ¢).
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(c) Formation of the unprotected record Rec = header|m.

(d) Verification of the message authentication code: true Z
OMAC.VF(K{h, strea(sn)|Rec,mac). 1f the verification result is
error, then the error code bad record mac is sent, and the connec-
tion is terminated by the receiver.

6.1 Relevance of the security model

Before analyzing the target protocol in the IND-sfCCSA model, it is neces-

sary to make sure that the model really covers all the capabilities of an adversary,

which it has in practice and which largely depend on a specific implementation

of the protocol.

Below we present the justifications for accordance the capabilities, provided

by the experiment in the IND-sfCCSA model, to the real capabilities of the
active adversary.

— The IND-sfCCSA model allows the adversary to make the encryption and
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decryption queries with arbitrary associated data, while the Record proto-
col allows sending and receiving only those records which header satisfies
a strictly defined format. Note that the fact of success or failure of veri-
fying the header format does not give the adversary any additional secret
information about the internal state of the protocol, since the header is
transmitted in the channel in the open form and is verified immediately
before the start of the record decryption. Therefore, the theoretical capa-
bilities of the adversary in this case are even wider than practical ones.

The decryption oracle in the IND-sfCCSA model can return either plain-
text or the error symbol |, which in the Record protocol corresponds to
the bad_record mac error code. Other error codes can occur only when
verifying the header format, and in accordance with the preceding rationale
item, the absence of analysis of these errors in the model cannot lead to
cryptographically dangerous consequences, therefore, consideration of the
type of attack with processing various errors (IND$-sfCCA3 [20], SAE [14])
is redundant.

The IND-sfCCSA model allows the adversary to encrypt and decrypt data
of any bit length, unlike the Record byte-oriented protocol, which controls
the record length by verifying the header (record over flow error). In the



7

model, the query length is the parameter of the adversary, the restriction
on which is taken into account when obtaining specific estimates of the
insecurity value.

— Despite data to be protected is received from the transport layer proto-

col as a stream, the Record protocol starts processing of the record and
the subsequent transfer of service information (for example, an upper level
protocol error code) to the channel only after accumulating enough data
necessary to form the entire record. Therefore, the queries processing per-
ceived by the oracles corresponds to the message processing by protocol on
practice, and, thus, consideration of the type of attack with the possibility
of ciphertext fragmentation (CFA [33]), as well as attacks with adaptive
selection of text blocks (BCPA [27] and IND-BLK-CCA [21]), is redundant.

— The IND-sfCCSA model does not take into account the time of query pro-

cessing by the oracles, which obviously does not correspond to the practice,
where the time depends primarily on the record length. However, in the
case of the Record protocol construction, the record length is not confiden-
tial information, since it is written to the header. Length hiding property is
useful and was introduced in TLS 1.3, but when using TLS 1.2 this prop-
erty should be achieved by some higher-level solutions, so we do not take
this property into account when analyzing TLS 1.2.

— The Record protocol does not transfer an incoming message to the appli-

cation level until it is verified for integrity, which means that consideration
of the INT-RUP and AE-RUP [12] models is redundant.

Applying results to TLS-REC

7.1 TLS-REC scheme

Consider the stateful MtE-AD scheme TLS-REC. In TLS-REC the OMAC

function with 7 = {0,1}" is used as an MA scheme, and the CTR-ACPKM
encryption mode with IV = {0, 1}"/? is used as a CRD-scheme SE. For TLS-REC
the set AD is the set {0, 1} (5 bytes) and the set S is the set IV x Zga2. Then
we define functions from Definition 6 as follows:

— encodewa(ad, m, st) — m = strgy(st.sn)|ad|m;
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— encodesg(m,t) — m = mlt, decodesg(m) — (m,t) =
(me\ﬁL\—T(m)a leT(m))a

— StateTolV(st) — IV = str, »((st.sn + int(st.IV)) mod 2"/?);
— Next(st) — st' = (st.IV,(st.sn + 1) mod 2"/?).

It is easy to see that Next is bijective. Note that if for st,st’ € S exists
a: Next®(st) = st’ then st.IV = st’.IV (denote this property by *). Therefore,
a(st) = 272 for all st = (IV,sn). Obviously, decode is injective. The function
encodema is defined as concatenation of fixed length bit strings strgy(st.sn) €
{0,1}%) ad € {0,1}0 and variable length string m € {0,1}*. Due to this and
the property *, encodeya is a 64-adding collision free function with according
to Next. If for st, st’ € S the property * holds and st’.sn # st.sn, then (st.sn +
int(st.1V)) # (st.sn’+int(st.IV)) mod 2"2. Therefore, the StateTolV function
is injective with according to Next.

Then we can apply the results of Theorem 1 to the TLS-REC scheme.

Now consider the TREE generator. Note that the (3 constant in the
TLSTREE definition specifies the parameter h — the amount of messages pro-
cessed on one «leafs key. Therefore we can define the TREE algorithms as
follows:

1. TREE.K() — K = (Kua, Kse)
2. TREE.N(K, i) — K; = (TLSTREE(Kwa, i - h), TLSTREE(Ksg, i - h))

Consider the (TLS-REC, TREE);, scheme with fixed h. Note that an ad-
versary can not choose initial state (I'V,sn) when attacking Record protocol
because it is equal to (IV’,0) where IV’ is a part of key material produced by
the Handshake protocol. So the capabilities of adversaries in the IND-sfCCSA
model are wider then in practice. Note that for initial state (IV”,0) the scheme
(TLS-REC, TREE)}, is equal to the one described in Section 6.

Thus, we can apply the results of Theorem 3 to the (TLS-REC, TREE),
scheme with fixed h.

7.2 Applying obtained bounds on practice

Let M be some security model and Adv (A) is some characteristic of pos-
sibilities of A when implementing the threat in the model M. Let T be a tuple
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of limitations on computational resources of an adversary and any other pa-
rameters characterizing its work in the model M. T may additionally contain
the values limiting the total number of queries to the oracles considered by the
model M. For example, in the ROR-CPNA model this tuple contains time com-
plexity of the adversary, number of queries to encryption oracle and the maximal
length of one query. The set A(T') of the adversaries, satisfying the limitations
that are defined by T, is finite. By InSec™ (T) we'll denote the maximal value
Adv¥ (A) for adversaries A in the set A(T).

Consider particular numbers of messages processed on one key and queries,
those are defined in [8] and [25]. The TLS 1.2 specification define that if the MAC
value is incorrect then the connection must be aborted with bad record mac
fatal error. So number of test queries gp is at most 1. Furthermore, the length

of one record is no more then [ = 27 4+ n bits, where n is a bit length of the
MAC tag.

Considering HMAC as a base primitive, we bound InSecijyixc(t, ¢) as 2‘%

using estimates from [29]. Note that to process qp messages we need [%E] keys,
where h is a number of messages processed on one key. Let the section length
in the CTR-ACPKM mode be s bits. Then the result of Theorem 3 applied to
(TLS-REC, TREE)}, scheme can be rewritten using InSec notion.

IND-sfCCSA
InSec r s REC TRER), (5 ¢E; 1,1) <
< 2 InSec§rppg(ti, N) + N - InSectPn itpru(t2, b, [1/n] + 1)+ (1)
qe] 1

+ 2N - InSec?RE, (ts, b + 1, [I/n] + 1) + [ﬂ =

There values t1,to,t3 are obtained as computational complexity of adver-
saries from Theorem 3. Apply bounds of TLSTREE, CTR-ACPKM and OMAC
security from Appendix C.
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IND-sfCCSA
InSec (TLS-REC,TREE)), (t,qp, 1,1) <

2-2- ( [213 w [21?)}) - InSecinine (s, 212, 2)+

s
+ [QE] - InSechRP-CPA (. 2 4 o)y
h S n

+[E] = Lo, [25] - InSecER™CPA g, ( + 1) - ([1/n] + 1) + 1)+

T P RERCER) Y UTES) v

Consider used block cipher E as ideal (then InSect*“PA(¢, q) = 0). Apply-
ing HMAC and block cipher bounds we achieve the following estimate:

5 ge1 4 277 rqg 2?17'(%+2)2
et (0610 < [ 5z + [ | =5
4-(h+1)% ([l 1)?
(o] A D+ 7 ey
h 2" h

_I_

2n

Note that if qg is less then h then we can rewrite bound 1 as:

IND-sfCCSA
InSec(ris’REC TRER), (£ €8 1, 1)

< 2 InSecrr§rrer(f1, 1) + InSectPr iopin (f2, az, [1/n] + 1)+
1
+2 - InSecontrc(ts, gz + 1,[1/n] + 1) + o (2)
Analogously applying abovementioned bounds we receive:
sfCCSA
InSecirrs ruc trER), (t ¢8: 1,1) <
(3 +2? 4 (gg+1)*-([Un]+1)° 1

12 217
< + - + +—
2256 2n+1 omn on

With particular values of s,n and h we get the bounds presented in Table 1.
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Ciphersuite s | n h Security bound

qe <h qe = h

.. _KUZNYECHIK CTR_OMAC | 2% [ 27 | 64 | ¢ -(I+27)2-27140 | gp. (1 +27)2.27126

.._MAGMA_CTR_OMAC 218 | 26 | 4096 | ¢% - (1+26)2-274 | gg- (I 4 26)2. 2762

Table 1: Security bounds for TLS-REC ciphersuites.

8 Conclusion

This paper introduces the IND-sfCCSA model that allows to analyze a wide
class of protocols those provide secure channels. We obtain security bounds for
the general stateful MAC-then-Encrypt with associated data scheme and for the
general stateful AEAD scheme with pseudorandom generator. The presented
theorems allows to estimate the security of the above-mentioned scheme by
the security of the used cryptographic schemes such as encryption mode, MAC
scheme and pseudorandom generator. This paper shows the relevance of the
IND-sfCCSA model for the Record protocol and presents the security bounds
for the new specification of this protocol defined by the Russian ciphersuites
(bounds 1, 2; Table 1).

The open problems are to prove the tightness of the bounds or to improve
them. The second objective can be achieved by improving the proof in the
IND-sfCCSA model or by improving the model. One of the way to improve the
model is to make the capabilities of adversary more real, for example do not let
him set or know the I'V value, since in TLS 1.2 with the Russian ciphersuites
IV is a part of secret key material.
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A Security models

A.1 Basic security models

In this appendix we formally define basic security models.

Definition 13. For a cipher E with parameters n and k define

Advl;RP—CPA(A) _

Pr [EXp%RP'CPAfl(A) — 1] — Pr [Exp%RP'CPA*O(A) — 1] ,

where the experiments Expht CPATL(A) and Exph-CPA0(A) are defined in
the following way:

ExpitF-CPA=b(4) OracleP®(M), M € {0,1}"
tf b =0 then tf b =0 then
P& perm({0,1}") return P(M)
else else
K& {0, 1}F return Fi(M)
end if end if
by oS AP
return

Definition 14. For an IV-based encryption scheme SE define advantage of
adversary A in ROR-CPNA model as

AdVggR_CPNA(A) _

_ Py [ExpRORCPNA-I(4) 1, 1] - Py [ExpRORCPNA-0(4) 1]

where the experiments EXp?ER'CPNA_b(A), b e {0,1} are defined in the follow-
mg way:
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ExpodfOPRNA=D(4) Oracle Encrypt’(IV, m)
K&k if IV € used then

used — return 1
b — AEncryptb(-) end 'Lf
used — used U {1V}
if b =0 then

m ﬁ {O) 1}\m|
end if
c — SE.E(1V, K, m)
return c

return b

ROR-CPNA model differs from ROR-CPA in definition of Encrypt oracle.
First in ROR-CPNA model Encrypt oracle takes as input one additional value
IV € 1IV. It states as initialization vector for the correct work of encryption
scheme. The ROR-CPNA experiment also uses the set used to check if this IV
value was queried yet to avoid the trivial attack. If IV from new query was
queried early then oracle Encrypt returns error(.L).

Often the analysis results are received in stronger model IND-CPNA. In
this model the adversary has to distinguish the obtained ciphertexts from the
«garbage», having the capability to adaptively choose plaintexts and nonces
(in a unique manner). This model can’t be applied to Record protocol analysis

because header is simply distinguishable from random value. But this model is
applyable to the cipher modes such as CTR-ACPKM

Definition 15. Let SE = {SE.K, SE.E, SE.D} be a symmetric encryption
scheme and let A be an adversary. The advantage of A for the scheme SE in
the IND-CPNA model (IND-CPNA-advantage) is defined as

AdVISIED—CPNA(A) _
= Pr [ExplsléD'CPNA_l(A) — 1] = Pr [EXpISIED'CPNA_O(A) — 1],

where the experiments Expeg "N (A), b e {0,1} is defined as follows
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Expe” “PNAT(A) Oracle Encrypt’(IV, m)
K&k if IV € used then

used — return 1
b — AEncryptb(-) end 'Lf
used — used U {1V}
c«— SE.E(IV,K,m)
if b =0 then
¢ & 0,13
return ¢
end if
return c

return U

The following inequality holds:

Statement 1.

ROR- CPNA(t’ q, l) IND- CPNA(t q, l)

InSecqe < InSecgp

Definition 16. Let MA be a message authentication scheme and let A be an
adversary. Then the advantage of A in PRF model is defined as:

Advset (A) = Pr [Expys '(A) — 1] — Pr [Expyy %(A) — 1],

where experiments ExpPRF "(A), be{0,1}, is defined as follows:

ExpliF-1(4) ExprRF-0(A)
K < MAK() find — &
$ 1 y <& ATag
V< ATe /
return b return b
Oracle Tag'(m) Oracle Tag’(m)
return MA.TAG(K,m) ifp e T :(m,7) e Rnd
then
LT
Rnd — Rnd v {(m, 1)}
else
T—T
end if
return T
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Definition 17. Let G be a pseudorandom generator and let A be an adversary.
Then the advantage of A in PRG model is defined as:

AdvZ @ (A) = Pr [Expgt®!(A) — 1] — Pr [Bxpg™©"(4) — 1],

where the experiments Expero 1 (A) and ExpeicY(A) are defined as follows:

) Exple-0(4)
Sto < G.K() NE A

Out «— ¢ Out & BY
NE A4 b < A(Out)
for 1 doON-1 return b
end for

Out — (Outy,...,Outn_1)

b < A(Out)

return b

B Security analysis of AEAD schemes

B.1 Security analysis of MtE-AD scheme

Consider the advantage of the adversary A in IND-sfCCSA model for
sfAEAD scheme.

IND-sfCCSA
AdVaEAD (A) =

= Pr [BxplRAS 541 (4) — 1] - Pr [BxpBRaSA0(4) - 1]

Construction of adversary C. Construct adversary C' in PRF model for MA
scheme that uses A as a black box next way
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(' Tag’ SimDec(ad, c)
b & 0,1} INVD — StateTolV(stp)
Kee S SE.K() m <« SE.D(Ksg, ¢, [Vp)

we 0 v 0 (Am, t) < decodesg(m)
m <« encodewma(ad, m, stp)

t «—

i:ib— A 2 if Tag’(m) = t then )
(stg, stp) < SFAEAD.Init(st) if ((ad,c,v) € sent) or (b = 0)
b — ASimEnc, SimDec then
return b = b dm‘f<—L

. end i
Sme:iZj;m)< st stp — SFAEAD.Upd (st p)
< MALAd, 1T, Stp ve—uv+1
t — Tag’(m) olse
IVE « StateTolV(stg) e |

m < encodesg(m, t) end if
¢ — SE.E(Ksg, IVp, m)
sent < sent U (ad, ¢, u)
stp < sfAEAD.Upd(stg)
u<—u+1

return c

return m

Adversary C' first generate bit b and key Ksg at random and then simulates

oracle Encrypt and Decrypt using Sim Enc and Sim Dec to answer the A queries.

Denote Expgf\/LDEﬁECCSA_b“bZ(A) the experiment where the adversary in-

teracts with encryption oracle Encrypt” and decryption oracle Decrypt®

IND-sfCCSA—1,1 IND-sfCCSA—1 IND-sfCCSA—0,0
(E IﬁféEggCSA . (A) =  ExPgaeap (4), E szE/iD (4) =
_S —
EXPaeap (A)).

Note that if adversary C' interacts with Expya * then C simulates to

. IND-sfCCSA—-1,1 .p 7 . IND-stCCSA—-1,0
A experiment EXpapap if b = 1 and experiment EXpgapap

otherwise. If C' interacts with Exp,{),&F_O then he simulates to A experiment

E g%ifSCSA_l’l if b = 1 and experiment Expiilé;ifé;CSA_l’o otherwise. There
sfAEAD’ is sfAEAD scheme with MA changed to random oracle. Random oracle

does not use the key Cya, but for every new value m € Mpya returns value
t & T at random.
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The advantage of the adversary C' in PRF model is
Advya' (C) = Pr [Expya '(C) — 1] — Pr [Expya (C)
(Pr [EXpPRF HO) > 1 \ 1] + Pr [EXpPRF HOY =1 b= 0]) -

(Pr [ExpPRF %C)—>1|b= 1] Pr [ExppRF C)—1|b= OD =

l
T

IND-sfCCSA—1,1 IND-sfCCSA—1,0
Pr [ExpszEAD (A) — 1] + Pr [EXpszEAD (A4) = 0] —

Pr [Ex IND-sfCCSA—1, 1(A) 1] 4 Pr [EXlef\IADE;f;;CSA 1, O(A) —0 ) _

Il
N =0 | = o | HI\N '—‘L\DI —
N

( PaeaD’
IND-sfCCSA—1, IND-sfCCSA—1,0
=35 (Pr [EXPszEASD ! 1(A) - 1] —Pr [EXpszEAS\D (A) — 1]) -

~~
(67

Pr [Expiilé'/ig;CSA_l’l(A) — 1] Pr [Expliﬁgg;CSA L O(A) — 1]

|
N | —
(—~
\\—

8
Then o = 2 - Advya' (O) + §. Estimate the a value. Note that

IND-sfCCSA o
AdVgAEAD (A) =

_ Pr [Expgggsf[gJCSA Lle4) S 1] Pr [Ex INDICCSA-00( 4 _, 1]

— Pr [ExpifNADE-AsfSCSA—n . 1] Pr [ pIDSICCSAL0( 4 _, 1] N

+ Pr [EX EC\LDE ;ECCSA 1 0 1l =Py [ 1;1;\1% slngCSA 0 0 ]
N

IND-sfCCSA—1,0 IND-sfCCSA—0.0
=a+Pr [E XPsfAEAD (A4) — 1] —Pr [E XPsfAEAD (A) 1] :

v

Then, o = AdvIR2SICBA(4) — ~ and estimate can be rewritten as

AGERAS A (4) = 2 AT (C) + 5+

Estimate the value f = Pr [Expnf\;[é Abe(’jCSA b)) - 1] —
IND-sfCCSA—1,0
Pr [E XP AEAD' (A) — 1].

Introduce the following modifications of the experiment: ExpifNA]E'/ifé;CSA'i_l’l,
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j =0,1,...,qp. The encryption oracle Encrypt’ does not change and the de-
cryption oracle Decrypt?, b e {0, 1} is defined as follows:

IND-sfCCSA;—1,1 1
EXP e apy (A) Oracle Decrypt' (ad, c)
S SAEAD K m <« sfAEAD.D(K, ad, ¢, stp)
S K() if ((ad, c,v) ¢ sent) then
u<—0, v—0,7r0 . .
if (r < j) then
sent z [0%) —_——
st | end if
(stg, stp) < sfAEAD.Init(st)
b — AEncryptl,Decryptb rertl
) end if
return. b if (m # 1) then
if ((ad, c,v) € sent) then
m«— L
end if
stp <« sfAEAD.Upd(stp)
ve—v+1
end if
return m

In this modification the decryption oracle Decrypt' returns error while an-
swering to first j testing queries regardless of their correctness.

Note that BExpPsfCOSA—Ll o onal to ExphsfCOSA-L1 14

SFAEAD/ XPaEAD!
X IND'SfCCSAqD_171 lS e ua,l tO EX IND-SfCCSA—l,O
Paeap’ q P.aeap’ :

So the following equation holds:

E

Il

5= Pr [EXpIND—stCSA—l,l( A) > 1| —pr _EXpIND-stCSA—l,O (A) — 1]

SFAEAD’ | | EXPetaean’
_ IND-sfCCSA—1 IND-sfCCSA—1,0 .
— Pr [Expl2as 471 (4) - 1] - Pr [Bxpl2a (4) > 1| =

IND-sfCCSA,,—1,1
sfAEAD’

= Pr [EXpIND'SfCCSAOl’l(A) — 1| —Pr _Exp (A) — 1] =

sfAEAD’

gp—1
IND-sfCCSA,—1,1 IND-sfCCSA; 1 —1,1
- 2 (Pr [ExpszEAD’ (4) - 1] —Pr [ExpszEAD’ tA) - 1]) :

J=0 - ~~

2%}

/

Estimate p; for some j € {0,...,qp — 1}.
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Let w; be an event such that j + 1-th adversary query is a correct testing

IND-SfCCSAj+1 -1 5 1

query (adversary forged ). Note that Exp returns | answering

SFAEAD’
: IND-sfCCSA,—1,1
to this query and Exp_, o returns some value m #.1L. Note that w;

probability is determined by randomness source of the adversary A, random key
Ksg and the choosing mac values at random. Then the value of 7 + 1-th query
depends on randomness source of the adversary A anf the previous answers from
oracles.

But when the j + 1-th testing query is formed both Exp

IND-sfCCSA ;11 —1,0
and Exp e \n

tions are identical too. It is true because the encryption oracle Encrypt!
is equal and Decrypt' decryption oracle returned only error value L. Then
the distributions those determine the probability of w; event in experiments
ExpifNA]E_:fsCSAj “H1(A4) and Expilf\;DE_:fsCSAj “P1(A) are indistinguishable for every
adversary A. Moreover if the event w; does not occured for any j then the distri-
butions on results of experiments Exp A1 (4) and Expho SOCATL0 4)

SFAEAD’ SFAEAD’
are indistinguishable too.
So for any j € {0,...,qp — 1}:

IND-sfCCSA,—1,1
SFAEAD'

have returned identical answers so the distribu-

IND-sfCCSA, — 1,1 IND-sfOCSA 41— 1,0
Hy = Pr [EXpszE:D’ )~ 1] —br [ExpszEASD’ ) - 1] -

IND-sfCCSA ;—1,1 IND-sfCCSA ;4 1—1,1
= Pr[w;] - <Pr [EXpszEASD’ T A) > 1 wj] —Pr [ExpszE:D, T A) > 1 ij +

<1

+ ] PrBepgo N (4) - 1 |35 - Pr [Beplp ) - 1 5 <

>

~~

=0
< Prw].

Estimate the probability Pr [w;].

Denote by (ad’, ¢’) the j + 1-th testing request to the decryption oracle for
some counter value v’ and the internal state st7,. Let m' be such that m’ =
encodema(ad',m/, st’,), (m',t") = decodesg(SE.D(Ksg, IVp, c)).

Since the request (ad’, ) is testing, i.e. (ad',d,v") ¢ sent, then one of the
following conditions is met:

1. at the time of processing the request (ad’, '), the counter value wu is not
greater than the value of v’ (the record with the number v’ has not yet
been sent to the channel by an honest sender).
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2. ad # ad v ¢ # ¢, where (ad,c) is a query to the oracle Encrypt! with
the value of the counter u = v" and the internal state sty = st}, (trivial

query).

Let us show that the j + 1-th testing request to the decryption oracle causes
a new request to the random oracle.

The first case. By the condition of the theorem, the number of queries to the
oracle Encrypt1 is not greater than au,i,, and the trivial queries to the oracle
Decrypt! are not greater than oy, — 1. Also, due to the definition of the oracle
Decrypt!, the preceding testing queries do not increase the value of the v counter,
therefore v < alphap, (counter from zero). Therefore, due to the properties of
the Next function, when processing all queries to the Encrypt! oracle with u # v/,
the states st* neqstp were used. Thus, the inequality encodeya(ad*, m*, st*) #
m’ holds for any ad*,m* due to the encodeya is collision free function with
according with the function Next.

Recall that the oracle Decrypt! by definition does not handle all previous
requests and returns | in response.

Thus, the value of m’ has not previously arrived at the input of a random
oracle.

The second case. Since the reasoning above for the first case is true for
the second case, it suffices to show that m’ # m, where m is value corre-
sponding to the trivial query (ad,c) such that m = encodeya(ad, m,st]),
(m,t) = decodesg(SE.D(Ksg, [Vp,c)).

Note that

— if ad # ad’, then m’ # m, because encodepa is collision free function with
according with the function Next.

—if ¢ # ¢ and ad = ad’, then at least one of the conditions m # m/ or t # ¢/
is met because SE is C'RD-scheme and decodesg is injective. Then

—if m # m/, then m # m' , because encodeya is collision free function
with according with the function Next.

—if (m = m/) and (¢ # '), then m = m’ and t = ¢/, because random
oracle returns equal values for equal inputs.
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Thus, in the second case, the value of m’ has not previously arrived at the
input of a random oracle.

Therefore, the required probability is estimated from above by the proba-
bility of guessing the value ¢ LT ie.

1
PF[Wj] < 2—7_, VjE{O,...,qD—l}
Thus, the bound takes the form

AdvISRSCCSA (1) — o AdVPRF () 1 g—D + 7.

Construction of adversary B. We now estimate the value of v by constructing
an adversary B for the SE scheme in the ROR-CPNA model, which uses A as
the black box.

BEncrypt’ SimEnc(ad, m)
Kya < MA.K() m < encodewa(ad, m, stg)
st — A t <« MATAG(KMA,m)
(stg, stp) < SFAEAD.Init(st) m < encodesg(m, )
b — ASimEnc, SimDec IVp « StateTolV(stg)
return ¥ ¢ — Encrypt”(IVg, i)
sty < sfAEAD.Upd(stp)
return c
SimDec(ad, c)
return |

By definition qp < amuin. Therefore, by virtue of the injectivity of the func-
tion StateTolV with according to Next condition holds I'Vg ¢ used.

Thus, with b = 0 the adversary B simulates the conditions of the experiment

ExpifNA]E}ifDCCSA_O’O, and with b = 1 simulates the conditions of the experiment

IND-sfCCSA—1,0
ExXpgaeap . Therefore,

-S A— - A—
s = P [BpACA104) — 1] - e [BxpBRESCA99(4) — 1] -
= Pr [Expeg®V PN Y(B) — 1] — Pr [Expeg VPN 0(B) - 1] =
_ AdV]S:{EOR—CPNA(B)
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Substituting the resulting ratio in the estimate, we get

AWERISSNA) = 2AMERT(O) + AR (B) 4 2

B.2 Security analysis of MtE-AD scheme with generator

We construct the adversary D in the PRG model for the G generator,
which uses A as the black box. The adversary D acts as follows. Receiving
as input some sequence from N = [gg/h] of blocks Ky, Ki,..., Ky_1, he

chooses the random bit b < {0,1} and models for A experimental conditions

Ex gAD;igCGS)A_b(A), using these blocks as appropriate keys. Note that in the
»3)h

case of the adversary D in the model PRG — 1, G is the generator G. In the
case of the adversary D in the model PRG — 0 ,C = G is the generator that
produces the keys, choosing them equiprobably from the set K independently of
friend After the completion of the experiment, the adversary D outputs 1, if the
withdrawal of the adversary A coincided with the bit b, and 0, in the opposite

case.
Consider the advantage of the adversary D in the PRG model:

AdvERG (D) = Pr [ExpgRG_l(D) — 1] —Pr [ExpERG_O(D) —1] =
IND-sfCCSA—1 IND-sfCCSA—0
— (Pr [Exp{RSS T (4) = 1 A b= 1| + Pr [ ExplRatSSA=0(4) - 0~ b =0])-

IND-sfCCSA—1 IND-sfCCSA—-0
_ (Pr [EXp(szESAD,G')h (A)>1 n b= 1] + Pr [EXp(szEbAD,G')h (A) >0 n b= 0] )

The bit b is chosen randomly, then the previous expression can be written as
follows:

AdvgRS (D) = Pr [Expei¢~H(D) — 1] — Pr [Expei¢~ (D) — 1] =
1 IND-sfCCSA—1 1 IND-sfCCSA—0
= (5 -Pr [EXp(szESAD,G)h (4) - 1] +5Pr [EXP(szESAD,G)h (4) - 0] )‘

— (% - Pr [EXpIND'SfCCSA_l(A) — 1] + % - Pr [EprND'SfCCSA_O(A) — 0] ) =

(SFAEAD,G'),, (SFAEAD,G'),,
1 IND-sfCCSA—1 IND-sfCCSA—0
=35 (Pr [EXp(szESAD,G)h (A) — 1] + (1 —Pr [EXp(szESAD,G)h (A) — 1] >>—

_ %(Pr [ Expiaeancn, ™ (4) = 1] + (1= Pr [ Exp{Reicish=(4) ~ 1| )) =
— 2 (AVBRESE () — ARSI ()
Thus,
AdV(SREADG) (4) < 2 Advg (D) + Adv(gaeap.cr (A).
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Estimate the advantage Adv{ﬁ?&iﬁ%%ﬁ (A). To do this, we describe the following
series of experiments Hybrid;(A), where j € {0,1... N}.

Hybrid;(A) Oracle HybridEnc(ad, m)
KOJKlu"WKN—l(Z{O?l}k ?HLU/hJ
w0 veD0 if u < j-h then
’ 5 (0,1}
sent «— m < {0, 1}
st < A end if
(stg, stp) < sfAEAD.Init(st) ¢ < sfAEAD.E(K;, ad, m, stp)
b/  AHybridEnc, HybridDec sent — sent L (ad, ¢, u)
return V' stp < sfAEAD.Upd(stp)
u<—u+1
return c
Oracle HybridDec(ad, c)
i [v/h]

m <« sfAEAD.D(K;, ad, ¢, stp)
if (m # 1) then
if (ad,c,v) € sent or v < j - h
then
m«— L
end if
stp < sfAEAD.Upd(stp)
ve—v+1
end if
return m

In these experiments, oracles Encrypt® and Decrypt® are modeled on the first
4 -h requests for the adversary A, and on the rest oracles Encrypt! and Decrypt!.
We introduce the following notation: P; = Pr [Hybrid;(A) = 1]. Note that in
this case

IND-sfCCSAj, y—1 IND-sfCCSA, v —0
v="rr [EXp(szEAD,G’) (A) - 1] —Pr [EXp(szEAD,G’) (A - 1] =

= Pr[Hybridy(A) — 1] — Pr [Hybridy(A) — 1] = Py — F.

To estimate the value Py — Fy, let construct an adversary B in the
IND-sfCCSA model for the sSfAEAD scheme.
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BEncryptb7Decryptb

&1, N}

Ko, K1, Kjp, ... < {0, 1}F
u<—0, v<—0

sent «—

st «— A

(stg, stp) « sfAEAD.Init(st)
b — ASimEnc, SimDec

return
SimEnc(ad, m) SimDec(ad, c)
i — |u/h] i — |v/h]
if u<(j—1)-hthen if v<(j—1)-h then
m < {0, 1}m! m «— SfAEAD.D(K;, ad, c, stp)
¢ «— sfAEAD.E(K;, ad, m, stg) end if
end if
if (j—1)-h<wv<j-hthen
if (j—1)-h<wu<j-hthen if u<vandv=(j—1)-h then
if v<uandu=(j—1)-h then send stp
send stg end if
end if m « Decrypt®(ad, c)
¢ < Encrypt®(ad, m) end if
end if
if v>j-h then
if u> j-h then m <« sfAEAD.Dec(K;, ad, c, stp)
¢ «— sfAEAD.E(K;, ad, m, stg) end if
end if
if (m # L) then
sent «— sent U (ad, ¢, ) if (ad,c,v) € sent or v < (j —1)-h
stp < sfAEAD.Upd(stg) then
u<—u+1 m«— 1
return c end if
stp <« sfAEAD.Upd(stp)
ve—v+1
end if

return m

The adversary B chooses j & {1,... N}, queries the A initialization data,
and then models for the adversary A the work of its oracles using the SimFEnc
and SimDec functions. The functions SimFEnc and SimDec are designed so
that the first (j — 1) - h queries they simulate oracles Encrypt® and Decrypt? of
the adversary A respectively. On the queries from (7 — 1) - h + 1 to j - h the
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functions use the own oracles of the adversary B to respond to the requests of the
adversary A. On the remaining requests, the functions SimEnc and SimDec
simulate oracles Encrypt! and Decrypt! of the adversary A. After completing
the experiment, the adversary B outputs the same bit as A.

Note that if the adversary B has access to the oracles Encrypt® and Decrypt?,
then the following equality holds:

N
S - 1
P [Bxpl (8~ 1] = 31 B
1=1

And if the adversary B has access to the oracles Encrypt! and Decrypt!,

N
1
Pr [Bxplgas “'(B) » 1] = Y - P
=1

Consider the advantage of the adversary B in the IND-sfCCSA model
MBS () -

— Pr [Expl2(B) - 1] - Pr [Explis st 0(5) — 1] -

N N1 1
N —.Pp-N'"—_.p = —(Py—-P).
;N ;N | N(N 0)

Therefore, Adv{aeap o, (A) = N -Advigagap - (B), which completes the proof
of the theorem.

C Basic security estimates

To obtain specific estimates for the TLS-REC protocol, you will need to
recall some estimates for the cryptographic schemes used in the protocol. The
CTR-ACPKM |[7] mode is used as the encryption scheme in TLS-REC, the

OMAC [2] mode is used as the MAC scheme, and the TLSTREE 6 function
based on KDF [5] function is used for key derivation.

C.1 Known estimates for CTR-ACPKM, OMAC, KDF

The OMAC mode is analyzed in [26]. This paper formulates the following
statement about OMAC security.
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Theorem 4 (OMAC security).
4q2l2
omnp2’

The CTR-ACPKM mode is analyzed in [10] This paper formulates the fol-
lowing statement about CTR-ACPKM security.

InSecoitsolt, ¢, 1) < InSech™CPA (4 gl + 1) +

Theorem 5 (CTR-ACPKM security). Let N be the parameter of
CTR-ACPKM mode. Then for any adversary A with time complexity at most
t that makes queries, where the mazximal message length is at most m (m <
2"'/2_1) blocks and the total message length is at most o blocks, there exists an
adversary B such that

AdVeTRACEIM, (A) <
(014 8)?+ ...+ (01-1 + 8)* + (07)?

< - AdvERP-CPA(BY 4 T

where s = [k/n], | = [m/N], o; is the total data block length processed under the
section key KV and o; < 2" ', o1+...+0; = 0. The adversary B makes at most
o1+ s queries. Furthermore, the time complezity of B is at most t +cn(o +1s),
where ¢ is a constant that depends only on the model of computation and the
method of encoding.

The KDF function is analyzed in [11] This paper formulates the following
statement on the relationship between the security of the KDF function in the
PRF model and the security of the HMAC function in the PRF model.

Theorem 6 (KDF security).

InSeck it (T, g, u) < InSechfy (T + ¢, q,u + 1).

C.2 TLSTREE security in the PRG model

Recall the construction of a pseudo-random generator with an internal state
from [9], which is a generalization of the TREE algorithm. This construction is
a balanced tree, in which each vertex that is not a leaf corresponds to a separate
pseudo-random generator with an internal state. Each sheet corresponds to the
output unit of the whole structure. The output blocks of all generators, except
those on the lower level, fill the random tape of the generators’ key generation
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algorithms with a lower level. We assume that all levels of this tree are L. More
formally, this definition can be written as follows.

Definition 18. Let G; = (K, N;) be pseudorandom generators with the set of
states IC and the set of blocks B, those are used on level l. Let a; be a number of

blocks, which gives each generator on level . Define a pseudorandom generator
G = (K,N) with the set of states IC and the set of blocks B as follows

K() N(St)

Stl «— Kl() <St1,...,StL_1,i><—St

for | dolL-1 [—L—-1,d—1+1
(Outy, St;) — N;(St)) while d mod a; = 0 do
StH_l <« Kl+1(0utl) d — [d/alJ l—1-1

end for end while

St <—<St1,...,StL_1,O> (Outl,Stl) <« Nl(Stl)

return St whilel < L —1 do

[ —1+4+1; St — Kl<0utl_1)
(Outl, Stl) <« Nl(Stl)
end while
St <~ <St1, ceey StL_l,i + 1>
return (Outy_q1,St)

For this construction, it was proved in [9] that the pseudo-random generator
G will be secure in the PRG model if all the generators G; used in the con-
struction are secure in the same model. More strictly, the following theorem is
true.

Theorem 7 (Abdalla, Bellare [9]). Let each G; = (K;,N;) be a secure stateful
generator for all l = 1,...,L — 1. Let ay = 1 Let n; = Hé';lo a; be the total
number of nodes at level [. Let G be the overall stateful generator formed out of
the basic stateful generators as described in Definition 18. Let A be an adversary
for G in the PRG model with time complexity at most t. Then adversaries
By, ..., Bp 1 exist with time complexity t1 ~ t such that

AdvciS(A) Z n - Adverd (By)

Apply this theorem to the algorithm TREE, defined in Section 6. If we
represent this algorithm as a tree, as suggested in [9], then it is obvious that
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the number of levels is L = 4, and a; = 23, [ = 1,2, 3. Thus we receive the
following security estimate for TREE.

Advigig(4) < (1427 +(27)%) - 2~ Adviyr ' (B)
This unequality can be rewritten as.

InSeciisip (¢, (21%)) <

< (1428 4 (219)2) 2 InSeckiiC (¢, 213) < 228 . InSechiiC (¢, 213).

Note that the additional factor of 2 with terms Advii¢(B) and

InSeciiC (¢, 213) arises from the fact that each generator at the top of the tree

generates keys from the set Ksg x Kua, using the KDF function twice.
If the algorithm TREE generated less than (2!%)? keys, then the estimate
will look like this:

N N
InSec it (t, N) < (1 + [WW + [ﬁW) -2 - InSechRG (¢, 213)
Applying the estimate for KDF we obtain:

N N
InSechhog(t, N) < (1 + [W} + [ﬁ}) -2 - InSeciinc (t1, 213, 2)
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Abstract

We study security of a fuzzy extractor under two pr