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Dear colleagues!

Scientists in the field of cryptography, specialists of cryptographic in-
formation security, software manufacturers, representatives of state regu-
latory bodies and people interested in information security problems are
going take part in the 6th Workshop on Current Trends in Cryptology.

Just like at the previous workshops this year the organizers put scientific
quality and novelty of reports presented at the Workshop in the forefront.
The reports you will hear today have gone through a strict review of an
international program committee. There are indeed some extremely in-
teresting and relevant research results. Workshop reports are devoted to
different aspects of cryptology. There are some theoretic problems the
practical importance of which is still to be implemented, as well as some
issues directly related to the development and use of specific cryptographic
algorithms.

Annually we invite foreign specialists, which conduct relevant research
in the field of information security, to take part in the workshop. This
year our guests are Jean-Philippe Aumasson and Gregor Leander – these
researchers have done a lot for the development of modern cryptography.

”A day of practical cryptography” conducted under the aegis of Russian
Technical Committee for Standardization TC 26 is worth mentioning. Dur-
ing the Day some problems of development and operation of Cryptographic
information protection devices in Russia will be considered.

At the round table ”Quantum cryptography: from theory to prac-
tice” questions and problems of quantum key distribution systems use are
planned to be discussed.

The theoretical side of quantum cryptography has been covered within
the Workshop for two years. Now we have approached the practical side of
the issue. To assess the practical achievements of theoretical results com-
prehensively we have invited the representatives of three scientific schools
which are engaged in this research trend: Lomonosov Moscow State Uni-
versity, Russian quantum center and ITMO University in St. Petersburg.

Another discussion will touch upon an actively debated blockchain tech-
nology which is considered by some specialists to be the future of digital
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technologies. The ”Blockchain: market expectations and experts’ opin-
ions” round table will be devoted to the problems of applying this technol-
ogy and modern challenges for scientific community and developers to put
it into practice.

Finally, the workshop delegates will hear an extraordinary report based
on archival records: ”Historical evidences on the origin and the establish-
ment of the Russian cryptography (16-17 centuries)”.

Dear colleagues!
In conclusion, I would like to say a few words about the Russian Academy

of Cryptography, one of the organizers of all six CTCrypt workshops. To-
day the Academy celebrates its 25th anniversary with all Russian cryp-
tographers. The Academy is a public academic institution carrying out
fundamental and applied researches in the field of cryptography and allied
sciences. The main research line and scientific assessment of the result
are executed with regard to development trends and achievements of mod-
ern cryptography alongside with constant communication with the crypto-
graphic community.

Math articles and monographs of the Academy members on algebra,
probability theory, combinatorial analysis, and coding theory are published
by the Russian and foreign publishers. Results of the researches of Rus-
sian mathematicians and cryptographers, including ones of the Academy
of Cryptography, can be found in the ”Mathematical aspects of cryptog-
raphy” journal published by the Academy along with V.A. Steklov Math-
ematical Institute. The proceedings of CTCrypt workshop have been pub-
lished in this journal since 2013.

Dear colleagues, I hope everyone will find something useful and new in
this workshop while the delivered reports will give ground for new ideas and
developments. At this point let me wish you efficient work, good impres-
sion, new ideas and the 6th Workshop on Current Trends in Cryptology is
declared open.

Vladimir Sachkov
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On cryptographic properties of the CV V and PV V
parameters generation procedures in payment systems

Liliya Ahmetzyanova, Evgeny Alekseev,
Grigory Karpunin, Stanislav Smyshlyaev

Abstract

Two important mechanisms of providing security of payment systems are checks
made with parameters CV V and PV V . In the current paper the provable security
approach is exploited to explain the reasons of not using the two-pass decimalization
procedure in the «MIR» payment system, used by VISA, for example. We propose
a simple procedure that turns out to be much more secure.

The work was supported by the Russian Foundation of Basic Research, the
project 16-01-00226 A.

Keywords: CVV, PVV, provable security, decimalization

1 Introduction

Cryptographic mechanisms to ensure transactions security in the Rus-
sian national payment system «MIR» are being developed. Such mechanisms
include procedures for calculating the card check values and PIN -codes
(CV V and PV V respectively).

The most common payment systems VISA and Mastercard use a scheme
that is based upon consistent application of well-known CBCMAC [1] scheme
and so-called two-pass decimalization function, see, for example, [3], for pro-
cedures of calculating CV V and PV V . For the payment system «MIR»
analogues of this procedures based on Russian national cryptographic stan-
dards, in particular block cipher Magma (GOST R 34.12–2015 [6]), are in-
tended to be used.

In the current paper we describe probability distribution on the set of
strings of decimal digits, that is induced by the procedure of two-pass deci-
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malization. A simple analogue of such a procedure is described — the prob-
ability distribution with it turns out to be much closer to the uniform.

In the current paper we define adversary models that are interesting from
the practically-oriented point of view. We also define stronger adversary
models that are traditionally used in theoretical cryptology. The security in
practice-oriented models is evaluated with bounds obtained in these stronger
models. We show that for the two-pass decimalization the specter of values of
the resulting parameters for which security bounds can be obtained is much
more poor than for the proposed analogue. The results are obtained under the
assumption that the best method of distinguishing the block cipher Magma
from random permutation is key recovering by bruteforce.

2 Notation

Denote by Vn the set of n–component strings on F2 . By Bn we denote
the set of all byte strings of length n . By Vn∗ we denote the set of all strings
with elements from F2 with non-zero length which is multiple of n .

By INT we denote the function Vn → N , such that for X =
(X1, X2, . . . , Xn) ∈ Vn there is INT (X) = 2n−1 ·X1+2n−2 ·X2+. . .+20 ·Xn .

By H we denote the set of {0, 1, . . . , 15} . By D we denote the set
of {0, 1, . . . , 9} . The elements 10, 11, . . . , 15 of H are called hex-symbols,
other elements of this set, which are members of D , are called decimal sym-
bols. For the hex-elements of 10, 11, 12, 13, 14, 15 we’ll use the symbols of
A, B, C, D, E, F respectively. Strings of Bn are interpreted as the strings from
H2n in a natural way (corresponding hex-symbols are obtained by trans-
formation of leading and trailing 4 -bit parts of bytes from left to right).
Positive integers are also interpreted as strings from Hn or Dn for some n
in a natural way (123→ 07B ∈ H3 and 123→ 0123 ∈ D4 ).

For A by Perm(A) we’ll denote the set of all bijective transformations
of A , and by Func(A) we’ll denote all mappings from A to A . A block
cipher E is the family of {EK |K ∈ Vk} ⊆ Perm(Vn) , the string of K is
called the key.

If there is some probability distribution D defined over the set Ω , then a
random selection of element ω from Ω in accordance with the distribution
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D will be denoted as ω D←− Ω . U will denote a uniform distribution.

3 The procedure of computing check values

Definition 3.1. The function of two-pass decimalization is the mapping of
DEC2

m,r : Hm → Dr , m > r , which gives the output on an input X ∈ Hm by
the following algorithm. If in X there are r decimal symbols, then the string
DECm,r(X) is the concatenation of the first r of them (from left to right).
If the total number s of decimal symbols is less than r , then the string of
DECm,r(X) is the concatenation of these s symbols and r − s residues of
dividing first hex-symbols of X by 10 .

For example, DEC2
5,3(0‖1‖C‖D‖E) = 0‖1‖(12 mod 10) = 0‖1‖2 .

Definition 3.2. The function of modular decimalization is the mapping of
DECM

m,r : Hm → Dr , m > r , the output of which on the input of X ∈ Hm

is equal to DECM
m,r(X) = INT (X) mod 10r .

For example, DECM
5,3(0‖1‖C‖D‖E) = 0x1CDE mod 103 = 7390

mod 103 = 3‖9‖0 .

Definition 3.3. For some block cipher E = {EK |K ∈ Vk} ⊆ Perm(Vn) by
CBCMAC we denote the mapping of CBCMAC : Vk × Vn∗ → Vn , such as

CBCMACK(M) = CBCMAC(K,M) = EK(EK(. . . (EK(M1)⊕M2)⊕. . . )⊕Mt),

where M = M1‖ . . . ‖Mt , Mi ∈ Vn .

From now on we will consider a block cipher E with block size n = 64
and key size of k = 256 .

Definition 3.4. By FC we’ll denote the family of functions FC
K : V128 → D3 ,

defined in the following way:

FC
K (M) = DEC16,3(CBCMACK(M)),

where DEC16,3 is one of the decimalization functions defined earlier. The
choice of a particular function is clarified for a certain case.
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Definition 3.5. By F P denote the set of functions F P
K : V64 → D4 , defined

in the following way:

F P
K (M) = DEC16,4(CBCMACK(M)),

where DEC16,4 is one of decimalization functions defined earlier. The choice
of a particular function is clarified for a certain case.

In the notations described above the CV V and PV V parameters for the
«MIR» payment system can be calculated as follows.

The check value of a card CV V is calculated according to card number
PAN (Personal Account Number, usually, 12–16 digits), expiration date
ExpDate (4 digits in the form YYMM) and service code SV C (3 digits,
can take the only 6 values: 000 , 999 , 200 , 201 , 220 , 221 ) using key value
CVK (32 bytes). Before the main computation a 128-bit message M is
generated:

M = (M1‖M2) = (PAN‖ 0 . . . 0︸ ︷︷ ︸
pad

‖ExpDate‖SV C‖0000000000),

where pad is the the minimum number of zero hex characters to make the
length of (PAN‖0 . . . 0) equal to 16 hex characters.

The main CV V calculation uses FC
CVK function:

CV V = FC
CVK(M).

Similarly, the check values of a card PIN-code PV V is calculated accord-
ing to card number PAN , key index PV KI (number in range 0 . . . 6 ),
PIN -code PIN (4 digits) using key value PV K (32 bytes). Before the
main computation a 64-bit message M is generated:

M = (PAN |11‖PV KI‖PIN),

where PAN |11 — the first 11 digits of the card number PAN .
The main PV V calculation uses F P

PV K function:

PV V = F P
PV K(M).
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4 Adversary models

Consider some adversary models, threats and attack scenarios, defined
from the practice-oriented point of view.

4.1 Models of PRF , PRP-CPA and MAC-CPA

In the current section we provide the descriptions of standard adversary
models that are used in mathematical cryptology for the analysis of various
sets of functions (see [5]).

During the following considerations we assume that a certain computa-
tional model is chosen together with some way of encoding algorithms in
this model. By adversary we’ll assume any probabilistic algorithm in that
computational model. By computational resources we’ll assume the sum of
the average (by random input and by the responses of his oracles) number of
steps made during his work, and the length of the encoding of this adversary.

Let M be some adversary model and AdvM(A) is some characteristic of
possibilities of A when implementing the threat in model M . Let T be a
set of resulting values of bounds on computational resources of an adversary
and any other parameters, characterizing its work in the model of M . For
example, T can additionally contain the values, bounding the total number
of queries to the oracles, considered by the model M . The set A(T ) of the
adversaries, satisfying the limitations, which are defined by T is limited. By
AdvM(T ) we’ll denote the maximal value of AdvM(A) for adversaries A in
the set of A(T ) .

From now on by AdvM(t, q,m) for a model M we’ll denote a maximal
value of AdvM(A) for adversaries A in the set of A(t, q,m) , where t denotes
the computational resources limitations, q is the maximal available number
of queries to the exploited oracle, m is the number of cipher blocks in queries
(optionally).

Definition 4.1. The model of MAC-CPA for the family of F = {FK :
D → R|K ∈ Vk} is described in the following way. A can operate with an
oracle OMAC-CPA , which chooses a key K

U←− Vk before starting his work.
An adversary can make queries M ∈ D to the oracle OMAC-CPA , for which
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the oracle OMAC-CPA responds with strings T = FK(M) . As a result an
adversary returns a pair of (M ′, T ′) , where M ′ ∈ D is not equal to any of
queries made to OMAC-CPA . An advantage AdvMAC-CPA

F (A) of the adversary
A in the model MAC-CPA is defined in the following way:

AdvMAC-CPA
F (A) = Pr [FK(M ′) = T ′] .

The model of MAC-CPA is used to achieve security estimations for func-
tions in some family regarding to a forgery threat.
Definition 4.2. The model of PRF for the family of F = {FK : D →
R|K ∈ Vk} is described in the following way. A can operate with an oracle
OPRF , which chooses a bit b

U←− {0, 1} and if b = 1 , the oracle chooses
a key K

U←− Vk , assuming later F ′ = FK(·) . If b = 0 , the oracle chooses
F ′

U←− Func(D,R) . The adversary can make to OPRF queries of M ∈ D ,
for which the oracle OPRF responds with strings T = F ′(M) . As a result
an adversary returns a bit a ∈ {0, 1} . An advantage AdvPRF

F (A) of the
adversary A in the model of PRF is defined in the following way:

AdvPRF
F (A) = Pr [a = 1|b = 1]− Pr [a = 1|b = 0] .

A reduction to the abilities of an adversary in the model of PRF allows to
obtain a majority of security bounds in practice oriented adversary models.
Informally, an advantage of an adversary in the model of PRF reflects abil-
ities of an adversary in the sense of applying methods making use of special
properties of transformations made by studied functions.
Definition 4.3. The model of PRP-CPA for a cipher of E = {EK |K ∈
Vk} ⊆ Perm(Vn) is described in the following way. A can operate with an
oracle OPRP-CPA , which chooses a bit b U←− {0, 1} and, if b = 1 , the oracle
chooses a key K

U←− Vk , assuming later F = EK(·) . If b = 0 , the oracle
chooses F

U←− Perm(Vn) . The adversary can make to OPRP-CPA queries
of M ∈ Vn , for which the oracle OPRP-CPA responds with strings C =
F (M) . As a result an adversary returns a bit a ∈ {0, 1} . An advantage
AdvPRP-CPA

E (A) of the adversary A in the model of PRP-CPA is defined in
the following way:

AdvPRP-CPA
E (A) = Pr [a = 1|b = 1]− Pr [a = 1|b = 0] .
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The model PRP-CPA is close to the model of PRF , but is usually used
to evaluate security of families of bijective mappings.

4.2 The search of the CV V value for a certain attacked card

The relevant adversary model in the task of searching of the CV V value
for a certain attacked card is defined as follows. The adversary knows the
parameters of q cards that have been issued by the issuer using the same
key CVK unknown to the adversary, i.e., q sets (PAN,ExpDate, SV C)
and corresponding CV V values.

In practice, the values known for the adversary are able to be obtained
by cards being stolen or spying on the parameters (including the CV V ).
Also some cards can be issued for the adversary with the actual key value of
CVK .

The threat in this model is defined in the following way: the adversary
finds the correct value of CV V for a certain (attacked) card with known
parameters (PAN,ExpDate, SV C) , for which the corresponding value of
CV V remained unknown.

This would make the adversary possible to do CNP (Card-Not-Present)
transactions (e.g. for e-commerce).

4.3 The search of the (PIN, PV V ) values for a certain attacked
card

The relevant adversary model in the task of searching of the correct
(PIN, PV V ) pair for a certain attacked card is defined as follows. The
adversary knows the parameters of q cards that have been issued by the
issuer using the same key PV K unknown to the adversary, i.e., q sets
(PAN,PV KI) and corresponding (PIN, PV V ) values.

In practice, the values known for the adversary are able to be obtained by
cards being stolen together with PIN -codes. Also some cards can be issued
for the adversary with the actual key value of PV K . Also for an adversary to
obtain the PV V values we assume that PV V are written on cards and the
adversary can read them, and/or the PV V are stored in the issuer database
and the adversary has access to it.
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The threat in this model is defined in the following way: the adversary
finds the correct pair of values (PIN, PV V ) for a certain (attacked) card
with known parameters (PAN,PV KI) , for which the corresponding value
of correct pair remained unknown.

This would make the adversary possible to clone an existing card and
make transactions with it in ATMs.

During the cryptographic analysis of the properties of the computation
function of the check values CV V and PV V a standard MAC-CPA model
for function families FC and F P is used. Thus model is a significantly
stronger variant of practice-oriented models. The strengthening is in allow-
ing the adversary to obtain the values of CV V and (PIN, PV V ) for any
tuples of parameters of a card, and in case of PV V also to choose PIN-
values by himself PIN . Also the strengthening of the model is in replac-
ing the selective forgery threat (where an adversary has to obtain a cor-
rect value of CV V and (PIN, PV V ) for a certain parameter values), with
the existential forgery threat. In the former case an adversary has to ob-
tain a correct pair of ((PAN,ExpDate, SV ), CV V ) (in case of CV V ) or
((PAN,PV KI), (PIN, PV V )) (in case of PV V ).

4.4 Search of the correct value of PIN for an attacked card with
known PV V

The relevant adversary model in the task of searching of the correct PIN
value for a certain attacked card in those cases where PV V value is known is
defined as follows. The adversary knows the parameters of q cards that have
been issued by the issuer using the same key CVK unknown to the adver-
sary, i.e., q sets (PAN1, PV KI1) ,. . . , (PANq, PV KIq) and corresponding
pairs of values (PIN1, PV V1) ,. . . , (PINq, PV Vq) . Moreover, for a certain
attacked card with a known parameters (PAN,PV KI) the adversary knows
the only correct value PV V .

In practice, the values known for the adversary are able to be obtained by
cards being stolen together with PIN -codes. Also some cards can be issued
for the adversary with the actual key value of PV K . Also for an adversary to

17



obtain the PV Vi values we assume that PV Vi are written on cards and the
adversary can read them, and/or the PV Vi are stored in the issuer database
and the adversary has access to it.

The threat in this model is defined in the following way: the adversary
finds the correct value of PIN for a certain (attacked) card with known
parameters (PAN,PV KI) and known PV V .

This would make the adversary possible to clone an existing (possibly
stolen) card and make transactions with it in ATMs.

Denote the considered model by PR (PIN Recovery). For formalization
of the model consider an oracle OFP , which implements a randomly selected
function F P

K
U←− F P . The values of (PAN,PV KI) are fed to the input of the

oracle OFP together with the value of res ∈ {FULL, REDUCED} . The oracle
OFP chooses PIN randomly (according to the uniform distribution) and
calculates the value of PV V = F P

K (PAN‖PV KI‖PIN) . If the flag res =
FULL , then the oracle outputs the pair (PIN, PV V ) , if res = REDUCED ,
then only the PV V . Assume that the adversary AOFP makes q random
queries (PAN1, PV KI1) , . . . , (PANq, PV KIq) with the flag res = FULL

to this oracle and obtains (PIN1, PV V1) , . . . , (PINq, PV Vq) ; and also
makes one query (PAN,PV KI) with the flag res = REDUCED and obtains
PV V as a result. Then the adversary tries to find a PIN ′ , such that PV V =
F P
K (PAN‖PV KI‖PIN ′).
Adversary success regarding this threat is estimated by the advantage

AdvPR
FP

(
AOFP

)
= Pr

[
AOFP ⇒ PIN ′ : PV V = F P

K (PAN‖PV KI‖PIN ′)
]
.

5 Distributions of the decimalization functions

In the current section we describe the distributions of the random variables
DEC2

m,r(H) and DECM
m,r(H) in case when H is chosen from Hm according

to the uniform distribution, for particular cases corresponding to the func-
tions for calculation of CV V and PV V . The distributions of the random
variables defines the resulting security bounds of the procedures that have
been analyzed in the current paper.

The function DEC2
m,r output distribution is computed in Appendix, Sec-
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CV V case (m = 16, r = 3) PV V case (m = 16, r = 4)
# values V ∈ D3 Pr

[
DEC2

16,3(H) = V
]

# values V ∈ D4 Pr
[
DEC2

16,4(H) = V
]

240 ≈ 10−3 + 2.975 · 10−8 864 ≈ 10−4 + 3.696 · 10−8

144 ≈ 10−3 + 4.108 · 10−8 2400 ≈ 10−4 + 2.091 · 10−8

216 ≈ 10−3 + 4.179 · 10−8 1440 ≈ 10−4 + 3.507 · 10−8

400 ≈ 10−3 − 5.520 · 10−8 1296 ≈ 10−4 + 3.707 · 10−8

4000 ≈ 10−4 − 4.517 · 10−8

Table 1: Distributions of DEC2
m,r for CV V and PV V cases.

CV V case (m = 16, r = 3) PV V case (m = 16, r = 4)
# values V ∈ D3 Pr

[
DECM

16,3(H) = V
]

# values V ∈ D4 Pr
[
DECM

16,4(H) = V
]

616 ≈ 10−3 + 2.082 · 10−20 1616 ≈ 10−4 + 4.545 · 10−20

384 ≈ 10−3 − 3.339 · 10−20 8384 ≈ 10−4 − 8.760 · 10−21

Table 2: Distributions of DECM
m,r for CV V and PV V cases.

tion 8.1, formula (7). For both cases CV V and PV V these distributions
are presented in Table 1.

The function DECM
m,r output distribution is computed in Appendix, Sec-

tion 8.2, formulas (8) and (9). For both cases CV V and PV V these distri-
butions are presented in Table 2.

For each case in Tables 1, 2 by “# values V ∈ Dr ” we mean a number of
V ∈ Dr such that Pr [DECm,r(H) = V ] equals a given probability.

6 Cryptographic analysis of the check values evaluation
function

6.1 Security evaluation regarding the threat of check values
forgery

In the current section the security of FC and F P regarding the threat of
check values (generated with them) forgery is evaluated, i.e. in the model of
MAC-CPA.

Using the final estimates of Section 8.4 (formulas (17)–(20)) and esti-
mate (12), we obtain the following relations which are included in the main
results of the paper:
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AdvMAC-CPA
FC (t, q) 6 10−3 +

t+ 2q + 2qn

2k
+

4q2

2n−1
+

3q

105
(for DEC2

16,3);

AdvMAC-CPA
FC (t, q) 6 10−3 +

t+ 2q + 2qn

2k
+

4q2

2n−1
+

2q

1017
(for DECM

16,3);

AdvMAC-CPA
FP (t, q) 6 10−4 +

t+ 2q + qn

2k
+

q2

2n−1
+

2.3q

104
(for DEC2

16,4);

AdvMAC-CPA
FP (t, q) 6 10−4 +

t+ 2q + qn

2k
+

q2

2n−1
+

2.3q

1016
(for DECM

16,4).

(1)

Example 6.1. Let us consider estimates (1) for the payment system «MIR».
Since block cipher Magma is intended to be used in «MIR», we have n =
64 , k = 256 . Also, suppose that adversary’s computational resources t are
bounded by 2128 ; the number of queries q is bounded by 107 . The last value
is an upper bound for the number of payment cards emitted by a bank during
the lifetime of the key CVK and/or PV K . Under these settings we obtain
the following relations for the function DECM :

AdvMAC-CPA
FC (t, q) 6 10−3 + 10−4.36 + 10−9.69; (2)

AdvMAC-CPA
FP (t, q) 6 10−4 + 10−4.96 + 10−8.63. (3)

Note that for the case of DEC2 similar bounds with the same parameter
values are trivial — the right side is greater than 1 : AdvMAC-CPA

FC (t, q) 6
300 and AdvMAC-CPA

FP (t, q) 6 230 . Moreover, the bounds for DEC2 becomes
trivial approximately as q > 3 · 104 .
Remark 6.1. Triviality of the estimates for DEC2 does not necessarily mean
that the functions FC and F P with DEC2 are insecure. It means that
even assuming the security (in the model of PRP-CPA) of the cipher E
the known for the current moment methods of cryptanalysis do not allow to
prove inexistence of adversaries with parameters bounded by t and q , which
are able to make forgeries with probabilities significantly greater than a priori
bound for guessing. Note also that there are a lot of examples that show that
the bounds obtained by this technique are close to tight. By «tightness» in
this case we mean the existence of a particular adversary with the limited
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(accordingly) resources, who gains the obtained success probability bound,
(cf. [4]). To support the statement of the fact that the usage of DEC2 does
not lead to the decrease in security we note that during the process of security
reduction we use the following statement: if an adversary cannot distinguish
the outputs of FC and F P and a random value from a corresponding set
then he is now able to make an existential forgery. In case when the success
probability of an adversary in the distinguishing task is greater than the a
priori estimation of guessing, it seems impossible to obtain proven estimation
of success probability of an adversary in the forgery.

6.2 Security evaluation regarding the threat of obtaining PIN

In the current section the security of F P regarding the threat of obtaining
PIN in the model PR is considered.

Combining the final estimates of Section 8.4 (formulas (17)–(20)) and
Theorem 8.8, we obtain the following relations for the function F P . These
relations with estimates (1) are the main results of the paper:

AdvPR
FP (t, q) 6

t+ q + 2 + qn

2k
+

(q + 2)2

2n−1
+

2.3(q + 2)

104
+

2

104
− 1

108
(for DEC2

16,4 );
(4)

AdvPR
FP (t, q) 6

t+ q + 2 + qn

2k
+

(q + 2)2

2n−1
+

2.3(q + 2)

1016
+

2

104
− 1

108
(for DECM

16,4 ).
(5)

Example 6.2. Consider the obtained estimates for the settings of Example 6.1:
n = 64 , k = 256 , t = 2128 , q ≤ 107 . Under these settings we obtain the
following bounds for the case of usage of DECM :

AdvPR
FP (t, q) 6 2 · 10−4 + 10−4.96 + 10−8.63. (6)

Here, similar to the model of MAC-CPA, bound (4) for DEC2 under the
given settings is trivial: AdvRP

FP (t, q) 6 2300 . Moreover, the bound for DEC2

becomes trivial approximately as q > 0.5 · 104 .
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7 Conclusion

In the current paper we obtain the security bounds for the functions used
for generation of check values CV V and PV V regarding the forgery threat.
We show that the usage of the function DECM leads to negligible difference
between a priori guess probability and the probability of success of an ad-
versary obtaining not more than 107 values of CV V and PV V . It is also
shown that the function F P is secure regarding to the threat of obtaining
PIN value when used with DECM ; i.e. its probability of success for an ad-
versary with typically bounded resources is extremely close to the a priori
one.

We show that for the same limitations, similar bounds for the functions,
using DEC2 , degenerate. Degeneration of the bounds lead to impossibility of
statements about provable security in this case.

The authors are very grateful to I. M. Goldovskii for fruitful discussions
and to E. S. Smyshlyaeva for her valuable help comments and suggestions
concerning the text of the paper.

References

[1] Bellare M., Kilian J., Rogaway P. The security of the cipher block
chaining message authentication code. Journal of Computer and Sys-
tem Sciences (JCSS), vol. 61, no. 3, pp. 362–399, 2000. Earlier version
in Crypto’94.

[2] Nandi M. A Simple and Unified Method of Proving Unpredictability.
Cryptology eprint archive 2006/264. 2006.

[3] Application Programmer’s Guide, Appendix F. Crypto-
graphic Algorithms and Processes, PIN Formats and Algo-
rithms, VISA PIN Algorithms// IBM Knowledge Center, 2011
(http://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.
0/com.ibm.zos.v2r1.csfb400/csfb4za2598.htm)

22

http://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.csfb400/csfb4za2598.htm
http://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.csfb400/csfb4za2598.htm


[4] Iwata T. Comments on «On the security of XCBC, TMAC and OMAC»
by Mitchell.
https://pdfs.semanticscholar.org/21b0/
c40d3a08ffce60b11721b3fdd2516f37dce8.pdf — 2003.

[5] Bellare M., Rogaway P. Introduction to modern cryptography: Lec-
ture Notes, 2001. http://www.cs.ucsd.edu/users/mihir/cse207/
classnotes.html

[6] Dolmatov V. RFC 5830. GOST 28147-89: Encryption, Decryption, and
Message Authentication Code (MAC) Algorithms.

23

https://pdfs.semanticscholar.org/21b0/c40d3a08ffce60b11721b3fdd2516f37dce8.pdf
https://pdfs.semanticscholar.org/21b0/c40d3a08ffce60b11721b3fdd2516f37dce8.pdf
http://www.cs.ucsd.edu/users/mihir/cse207/classnotes.html
http://www.cs.ucsd.edu/users/mihir/cse207/classnotes.html


8 Appendix

8.1 Calculating the distribution of DEC2
m,r outcomes

In this section we consider the following problem: calculate the probability
distribution of the random variable DEC2

m,r(H) , where H is taken from Hm

according to a uniform distribution. To be definite we introduce the notations
H = h1‖h2‖ . . . ‖hm and DEC2

m,r(H) = d1‖ . . . ‖dr .
Let us fix some decimal digits d1 , d2 , . . . , dr ∈ D . Now we divide the

event {H ∈ Hm : DEC2
m,r(H) = d1‖ . . . ‖dr} into three disjoint events:

A. All decimal digits d1 , d2 , . . . , dr outcomes during the first pass of the
two-pass decimalization.

B. All decimal digits d1 , d2 , . . . , dr outcomes during only the second pass
of the two-pass decimalization. Note that in this case all digits d1 , d2 ,
. . . , dr must belong to {0, . . . , 5} .

C. The first s decimal digits d1 , . . . , ds outcomes during the first pass
of the two-pass decimalization but the other r − s digits ds+1 , . . . ,
dr outcomes during the second pass. Note that in this case the first s
decimal digits d1 , . . . , ds can be arbitrary but other digits ds+1 , . . . ,
dr must belong to {0, . . . , 5} .

Further, we calculate the probabilities of these events.

A. For convenience we divide the event A into events Ai , where Ai =
{H ∈ A : dr = hi} is an event of occurring the last output digit dr on
the i -th position of the input. Then,

PrA [d1, . . . , dr] =
1

16m
·

m∑
i=r

(
i− 1

r − 1

)
· (16− 10)i−r · 16m−i.

In this formula each summand is the cardinality of Ai . The first factor(
i−1
r−1
)

of the summand is the number of ways to put other digits d1 ,
. . . , dr−1 on the first i−1 input positions; the next factor (16−10)i−r

is the number of ways to fill input positions 1, . . . , i by hexadecimal
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digits not belonging to {d1, . . . , dr−1} ; finally, the factor 16m−i is the
number of ways to fill other input positions i+ 1 , . . . , m by arbitrary
hexadecimal digits.

B. In this event the output decimal digits d1 , d2 , . . . , dr determine com-
pletely the first r input digits: hi = di + 10 , i = 1, . . . , r . Other input
hexadecimal digits hr+1 , . . . , hm can be arbitrary. Thus we have

PrB [d1, . . . , dr] =
1

16m
· (16− 10)m−r.

C. As above, for convenience we divide the event C into events Ci , where
Ci = {H ∈ C : ds = hi} is an event of occurring the s -th output digit
ds on the i -th input position. Then,

PrC [d1, . . . , dr; s] =
1

16m
·

m∑
i=s

(
i− 1

s− 1

)
· (16− 10)m−r.

In this formula each summand is the cardinality of Ci . The first factor(
i−1
s−1
)

of the summand is the number of ways to put the first s − 1
output decimal digits d1 , . . . , ds−1 on the first i − 1 input positions.
The first r− s positions of other m− s input positions are completely
determined by the digits ds+1 , . . . , dr , and the last m−r positions can
be elements of {A, B, C, D, E, F} . This reasons the presence of the second
factor (16− 10)m−r = (16− 10)(m−s)−(r−s) in the summand.

By definition, put t = max({0} ∪ {i = 1, . . . , r| di ∈ {6, 7, 8, 9}}) . It is
readily seen that all digits d1 , . . . , dt outcomes during the first pass of the
two-pass decimalization. Now, using the introduced notations, we obtain the
final formula for calculating the probability of DEC2 output:

Pr [d1, . . . , dr] =

=


PrA [d1, . . . , dr] +

r−1∑
s=t

PrC [d1, . . . , dr; s] , t > 0;

PrA [d1, . . . , dr] + PrB [d1, . . . , dr] +
r−1∑
s=1

PrC [d1, . . . , dr; s] , t = 0.

(7)
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8.2 Calculating the distribution of DECM
m,r outcomes

In this section we consider the following problem: calculate the probability
distribution of the random variable DECM

m,r(H) , where H is taken from Hm

according to a uniform distribution.
Let d and w be integers numbers such that 16m = d · 10r + w , where

0 6 w < 10r . Then for all w values V ∈ {0, . . . , w − 1} the cardinality of
a preimage of V under DECM

m,r is equal to d + 1 = (16m + 10r − w)/10r .
For all other 10r − w values V ∈ {w, . . . , 10r − 1} the cardinality of a
preimage of V under DECM

m,r is equal to d = (16m−w)/10r . If H is taken
of Hm according to a uniform distribution, then for V ∈ {0, . . . , w− 1} the
following equality holds

Pr [V ] =
16m + 10r − w

10r · 16m
=

1

10r
+

1− w/10r

16m
, (8)

and for V ∈ {w, . . . , 10r − 1} the following equality holds

Pr [V ] =
16m − w
10r · 16m

=
1

10r
− w/10r

16m
. (9)

8.3 Classical models and known results about their relationship

In the current section we provide known results about security bounds in
the models defined in Section 4.1.

Let A′ be an adversary working in conditions defined by some model M ′

and using some adversary A , working in conditions defined by some model
M , as a subroutine («a black box»). Let

AdvM
′
(A′) > AdvM(A)− θ, (10)

where θ is some value that depends on the limitations of A .
If A is a member of A(T ) for some set of limitations T , then the inequal-

ity AdvM
′
(A′) > AdvM(T )− θ(T ) holds, where θ is some value depending

on T . Let the parameters of A′ such as computational resources and the
total number of oracle queries, assuming limitations of A by values in T , are
limited by some values, that we denote as T ′ . Then the following inequality
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stays: AdvM
′
(T ′) > AdvM

′
(A′) , hence we obtain that

AdvM
′
(T ′) > AdvM(T )− θ(T ),

which is equivalent to

AdvM(T ) 6 AdvM
′
(T ′) + θ(T ). (11)

To gain absolute formal correctness in research anywhere where it is possi-
ble without any harm to practical applications, usually statements connected
with estimations like (10), correct in any computational models are formu-
lated in theorems. The estimations like (11) remain correct for any fixed
computational model. In that case a full description of adversary algorithm
A′ is needed, together with estimation of his computational resources.

The value of absolute accuracy in such estimations is questionable. This
is because the results of this kind are closer to practical than to theoretical
area — the obtained estimations do not prove that some algorithms are poly-
nomial or that they belong to certain classes. Their main purpose is to let the
parameters of concrete applications and protocols using some constructions
to be estimated. In the vast majority of cases that are interesting from the
practical applications point of view, the computational resources that are
available for an adversary are much larger the complexity of the reduction,
that is the part of the resources of A′ , which is necessary to implement the
threat in his model excluding the resources of «a black box» A . Exactly
this part leads to the difference between the computational resources in T ′

and T . Also it must be noticed that other parameters in T ′ can often be
evaluated accurately.
Assumption 8.1. Based on these considerations in the current work we con-
sider the RAM (Random Access Memory) computational model, which is
pretty close to real computers. Also we will assume that the operations that
require negligible memory and computational costs are presented as a single
computational resource.

8.3.1 The «PRF-as-a-MAC» principle

The following statement demonstrates the known principle «PRF-as-a-
MAC paradigm» (see [5]).
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Theorem 8.1 ([5]). Let F = {FK : D → R|K ∈ Vk} . If A is an adversary
in a model of MAC-CPA , making not more than q queries to an oracle of
OMAC-CPA

F , then an adversary B exists, who makes to the oracle of OPRF
F

not more than q + 1 queries, and he is such that

AdvPRF
F (B) > AdvMAC-CPA

F (A)− 1

|R|
.

The adversary B , which is constructed in the proof of Theorem 8.1, makes
some additional actions for intercepting queries of the adversary A to its
oracle OMAC-CPA

F and for retranslating responses of the B ’s oracle OPRF
F to

A . We assume that the complexity of these operations is proportional to the
number of queries with the proportionality constant to be equal to 1. Taking
into account Assumption 8.1, we obtain the approximate inequality:

AdvMAC-CPA
F (t, q) 6 AdvPRF

F (t+ q, q + 1) +
1

|R|
. (12)

8.3.2 Security estimation of CBCMAC

It is known that CBCMAC is not secure in the model of MAC-CPA in
the case of variable-length queries. In [1] the following theorem was obtained:

Theorem 8.2 ([1]). If A makes not more than q queries of a fixed length
m to OPRF

CBCMAC , then B , making not more than qm queries to OPRP-CPA ,
exists, and he is such that

AdvPRP-CPA
E (B) > AdvPRF

CBCMAC(A)− q2m2

2n−1
.

The computational resources that are additionally needed for B are ap-
proximately equal to mqn . Taking into account Assumption 8.1, we obtain
the approximate inequality:

AdvPRF
CBCMAC(t, q,m) 6 AdvPRP-CPA

E (t+mqn, qm) +
q2m2

2n−1
. (13)
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8.3.3 Security estimation of a block cipher in the model of PRP-CPA

Assumption 8.2. For a block cipher, for which no special methods of security
decrease are known, the value of AdvPRP-CPA

E (t, q) is estimated by the general
method that can solve the corresponding task — the exhaustive search. If the
volume of queries doesn’t exceed the unicity distance of the block cipher E ,
i.e. as qn ≥ k , then we can assume that for such a cipher the following
approximate equality holds:

AdvPRP-CPA
E (t, q) ≈ t

2k
. (14)

Thus for the considered cipher Magma with parameters n = 64 and
k = 256 we can assume:

AdvPRP-CPA
E (t, q) ≈ t

2256
. (15)

8.3.4 Two random variables distinguishing task

For a random variable X let X[q] be a random vector of length q ,
components of which are pairwise independent random variables distributed
as X .

Let dstat(X, Y ) be a statistical distance between random variables X and
Y , which takes values in a finite set S . By definition, put

dstat(X, Y ) =
1

2
·
∑
s∈S

|Pr [X → s]− Pr [Y → s] |,

where Pr [X → s] and Pr [Y → s] are the probabilities of outcome s ∈ S
for the random variables X and Y respectively.

Now suppose F and G are random variables, the adversary A is trying
to distinguish F and G . Suppose A has an access to the oracle O that
implements during one session either the random variable F or the random
variable G . We will denote by OF (OG ) the case when the oracle O im-
plements the random variable F (G ) during the session. Let A during one
session gets q independent outcomes a1, . . . , aq for the random variable F
or the random variable G from the oracle O .
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As a result of the work the adversary outputs 0 (an assumption that
the oracle implements the random variable F ) or 1 (an assumption that
the oracle implements the random variable G ). We will denote by A ⇒ 0
or A ⇒ 1 the case when the adversary outputs 0 or 1 respectively. The
advantage of the adversary in this task is the following value:

AdvF,G(A) =
∣∣Pr
[
AOF ⇒ 1

]
− Pr

[
AOG ⇒ 1

]∣∣ .
The following inequality was proved in [2]:

AdvF,G(A) 6 dstat(F [q], G[q]). (16)

8.4 Security evaluation regarding distinguishing against a ran-
dom function

Let H be a random variable uniformly distributed over Hm , D be a
random variable uniformly distributed over Dr . Consider a problem of dis-
tinguishing between DECm,r(H) and D , where DECm,r(H) is one of the
two decimalization functions defined in Section 3. From the inequality (16)
we get immediately the following result.

Lemma 8.3. Let A be an adversary which solves the distinguishing task
between DECm,r(H) and D . Suppose A gets q independent outcomes of the
random variable DECm,r(H) or the random variable D . Then the following
inequality holds:

AdvDECm,r(H),D(A) 6 dstat(DECm,r(H)[q], D[q]).

Lemma 8.4. Let A be an adversary which solves the distinguishing task
between DEC16,3(H) and D . Suppose A gets q independent outcomes of the
random variable DEC16,3(H) or the random variable D . Then the following
inequalities holds:

AdvDEC2
16,3(H),D(A) 6

3q

105
,

AdvDECM
16,3(H),D(A) 6

2q

1017
.
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Proof. By Lemma 8.3, it is sufficient to estimate the values
dstat(DEC

2
16,3(H)[q], D[q]) and dstat(DEC

M
16,3(H)[q], D[q]) .

Let us estimate the value 1/2
∑

d∈D3q |Pr
[
DEC2

16,3(H)[q] = d
]
−

Pr [D[q] = d] | . From Table 1, we get

1

2

∑
d∈D3q

|Pr
[
DEC2

16,3(H)[q] = d
]
− Pr [D[q] = d] | 6

6
1

2
· 103q ·

(
10−3q −

(
10−3 − 5.521 · 10−8

)q)
=

=
1

2
·
(
1−

(
1− 5.521 · 10−5

)q)
6

1

2
·
(

5.521 · q
105

)
6

3q

105
.

Similarly, from Table 2, we get the estimation in the case of DECM
16,3 :

1

2

∑
d∈D3q

|Pr
[
DECM

16,3(H)[q] = d
]
− Pr [D[q] = d] | 6 2q

1017
.

Likewise, next Lemma 8.5 is proved in the case of DEC16,4 .

Lemma 8.5. Let A be an adversary which solves the distinguishing task
between DEC16,4(H) and D . Suppose A gets q independent outcomes of the
random variable DEC16,4(H) or the random variable D . Then the following
inequalities holds:

AdvDEC2
16,4(H),D(A) 6

2.3q

104
,

AdvDECM
16,4(H),D(A) 6

2.3q

1016
.

Theorem 8.6. If A is an adversary, making not more than q queries to
the oracle OPRF

FC , then there exists another adversary B , making not more
than q queries to the oracle OPRF

CBCMAC , such that:

AdvPRF
CBCMAC(B) > AdvPRF

FC (A)− 3q

105
, for DEC2

16,3 ;

AdvPRF
CBCMAC(B) > AdvPRF

FC (A)− 2q

1017
, for DECM

16,3 .

The length of each query equals two blocks.
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Proof. Let us construct the adversary B . The adversary B uses the adversary
A as a black box (or a subprogram) and intercepts all queries of A to
its oracle. Let M be a query of A to its oracle. Then the adversary B
treats this query by the following way: makes a query M to its own oracle
OPRF

CBCMAC ; gets the oracle response T , and returns the value DEC16,3(T ) to
A . Obtaining DEC16,3(T ) from B , the adversary A does its own work and
returns a bit. So now the adversary B outputs this bit.

Denote by b the bit which sets the behavior of the oracle OPRF
CBCMAC , by b′

the bit which sets behavior of the oracle OPRF
FC . Note that B simulates the

oracle OPRF
FC for A .

Let us estimate advantage of B .

AdvPRF
CBCMAC(B) = Pr [B ⇒ 1|b = 1]− Pr [B ⇒ 1|b = 0] =

= Pr [A ⇒ 1|b′ = 1]− Pr [A ⇒ 1|b = 0] =

= (Pr [A ⇒ 1|b′ = 1]− Pr [A ⇒ 1|b′ = 0])−
− (Pr [A ⇒ 1|b = 0]− Pr [A ⇒ 1|b′ = 0]) =

= AdvPRF
FC (A)− (Pr [A ⇒ 1|b = 0]− Pr [A ⇒ 1|b′ = 0]).

Let us consider the probability Pr [A ⇒ 1|b = 0] − Pr [A ⇒ 1|b′ = 0] .
Note that if b = 0 , then OPRF

CBCMAC behaves as a random variable D defined
at the beginning of this section. If b′ = 0 , then OPRF

FC behaves as a random
variable DECm,r(H) .

Therefore the following equality holds

|Pr [A ⇒ 1|b = 0]− Pr [A ⇒ 1|b′ = 0]| = AdvDEC16,3(H),D(A).

Finally, combining this equality and Lemma 8.4, we get the desired result.

In the same way, an analogous result for the function F P can be proved.

Theorem 8.7. If A is an adversary, making not more than q queries to
the oracle OPRF

FP , then there exists another adversary B , making not more
than q queries to the oracle OPRF

CBCMAC , such that:

AdvPRF
CBCMAC(B) > AdvPRF

FP (A)− 2.3q

104
, for DEC2

16,4 ;
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AdvPRF
CBCMAC(B) > AdvPRF

FP (A)− 2.3q

1016
, for DECM

16,4 .

The length of each query equals two blocks.

Note that additional computational resources when using the A by B
are needed to independent calculation of the functions of DECm,r . Since
the complexity of calculation of these functions is negligible, the volume
of these additional resources can be estimated by q . Using bound (13) for
AdvPRF

CBCMAC(t+q, q, 2) and bound (14) for security of an exploited cipher in the
model of PRP-CPA, taking into account the considerations of Section 8.3,
we obtain the following inequalities for the function of FC :

AdvPRF
FC (t, q) 6

t+ q + 2qn

2k
+

4q2

2n−1
+

3q

105
(for DEC2

16,3 ) (17)

AdvPRF
FC (t, q) 6

t+ q + 2qn

2k
+

4q2

2n−1
+

2q

1017
(for DECM

16,3 ). (18)

For F P we have the following inequalities:

AdvPRF
FP (t, q) 6

t+ q + qn

2k
+

q2

2n−1
+

2.3q

104
(for DEC2

16,4 ); (19)

AdvPRF
FP (t, q) 6

t+ q + qn

2k
+

q2

2n−1
+

2.3q

1016
(for DECM

16,4 ). (20)

8.5 Reduction of the PIN recovery problem to the PRF distin-
guishing problem

Theorem 8.8. If A is an adversary, making not more than q queries to
the oracle OPR

FP , then there exists another adversary B , making not more
than q + 2 queries to the oracle OPRF

FP , such that:

AdvPRF
FP (B) > AdvPR

FP (A)− 2

104
+

1

108
.

Proof. Let us construct the adversary B . The adversary B uses the adver-
sary A as a black box (or a subprogram) and intercepts all queries of A to its
oracle. Suppose (PAN,PV KI) is a query of A to its oracle such that flag
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of this query equals FULL . Then the adversary B treats this query by the fol-
lowing way: choses PIN U←− D4 , makes a query M = (PAN,PV KI, PIN)
to its own oracle OPRF

FP , gets the oracle response PV V , and returns the
pair (PIN, PV V ) to A . Now suppose (PAN ′, PV KI ′) is a unique spe-
cial query of A to its oracle such that flag of this query equals REDUCED .
Then the adversary B treats this query by the following way: choses
PIN ′

U←− D4 , makes a query M = (PAN ′, PV KI ′, P IN ′) to its own ora-
cle OPRF

FP , gets the oracle response PV V ′ , memorizes it, and returns only
PV V ′ to A . Obtaining PV V ′ from B , the adversary A does its own
work and returns a value PIN ′′ . So now the adversary B makes a query
M ′ = (PAN ′, PV KI ′, P IN ′′) to its oracle OPRF

FP , gets the response PV V ′′ ,
and outputs bit 1 if PV V ′ = PV V ′′ , 0 otherwise.

Denote by b the bit which sets the behavior of the oracle OPRF
FP . Let us

estimate advantage of B .

AdvPRF
FP (B) = Pr [B ⇒ 1|b = 1]− Pr [B ⇒ 1|b = 0] =

= Pr [A ⇒ PIN ′′, PV V ′ = PV V ′′|b = 1]−
− Pr [A ⇒ PIN ′′, PV V ′ = PV V ′′|b = 0] =

= AdvPR
FP (A)− Pr [A ⇒ PIN ′′, PV V ′ = PV V ′′|b = 0] . (21)

Let us consider the probability Pr [A ⇒ PIN ′′, PV V ′′ = PV V ′|b = 0] .
Note that if b = 0 then OPRF

FP behaves as a random function F
U←−

Func(V64,D4) . Obviously, for any fixed pair (PAN ′, PV KI ′) we have a
random function

f ∈ Func(D4,D4) : f = F (PAN ′, PV KI ′, ·).
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Hence for any special query (PAN ′, PV KI ′) the following relations hold:

Pr [A ⇒ PIN ′′, PV V ′′ = PV V ′|b = 0] =

= Pr [A ⇒ PIN ′′, f(PIN ′) = f(PIN ′′)] =

=
∑

PIN ′∈D4

Pr [A ⇒ PIN ′′, f(PIN ′) = f(PIN ′′)|PIN ′] · Pr [PIN ′] =

=
1

104
·
∑

PIN ′∈D4

Pr [A ⇒ PIN ′′, f(PIN ′) = f(PIN ′′)|PIN ′] =

=
1

104
·
∑

PIN ′∈D4

Pr [A ⇒ PIN ′′, f(PIN ′′) = PV V ′] .

Note that

Pr [A ⇒ PIN ′′, f(PIN ′′) = PV V ′] =

= Pr [A ⇒ PIN ′′, f(PIN ′′) = PV V ′|PIN ′ = PIN ′′]︸ ︷︷ ︸
61

·Pr [PIN ′ = PIN ′′] +

+Pr [A ⇒ PIN ′′, f(PIN ′′) = PV V ′|PIN ′ 6= PIN ′′]︸ ︷︷ ︸
= 1

104

·Pr [PIN ′ 6= PIN ′′] 6

6
1

104
+

1

104
·
(

1− 1

104

)
=

2

104
− 1

108
.

Therefore,

Pr [A ⇒ PIN ′′, PV V ′′ = PV V ′|b = 0] =

=
1

104
·
∑

PIN ′∈D4

Pr [A ⇒ PIN ′′, f(PIN ′′) = PV V ′] 6

6
1

104
· 104 ·

(
2

104
− 1

108

)
6

2

104
− 1

108
. (22)

Combining (21), (22), we get the desired estimation:

AdvPRF
FP (B) > AdvPR

FP (A)− 2

104
+

1

108
.

Note that additional computational resources when using A by B are
needed to form and pass his queries. The volume of these additional resources
can be estimated as q + 2 .
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Parallel and double block cipher mode of operation
(PD–mode) for authenticated encryption

Vladislav Nozdrunov

Abstract

An authenticated encryption (AE) scheme is a secret key cryptographic primitive
wich combines encryption and authentication. In this paper, we propose synthesis
and analysis for new block cipher mode of operation that is called PD (parallel and
double). PD–mode in the same time ensure confidentiality and integrity of informa-
tion. It is fully parallelizable, inverse free and online. We also propose it’s provable
characteristics according to the modern way in analysis of cryptographic primitives.

Keywords: block cipher mode, authenticated encryption, provable security.

1 Introduction

Despite the fact that Authenticated Encryption is being developed for
nearly 20 years the Russian Federation has not got yet National standards
in these sphere. To begin the discussion of this problem we propose a new
block cipher mode of operation that is called PD–mode (parallel and double).
PD–mode may be considered as development of well known block cipher
mode of operation – GCM [1]. During the construction of PD–mode our
task was to create paralleziable, inverse free, online and secure block cipher
mode without the drawbacks inherent to GCM [2], [3], [4], [7]. To solve this
problem we replace the polynomial function GHASH by multilinear function.
To support full parallelization for multilinear function we add second counter.
But due to two counters and in order to provide necessary security level it
becomes necessary to change encryption. That’s why encryption in PD–mode
differs from counter mode (CTR) of Russian Federation national standard
GOST R 34.13–2015.
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2 Preliminaries

n block length (in bits) for a block cipher;
k length (in bits) of the block cipher key;
Vs the set of all binary strings of length s, where s is a

non-negative integer;
V ∗ the set of all binary vector-strings of finite length

(hereinafter referred to as strings), including an empty
string;

N n− 1–bit string called nonce;
Ai i–th n–bit associated data block (the last block may be

a partial block);
Pi i–th n–bit plaintext block (the last block may be a par-

tial block);
EK encryption function of the block cipher keyed by key

K ∈ Vk;
⊕ bitwise addition modulo 2 of two binary strings of the

same length;
⊗ multiplication in GF (2n);
�s the addition operation in Z2s;
MSBs(X) mapping associating the string zm−1‖ . . . ‖z1‖z0, m ≥

s, with the string zm−1‖ . . . ‖zm−s+1‖zm−s, zi ∈ V1,
i = 0, 1, . . . ,m− 1;

LSBs(X) mapping associating the string zm−1‖ . . . ‖z1‖z0, m ≥
s, with the string zs−1‖ . . . ‖z1‖z0, zi ∈ V1,
i = 0, 1, . . . ,m− 1;

V ecs : Z2s → Vs the bijective mapping which for an integer from Z2s

puts into correspondence its binary representation, i.e.
for any z ∈ Z2s represented as z = z0 + 2 · z1 + . . . +
2s−1 · zs−1, where zi ∈ {0, 1}, i = 0, 1, . . . , s − 1, the
equality V ecs(z) = zs−1‖ . . . ‖z1‖z0 holds;

Ints : Vs → Z2s the mapping inverse to the mapping V ecs, i.e. Ints =
V ec−1

s ;
as binary strings of length s: as = (a, a, . . . , a), a ∈ V1;
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l :
⋃64
s=0 Vs → V64 The function that returns a 64-bit string containing the

nonnegative integer describing the number of bits in its
argument.;

3 Description of AE

PD mode has four inputs:

1. nonce N ∈ Vn−1,

2. associated data A ∈ V ∗,

3. plaintext P ∈ V ∗,

4. cipher key K ∈ Vk.

and two outputs:

1. ciphertext C ∈ V ∗;

2. аn authentication tag T ∈ Vn.

Associated data A consists of n bit strings, where the bit length of the
last string is t ∈ N:

A = A1‖ . . . ‖A∗h, Aj ∈ Vn, A∗h ∈ Vt, h ∈ N ∪ {0},

plaintext P consists of n bit strings, where the bit length of the last string
is u:

P = P1‖ . . . ‖P ∗q , Pi ∈ Vn, P ∗q ∈ Vu, q ∈ N ∪ {0}
1 ≤ j ≤ q − 1, 1 ≤ i ≤ h− 1, and 1 ≤ u, t ≤ n, h+ q > 0.

PD–mode utilizes two sequences that we call counters. First one Yi, i =
1, 2, . . .. Yi, i = 1, 2, . . . is initialized by value Y1 = EK(0

1‖N).
Encryption is defined by the following equations:

Yi = incrr(Yi−1), 2 ≤ i ≤ q,

Ci = Pi ⊕ EK(Yi), 1 ≤ i ≤ q − 1,

C∗q = P ∗q ⊕MSBu(EK(Yq)),
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where incrr is the function defined by equation:

incrr(L‖R) = L‖V ecn/2(Intn/2(R)�2n/2 1), L,R ∈ Vn/2.

The last blocks A∗h ∈ Vt and C∗q ∈ Vu are padded in the following manner:{
Ah = A∗h‖0n−t,
Cq = C∗q‖0n−u.

Authentication tag T is generated as follows:

T = EK

(
h∑
i=1

Hi ⊗ Ai ⊕
q∑
j=1

Hh+j ⊗ Cj ⊕Hh+q+1 ⊗ (l(A)‖l(C))

)
,

Hi = EK(Zi) and the second counter Zi, i = 1, 2, . . . is defined by equations:{
Z1 = EK(1

1‖N),

Zi = incrl(Zi−1), 2 ≤ i ≤ h+ q + 1.

The function incrl is defined by equation:

incrl(L‖R) = V ecn/2(Intn/2(L)�2n/2 1)‖R, L,R ∈ Vn/2.

The encryption is illustrated on Figure 3.
By MLK we denote the following function:

MLK(A‖C,N) =
h∑
i=1

Hi ⊗ Ai ⊕
q∑
i=1

Hh+i ⊗ Ci ⊕Hh+q+1 ⊗ (l(A)‖l(C)) .

At the end of the section let’s make some remarks on PD–mode:

• There must be difference between nonces for each message. But nonce
need not be a random vector.

• Associated data and plaintext are not mandatory input for scheme. If
there is no assosiated data input we deal with AE. If there is no plaintext
input we deal with MAC.

• Number of blocks of associated data or plaint text must be less than
2n/2 for avoiding counter’s overlap.
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0‖N //EK
//Y1

incrr //

��
· · · //Yq

��
EK

��
EK

��
P1

//⊕
��

Pn
//⊕
��

A1

��

Ah

��

C1

��

Cq

��

l(A)‖l(C)
��

H1
//⊗

//

Hh
//⊗
��

Hh+1
//⊗
��

Hh+q
//⊗
��

Hh+q+1
//⊗
��

· · · //⊕ //⊕ // · · · //⊕ //⊕
��

EK

��
1‖N //EK

//Z1
incrl //

��
· · · //Zh+q+1

��
T

EK

��
EK

��
H1 Hh+q+1

Figure 1: PD–mode encryption

4 Provable security

In this section we will prove two theorems describing th security of PD–
mode. The main result on provable security of block cipher modes stated
in [5, 6]. In the rest of the paper we will be used basic notations stated in
mentioned articles.

4.1 Security of encryption

Let’s prove the theorem about security of encryption under the condition
that EK is a set of random substitutions E. Let CTRr(N,P ) be the encryp-
tion function, where N is nonce and P is plaintext. Proof of the theorem is
similar to [5, Theorem 10].

Theorem 1 Let E be a set of random permutations on GF (2n). Then, for
any t, q ∈ N and µ < n · 2n/2

Advlor−cpaCTRr
(·, t, q, µ) ≤ (q − 1)µ

n · 2n−1
− q(q − 1)

2n−1
. (1)

� Let (S1, U1), . . . , (Sq, Uq) be the oracle queries of the adversary A, each
consists, by definition, of two equal length messages. Let li be the number of
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block of length n in i’th query, i = 1, 2, . . . , q. Let N1, . . . , Nq ∈ Vn−1 - be
the nonces associated to queries (S1, U1), . . . , (Sq, Uq). Nonces are chosen at
random by the oracle such that Ni 6= Nj, i 6= j.

Let 4(i)
j = E (E(0‖Ni) + j) , i = 1, 2, . . . , q, j = 0, 1, . . . , li − 1. Since

E is random permutation, it follows that the values E(0‖Ni) are different.
By collision we assume pairs (i, j), (p, t), where i, p ∈ {1, 2, . . . , q}, j ∈
{0, 1, . . . , li−1}, t ∈ {0, 1, . . . , lp−1}, (i 6= p) such that4(i)

j = 4(p)
t . LetD be

the event when no collision occurs. Let Pb[·], b = 0, 1, be the probability of an
event under condition that oracle chose value b. By definition of adversary’s
advantage we have

Advlor−cpaCTRr,A
(·) = P1 [A = 1]− P0 [A = 1] .

Using the theorem of total probability, we get

Advlor−cpaCTRr,A
(·) = P1[A = 1/D] · P1[D] + P1[A = 1/D] · P1[D]−
− P0[A = 1/D] · P0[D]− P0[A = 1/D] · P0[D].

It’s easy to see that P1[D] = P0[D], thus we have P1[D] = P0[D], since
these probabilities depend on random values E(Ni). The following probabil-
ities P1[A = 1/D] and P0[A = 1/D] are equal. It now follows that

Advlor−cpaCTRr,A
(·) =

(
P1[A = 1/D]− P0[A = 1/D]

)
· P1[D].

Finally, we obtain
Advlor−cpaCTRr,A

(·) ≤ P1[D].

Let’s get the upper bound for P [D]. By pi denote the event that collision
occurs on i’th query i, i = 1, 2, . . . , q. It is obvious that p1 = 0. Let us
evaluate the probability p2. Collision occurs under condition E(0‖N1) + s =
E(0‖N2) + t, where s < l1, t < l2. Let us remark that if it is true and
z = min{s, t}, then we have E(0‖N1) + s − j = E(0‖N2) + t − j, for
all j = 1, 2, . . . , z. Collision occurs if E(0‖N2) equals to one of l1 − 1 points
(E(0‖N1)+1, . . . , E(0‖N1)+ l1−1) (E(0‖N2) can not be equal E(0‖N1)) or
equals one of l2−1 points preceding point E(0‖N1). Probability of this event
equals to l1+l2−2

2n−1 . Now we could evaluate the upper bound pi, i = 3, . . . , q.
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This probability is equal to the probability of the following two events. First
one is that point E(0‖Ni) equals to one of lj−1 point of sequences generated
by E(0‖Nj) j = 1, 2, . . . , i. Second one is that point E(0‖Ni) equals to one
of li − 1 points preceding E(0‖Nj) j = 1, 2, . . . , i. That’s why we have

pi ≤
1

2n−1

i−1∑
j=1

(lj − 1) + (i− 1)(li − 1),

i = 2, 3, . . . , q. Therefore

P [D] ≤
q∑
i=1

pi ≤
q∑
i=1

1

2n−1

i−1∑
j=1

(lj − 1) + (i− 1)(li − 1) =

=
1

2n−1

q∑
i=1

(
i−1∑
j=1

(lj − 1) + (i− 1)(li − 1)

)
=

=

q∑
i=1

(
i−1∑
j=1

lj + li(i− 1)

)
− q(q − 1)

2n−1
=

=

q∑
i=1

(q − 1)li − q(q−1)
2

2n−1
=

(q−1)µ
n − q(q − 1)

2n−1
.�

Now, let us obtain the upper bound of adversary’s advantage, assuming
that E is a block cipher EK . Note that block cipher EK could be considered
as class of permutations {EK : Vn → Vn |K ∈ Vk}.

Theorem 2 Let EK be a block cipher, K ∈ K, then, for any t, q and µ =
q′ · n

Advlor−cpaCTR (·, t, q, µ) ≤ 2 · AdvprpEK
(t, q′) +

(q − 1)µ

n · 2n−1
− q(q − 1)

2n−1
. (2)

� The proof is similar to [5, Theorem 11] and is omitted. �

4.2 Security of authentication

Recall the condition on nonce N : it must be changed for every message.
Therefore it changes function h ∈ MLK , since the function is defined by
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nonce N . Security of proposed scheme is stated in the following theorem.

Theorem 3 For adversary with forgery advantage AdvauthΠ against PD–mode
and with distinguishing advantage Advprp against pseudorandom permutation
EK, the following inequality holds

AdvauthΠ (t, q, µ) ≤ AdvprpEK
(t, q) +

1

2127
.

� We build an adversary B, using A, that has an advantage AdvprpEK
in

distinguishing EK from random permutation E. By definition:

Advprp−cpaB = P{BEK(·) = 1/K ← K} − P{BE(·) = 1/E ← Perm(V2n)}.

B runs A and tries to see whether A forges the scheme. B use encryption
oracle to answer on A queries. Before attack oracle makes a choice between
pseudorandom permutation EK and random permutation E to encrypt every
query. If A is successfull – B chooses EK , and E otherwise.

We have P{BEK(·) = 1/K ← K} = AdvauthΠ . That’s why we need to
evaluate the following probability P{BE(·) = 1/E ← Perm(V2n)}.

Adversary chooses N ∈ V127 for each query. After that it determines
Hi = E(E(1‖N)+ i−1). Elements Hi, i ≥ 1 define multilinear function fN .
Probability P{BE(·) = 1/E ← Perm(V2n)} is less or equal advantage in the
forgery attack on our scheme, where set of block ciphers EK replaced by set
of random permutations E.

Lemma 4 Lets replace block cipher EK by random permutation E in our
scheme. Then the forgery advantage against our scheme with number of
queries to encryption oracle less then 2n−1 and q queries to decryption oracle
is 1

2n−1 .

� Let us prove that probability to determine tag T1 for message S1 by
known pair (S2, T2) is equal to the probability to guess the value of nonce.
Let W be the following event: Y (N1)

q = Y
(N2)
p , where Y (Nj) are counters that

obtained from nonce Nj, j = 1, 2, q, p ∈ N.
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P [fN1
(S1) = T1/fN2

(S2) = T2] =

= P [fN1
(S1) = T1/(fN2

(S2) = T2) ∩W ]P [W ]+

+ P [fN1
(S1) = T1/(fN2

(S2) = T2) ∩W ]P [W ].

Let W occurs, then probability to determine value fN1
is less or equal

to 1
2n . If W occurs, then probability to determine value fN1

is equal to the
probability of guessing the value of collision of counters Y (Nj), j = 1, 2.
Therefore:

P [fN1
(S1) = T1/fN2

(S2) = T2] =

=
1

2n
+ P [compute min t : E(N1) + t = E(N2)].

We recall, the adversary does not know the values E(N1), E(N2). It now
follows that:

P [fN1
(S1) = T1/fN2

(S2) = T2] ≤
1

2n−1
.

So forgery advantage against our scheme is equal to the probability of
guess value N :

P [N = X] =
1

2n−1
.�

Using the lemma we get

AdvauthΠ (t, q, µ) ≤ AdvprpEK
(t, q) + P{BE(·) = 1/E ← Perm(V2n)},

finally, we obtain

AdvauthΠ (t, q, µ) ≤ AdvprpEK
(t, q) +

1

2n−1
. �
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Equidistant filters based on skew ML-sequnces over
fields

Mikhail Goltvanitsa

Abstract

Let p be a prime number, R = GF(q) be a field of q = pr elements and
S = GF(qn) be an extension of R. Let Š be the ring of all linear transformations of
the space RS. A linear recurring sequence v of order m over the module ŠS is said
to be a skew linear recurring sequence (skew LRS) of order m over S. The period
T (v) of such sequence satisfies the inequality T (v) ≤ τ = qmn − 1. If T (v) = τ we
call v a skew LRS of maximal period (skew MP LRS). Here we investigate periodic
properties and linear complexity of the sequence

y(i) = v(i)v(i+ k) · . . . · v(i+ k(s− 1)), k, s ∈ N0, i ≥ 0,

where v is a skew MP LRS. On the basis of the obtained results we propose new
methods for filtering generators construction based on skew MP LRS.

Keywords: ML-sequence, linear complexity, period, equidistant filter, skew
linear recurrence

1 Introduction. Preliminaries

Below R = GF(q) is a Galois field with identity e, q = pr, p = charR,
S = GF(qn), n ≥ 2 is an extension of R with multiplicative group S∗ [1].
Let σ be a generator of the group Aut(S/R) of automorphisms of S over R.
Then ordσ = n [1]. Let Š = Sσ〈σ〉 be a ring of formal sums ψ =

∑n−1
i=0 siσ

i,
s0, . . . , sn−1 ∈ S with standard addition and multiplication, defined by dis-
tributivity from the identity σs = σ(s)σ, s ∈ S.

Each element ψ ∈ Š defines a linear transformation of the space RS such
that ψ(s) =

∑n−1
i=0 siσ

i(s) for every s ∈ S.
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Let us set a structure of a left Š[x]-module on the set S〈1〉 of all sequences
over S by defining the product of a sequence v ∈ S〈1〉 by a polynomial
A(x) =

∑
i≥0 aix

i ∈ Š[x] by the equality

A(x)v = w ∈ S〈1〉 : w(i) =
∑
j≥0

ai(v(i+ j)), i ≥ 0.

So the structure of a left Š[x]-module on S〈1〉 is given. We say that v ∈ S〈1〉
is a skew linear recurring sequence (LRS) of order m over S, if it is LRS of
order m over the module ŠS [2], i.e. Ψ(x)v = 0 for some monic polynomial
Ψ(x) = xm −

∑m−1
j=0 ψjx

j ∈ Š[x], called skew characteristic polynomial of LRS
v, that is ∀i ∈ N0 v(i + m) =

∑m−1
j=0 ψj(v(i + j)). By LS(Ψ) we denote the

set of all skew LRS over S with characteristic polynomial Ψ. If Ψ(x) ∈ S[x],
then we call LRS from LS(Ψ) classical LRS.

It is easily to see that a period of any skew LRS v of order m over S
satisfies the inequality: T (v) ≤ τ = qnm − 1. If T (v) = τ , then we say that
v is a skew LRS of maximal period (MP LRS) or maximal length sequence
(ML-sequence).

Skew MP LRS over Galois rings and finite fields were studied earlier in
works [2]-[10]. Systematic researching of skew MP LRS over Galois rings
was started in articles [3, 4, 5], where, in particular, the results allowing to
construct large classes of such sequences without brute force method were
developed. In articles [4], [8], [9], [10] the classes of skew MP LRS oriented
toward fast implementation are constructed.

We define the rank rankS u of the sequence u ∈ S〈1〉 as the degree of its
minimal polynomial over S [1], [19]. In paper [3] there shown that the rank
of skew MP LRS of order m over S can be in n times greater then the rank
of classical MP LRS of the same order. Rank and statistical properties are
among the most important cryptographic characteristics of pseudorandom
sequences [11]- [13]. Skew MP LRS exhibit good statistical properties, but
their ranks are still not high enough. To eliminate this disadvantage in
this paper we offer to use the well-known technique, based on nonlinear
filtering [11]-[13]. This technique consists in application of non-linear function
to the stages of LRS. There is an extensive literature devoted to the description
of the upper bounds of filtered sequences ranks (see for example [16] and cited
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literature). However, there is not much fundamentally different constructions
for which it is possible to obtain the lower bounds of filtered sequences ranks.
This paper is dedicated to the study of filtering functions constructions,
which allow to obtain pseudorandom sequences with guaranteed big rank
and period.

Let v be a skew MP LRS of order m over S. Proposed methods for
construction of non-linear filtering functions are based on the results about
the sequence of the form

y(i) = v(i)v(i+ k) · . . . · v(i+ k(s− 1)), k, s ∈ N, 2 ≤ s ≤ m. (1.1)

Using the terminology from [17] we say that the sequence y is obtained
from LRS v by equidistantly filtering. In the case where v is a classic MP
LRS the rank of sequence (1.1) was investigated in many papers among
which we mention [11], [13], [14], [15], [17], [18]. Also there noted in [15]
that sequence (1.1) was investigated by Nechaev V.I., Nechaev A.A. and
Kurakin V.L. Most of this works ([13], [14], [17]) devoted to the case where
S = GF(2) or to the case where S = GF(2n) [18]. In articles [11] and [15]
sequence (1.1) was investigated over the arbitrary finite field, for the case
where s = 2 and k = 1, respectively. Wherein on sequence (1.1) there
imposed the restriction (k, τ) = 1, where (k, τ) is the greatest common
divisor of k and τ , in all mentioned works, except [11].

In this paper we study the case where v is a skew MP LRS. Wherein we
extend the class of sequences studied by refusing the restriction (k, τ) = 1.
Along with the case of field of characteristic 2 we investigate the general case.
Also we investigate the periodic properties of sequence (1.1).

Below for i, t ∈ N0 we use the notations i, i+ t = {i, i+ 1, . . . , i+ t} and
v[i, i+ t] = (v(i), v(i+ 1), . . . , v(i+ t)).
Theorem 1. ([3]) A sequence v ∈ S〈1〉 is a skew MP LRS of order m if and
only if ∀i ∈ N0 : v[i, i+m− 1] 6= (0, 0, . . . , 0), and there exists a primitive
polynomial F (x) ∈ R[x] of degree mn such that v ∈ LS(F ).

Under the denotations of Theorem 1 let θ be a root of the polynomial
F (x) in the extension K = GF(qmn) of the field S [1]. Then F (x) has a
canonical decomposition over S:

F (x) = F0(x) · . . . · Fn−1(x), Fj(θj) = 0, θj = θq
j

, j = 0, 1, . . . , n− 1,
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where F0(x), . . . , Fn−1(x) are primitive polynomials of degree m over S [1].
Therefore, every v ∈ LS(F ) has a unique decomposition v = w0 + . . .+wn−1,
where wj ∈ LS(Fj) [19]. Let trKS be a trace-function from the field K onto
the field S [1]. Then for every j ∈ 0, n− 1 there exists a unique element
εj ∈ K such that wj(i) = trKS (εjθ

i
j), i ≥ 0, [19]. So we obtain the following

decomposition for the LRS v:

v(i) = trKS (ε0θ
i) + trKS (ε1θ

iq) + . . .+ trKS (εn−1θ
iqn−1). (1.2)

The tuple (ε0, . . . , εn−1) is called the defining tuple of factors of LRS v. The
approach to description and construction of skew MP LRS based on defining
tuples of factors was proposed in [5].

Further in this paper v is a skew MP LRS with the defining tuple of factors
(ε0, . . . , εn−1), i.e. condition (1.2) is fulfilled.

We put N(v) = {j ∈ 0, n− 1 : εj 6= 0}, |N(v)| = n0. The rank rankS v
of sequence (1.2) is equal to mn0 and in the case where n0 = 1 v is a classical
MP LRS from the set LS(F ). The methods for construction of skew MP LRS
of order m over S of the highest rank mn are described in the papers [5], [8].

For any element α ∈ K denote via [R(α) : R] the degree of the field
extension R(α) over the field R [19]. For every integer ν ∈ 1,m such that
ν|m we use the designation

Ds(m,n0, ν) = ns
0

(
ν

s

)(m
ν

)s
+ (n0)s

((
m

s

)
−
(
ν

s

)(m
ν

)s)
+

(
n0

s

)
m, (1.3)

where (n0)s = n0(n0− 1) · . . . · (n0− s+ 1) if n0 ≥ s and (n0)s = 0 if n0 < s.
We recall that y is a sequence of the form (1.1).

Theorem 2. Let
[R(θk) : R] = µ, n|µ, ν =

µ

n
. (1.4)

1. If charR 6= 2, s = 2, and k satisfies the condition

[R(θ2k) : R] = [R(θk) : R], (1.5)

then
rankS y =

mn0(mn0 + 1)

2
. (1.6)
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2. In the case where charR = 2, we have

rankS y ≥ Ds(m,n0, ν), (1.7)

wherein if s < q, then

rankS y ≥ Ds(m,n0, ν) +mn0. (1.8)

3. In the case where charR = 2 and s = 2 the following equality is fulfilled:

rankS y = D2(m,n0, ν) +mn0. (1.9)

As we note above, in the previous papers devoted to the studying of
classical LRS there investigated basically the case where (k, τ) = 1. In this
case µ = mn, ν = m and from (1.3) we obtain

Ds(m,n0, ν) = ns0

(
m

s

)
+

(
n0

s

)
m. (1.10)

For classic MP LRS n0 = 1, so we can see from (1.10) and Theorem 2 that
the lower bound for rankS y can be in ns times greater the corresponding
lower bound for rankS y in the case where v is a the classical MP LRS. Thus,
the best lower bounds for rankS y we obtain when using skew MP LRS v

such that rankS v = mn.

Theorem 3. The period T (y) of the sequence y satisfies the condition

T (y)| τ

(q − 1, s)
. (1.11)

If s = 2, then
T (y) =

τ

(q − 1, 2)
. (1.12)

In the case where charR = 2 and condition (1.4) is fulfilled

1. if m < s, then
τ

(qn − 1, s)
|T (y); (1.13)
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2. if 3 ≤ s < m, n0 ≥ 2, then
τ

(qλ − 1, s)
|T (y), (1.14)

where λ is equal to greatest common divisor of all elements from the set

{jb − ja : ja, jb ∈ N(v), a, b ∈ 1, n0, ja < jb} ∪ {n}.

Consequence 1. Let under the preconditions of Theorem 2 the inequalities
charR = 2, 3 ≤ s < m are fulfilled. Then if any of the conditions

1. n0 ≥ 2 and n is prime;

2. n0 >
n
2 ;

is fulfilled, then the period of sequence y reaches the maximal value, that is

T (y) =
τ

(q − 1, s)
. (1.15)

The validity of Corollary 1 follows from the fact that if the condition from
the first or the second item is fulfilled then the value of λ in Theorem 3 is
equal to 1.

From the Consequence 1 we obtain that using skew MP LRS v such that
rankS v = mn is most preferably to obtain the maximum value T (y).

On the basis of the obtained results we propose one class of functions
for filtering generators construction based on skew MP LRS. Recall (see for
example [1]) that for every function f : Sm → S there exists a unique
representation in the form f(x1, x2, . . . , xm) =

∑
l∈0,qn−1

m al1l2...lmx
l1
1 x

l2
2 . . . x

lm
m ,

where l = (l1, l2, . . . , lm), lj ∈ 0, qn − 1, j ∈ 1,m, al1...lm ∈ S and a degree
degf of f is defined as max{l1 + l2 + . . .+ lm : al1l2...lm 6= 0}. The degree of
zero function is equal to zero.

Let f : Sm → S be a function such that degf < s. Consider the sequence

z(i) =
N−1∑
j=0

hjy(i+ j) + f(v(i), v(i+ 1), . . . , v(i+m− 1)), (1.16)

where h0, h1, . . . , hN−1 are arbitrary elements from S and not all of them are
equal to zero and y is sequence (1.1).
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Theorem 4. Let conditions of Theorem 2 are fulfilled. In the case where
charR = 2

rankS z ≥ Ds(m,n0, ν)− (N − 1). (1.17)

In the case where charR 6= 2, s = 2 and k satisfies (1.5)

rankS z ≥ D2(m,n0,m)− (N − 1). (1.18)

The author is grateful to Professor A.A. Nechaev and Professor A.S. Kuzmin
for helpful discussions and valuable remarks.

2 Proofs

Bellow we use the designations j = (j1, . . . , js), l = (l1, . . . , ls). We
put J = N(v)s and decompose the sequence y to the sum of binomial
sequences [19]:

y(i) = v(i)v(i+ k) · . . . · v(i+ k(s− 1)) =

=

(
m−1∑
l=0

∑
j∈N(v)

εq
nl

j θiq
nl+j

)
· . . . ·

(
m−1∑
l=0

∑
j∈N(v)

εq
nl

j θk(s−1)qnl+jθiq
nl+j

)
=

=
∑

(j1,...,js)∈J

∑
0≤l1,...,ls≤m−1

( ∏
a∈1,s

εq
nla

ja
θk(a−1)qnla+ja

)
θi
∑
a∈1,s q

nla+ja
.

So, the i-th term y(i) of LRS y has the folowing

y(i) =
∑

0≤l1,...,ls≤m−1, j∈J
nla+ja≤nlb+jb, a,b∈1,s, a<b

cjl

(
θq

nl1+j1+...+qnls+js
)i
, cjl ∈ K. (2.1)

We define two sets

W = {(l1, . . . , ls), la ∈ 0,m− 1, a ∈ 1, s, la 6= lb, a 6= b, a, b ∈ 1, s},

W1 =

{
{(j1, . . . , js) ∈ J, ja 6= jb, a 6= b, a, b ∈ 1, s}, s ≤ n0,

∅, s > n0.
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Then we have y(i) = y′(i) + ỹ(i) + y′′(i), where

y′(i) =
∑
j∈J

∑
l∈W

∏
a∈1,s

εq
nla

ja

 · θkqnl2+j2 . . . θk(s−1)qnls+jsθi
∑
a∈1,s q

nla+ja
, (2.2)

ỹ(i) =


∑
j∈W1

m−1∑
l=0

( ∏
a∈1,s

εq
nl

ja

)
θkq

nl+j2 . . . θk(s−1)qnl+jsθi
∑
a∈1,s q

nl+ja
, s ≤ n0,

0, s > n0;

(2.3)
y′′(i) = y(i)− y′(i)− ỹ(i).

Lemma 5. Minimal polynomials over K of the sequences y′, ỹ and y′′ are
coprime.

2 Consider the case when s ≤ n0. The sequences y′, ỹ and y′′ are
binomial sequences of the first order. So to prove Lemma 5 it is sufficiently
to show that the sets of roots of binomial sequences from the corresponding
decompositions are disjoint.

Since n ≥ 2, s ≤ m, we obtain that for every j ∈ J, l ∈ W the following
inequalities are valid

s∑
t=1

qnlt+jt ≤ qn−1
m−1∑
t=0

qnt = qn−1q
mn − 1

qn − 1
< qmn − 1 = ordθ.

Further, for every j ∈ W1, l ∈ 0,m− 1

s∑
t=1

qnl+jt ≤ qn(m−1)
n−1∑
t=0

qt = qn(m−1)q
n − 1

q − 1
< qmn − 1 = ordθ.

So, the set of binomial sequences roots from the y′ decomposition (2.2) is
disjoint with the corresponding set from the ỹ decomposition (2.3).

Now we show that if s = 2 or charR = 2, then the set of binomial
sequences roots from the y′ decomposition is disjoint with binomial sequences
roots from the y′′ decomposition. If s = 2, q > 2, then this follows from the
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fact that all binomial sequences roots in decomposition (2.1) are pairwise
distinct since

s∑
a=1

qnls+js ≤ sq(m−1)n+n−1 = sqmn−1 < qmn − 1 = ordθ. (2.4)

Further we consider the case where charR = 2. Assume the contrary. Let
there exist the tuples

(l1, . . . , ls, j1, . . . , js), (l̃1, . . . , l̃s, j̃1, . . . , j̃s), lt, l̃t ∈ 0,m− 1, jt, j̃t ∈ N(v)

with the property la 6= lb under a 6= b, a, b ∈ 1, s, such that:

qnl1+j1 + . . .+ qnls+js ≡ qnl̃1+j̃1 + . . .+ qnl̃s+j̃s (mod qmn − 1). (2.5)

Since charS = 2 congruence (2.5) has the form

2t1 + . . .+ 2ts ≡ 2t̃1 + . . .+ 2t̃s (mod 2h − 1), (2.6)

where 2ti = qnli+ji, 2t̃i = qnl̃i+j̃i for all i ∈ 1, s, h = mnlog2q, and ti 6= tj
under i 6= j, i, j ∈ 1, s. If t̃i 6= t̃j for all i, j ∈ 1, s, i 6= j, then congruence (2.6)
is equivalent to the equality 2t1 + . . .+2ts = 2t̃1 + . . .+2t̃s, which is impossible
because of the condition (t1, . . . , ts) 6= (t̃1, . . . , t̃s).

If there exist i, j ∈ 1, s, i 6= j with the property t̃i = t̃j, then grouping
equal terms in the right side of congruence (2.6) and replacing, if necessary,
2h by 1, we obtain the equality 2t1 + . . .+ 2ts = 2t̂1 + . . .+ 2t̂w , where w < s

and t̂i 6= t̂j under i 6= j. This is a contradiction. The coprimeness of minimal
polynomials of the sequences ỹ and y′′ established similarly.

In the case where s > n0, ỹ is zero-sequence and its minimal polynomial
is equal to e. So, in this case it is sufficiently to prove the coprimeness of
minimal polynomials of the sequences y′ and y′′, what has been done above.
Lemma 5 is proved. 2

2.1 Proof of Theorem 2

Firstly we prove item 2. We note that y′, ỹ are the sequences over K. So,
from condition S ⊂ K we obtain:

rankK y
′ ≤ rankS y

′, rankK ỹ ≤ rankS ỹ. (2.7)
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In the following two lemmas we estimate the ranks of the sequences y′ and ỹ
as LRS over K, and then use the corresponding inequality from (2.7).

Lemma 6. The following inequality is fulfilled

rankK y
′ ≥ ns0

(
ν

s

)(m
ν

)s
+ (n0)s

((
m

s

)
−
(
ν

s

)(m
ν

)s)
. (2.8)

2 We put L = {(l1, . . . , ls) : 0 ≤ l1 < . . . < ls ≤ m − 1}. Using (2.2)
we obtain the decomposition

y′(i) =
∑
j∈J

∑
l∈L

c′jlθ
(qnl1+j1+...+qnls+js)i, c′jl ∈ K. (2.9)

Let P(1, s) be the set of all permutations of the set 1, s [19]. Sequence (2.9) is
the sum of binomial sequences of the first order with distinct roots, wherein
using (2.2) we get that the coefficient c′jl is equal to

c′jl =
∑

(ρ1...,ρs)∈P(1,s)

εq
nlρ1

jρ1
· . . . · εq

nlρs

jρs
θkq

nlρ2+jρ2+...+k(s−1)qnlρs+jρs . (2.10)

Since charR = 2 using (2.10) we obtain

c′jl =

εq
nl1

j1
εq

nl2

j2
. . . εq

nls

js

εq
nl1

j1
θkq

nl1+j1 εq
nl2

j2
θkq

nl2+j2 . . . εq
nls

js
θkq

nls+js

. . . . . . . . . . . .

εq
nl1

j1
θk(s−1)qnl1+j1 εq

nl2

j2
θk(s−1)qnl2+j2 . . . εq

nls

js
θk(s−1)qnls+js

. (2.11)

For any elements ξ1, . . . , ξt ∈ K denote via V (ξ1, . . . , ξt) Vandermonde’s
determinant, that is V (ξ1, . . . , ξt) = det(ξi−1

j )ti,j=1.
Recall (see for example [19]) that condition V (ξ1, . . . , ξt) 6= 0 is equivalent

to condition ξa 6= ξb, a, b ∈ 1, t, a 6= b.

Using (2.11) we have c′jl = εq
nl1

j1
· . . . · εq

nls

js
V (θkq

nl1+j1 , . . . , θkq
nls+js

).
So, coefficient (2.10) is not a zero iff

θkq
nla+ja 6= θkq

nlb+jb , a, b ∈ 1, s, a 6= b. (2.12)
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We consider two cases. In the case where all coordinates of vector j are
pairwise distinct condition (2.12) if fulfilled for all l ∈ L. Indeed, condition (2.12)
if valid iff

µ - n(la − lb) + (ja − jb), a, b ∈ 1, s, a 6= b. (2.13)
Using equality µ = nν, we obtain that the last condition is true since

n - ja − jb. So, in this case there are exactly

(n0)s

(
m

s

)
(2.14)

non-zero coefficients c′jl of the form (2.10).
If there exist a, b ∈ 1, s with the property a 6= b such that ja = jb,

then arguing similarly and taking into account (2.13) and equality µ = nν
we obtain that for the validity of condition (2.12) it is sufficiently that the
following condition µ - n(la − lb), a, b ∈ 1, s is valid, that is, la and lb are
not congruent modulo ν. There exist exactly ns0− (n0)s tuples j ∈ J with at
least two equal coordinates and there is exactly

(
ν
s

) (
m
ν

)s tuples l ∈ L with
coordinates pairwise non-congruent modulo ν. So, in the case where there
exists at least one pair of equal coordinates of j ∈ J there are no less then

(ns0 − (n0)s)

(
ν

s

)(m
ν

)s
(2.15)

non-zero coefficients c′jl of the form (2.10).
So, rankK y

′ is no less then the sum of values (2.15) and (2.14). Lemma 6
is proved. 2

Lemma 7. The following equality is fulfilled

rankK ỹ =

(
n0

s

)
m. (2.16)

2 We note that in the case where s > n0, ỹ — is zero sequence and the
equality (2.16) is fulfilled. Consider the case where s ≤ n0. Using (2.3) we
obtain that the sequence ỹ has the following form

ỹ(i) =
∑

(j1,...,js)∈J
j1<...<js

m−1∑
l=0

c̃ljθ
(qnl+j1+...+qnl+js)i, (2.17)
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where the c̃lj can be calculated by the formula

c̃lj =

 ∑
(ρ1...,ρs)∈P(1,s)

εjρ1 · . . . · εjρsθ
kqjρ2+...+k(s−1)qjρs

qnl

. (2.18)

Further, since charS = 2 we obtain that coefficient (2.18) is not equal to
zero iff the element εj1 · . . . · εjsV (θkq

j1 , . . . , θkq
js

) is not equal to zero. The
last condition is equivalent to the pairwise non-congruence of the numbers
ja, jb ∈ N(v), where a 6= b, a, b ∈ 1, s modulo µ. Since n|µ we have µ ≥ n
and µ - ja − jb ∈ {−n + 1,−n + 2, . . . , n − 1}. So, rankK ỹ is equal to the
number of non-zero coefficients (2.18), that is to the number

(
n0
s

)
m. Lemma 7

is proved. 2

Now the validity of (1.7) follows from Lemma 5, Lemma 6 and Lemma 7.
Let us show that under the condition s < q inequality (1.8) is valid. Since

s < q we obtain that all the roots of binomial sequences if (2.1) are pairwise
distinct (see (2.4)). Further, the coefficient cjl in decomposition (2.1) for

l = (l, l, . . . , l), j = (j, j, . . . , j), (2.19)

for every l ∈ 0,m− 1, j ∈ N(v), is equal to clj = (εj)
sqnlθ(

s
2)kqnl+j 6= 0. There

are exactly mn0 pairs of vectors (2.19). Now the validity of (1.8) follows from
the validity (1.7).

Now we prove item 3 of Theorem 2. We need in the following result.

Lemma 8. Let u be LRS over S and rankK u = N . Then rankS u = N .

2 If u — is zero sequence, then its minimal polynomials over S and over
K coincides and equal to e. Let u 6= 0 and f(x) = xN−

∑N−1
j=0 fjx

j ∈ K[x] be
a minimal polynomial of u, whereinN ≥ 1. Then u(i+N) =

∑N−1
j=0 fju(i+j)

for every i ∈ N0. Using the equality |S| = qn from the last condition we obtain

u(i+N) =
N−1∑
j=0

f q
n

j u(i+j) [1]. If f(x) ∈ S[x], then Lemma 8 is valid. Assume

that f(x) 6∈ S[x]. Choose the maximal value j ∈ 0, N − 1 such that fj 6∈ S.
Then f q

n

j 6= fj and(
xj + (f q

n

j − fj)
−1(f q

n

j−1 − fj−1)x
j−1 + . . .+ (f q

n

j − fj)
−1(f q

n

0 − f0)
)
·u = 0,
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in the case where j ≥ 1, or e·u = 0, in the case where j = 0. So, the sequence
u can be annihilated by a monic polynomial of degree j < N over K. This
is a contradiction. Thus, f(x) ∈ S[x]. Lemma is proved. 2.

We note that under the condition s = 2 regardless of field characteristic
the following equality if fulfilled rankK y

′′ = mn0. To complete the prove we
use Lemma 5, Lemma 6, Lemma 7 and Lemma 8. Item 3 of Theorem 2 is
proved.

Now we prove item 1 of Theorem 2.

Lemma 9. Under condition (1.5) the following equality is fulfilled

rankK y
′ = n2

0

(
m

2

)
. (2.20)

2 Since s = 2 coefficient (2.10) from decomposition (2.9) is not equal to
zero iff θkqnl1+j1 6= −θkqnl2+j2 . We put

C1 = {(j, l) ∈ J × L : θkq
nl1+j1 6= −θkqnl2+j2}, C2 = {(j, l) ∈ J × L : θkq

nl1+j1 6= θkq
nl2+j2},

C3 = {(j, l) ∈ J × L : θ2kqnl1+j1 6= θ2kqnl2+j2}.

So, rankK y
′ = |C1|. We obtain |C1| = (|J |·|L|−|C2|)+|C3|, since charR 6= 2.

Using (1.5) we get |C2| = |C3|. So, rankK y
′ = |C1| = |J | · |L| = n2

0

(
m
2

)
.

Lemma is proved. 2

Arguing analogously to the proof of Lemma 9, we get

rankK ỹ =

(
n0

2

)
m. (2.21)

As it was noted above rankK y
′′ = mn0. Now using Lemma 8 we get

rankS y = n2
0

(
m

2

)
+m

(
n0

2

)
+mn0 =

(
mn0 + 1

2

)
.

2.2 Proof of Theorem 3

We show that T (y)| q
mn−1

(q−1,s) . Let ∆ = qmn−1
q−1 , then

v(i+ ∆) = trKS

(
n−1∑
j=0

εjθ
qj(i+∆)

)
= trKS

(
n−1∑
j=0

εjθ
∆qjθq

ji

)
. (2.22)
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Since θ∆ ∈ R from (2.22) we establish

v(i+ ∆) = trKS

(
n−1∑
j=0

εjθ
∆qjθq

ji

)
= θ∆v(i). (2.23)

Using (1.1) and (2.23) we get y(i+ ∆) = θs∆y(i). So,

T (y)|∆ · ordθs∆ =
τ

q − 1
· q − 1

(q − 1, s)
=

τ

(q − 1, s)
.

Now we prove (1.12). Since the minimal polynomials of the sequences y′,
ỹ и y′′ are pairwise coprime, the following relation is valid T (y′′)|T (y) [19].
As it was noted above, in the case where s = 2 the sequence y′′ is the sum
of binomial sequences with the roots from the set

M(y′′) = {θ2qnl+j , l ∈ 0,m− 1, j ∈ N(v)}.

So, the period T (y′′) of LRS y′′ is equal to the lest common multiple (LCM)
of orders of the elements fromM(y′′), that is to the number τ

(τ,2) . Now (1.12)
follows from the equality τ

(τ,2) = τ
(q−1,2) .

Now we prove (1.13). Since the minimal polynomials of the sequences y′,
ỹ и y′′ are pairwise coprime, the following relation is valid T (y′)|T (y) [19].
Using (2.9) we obtain that the period T (y′) of the sequence y′ is equal to the
LCM of orders of the elements from the set

M(y′) = {θqnl1+j1+...+qnls+js , j ∈ J, l ∈ L, c′jl 6= 0}.

For j1 ∈ N(v) we define the numbers

α = qj1 + q2n+j1 + . . .+ qns+j1; β = qn+j1 + q2n+j1 + . . .+ qns+j1.

From the proof of Lemma 6 we obtain that θα, θβ ∈M(y′). It is easily to see
that [ordθα, ordθβ] = τ

(τ,α,β) , where by [k1, . . . , kl] we denote the LCM of the
numbers k1, . . . , kl. Now to prove (1.13) it is sufficiently to note that

(τ, α, β) = (τ, β, β − α) = (τ, β, qj1(qn − 1)) = (qn − 1, s). (2.24)

Now we establish (1.14). For every ja, jb ∈ N(v),such that ja < jb we
define the numbers
γab = qja + qn+jb + q2n+ja + . . .+ qn(s−1)+ja ; γ̃ab = qjb + qn+jb + q2n+ja + . . .+ qn(s−1)+ja .
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From the proof of Lemma 6 it follows that θγab, θγ̃ab ∈ M(y′). It is easily to
see that for any fixed ja, jb ∈ N(v), a 6= b the following equality is fulfilled

[ordθα, ordθβ, ordθγab, ordθγ̃ab] =
qmn − 1

(qmn − 1, α, β, γab, γ̃ab)
.

Further, (qmn−1, α, β, γab, γ̃ab) = ((qmn−1, α, β), γab, γ̃ab). Thus, using (2.24)
we get that the value (qmn − 1, α, β, γab, γ̃ab) divides

(qn − 1, s, γ̃ab − γab) = (qn − 1, s, qjb − qja) = (q(n,jb−ja) − 1, s).

Looking over all elements ja, jb ∈ N(v), ja < jb and arguing similarly we
establish (1.14). Theorem 3 is completely proved.

2.3 Proof of Theorem 4

Let H(x) =
∑N−1

j=0 hjx
j. Then z(i) = z′(i) + z̃(i) + z′′(i) + ẑ(i), where

z′(i) = H(x)y′(i), z̃(i) = H(x)ỹ(i), z′′(i) = H(x)y′′(i),
ẑ(i) = z(i)− z′(i)− z̃(i)− z′′(i). (2.25)

For every number k =
∑

t≥0 νs(k)qk ∈ N0, νs(k) ∈ 0, q − 1 define its
weight wtq(k) as arithmetic sum wtq(k) =

∑
t≥0 νt(k). Using (1.2) and

condition degf < s we obtain that the sequence ẑ(i) is the sum of binomial
sequences of first order with the roots θα, where α < τ, wtqα < s. As
shown above all roots θβ, where β < τ of non-zero binomial sequences
from the decomposition of y′ satisfy the equality wtqβ = s, and therefore
all roots from binomial decomposition of z′ satisfy the same equality. In
the case where ỹ is non c sequence the same is correct for z̃. For every
sequence u over K denote via mu(x) its minimal polynomial over K. So,
we establish the equalities (mz′(x),mẑ(x)) = e and (mz̃(x),mẑ(x)) = e
(we use the designation (G(x), L(x)) for the greatest common divisor of
polynomials G(x), L(x) ∈ K[x]). Taking into account Lemma 5 we obtain
(mz′+z̃(x),mz′′+ẑ(x)) = e and therefore rankS z ≥ rankK z ≥ rankK(z′ + z̃).
Using (2.25) we get [19] rankK(z′+ z̃) = degmz′+z̃(x) = deg

my′+ỹ(x)

(my′+ỹ(x),H(x)) . In
the case where charR = 2 using Lemma 5, Lemma 6 and Lemma 7 we obtain
deg

my′+ỹ(x)

(my′+ỹ(x),H(x)) ≥ degm′y +degmỹ(x)−degH(x) ≥ Ds(m,n0, ν)− (N−1).
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In the case where charR 6= 2, s = 2 and k satisfies (1.5) using (2.20)
and (2.21) we obtain (1.18). Theorem 4 is proved.
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An Approach to Studying Periods of Binary
Digit-position Sequences over Prime Rings

Alexey Kuzmin

Abstract

We study how the subgroups of group of multipliers of linear recurring sequences
of maximal period (LRS MP) over prime rings influence the period of some fixed
binary digit-position sequence.

Keywords: linear recurring sequences of maximal period, binary digit-
position sequences, prime rings, finite prime fields, period of sequence.

1 Introduction

A special interest in recent years can be observed in studying p-adic digit-
position sequences over residue ring modulo pn, where p > 2 is a prime
number. This is due to fact that these sequences possesses high linear
complexity, hence they can be used in random-number generators. A list
of papers on this thematic can be seen in [1].

A lot of papers are dedicated to reconstruction of LRS over prime residue
rings from its images, especially when LRS MP over residue ring is mapped
into the highest order p-adic digit-position sequence [2].

This paper is dedicated to less studied object of r-ary digit-position
sequences over prime fields and residue rings where r 6= p. Such digit-
position sequences were studied by Kuzmin A.S. in paper [3]. He has found
all binary digit position-sequences over finite prime fields, which admit the
effect of reduction of period. Researches of Kuzmin A.S. were extended in
paper [4] where the author proved that the period of r-ary digit-position
sequences where r ≥ 3 equals the period of forming LRS MP. Studying of
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digit-position sequences over Galois-rings is more difficult due to fact that
the function which returns some fixed digit-position can’t be represented
as a polynomial over Galois-ring. In paper [5] a number of binary digit-
position sequence over Galois-rings which admits the twofold reduction of
a period was found. Moreover the author showed that twofold reduction
of a period doesn’t exist for digit-position sequences with other numbers.
In [6] a sufficient condition when there is no twofold reduction of period
in high order binary digit-position sequences was found. It happens when
not all the elements of Zpn appears on a cycle of LRS MP.

2 Definitions

Let Zpn, be a primary ring with the generator polynomial F (x), degF (x) =
m, notably u(i) = (u(i))∞i=0 is LRS MP over this ring. Period T (u) of LRS
MP u equals to pn−1(pm − 1) [7].

Every element u(i) of some LRS MP u over prime ring can be uniquely
represented as follows

u(i) =
k∑

t=0

ut(i)2
t,

where k = [log2p
n].

Sequence ut, t = 1, k is called tth binary digit-position sequence.
From [7] it is known that the property T (ut)|T (u) holds.
Multiplier of a sequence u is an element c ∈ Z∗pn, for which there exists

q ∈ N with property xqu = cu [7].
Let c ∈ Zpn be a multiplier of a sequence u over Zpn. Let M(u) be a set

of all of multipliers of u. M(u) forms a subgroup in Z∗pn.
Let H = {1, β, β2, . . . , β2d−1} be a subgroup of M(u), here β is a forming

element of group H, value 2d satisfies condition

2d|GCD(T (u), |Z∗pn|) = pn−1(p− 1).

The set of Zpn�{0} can be represented as a decomposition of non-
intersecting classes gjH for some gj ∈ Zpn�{0}
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As β is a multiplier, then for elements of u it holds that u(i + jT (u)
2d ) =

βju(i), where j = 0, 2d− 1. So the existence of groups of multipliers allows
us to study the reduction of a period of digit-position sequences of u if we
study digit-positions in classes gH, where g ∈ Zpn and H < M(u).

A value of p =
[log2p]∑
t=0

pt2
t, where pt ∈ {0, 1}, can be represented as follows:

p =

[log2p]∑
t=z+1

pt2
t +

z−1∑
t=0

2t,

number z — is a first appearance of 0 in binary representation of p. Let

a(z) =
[log2p]∑
t=z+1

pt2
t−z−1, so we obtain the following representation for value

of p = a(z)2z+1 + 2z − 1. Analogously we can consider values of sj where
j = 1, 3, the first appearance of 0 in binary digit-positions of numbers
pn−2, pn−1, pn and obtain the following expressions

pn−2 = a(1)(s1)2
s1+1 + 2s1 − 1,

pn−1 = a(2)(s2)2
s2+1 + 2s2 − 1,

pn = a(3)(s3)2
s3+1 + 2s3 − 1.

Here a(j)(sj) represents sums of digit-positions with number greater than
sj for j = 1, 3.

Note that if the value of power of p is even, then sj = 1, otherwise
sj = z.

We will show how the obtained approach can be used. As the example
we will study the period of binary digit-position sequence with number s.
It is due to fact that according to [5], the period of digit-position sequence
with that number is at least 2 times shorter than for other sequences.
That is why it is interesting to study if it is possible to reduce the period
of sequence us in more than two times.

We will need the following definitions and representations pH = {p, α1, ...
, α2d−1}, where αj ≡ pβj (mod pn), j = 1, 2d− 1 and let r2s+1(x) be a
remainder of division x by 2s+1. More over, we will point out the first
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digit-position which equals to 0 in numbers

β = ω(l)2l+1 + 2l − 1,

αj = γ(lj)2
lj+1 + 2lj − 1, j = 1, 2d− 1,

here ω(l) ≥ 0, γ(lj) ≥ 0, j = 1, 2d− 1.

3 Results of investigations.

The proof of the main result is divided into 5 lemmas.

Lemma 1. Let u be an LRS MP over Zpn, all the elements of Zpn occure
in the cycle of u, u1 be the 1st digit-position sequence of u. Let H =
{1, β, β2, β3} < M(u), s = 1, pn = a(3)(1)4 + 1, p ≥ 3. Then the following
expression holds

T (u1) 6 |
T (u)

4
.

Proof.
Let β = ω(l)2l+1 + 2l − 1. We recall that in conditions of Lemma 1

p− 1 ≡ 0 (mod 4). We suppose that (gH)s = const for each g ∈ Zpn. We
shall study 2 variants.

1) β < pn−1.
a) If l > 1, it is obvious that (1)1 = 0 6= (β)1 = 1.
b) If l = 1, then there is t = min{j|2jβ > pn}, as β < pn−1 then t > 1.

Element 2tβ can be represented in the form of 2tβ = 2t(ω(1)4+1)−a(3)4−1.
So class 2tH will lead us to a contradiction with the assumption because
(2t)1 = 0 6= (2tβ)1 = 1.

c) If l < 1, class 2H will lead us to a contradiction with the assumption
because (2)1 = 1 6= (2β)1 = 0.

2) β ≥ pn−1. We will study class pH = {p, α1,−p,−α1}.
Let α1 = γ(r)2r+1 + 2r − 1.
If (p)1 = 0.
a) If r > 1, it is obvious that (p)1 = 0 6= (β)1 = 1.
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b) Class (α1− p)H = {α1− p, pn− α1− p, pn− α1 + p, α1 + p} will lead
us to a contradiction with the assumption because (α1 − p)1 6= (α1 + p)1

for r ≤ 1.
Let now (p)1 = 1.
As z > 1, class (α1−p)H = {α1−p, pn−α1−p, pn−α1 +p, α1 +p} will

lead us to a contradiction with the assumption because (α1−p)1 6= (α1+p)1

for r ≤ 1 regardless the value of r.
So we always can find class gH which contradicts the condition (gH)1 =

const.

Lemma 2. Let u be an LRS MP over Zpn, all the elements of Zpn occure
in the cycle of u, u1 be the 1st digit-position sequence of u. Let H < M(u),
|H| = 2d, pn = a(3)(1)4 + 1, p ≥ 3. Then the following expression holds

T (u1) 6 |
T (u)

2d
.

Proof. Recall that p = a(z)2z+1 + 2z − 1 and not necessarily z = 1.
Let H = {1, β, β2, . . . , βd = pn − 1, . . . , β2d−1},
pH = {1, α1, α2, . . . , αd = pn − p, . . . , α2d−1}.
Let αj = γ(lj)2

lj+1 + 2lj − 1, j = 1, 2d− 1.
We suppose that for every class gH, g ∈ Zpn it holds that (gH)1 = const.
If β < pn−1 the proof of Lemma 2 is equivalent to the proof of analogical

part of Lemma 1, so let β ≥ pn−1.
We will study class (α1 − p)H = {α1 − p, α2 − p, . . . ,−p − αd−1, p −

α1, . . . , p+ αd−1}.
Let z = 1.
As (pH)1 = 0 according to conditions of Lemma 2 it is enough to study

cases when l1, ld−1 ≤ 1 otherwise we easily obtain contradiction.
a) Case l1 = ld−1 = 1. Then
α1 − p = γ1(1)4 + 1− a(1)4− 1,
αd−1 + p = γd−1(1)4 + 1− a(1)4− 1.
So (α1 − p)1 = 1 6= (p + αd−1)1 = 0. So class (α1 − p)H doesn’t satisfy

condition of lemma 2 in that case.
b) Case l1 = ld−1 = 0. As (γ1(0)2)1 = (γd−1(0)2)1 = 0, then again

(α1 − p)1 = 1 6= (p+ αd−1)1 = 0.
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c) Without loss of generality we have to find contradiction with condi-
tions of lemma 2 in case l1 = 0, ld−1 = 1.

Let us look through classes 2tpH, t ≥ 1.
The equalities (2jp)1 = (2jα1)1 = (2jαd−1)1 = 0, where j > 1 are

hold only if 2jα1 >
pn−1

2 and 2jαd−1 <
pn−1

2 . Otherwise we will come to
contradiction.

Note that ad−1 ≥ 3p otherwise (pH)1 6= 0.
There exists t|2tp < αd−12

t < pn−1
2 and 2t+1p < pn−1

2 < αd−12
t+1.

Then the following expression for elements 2t+2p, αd−12
t+2 ∈ 2t+2pH holds

(2t+2p)1 = 0 6= (αd−12
t+2)1 = 1 and we obtain contradiction with conditions

of lemma 2.
Let now z > 1.
Then (pH)1 = 1 and (α1)1 = (αd−1)1 = 1 so l1, ld−1 6= 1. In that case

n = 2j, j ∈ N.
a) Case l1, ld−1 > 1. Then
α1 − p = γ1(l1)2

l1+1 − 2l1 − 1− a(z)2z+1 − 2z + 1,
αd−1 + p = γd−1(ld−1)2

ld−1+1 + 2ld−1 − 1 + a(z)2z+1 + 2z − 1.
The following expression holds (α1 − p)1 = 0 6= (αd−1 + p)1 = 1, so we

obtain contradiction.
b) Case l1, ld−1 = 0. Then
α1 − p = γ1(0)2− a(z)2z+1 − 2z + 1,
αd−1 + p = γd−1(0)2 + a(z)2z+1 + 2z − 1.
The following expression holds (α1 − p)1 = 1 6= (αd−1 + p)1 = 0, so we

obtain contradiction.
c) Without loss of generality we have to find contradiction with condi-

tions of Lemma 2 in case l1 = 0, ld−1 > 1.
Let us look through classes 2tpH, t ≥ 1.
The equalities (2jp)1 = (2jα1)1 = (2jαd−1)1 = 0, where j > 1 are hold

only if α1 >
pn−1

2 and αd−1 <
pn−1

2 . Otherwise we will come to contradiction.
Note that ad−1 ≥ 2p because ad−1 ∈ pH.
There exists t|2tp < αd−12

t < pn−1
2 and 2t+1p < pn−1

2 < αd−12
t+1.

Then the following expression for elements 2t+2p, αd−12
t+2 ∈ 2t+2pH holds

(2t+2p)1 = 0 6= (αd−12
t+2)1 = 1 and we obtain contradiction with conditions

of Lemma 2.
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Lemma 3. Let p = a(s)2s+1 + 2s − 1, pn = a(3)(s)2s+1 + 2s − 1, p ≥ 3, s >
1, n = 2k + 1, k ∈ N, if a(3)(s) is even then for a(1)(s) such that pn−2 =
a(1)(s)2s+1 + 2s − 1 it holds that a(1)(s) is odd.

Proof.
The following expressions hold
pn−1 = pn−2p =

= (a(1)(s)2s+1 + 2s − 1)(a(s)2s+1 + 2s − 1) =

= a(s)a(1)(s)22s+2 + a(s)22s+1 + a(1)(s)22s+1 + 22s−
−2s+1 − a(1)(s)2s+1 − a(s)2s+1 + 1 =

= δ1(s)2
s+2 − (a(1)(s) + a(s) + 1)2s+1 + 1, where δ1(s) ∈ N.

Then pn = pn−1p =

= (δ1(s)2
s+2 − (a(1)(s) + a(s) + 1)2s+1 + 1)(a(s)2s+1 + 2s − 1) =

= δ2(s)2
s+2 − (a(1)(s) + a(s) + 1)2s+1 + a(s)2s+1 + 2s − 1 =

= δ2(s)2
s+2 − (a(1)(s) + 1)2s+1 + 2s − 1, where δ2(s) ∈ N.

The value a(1)(s) + 1 is even according to conditions of lemma, hence
a(1)(s) is odd.

Lemma 4. Let p = a(s)2s+1 + 2s − 1, pn = a(3)(s)2s+1 + 2s − 1, p ≥ 3, s >
1, n = 2k + 1, k ∈ N. A set C = {c ∈ pZpn�{0}|0 < c ≤ pn−1

2 } can be
represented as follows

C = C00 t C10 t C01 t C11,

where Cij = {cij ∈ pZpn�{0}|0 < cij ≤ pn−1
2 , (cij)s−1 = i, (cij)s = j}, i, j ∈

0, 1 and

|Cij| =
pn−1 − 1

8
. (3)

Proof. The first part of lemma 4 is obvious. Let us prove (3). Each element
g ∈ C can be represented as g = k0p for some k0 ∈ Zpn.

Note that (r2s+1(k0p))s = (r2s+1(k0r2s+1(p)))s = (r2s+1(k0(2
s − 1)))s

It is obvious that the increase of k0 by j2s+1 makes remainder the same.
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Let suppose that there exists k1 < k2 < 2s+1 such that r2s+1(k1p) =
r2s+1(k2p), let k2 = k1 +x then the following equations are hold r2s+1(k2p) =
r2s+1(k2)(2

s − 1) = r2s+1(k1 + x)(2s − 1) => x = 0 and k1 = k2.
So there are 4 disjoint classes.
The value of pn−1− 1 according to proof of Lemma 3 equals δ1(s)2

s+2−
(a(1)(s) + a(s) + 1)2s+1 = a(2)(s)2s+1, so |Cij| = pn−1−1

8 .

Lemma 5. Let u be an LRS MP over Zpn, all the elements of Zpn occure
in the cycle of u, us be the sth digit-position sequence of u, where s satisfies
conditions pn = a(3)(s)2s+1 + 2s − 1, s ≥ 2. Let H < M(u), |H| = 2d,
p = a(s)2s+1 + 2s − 1, p ≥ 3. Then the following expression holds

T (u1) 6 |
T (u)

2d
.

Proof.
We will study 2 cases.
The first case is when a(3)(s) is odd.
Lets consider the following sets

A00 = {a00|0 < a00 ≤
pn − 1

2
, (a00)s−1 = 0, (a00)s = 0},

A10 = {a10|0 < a10 ≤
pn − 1

2
, (a10)s−1 = 1, (a10)s = 0},

A01 = {a01|0 < a01 ≤
pn − 1

2
, (a01)s−1 = 0, (a01)s = 1},

A11 = {a11|0 < a11 ≤
pn − 1

2
, (a11)s−1 = 1, (a11)s = 1}.

It is easy to see that A = {a ∈ Zpn�{0}|0 < a ≤ pn−1
2 } = A00 t A10 t

A01 t A11.
If we prove that there exists class gH such that elements ai1i2, a

′
j1j2
∈ gH,

for (i1, i2) 6= (j1, j2) we obtain a contradiction with existence of reduction
of a period in sth digit-position.

There are three possible variants.
1) If i2 6= j2 then we obviously come to contradiction because (ai1i2)s =

(a′j1j2)s + 1.
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2) If i2 = j2 and i1 6= j1 we can consider class 2gH where (2ai1i2)s =
(2a′j1j2)s + 1.

3) If (i1, i2) = (j1, j2) we can not say anything.
Let us show that it is impossible to divide elements from A to obtain

classes gH, g ∈ Zpn that fulfills the condition (gH)s = const.
For each class gH we have |gH| = 2d and exactly half of these elements

are less or equal to pn−1
2 . So the following expression must hold

d|GCD(|A00|, |A10|, |A01|, |A11|).

Recall that pn−1
2 = a(3)(s)2s + 2s−1 − 1.

It is easy to see that

|A00| = a(3)(s)2s−2 + 2s−2 − 1,

|A10| = a(3)(s)2s−2 + 2s−2,

|A01| = a(3)(s)2s−2 + 2s−2,

|A11| = (a(3)(s)− 1)2s−2.

So d|GCD(|A00|, |A10|, |A01|, |A11|) = 1 and we obtain contradiction.
The second case is when a(3)(s) is even.
Lets consider the following sets

B00 = {b00|0 < b00 ≤
pn − 1

2
, (b00)s−1 = 0, (b00)s = 0, b00 ≡ 0 (mod p),

b00 6≡ 0 (mod p2)},

B10 = {b10|0 < b10 ≤
pn − 1

2
, (b10)s−1 = 1, (b10)s = 0, b10 ≡ 0 (mod p),

b10 6≡ 0 (mod p2)},

B01 = {b01|0 < b01 ≤
pn − 1

2
, (b01)s−1 = 0, (b01)s = 1, b01 ≡ 0 (mod p),

b01 6≡ 0 (mod p2)},

B11 = {b11|0 < b11 ≤
pn − 1

2
, (b11)s−1 = 1, (b11)s = 1, b11 ≡ 0 (mod p),

b11 6≡ 0 (mod p2)}.
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Similarly to the first case we have to show that

GCD(|B00|, |B10|, |B01|, |B11|) = 1

It is easy to see that
Bij = Cij�Dij,

sets Cij are defined in Lemma 4,

Dij = {dij ∈ p2Zpn�{0}|0 < dij, (dij)s−1 = i, (dij)s = j},
where i, j ∈ 0, 1.
The value of p2 = (a(s)2s+1 + 2s − 1)2 = δ3(s)2

s+1 + 1.

Each dij can be represented as follows dij = kp2, k ∈ {1, . . . , p
n−2−1

2 }.
Recall that pn−2−1

2 = a(s)(1)2s + 2s−1 − 1.
It is obvious that while multiplying k by p2 only the value of r2s+1(k)

affects digit-positions with numbers s− 1 and s.
So the following conditions are hold

p2k ∈ D00 <=> 0 ≤ r2s+1(k) ≤ 2s−1 − 1,

p2k ∈ D10 <=> 2s−1 ≤ r2s+1(k) ≤ 2s − 1,

p2k ∈ D01 <=> 2s ≤ r2s+1(k) ≤ 2s + 2s−1 − 1,

p2k ∈ D11 <=> 2s + 2s−1 ≤ r2s+1(k) ≤ 2s+1 − 1.

Hence recalling that pn−2−1
2 = a(s)(1)2s + 2s−1 − 1 and taking in consid-

eration that minimal value of k equals 1 we obtain

|D00| = a(1)(s)2s−2 + 2s−2 − 1,

|D10| = a(1)(s)2s−2 + 2s−2,

|D01| = a(1)(s)2s−2 + 2s−2,

|D11| = (a(1)(s)− 1)2s−2.

In conclusion we obtain the following equations

GCD(|B00|, |B10|, |B01|, |B11|) =
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= GCD(
pn−1 − 1

8
−|D00|,

pn−1 − 1

8
−|D10|,

pn−1 − 1

8
−|D01|,

pn−1 − 1

8
−|D11|) =

= GCD((a′(s)−1)2s−2+1, (a′(s)−1)2s−2, (a′(s)−1)2s−2, ((a′(s)+1)2s−2) = 1,

where a′(s) = a(2)(s)− a(1)(s).

Remark 1. We considered sets Bij instead Dij because (Dij)s may be equal
to 0. For example for pn = 343.

Now the main result can be represented as the following theorem.

Theorem 1. Let u be an LRS MP over Zpn with generator polynomial
F (x), degF (x) = m, all the elements of Zpn occure in the cycle of u, us
be the sth digit-position sequence of u, where s satisfies conditions pn =
a(3)(s)2s+1 + 2s − 1, s ≥ 1. Let H < M(u), |H| = 2d, p ≥ 3. Then the
following expression holds

T (us) 6 |
T (u)

2d
.

Corollary 1. If power m equals 1, then

T (us) =
T (u)

2
.

4 Conclusion

We presented a method which allows to identify the existence of reduction
of periods of binary digit-position sequences over prime rings. That method
is based on studying digit-positions in subgroups of groups of multipliers
of LRS MP. That approach was applied to show that there is no reduction
of a period in one fixed digit-position sequence in 2d times, where 2d is a
cardinality of subgroups of group of multipliers of the forming LRS MP u.
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Practical secrecy of a key under individual attack in
quantum cryptography

Igor Arbekov

Abstract

In this article, we show how to ensure the practical secrecy of a key (in terms of
the complexity of the truncated key search algorithms) under individual attack on
quantum key distribution (QKD) protocol BB84 in quantum cryptography.

Keywords: practical secrecy of a key, truncated key search, individual
attack, quantum cryptography.

1 Individual attack

We consider the oldest and best known QKD protocol BB84 [1]. The
legitimate sender, Alice, randomly selects rectangular or diagonal basis and
encodes logical bit, 0 or 1, into the polarization of a single photon, along the
corresponding direction.The receiver, Bob, measures the polarization of the
photon in one of the two bases, either rectangular or diagonal, randomly
chosen by him. Only after that, Alice reveals to him the basis she used.
This information is sent on a public channel that can be monitored, but
not modified, by anyone else. Bob then likewise tells Alice whether he used
the correct basis. If he did, Alice and Bob know one bit, that no one else
ought to know [2]. Then they repeat this protocol many times.

Next, we consider the individual attack on quantum channel, where
eavesdropper Eve uses a quantum memory and lets each signal (a single
photon) interact separately with its own ancilla, and keeps the ancillas
apart at later times [3]. Under this attack Eve knows the correct bases
from a public channel and takes measurements after agreeing bases Alice
and Bob.
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Figure 1: Mechanism of individual attack

To simplify, we present on the Fig.1 the mechanism of individual
attack on a single photons in rectangular basis.

Here |0〉, |1〉, |A〉 are the quantum states in a two-dimensional Hilbert
(unitary) vector space with a unit norm [4]. Vectors |0〉, |1〉 (horizontal
or vertical photon polarizations) correspond 0 or 1 logical bits, |A〉 is the
Eve’s ancilla.

Eve’s intervention in the quantum channel is defined by a certain angle
θ, which at the same time turns quantum states |0〉 and |A〉 - clockwise
to quantum states |x〉 and |Ax〉 and turns quantum states |1〉 and |A〉 -
anticlockwise to quantum states |y〉 and |Ay〉. Eve knows the basis, but
she does not know, |0〉 or |1〉 operates at ancilla |A〉.

Eve measures the ancilla in the form of projections on the |0〉 and |1〉
axis, and solves the problem of the statistical classification of two distri-
butions:

PAx
=
(
cos2 (π/4− θ) , sin2 (π/4− θ)

)
and

PAy
=
(
cos2 (π/4 + θ) , sin2 (π/4 + θ)

)
.

As a result, Eve uses the optimal statistical classification procedure
for distinguishing a priori equally probable ”close” quantum states |Ax〉
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and |Ay〉 with probability of error [5,6]

pAE =
1

2
− 1

2

√
1− (〈Ax|Ay〉)2 =

1

2
− 1

2

√
1− cos2(2θ). (1)

Bob uses the same procedure for distinguishing a priori equally prob-
able ”distant” quantum states |x〉 and |y〉 with probability of error

pAB =
1

2
− 1

2

√
1− (〈x|y〉)2 =

1

2
− 1

2

√
1− sin2(2θ). (2)

From (1,2) it is easy to obtain, that

pAE =
1

2
− 1

2

√
pAB(1− pAB).

A similar result holds when the diagonal basis is considering .
Thus, we believe that after the transfer and measurement of quantum

states, Alice and Bob have random and uniformly distributed bit strings
WA,WB ∈ {0, 1}L through a binary symmetric channel with probability
of bit error pAB and Eve has a bit string WE ∈ {0, 1}L through a binary
symmetric channel with probability of bit error

pAE =
1

2
− 1

2

√
pAB(1− pAB).

2 Privacy amplification

Alice and Bob use the some error reconciliation procedure to WA and
WB [see, for example, 7,8] to give a common bit string W ∈ {0, 1}S, S =
L− s, s - the number of bits to be deleted.

Then they use privacy amplification procedure by public discussion [9]
to obtain the final key κ = g(W ) ∈ {0, 1}n by hash function g : {0, 1}S →
{0, 1}n, which is known to Eve through a public channel.

Hash function g : {0, 1}S → {0, 1}n is selected randomly from a set
G of functions. The set G = {g : {0, 1}S → {0, 1}n} is universal2 (second
order) [9,10]:

for all W1 6= W2 ∈ {0, 1}S the probability

Pr {g : g(W1) = g(W2)} ≤ 2−n.
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An example of an universal2 class of functions is next [9, Lemma 1].
Let g be the element of GF (2S) and also interpret W as an element

GF (2S). Consider the function {0, 1}S → {0, 1}n assigning to an argu-
ment W the first n bits of the element gW ∈ GF (2S). The class of all such
functions for g ∈ GF (2S) is a universal2 class of functions for 0 ≤ n ≤ S.

What is the point of application of universal hash functions?
Suppose that after intervention in the quantum channel Eve gets the

bit string WE ∈ {0, 1}L. Consider the conditional (posterior) distribution

P
(
W |WE

)
, W ∈ {0, 1}S,

conditional Renyi entropy [10]

R
(
W|WE

)
= − log

∑
W

P 2
(
W |WE

)
.

and average conditional Renyi entropy

R̃
(
W|WE

)
= − log EWE

∑
W

P 2
(
W |WE

)
.

Following [11] we get

1

2

∑
W,g,WE

∣∣∣P (
g(W ), g,WE

)
− 2−nP

(
g,WE

)∣∣∣ ≤ 1

2

√
exp2

{
−R̃

(
W|WE

)
+ n

}
.

(3)
We can say that the final key κ = g(W ) as a random variable is

defined on the set {1, ...,m, ..., 2−n}. Then (3) can be rewritten as

1

2

∑
m,g,WE

∣∣∣P (
m, g,WE

)
− 2−nP

(
g,WE

)∣∣∣ ≤ 1

2

√
exp2

{
−R̃

(
W|WE

)
+ n

}
.

(4)
Imagine Alice’s bit string as WA = (W,W ′) where W ′ ∈ {0, 1}s -

disclosed bits. Then

P
(
W |WE

)
=
∑
W ′
P
(
W,W ′|WE

)
,
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EWE

∑
W

P 2
(
W |WE

)
= EWE

∑
W

∑
W ′
P
(
W,W ′|WE

)2

≤

≤ EWE

∑
W

22s
∑
W ′

2−sP
(
W,W ′|WE

)2

≤

≤ 2sEWE

∑
WA

P 2
(
WA|WE

)
.

Then it is easy to get

R̃
(
W|WE

)
= − log2 EWE

∑
W

P 2
(
W |WE

)
≥ R̃

(
WA|WE

)
− s. (5)

From (4,5) we have

1

2

∑
m,g,WE

∣∣∣P (
m, g,WE

)
− 2−nP

(
g,WE

)∣∣∣ ≤ 1

2

√
exp2{−R̃(WA|WE) + s+ n}.

(6)
Our assumption is that bit string WE is connected to the bit string

WA through a binary symmetric channel with probability of bit error pAE.
Let r = WA⊕WE be a vector of errors. Then

P
(
WA|WE

)
= Pr{r = WA⊕WE},

∑
WA

P 2
(
WA|WE

)
=
(
(1− pAE)2 + p2AE

)L
,

R̃
(
WA|WE

)
= −L log2

(
(1− pAE)2 + p2AE

)
.

Thus, using (6) we obtain the estimate

1

2

∑
m,g,WE

∣∣∣P (
m, g,WE

)
− 2−nP

(
g,WE

)∣∣∣ ≤

≤ 1

2

√
exp2{−L log2 ((1− pAE)2 + p2AE) + s+ n}.

The value

d =
1

2

∑
m,g,WE

∣∣∣P (
m, g,WE

)
− 2−nP

(
g,WE

)∣∣∣ =
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=
∑
g,WE

P
(
g,WE

) (1

2

∑
m

∣∣∣P (
m|g,WE

)
− 2−n

∣∣∣)

is called the total variational (statistical) distance [11,12] and characterizes
the proximity the conditional probability distribution of the key to the
uniformly distribution on the average in the observations.

3 Practical secrecy of a key

In [13,14] we introduced the concept of the practical secrecy of a key
as the average amount of work to determine the encryption key. We use
truncated key search algorithms with a check for readability of decrypted
messages. A truncated algorithm finds an encryption key with some prob-
ability of success.

Let an encryption key κ ∈ {1, 2, ..., N} and an observation η ∈ Z (Z
- some space) have the joint probability distribution

Pr(κ = m, η = z) = P (m, z).

. If κ is a bit string, then N = 2−n.
When observing η = z the posterior probability distribution of keys

is calculated
P (1|z), ..., P (m|z), ..., P (N |z),

P (m|z) =
P (m, z)

P (z)
, P (z) =

N∑
m=1

P (m, z),

and ordered

P (i1(z)|z) ≥ ... ≥ P (im(z)|z) ≥ ... ≥ P (iN(z)|z). (7)

If for some α, β, ..., γ probabilities P (iα(z)|z) = P (iβ(z)|z) = ... =
P (iγ(z)|z), then the posterior probabilities are ordered in accordance with
the {1, 2, ..., N}.

Thus σ(z) = (i1(z), i2(z), ..., iN(z)) is a some permutation of {1, 2, ..., N}
depending on the z.

Truncated algorithm U is that the M keys are being tested in the
appropriate order i1(z), i2(z), ..., iM(z) . We believe that if the M keys
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have been tested, then the value of the amount of work R is equal to
M : R = M .

Let
p∗m = EzP (im(z)|z) =

∑
z∈Z

P (im(z)|z)P (z).

The probability

π∗U(M) =
M∑
m=1

p∗m.

is a probability of success i.e., the probability of finding an encryption key
when applying the truncated algorithm.

It is shown [14] that the average amount R
∗
U(M) of work to determine

the encryption key is

R
∗
U(M) =

(1− π∗U(M))M

π∗U(M)
+

M∑
m=1

m
p∗m

π∗U(M)

We define the practical secrecy of a key as

Q∗ = min
M :π∗U (M)≥π0

R
∗
U(M).

Let

d =
1

2

∑
m,z
|P (m, z)− 1

N
P (z)|

is the total variation distance, then the inequality [14]

Q∗ ≥
(

1− 2d

π0

)N(1− 8d) + 1

2

 . (8)

takes place.
When considering truncated algorithms it is interesting to include the

point M = 0 in the set of keys to be tested. This is the case when keys are
not tested for some observations.

Let D ⊆ Z be some region of observations, Pr(η ∈ D) = P (D).
The algorithm AD is that we wait until an event z ∈ D occurs. Then we
arrange the keys by (7) and test before obtaining the true key, i.e. we use
the exhaustive key search algorithm.
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The average amount of work to determine the encryption key is

R
∗
(D) =

∑
z∈D

P (z)

P (D)

 N∑
m=1

mP (im(z)|z)

 ,
the probability of success is P (D), and so we define the practical secrecy
of a key as

q∗ = min
D:P (D)≥π0

R
∗
(D).

The following chain of relations holds for P (D) ≥ π0:

R
∗
(D) =

∑
z∈D

P (z)

P (D)

 N∑
m=1

m

(
P (im(z)|z)− 1

N
+

1

N

) =

=
N + 1

2
+

∑
z∈D

P (z)

P (D)

 N∑
m=1

m

(
P (im(z)|z)− 1

N

) ≥
≥ N + 1

2
− N

P (D)

∑
z∈Z

P (z)
N∑
m=1

∣∣∣∣∣P (im(z)|z)− 1

N

∣∣∣∣∣ ≥
≥ N + 1

2
−N 2d

π0
≥
(

1− 4d

π0

)
N + 1

2
.

Hence we obtain the inequality

q∗ = min
D:P (D)≥π0

R
∗
(D) ≥

(
1− 4d

π0

)
N + 1

2
.

4 Practical secrecy of a key under individual attack

Alice and Bob have a common bit string W ∈ {0, 1}S, S = L− s, s -
the number of bits to be deleted, and the final key κ = g(W ) ∈ {0, 1}n by
hash function g : {0, 1}S → {0, 1}n.

Eve’s observations are z =
(
g,WE ∈ {0, 1}L

)
.

From Section 2 of this article we have

d =
1

2

∑
m,z
|P (m, z)− 1

N
P (z)| ≤ 1

2

√
exp2{−L log2 ((1− pAE)2 + p2AE) + s+ n}.
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The following error reconciliation procedure is considered in [7].
Alice and Bob:

- estimate the probability of error pAB,
- divide WA,WB ∈ {0, 1}L into the same optimum size blocks

b = (pAB)−1/2, count the block parities, exchange the parity values over an
open channel,

- remove the first bit from each block where parities are matched,
- delete all blocks where the parities did not match,
- revalue pAB (to select the optimal block size), rearrange the bits

and repeat the procedure.
For example, let

n = 256, pAB = 0.05, pAE = 1
2 −

√
pAB(1− pAB) = 0.282, L =

1500,
then s = L/2, S = 750, d < 10−15.

For any reasonable choice of π0, we get that practical secrecy of a
key

Q∗, q∗ ≈ N + 1

2
.
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Group Properties of Block Ciphers of the Russian
Standards GOST R 34.11-2012 and GOST R

34.12-2015

Viktoriya Vlasova, Marina Pudovkina

Abstract

A group generated by the set of the round functions is often used to describe
properties of a block cipher. In this paper, we use the results obtained in [11] to
prove that the groups generated by the round functions of Kuznyechik and Stribog
are the alternating groups. We also describe properties of the linear transformations
and generalize them for the family of Stribog-like ciphers (Stribog, Anubis, etc.).
We prove a theorem in which the mixing properties of linear transformations of such
ciphers are considered.

Keywords: permutation groups, GOST R 34.11–2012, GOST R 34.12–
2015, Kuznyechik, Stribog, alternating group, linear transformation of
block cipher.

1 Introduction

In recent years, round functions of most block ciphers can be represented
as a composition of functions of X-, L- and S-layer, where X-layer is a
key addition layer, S-layer is an S-boxes mapping and L-layer is a linear
transformation. Such block ciphers are called XSL-ciphers. This princi-
ple underlie many official standards, such as AES [1] (adopted by NIST
as FIPS PUB 197), Whirlpool hash function [2] (included in ISO/IEC
10118–3:2004), the Russian standards GOST R 34.11–2012 [3] and GOST
R 34.12–2015 [4].
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Group properties of XSL-ciphers are widely discussed ([5], [6], [8], [9],
[10], [11]). In [5], a group theoretic approach to the design and analysis of
cryptographic systems has been discussed.

It was proved by Wernsdorf [7] that the permutation group G generated
by the round functions of DES is also the alternating group. In his later
paper [8], he used ad hoc methods to prove that the group G of AES is
alternating. Some years later, Sparr and Wernsdorf [9] have given another,
permutation group theoretic proof. They also have obtained a set of suf-
ficient conditions that the group G is alternating. Another sets of such
sufficient conditions have been given in [10] and [11].

The conditions given in [10] represent the slightly changed conditions of
primitivity of the group G proposed earlier by the same authors [6]. Also
in [10], it is shown that the AES satisfies the given conditions. It should be
noted that the key schedule isn’t taken into account in mentioned works.

If the group G of an XSL-cipher is alternating, several possible regu-
larities such as the existence of non-trivial factor groups or a too small
diversity of occurring permutations can be excluded for this cipher (the
alternating group is a large, simple, primitive and multiple transitive per-
mutation group).

In this paper, we use the results obtained in [11] to prove that the
groups generated by round functions of Kuznyechik and Stribog are the
alternating groups. We get the other, matrix representation of the linear
transformations of the ciphers. We also describe properties of the linear
transformations and generalize them for the family of Stribog-like ciphers
(Stribog, Anubis, etc.). We prove a theorem in which the mixing properties
of linear transformations of such ciphers are considered.

The paper is organized as follows. In Section 2, we provide some notions
and results from the graph theory which are used in this paper. In Section
3, we give the results of [11] regarding a group generated by round functions
of XSL-ciphers. In Section 4, we describe some properties of linear trans-
formations of such ciphers regarding their mixing properties. In Section
5, we give the descriptions of Kuznyechik and Stribog and also prove that
the groups generated by their round functions are the alternating groups.
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2 Definitions and Notations

We use 0m to denote the zero element of GF (2m) and 1m to denote the
multiplicative identity element of GF (2m). Let Vl be the l-dimensional vec-
tor space over the field GF (2). There is a natural correspondence between
elements of GF (2)l and Vl; thus, we will identify them. Let S(Vl) and A(Vl)
denote the symmetric and the alternating group acting on Vl, respectively.
Also note that elements from Vmn can be represented as vectors from the
Cartesian product V n

m. Therefore, we will identify this representations.
Symbol || means strings concatenation.

The set of all p× q matrices over GF (u) is denoted by Mp,q(u). We will
write Mp(u) instead of Mp,p(u).

Elements of GF (u)pq are identified with matrices β ∈ Mp,q(u) via the
mapping ζ : GF (u)pq →Mp,q(u), α 7→ β, defined by βij = αqi+j for all
i ∈ {0, . . . , p− 1} and j ∈ {0, . . . , q − 1}.

Definition. A strongly connected digraph Γ with an adjacency matrix
a is called primitive if there is an integer r such that all entries of ar are
non-zero.

Definition. For a linear transformation a : V n
m → V n

m, we will assign a
digraph Γ(a) with a set of vertices {1, . . . , n} and a set of edges X, where
edge (i, j) ∈ X exists if and only if β = a(α) and βj essentially depends
on αi for all α1, . . . , αn ∈ GF (2m). We say that digraph Γ(a) is a graph of
essential dependence of a linear transformation a.

3 Properties of Generated Group

In papers [9], [10], [11] conditions have been provided such that the group
generated by round functions of XSL-ciphers is the alternating group. In
this section, we give the theorem proved in [11].

We consider a block cipher with a set of all round keys K and a round
function gk : Vmn → Vmn, k ∈ K, which is given as

gk : α 7→ a ◦ s ◦ x[k](α),

where a, s, x[k] : Vmn → Vmn are functions with the following properties:
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- a is an invertible linear transformation over a general linear group of
a vector space Vmn;

- s is a parallel application of n single bijective S-box mappings
si : Vm → Vm defined by s(α) = β if and only if βi = si(αi) for all
i ∈ {1, . . . , n};

- x[k] is a XOR-addition with a round key k ∈ Vmn.

Let G be a group generated by the set {gk | k ∈ K} of all round functions.
In this paper, properties of the round subkeys caused by the key schedule
are neglected. The sufficient conditions to provide the following equality

G = 〈gk | k ∈ K〉 = A(Vmn)

are shown below.
Let Γ(a) be a graph of essential dependence of a linear transformation

a : V n
m → V n

m.
For a vector α = (α1, . . . , αn), α ∈ V n

m, we will assign a set

I(α) = {i ∈ {1, . . . , n} | αi 6= 0m}.

If I is a subset of vertices of the digraph Γ(a) then let J(I) is a set of ends
of edges which starts at the set I.

For the permutations si, we will assign the permutations

si,k,k′ : α 7→ s−1i (k′ + si(α⊕ k)),

where k, k′ ∈ Vm for all i ∈ {1, . . . , n}. Let H(si) = 〈si,k,k′ | k, k′ ∈ V 2
m〉 be

a group generated by such permutations.
Theorem 1 [11]. Suppose that the following conditions hold:

1) digraph Γ(a) is primitive;

2) for any set L ⊆ {1, . . . , n}

max
{α∈Vmn|I(α)=L}

|I(a(α))| ≥ |L|,

with inequality strict if |J(I)| > |I|;
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3) groups H(s1), . . . , H(sn) are 2-transitive, and there is a permutation
s ∈ Sm belonging to the set of the elements of these groups such that

|{α ∈ Vm | s(α) = α}| /∈ {0, 20, 21, 22, . . . , 2m}.

Then G is equal to the alternating group on Vmn.

4 Properties of the Linear Transformations

The first condition required by Theorem 1 regarding to the properties of a
linear transformation. We describe a way to define a linear transformation
of some XSL-ciphers (Stribog, Anubis, etc.). In Theorem 2, we show that
the first condition is valid for such ciphers. This theorem regards to a
graph of essential dependence of a linear transformation. The obtained
results can be used to analyse mixing properties of a linear transformation
of an XSL-cipher.

Definition. A linear transformation a : GF (2m)p
2 → GF (2m)p

2

is called
T̃ -transformation, if a can be represented as a composition of mappings t
and l (a = l ◦ t), where:

- t transpose of a matrix from a set Mp(2
m), i.e. t(α) = β if and only

if βij = αji, where α,β ∈Mp(2
m);

- l is an invertible linear transformation over Mp(2
m), that can be rep-

resented as a right multiplication by a fixed matrix d ∈ Mp(2
m), i.e.

l(α) = α · d for all α ∈Mp(2
m).

Theorem 2. Let a = l ◦ t be a T̃ -transformation and the matrix d cor-
responding the transformation l does not contain zero elements. Then the
digraph Γ(a) of essential dependence of the transformation a is primitive.

The proof is given in Appendix A.

5 Application to block ciphers of Kuznyechik and

Stribog

In this section, we apply the results obtained in Section 4 to block ciphers
underlying GOST R 34.11–2012 and GOST R 34.12–2015. Hereinafter the
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block cipher underlying GOST R 34.11–2012, we will call the Stribog block
cipher.

We begin by giving brief descriptions of Kuznyechik and Stribog.

5.1 The Description of Kuznyechik

Kuznyechik is specified by the Russian Federal standard GOST R 34.12–
2015. It is an iterative block cipher with a block length of 128 bits and a
key length of 256 bits. Transformations of X-, S-, and L-layer are applied
for encryption throughout several iterations.

X-layer is a key addition layer defined as x[k] : V128 → V128,

x[k](α) = k ⊕ α,

for all k, α ∈ V128.
S-layer is an S-box layer defined by the mapping s : V128 → V128, s(α) =

s′(α15)|| . . . ||s′(α0), where α ∈ V128, αi ∈ V8 for all i ∈ {0, . . . , 15}; the per-
mutations s′ ∈ S(V256) are defined via array s′ = (s′(0), s′(1), . . . , s′(255)).

The L-layer transformation a1 : V128 → V128 is based on a linear-feedback
shift register with a given feedback function l′ : V 16

8 → V8. The function l′ is
given by polynomial of degree 16 over GF (28) with irreducible polynomial
pk(x) = x8 + x7 + x6 + x+ 1.

Depending on the values of round keys k1, . . . , k10, the encryption algo-
rithm is a substitution ek1,...,k10 : V128 → V128 defined as follows:

ek1,...,k10(α) = x[k10] ◦
9∏
i=1

(a1 ◦ s ◦ x[ki](α)),

where α, ki ∈ V128 for all i ∈ {1, . . . , 10}.
Let gk : V128 → V128 be a round function of Kuznyechik

gk : α 7→ a1 ◦ s ◦ x[k](α),

where α, k ∈ V128.
Further, we will consider the group G = 〈gk | k ∈ K〉 generated by the

set of all round functions of Kuznyechik. Note that properties of the key
scheduling algorithm are not taken into account.
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5.2 The Description of Stribog

Stribog is specified by the Russian Federal standard GOST R 34.11–2012.
The hash procedure is based on block encryption with block size of 512
bits and provides digest sizes of 256 and 512 bits. The transformations of
X-, S-, P- and L-layer are used to calculate the hash code of a message
from V ∗.

X-layer is a round constants addition layer defined as x[k] : V512 → V512,

x[k](α) = k ⊕ α,

for all k, α ∈ V512.
S-layer is an S-box layer defined by the mapping s : V512 → V512, s(α) =

s′(α63)|| . . . ||s′(α0), where α ∈ V512, αi ∈ V8 for all i ∈ {0, . . . , 63}; the per-
mutations s′ ∈ S(V256) are defined via array s′ = (s′(0), s′(1), . . . , s′(255)).

The P-layer transformation V512 → V512 defined by the map-
ping t : α 7→ β, β = (β63|| . . . ||β0) = (ατ(63)|| . . . ||ατ(0)), where
τ ∈ S({0, 1, . . . , 63}).

The L-layer transformation V512 → V512 defined by the mapping
l : α 7→ β, β = (β7|| . . . ||β0) = l′′(α7)|| . . . ||l′′(α0), where l′′ : V64 → V64
is a right multiplication by a matrix ds ∈M64(2).

The hash code value of a message from V ∗ is calculated via iterated
procedure. The compression function hδ : V512× V512 → V512, δ ∈ V512, acts
on each iteration. The compression function defined by rule

hδ(η, α) = f(l ◦ t ◦ s(η ⊕ δ), α)⊕ η ⊕ α, η, α ∈ GF (2)512,

where

f(k, α) = x[k13] ◦
12∏
i=1

(l ◦ t ◦ s ◦ x[ki](α)),

for all α, ki ∈ V512 for all i ∈ {1, . . . , 13}.
Let linear transformation a2 : V512 → V512 be a composition of mappings

acting on L- and P-layer (a2 = l ◦ t). Let gk : V512 → V512 be a round
function of Stribog

gk : α 7→ a2 ◦ s ◦ x[k](α),
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where α, k ∈ V512.
Further, we will consider the group G = 〈gk | k ∈ K〉 generated by

the set of all round functions of Stribog. Note that properties of the key
scheduling algorithm are not taken into account.

5.3 Group properties of the Kuznyechik block cipher and the
Stribog block cipher

First, we give matrix representations of linear transformations of
Kuznyechik and Stribog.

Linear transformation of Kuznyechik can be represented as right mul-
tiplying by matrix from M16(2

8). Such matrix mk ∈ M16(2
8) has been

calculated (see Appendix B).
In GOST R 34.11–2012, the description of L-layer is based on the trans-

formation l, which is given by the right multiplication by a fixed matrix
from M64(2).

Binary vectors α ∈ V512 input to the linear transformation consider as el-
ements of GF (28)64. We will identify such vector with a matrix β ∈M8(2

8)
via mapping GF (28)64 → M8(2

8), α 7→ β, defined by the rule βij = α8i+j

for all i, j ∈ {0, . . . , 7}. As was shown in [12], the L-layer transformation
of Stribog can be represented as a left multiplication by the matrix from
M8(2

8). Such matrix has been found in [12]. The multiplication is per-
formed in GF (28) with irreducible polynomial p′(x) = x8+x6+x5+x4+1.
But calculations using that matrix require the additional conversions of
the state bits.

The L-layer transformation of the Stribog block cipher can also be rep-
resented as a right multiplication by the matrix ds ∈ M8(2

8), i.e. α 7→ β,
β = α · ds for all α, β ∈ M8(2

8). Such matrix ds ∈ M8(2
8) has been

found using the algorithm described in [12] and given in Appendix B. The
multiplication is performed in GF (28) with irreducible polynomial

ps(x) = x8 + x4 + x3 + x2 + 1.

The P-layer transformation of Stribog can be represented as a transposition
of a matrix from M8(2

8).
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Thus the linear transformation a2 of Stribog is a T̃ -transformation.
Theorem 3. For the Kuznyechik and Stribog block ciphers, the groups

G generated by the sets of all round functions are equal to the alternating
groups A(V128) and A(V512), respectively.

Proof. First, we check the first condition of Theorem 1 for the
Kuznyechik block cipher by describing properties of its linear transfor-
mation a1.

Using the matrix mk ∈ M16(2
8) of the linear transformation a1, it is

easy to find the graph of essential dependence Γ(a1). Obviously, this graph
is primitive if the matrix mk does not contain any zero elements.

Secondly, we consider properties of the linear transformation of the Stri-
bog block cipher.

The linear transformation a2 of Stribog is a T̃ -transformation and its
matrix ds does not contain zero elements. Therefore, the graph Γ(a2) of
essential dependence is primitive according to Theorem 2.

To check the second condition of Theorem 1, we have used Theorem 2
proved in [11]. According to this theorem, condition 2 is correct if inequal-
ity

2mn < (2m−1)n−1(2m + 2m−1 − 2) (1)

is true. Through direct calculations, inequality (1) correctness has been
verified for the Kuznyechik and Stribog block ciphers. For Kuznyechik,
the left-hand side of inequality (1) is 3,4028 × 1038 and the right-hand
side is 4,7881 × 1038. For Stribog, the left-hand side of inequality (1) is
1,3408× 10154 and the right-hand side is 1,5635× 10154.

The third condition of Theorem 1 characterizes the properties of S-boxes
of a block cipher. S-boxes permutations are the same for Kuznyechik and
Stribog. It should be noted that the same permutations are used in each
S-box. The difference distribution matrix λ for S-boxes has been found.
Then the matrix µ has been calculated by rule µ = λ · λT , where λT

denotes the transposed matrix λ. For the obtained matrix, we will assign
the graph Λ(s) with a set of vertices being the set of all non-zero vectors
from Vm, its vertices α and β are connected by an edge if and only if
µαβ > 0.
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According to Theorem 3 proved in [11], a group H(s) is 2-transitive if
and only if the graph Λ(s) is connected. Connectivity of the graph Λ for
S-boxes of Kuznyechik and Stribog has been verified by direct calculations.

Consider the second part of the third condition of Theorem 1. Note
that proving it is equal to existence of elements υ of difference distribution
matrix λ such that υ /∈ {0, 20, 21, 22, . . . , 2m}. Such elements which are
equal to 6, have been found in the calculated matrix λ.

�
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Appendix

A The Proof of Theorem 2

Theorem 2. Let a = l ◦ t be a T̃ -transformation and the matrix d cor-
responding the transformation l does not contain zero elements. Then the
digraph Γ(a) of essential dependence of the transformation a is primitive.

Proof of Theorem 2. Let n = p2.
The T̃ -transformation a can be represented as a right multiplication by

the matrix from Mn(2
m). We will find the matrix m ∈ Mn(2

m) such that
a(α) = α ·m for all α ∈ GF (2m)n.

A matrix transposition t can be represented as a right multiplication
by a matrix from Mn(2). This matrix is a square block matrix t = (tij),
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where i, j ∈ {0, . . . , p − 1}. We will identify the matrix t ∈ Mn(2) with a
matrix t̂ ∈Mn(2

m) via mapping defined by rule

t̂ij =

{
1m, if tij = 1,

0m, if tij = 0

for all i, j ∈ {0, . . . , n − 1}. Then the mapping t : Mp(2
m) → Mp(2

m) will
be identified with the mapping GF (2m)p

2 → GF (2m)p
2

defined by right
multiplication by the matrix t̂ ∈Mn(2

m).
The transformation l : Mp(2

m) → Mp(2
m) corresponds to the mapping

GF (2m)p
2 → GF (2m)p

2

that can be represented as the right multiplication
by a matrix d̂ ∈ Mn(2

m). Note that the matrix d̂ is a quasidiagonal
(n× n)-matrix with p × p blocks. For each i ∈ {0, . . . , p − 1} block d̂ii ∈
Mp(2

m) is equal to the matrix d ∈Mp(2
m). If the matrix d does not have

zero elements than each block d̂ii does not contain zero elements for all
i ∈ {0, . . . , p− 1}.

A matrix m̂ = t̂ · d̂ (mapping t is carried out at first) is a matrix of the
transformation a which is defined by a(α) = α · m̂ for all α ∈ GF (2m)n.

Consider an arbitrary block t̂αβ of the block matrix t̂. Elements of this
block have indexes (αn+u, βn+v), where u, v ∈ {0, . . . , n−1}. Obviously,
all elements with indexes (in+ j, jn+ i) such that i, j ∈ {0, . . . , n− 1} are
in different blocks. Therefore, in each block t̂αβ there is only one non-zero
element which is t̂βα.

If we multiply the block matrix t̂ by the quasidiagonal matrix d̂ than
jth row of each block m̂ij will contain only non-zero elements (because jth

row of the block t̂ij contains 1m), where i, j ∈ {0, . . . , p− 1}.
Let Γ(a) be a graph of essential dependence of a. Its adjacency matrix

â can be obtained from the matrix m̂ by rule

âij =

{
0, if m̂ij = 0m,

1, if m̂ij 6= 0m

for all i, j ∈ {0, . . . , n−1}. Note that jth row of each block âij contains only
non-zero elements. Therefore, all elements of the matrix â2 are non-zero,
i.e. graph Γ(a) is primitive.

�
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B The Matrices of the Linear Transformations

The Matrix mk of the transformation a1 of Kuznyechik is

CF 6E A2 76 72 6C 48 7A B8 5D 27 BD 10 DD 84 94
98 20 C8 33 F2 76 D5 E6 49 D4 9F 95 E9 99 2D 20
74 C6 87 10 6B EC 62 4E 87 B8 BE 5E D0 75 74 85
BF DA 70 0C CA 0C 17 1A 14 2F 68 30 D9 CA 96 10
93 90 68 1C 20 C5 06 BB CB 8D 1A E9 F3 97 5D C2
8E 48 43 11 EB BC 2D 2E 8D 12 7C 60 94 44 77 C0
F2 89 1C D6 02 AF C4 F1 AB EE AD BF 3D 5A 6F 01
F3 9C 2B 6A A4 6E E7 BE 49 F6 C9 10 AF E0 DE FB
0A C1 A1 A6 8D A3 D5 D4 09 08 84 EF 7B 30 54 01
BF 64 63 D7 D4 E1 EB AF 6C 54 2F 39 FF A6 B4 C0
F6 B8 30 F6 C4 90 99 37 2A 0F EB EC 64 31 8D C2
A9 2D 6B 49 01 58 78 B1 01 F3 FE 91 91 D3 D1 10
EA 86 9F 07 65 0E 52 D4 60 98 C6 7F 52 DF 44 85
8E 44 30 14 DD 02 F5 2A 8E C8 48 48 F8 48 3C 20
4D D0 E3 E8 4C C3 16 6E 4B 7F A2 89 0D 64 A5 94
6E A2 76 72 6C 48 7A B8 5D 27 BD 10 DD 84 94 01



.

The multiplication is performed in GF (28) with irreducible polynomial
pk(x) = x8 + x7 + x6 + x+ 1.

The Matrix ds of the transformation l of Stribog is

83 47 8B 07 B2 46 87 64
46 B6 0F 01 1A 83 98 8E
AC CC 9C A9 32 8A 89 50
03 21 65 8C BA 93 C1 38
5B 06 8C 65 18 10 A8 9E
F9 7D 86 D9 8A 32 77 28
A4 8B 47 4F 9E F5 DC 18
64 1C 31 4B 2B 8E E0 83


.

The multiplication is performed in GF (28) with irreducible polynomial ps(x) =
x8 + x4 + x3 + x2 + 1.
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On Software Implementation of Kuznyechik
on Intel CPUs

Andrey Rybkin

Abstract
In this paper we investigate performance issues of the Kuznyechik block cipher

to get high speed in software on Intel CPUs. We consider general block ciphers
implementation methods, including byte slicing technique, available speed-up pos-
sibilities on Intel architecture, and evaluate the efficiency of them when applied
to Kuznyechik. Practical implementation results are given, and potential speed-ups
are discussed.

Keywords: block cipher, Kuznyechik, fast software implementation, byte
slicing, high speed, performance.

1 Introduction

Kuznyechik is one of the block ciphers specified in Russian national stan-
dard GOST R 34.12-2015 [1]. There are a number of papers dealing with its
performance issues [2], [3], [4], [5]. In this paper, we focus on high-speed
software implementation of Kuznyechik on Intel CPUs. We consider several
techniques of implementing block ciphers such as look-up tables and slic-
ing, and describe the basic ways of using data and instruction parallelism
on modern Intel CPUs. Applying these techniques, we produced several im-
plementations of Kuznyechik on CPUs of various generations. We present
the performance results and discuss possible improvements and perspec-
tives.

2 Block ciphers in software

There are several general ways of implementing block ciphers in software.
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One of the most efficient methods is the usage of precomputed look-
up tables (LUTs for short). LUTs can significantly simplify any operation
by replacing it by easy table look-ups (see, for example, [6]). In block
ciphers this method is often used to implement linear transformation to-
gether with non-linear transformation when the latter precedes the former.
Actually any operation can be implemented by using LUT. However, it is
necessary to take into account the resulting tables size and the restrictions
of the computer memory hierarchy such as the size and the performance
of each memory level. Because the LUTs size may have a strong effect
on the overall performance it is important to observe the particular cipher
properties when choosing which operations to implements via LUTs.

Another popular method is slicing (see, for example, [7]). It is usually
based on bitwise (bit slicing) or bytewise (byte slicing) manipulation with
input values for calculating the output ones. Slicing techniques do not
require a lot of precomputed data as LUTs do. In some cases it is possi-
ble to provide constant working time for slicing implementation [7]. Then
this can safeguard the cipher against cache-timing attacks [8]. The ma-
jor precondition to apply a slicing method is a bit- or byte-oriented cipher
structure. Another important prerequisite is a possibility to process several
blocks simultaneously. In case of both, slicing will be very effective.

Slicing and LUTs, of course, do not exclude one another. Slicing imple-
mentations may use small look-up tables.

3 Look-up tables for Kuznyechik

3.1 Linear transformation

The linear transformation L in Kuznyechik can be represented as multi-
plication of a 128-bit vector by a fixed 128 × 128 binary matrix. There
is a well-known folkloristic implementation method for such multiplication
using LUTs. It generalizes the approach presented in [6], and involves a pa-
rameter s which specifies the number of matrix rows defining one table. If
s is a divisor of 128, then the total size of the LUTs is 128

s · 2
s · 128 bits.

A significant feature of Kuznyechik is that L is defined recursively:
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L = R16. Therefore for L to be implemented it suffices to implement any
of the transformations Ri, i ∈ {1, 2, 4, 8, 16}. In turn, transformation Ri

can be represented as multiplication of a 128-bit vector by a fixed 128× n
binary matrix, where n = 8 · i. The remaining (128− n) bits of the output
vector are calculated from the input vector by easy shift.

Thus the size of LUTs to implement L depends on the choice of the par-
ticular transformation R, R2, R4, R8, or R16, and the value of parameter s.
The first one defines the length of the table elements, while the second
fixes the number of the tables and the number of elements in one table.
Altogether, the total size of LUTs to implement L via Ri with parameter s
is 128

s · 2
s · n = 128

s · 2
s · 8 · i bits.

3.2 Non-linear transformation

The non-linear transformation S in Kuznyechik is defined via the bytewise
non-linear substitution π : V8 → V8. Hence the size of the trivial LUT
for implementing S is 28 · 8 = 2048 bits. In [9] an alternative representa-
tion of the substitution π is given in which only non-linear substitutions
of the form V4 → V4 were used. This representation significantly increases
S flexibility with respect to implementation.

The non-linear transformation S can also be implemented jointly with
the linear transformation Ri for any i ∈ {1, 2, 4, 8, 16} if the latter is im-
plemented via LUTs with s = 8k for some k = 1, 2, . . . , 16. In this case,
the LUTs for the composition RiS can be easily obtained from the LUTs
for Ri by a simple reordering of tables’ elements. It should be noted that
despite the easy transition between respective tables they are different, and
each of them is to be stored if we plan to use both: Ri and RiS.

4 Intel CPUs’ features

The target computational platform abilities are also very important con-
cerning implementation. For example such characteristics as registers length,
instruction latency and throughput, possibility of parallel data processing
have a direct impact on performance and variability of implementation.
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4.1 Long registers, special instructions and parallel processing

One of the data-level parallelism methods on modern Intel CPUs is a SIMD
technology. This technology is based on the usage of long registers for Mul-
tiple Data and special instruction sets to perform computations using a Sin-
gle Instruction. There are several SIMD instruction sets on Intel CPUs
suitable for different length registers.

Let us consider what benefits can be gained using SIMD when the lin-
ear transformation L is implemented. For this purpose we consider two L
implementations: via Ri, i ∈ {1, 2, 4, 8}, and via R2i. We have seen that
when L is implemented via Ri the size of LUTs twice as small as in the im-
plementation of L via R2i with the same parameter s. So from this point
of view the implementation via Ri looks more preferable.

Let the maximal length of registers be m = 2t bits. For implementing L
via LUTs the LOAD and XOR operations are only needed. Assume that
both operations are defined only on values of length less or equal to m bit,
and the execution time of a LOAD (XOR) operation is the same for all
these values. If values longer than m-bits must be processed by the LOAD
(XOR) operation, then these values are cut on parts of length less or equal
to m and processed part by part.

At first assume that each register is used to store only one table value
or part of this value.

If 8 ·2i ≤ m, then in both implementations any table value fits in an m-
bit register. Therefore the implementations of Ri and R2i require the same
number of LOAD (XOR) operations. Since R2i = RiRi, then the implemen-
tation via Ri involves twice as many LOAD (XOR) operations as the im-
plementation via R2i. Note that the implementation via Ri uses at most
half of an m-bit register.

If 8 · 2i > m, then any table value in the implementation via R2i re-
quires twice as many registers as any table value in the implementation via
Ri. Therefore the implementation of Ri requires twice as less the number
of LOAD (XOR) operations as the implementation of R2i. Hence the imple-
mentations via Ri and via R2i involve the same number of LOAD (XOR)
operations.

101



Assume now that each register can be used to store several table values.
In the case of independent blocks processing it allows us to group similar
parts from different blocks to fill in long registers before XOR operation
is performed. It does not change the number of XOR operations needed
to implement Ri, but it allows processing several blocks in parallel. It fol-
lows that for any fixed m the total number of XOR operations per one
block remains the same regardless of the value of i. However the number
of LOAD operations is changing in the same way as in the previous case.

In order to reduce the number of LOAD operations, it is necessary
to load data from a LUT in a parallel way. There are several Intel instruc-
tions for this purpose. The first of them is pshufb (or vpshufb). This instruc-
tion is designed to implement V4 → V8 LUTs. And it allows performing 16,
32, or 64 simultaneous LOAD operations from tables depending on register
length. The other instruction is vpgather. It is designed for LUTs imple-
mentation up to V32 → V32, V32 → V64, V64 → V32, V64 → V64. In this
case the number of simultaneous LOAD operation is equal to 2, 4, 8 or 16
depending on register length and particular vpgather instruction form.

Based on the this instructions structures we may conclude that pshufb
is useful to implement R with parameter s = 4, and vpgather is useful
to implement R4 or R8 with parameter s up to 64 (it should be taken into
account that large s can lead to extremely large LUTs).

4.2 Execution units and ports

The execution core of most modern Intel CPU consists of various execution
units. To provide instruction-level parallelism within a CPU core one can
use several execution units simultaneously. In general, precise instruction
distribution among execution ports is a very hard job. However, there are
a few simple ways to do this rather effectively. For example if several in-
structions operate on independent data parts, then one can try to par-
allelize its execution by its reordering and renaming variables. If parallel
processing of blocks is possible, then several blocks may be considered as
an independent data parts. Smart interleaving of instructions processing
different blocks can lead to a significant speed-up.
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5 Implementations

5.1 Description

We practically applied the above considerations and obtained a variety
of Kuznyechik implementations. Let us consider some of them.

Table 1 contains a description of the implementations. Each one uses
LUTs one way or the other. Transformations implemented via LUTs and
the values of s are given in the 3rd and 4th columns. The parallelism
degree is the number of blocks processed simultaneously. The data-level
parallelism column gives the number of blocks which parts are simulta-
neously loaded in one long register (see section 4.1). The instruction-level
parallelism column represents the number of groups of blocks where each
group is processed independently for a more efficient usage of execution
units (see section 4.2). Thus, the total number of blocks processed simul-
taneously by a certain implementation is the product of the values from
Data and Instruction columns. For simplicity we append this number to
the end of the implementation name.

Table 1: Description of the implementations

Name SIMD
Trans-
formations
by LUTs

s
LUTs size
(KByte)

Parallelism
degree

Data Instr

GPR-LS-1 − LS 8 64 1 1

GPR-R8S-S-1 − R8S, S−1 8 32 + 0.25 1 1

GPR-R8S-S-2 − R8S, S−1 8 32 + 0.25 1 2

GPR-R4-R4S-1 − R4, R4S 8 16 + 16 1 1

SSE-LS-1 SSE2 LS 8 64 1 1

SSE-LS-4 SSE2 LS 8 64 1 4

SSE-RS8-S-1 SSE2 R8S, S−1 8 32 + 0.25 1 1

AVX-LS-2 AVX2 LS 8 64 2 1

AVX-LS-8 AVX2 LS 8 64 2 4

AVX-R4-R4S-8 AVX2 R4, R4S 8 16 + 16 8 1

AVX-R-S-32 AVX2 R,S 4 0.5 + 0.25 32 1

AVX-R4-R4S-8 and AVX-R-S-32 use vpgather and vpshufb instructions
respectively for loading data from LUTs. AVX-R-S-32 involves only byte-

103



wise operations, so we regard it as a byte slicing implementation. It per-
forms all look-up operations in constant time independently of input values.
Therefore AVX-R-S-32 could be cache-timing attack resistant.

5.2 Speed results

For computations we used Intel CPUs of various generations: Core i7-2600
(3.40 GHz), Core i7-4770 (3.40 GHz), Core i7-6700 (3.40 GHz), Xeon E5-
1650 v4 (3.60 GHz), Xeon E5-2650 v4 (2.20 GHz). All these CPUs have
the same L1 and L2 cache size per core: L1i cache size is 32 KB, L1d cache
size is 32 KB, and L2 cache is 256 KB. All computations were made in one
thread on one core.

The source code was written in C language, and compiled using the fol-
lowing compilers: Visual C++ 2015 (Windows), Intel C++ 17.0 (Win-
dows), gcc 4.7.2 (Debian GNU/Linux).

For testing purposes we fixed the cipher key, but generated it randomly
for every start of the code. For measurements we did not take into account
the key schedule of Kuznyechik. So the round keys were computed before
measurements. The number of input blocks for an implementation was as
specified in the end of its name. For measurements all input blocks were
re-encrypted in ECB encryption mode [10] up to 108 times.

Besides key change and key schedule issues there are three main re-
strictive features of such measurement method. The first one is a paral-
lel processing of several blocks. This feature is inherent to ECB, CTR
(both encryption/decryption), CFB, CBC (both decryption) modes of op-
erations and to OFB, CFB, CBC (all encryption/decryption) extended
modes of operations [10]. The second one is a usage of only encryption
algorithm. This feature is inherent to CTR, OFB, CFB and OMAC1 [10].
The third one is a re-encryption of short data parts. This feature can lead
to some decreasing of speed in the real systems because of the additional
time required to transfer data from and to memory.

It should be noted that in the case of non-parallelizable modes parallel
processing of several blocks can be done by parallel processing of several
messages. Restrictions related to usage of only encryption algorithm can be
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easily lifted by addition of analogous implementations based on decryption
algorithm. Such implementations (except AVX-R-S-32) will presumably be
on 10-20% slower because of the decryption algorithm larger complexity.

The speed we obtained in MBytes per second is given in Table 2.

Table 2: Performance (MBytes/s)

CPU→ Core i7-2600 Core i7-4770 Core
i7-6700

Xeon
E5-1650

Xeon
E5-2650

Name ↓ VC Intel gcc VC Intel gcc VC gcc gcc

GPR-LS-1 110 125 100 135 145 125 145 120 75

GPR-R8S-S-1 130 125 120 160 160 140 170 140 85

GPR-R8S-S-2 160 155 125 210 210 155 235 150 95

GPR-R4-R4S-1 65 70 55 95 95 65 105 65 40

SSE-LS-1 145 150 140 160 165 150 170 150 90

SSE-LS-4 230 225 210 300 290 270 360 260 160

SSE-RS8-S-1 95 100 105 120 125 115 125 110 70

AVX-LS-2 − − − 200 170 195 210 185 110

AVX-LS-8 − − − 255 270 275 290 265 160

AVX-R4-R4S-8 − − − 65 65 45 115 65 40

AVX-R-S-32 − − − 235 250 220 255 205 130

The analysis of Table 2 gives us the following observations.
• The transition from LS tables to R8S and S−1 tables having only gen-

eral purpose registers (”GPR-. . . ”) turns out to be very effective. The num-
ber of operations remains about the same but the total size of LUTs is
reduced twice, and it seems that almost all LUTs fit in L1d cache.
• The transition fromR8S and S−1 tables toR4 andR4S tables with only

general purpose registers dramatically decreases the speed because the num-
ber of load operations increases too much.
• The transition from LS tables to R8S and S−1 tables in the case

of SSE registers (”SSE-. . . ”) is not effective either by the same reason.
• The vpgather instruction (AVX-R4-R4S-8) is not that good for high-

speed implementations on up to the 6th generation Intel CPUs due to its
large latency and reciprocal throughput.
• A significant speed-up is achieved if processing of independent blocks is

possible. The best our result is 360 MB/s or 10 cycles/byte in one thread
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on one CPU core (SSE-LS-4). In case of using non-parallelizable modes
of operation the attained speed in one thread on one core is 170 MB/s, or
about 21 cycles/byte (GPR-R8S-S-1).
• Byte slicing technique and vpshufb instructions (AVX-R-S-32) with 256-

bit registers gave the speed of about 255 MB/s. It is not the highest among
the others. However, it is mainly defined by the S transformation. We
tried a simplified Kuznyechik version without S, and attained the speed of
more than 500 MB/s which is higher than in any other implementation of
this simplified cipher. This completely downgrades the complains of some
practitioners that the L transformation of Kuznyechik is too complicated
for implementation. So a potential speed-up of the S transformation can
make byte slicing implementations to be the fastest. Moreover, using longer
512-bit registers will presumably double the speed of byte slicing implemen-
tation. It is very unlikely that any other software implementation on Intel
CPUs will give such an increase in speed.

When running on a single core Intel CPUs typically enable Turbo Boost
technology, increasing CPU speed by a 10-15%. To take this effect into ac-
count, we also performed the measurements on multiple cores simultane-
ously. The resulting speed of the SSE-LS-4 implementation on four physical
cores of Intel Core i7-6700 was 1340 MB/s.

In Table 3 we compare performance of our implementations with previ-
ous ones. All cycles per byte values are presented in the form of intervals
where the lower (upper) bound of interval is calculated from processor base
(maximal) frequency.

Table 3: Performance comparison

Paper Processor MBytes/s Cycles/Byte Notes

[2] Core i7-2600 @ 3.4 GHz 138 23.5 – 26.3 non-parallelizable mode

[3] Core i5-2500K @ 3.3 GHz
135 23.3 – 26.1 ECB mode
129 24.4 – 27.4 CTR mode

[5] Core i5-6500 @ 3.2 GHz 335 9.1 – 10.2 CTR mode

This
paper

Core i7-6700 @ 3.4 GHz
360 9 – 10.6 parallelizable mode
170 19.1 – 22.4 non-parallelizable mode
255 12.7 – 15 byte slicing implementation
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6 Conclusion

In this paper, performance issues of the Kuznyechik block cipher when im-
plemented in software were considered. For implementations using look-up
tables we described trade-offs for the size of LUTs and the number of op-
erations needed. We gave particular insights and recommendations on how
to use the resources of Intel CPUs to speed up Kuznyechik. Finally we pre-
sented the speed values for practical implementations on CPUs of various
generations, using different compilers.

The best our speed results in one thread on one CPU core were 360 MB/s
and 170 MB/s for parallelizable and non-parallelizable cipher modes of op-
erations respectively. On 4 physical cores we achieved 1340 MB/s in par-
allelizable mode. We also presented the fairly effective byte slicing imple-
mentation of the Kuznyechik and attained the speed of 255 MB/s.
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On the security properties of Russian standardized
elliptic curves

Evgeny Alekseev, Vasily Nikolaev, Stanislav Smyshlyaev

Abstract

In the last two decades elliptic curves have become a sufficient part of numerous
cryptographic primitives and protocols. Hence it is extremely important to use the
elliptic curves, that do not break security of such protocols. This paper is about
the elliptic curves used with GOST R 34.10-2001, GOST R 34.10-2012 and the
accompanying algorithms, their security properties and generation process.

Keywords: elliptic curve, GOST R 34.11-2012

1 Introduction

Russian national cryptographic standards employ elliptic curve cryptog-
raphy since 2001, when the national digital signature standard GOST R
34.10-2001 ([1]) was adopted. Since this standard provided no set of elliptic
curves except for the test usage, there was a need to generate standardized
curves which provided reasonable implementation speed and safety as well as
compatibility of different implementations. Thus, three 256-bit curves were
generated and defined in [2].

In 2012 new national digital signature standard GOST R 34.10-2012 was
adopted ([3]). This standard introduces 256- and 512-bit signature schemes.
Since GOST R 34.10-2001 introduced only a 256-bit version of the scheme, it
was necessary to create a set of 512-bit elliptic curves. The other problem was
generation of elliptic curves that provided higher performance of high-level
protocols. The perspectives of using of different type curves (including twisted
Edwards curves and Montgomery curves) with the national standard GOST
R 34.10-2012 and the algorithms accompanying the usage of the GOST R
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34.11-2012 and GOST R 34.10-2012 national standards (defined in [4], [5])
were studied in several papers including [6].

Four new elliptic curves (including two twisted Edwards curves) were
adopted by the Technical committee for standardization «Cryptography and
security mechanisms» as a standardization recommendation ([7]).

In this paper we are going to describe the process of generation of Russian
standardized curves and provide some security considerations.

2 Notations

In this paper we use the following notations.

• p – characteristic of a finite field on which an elliptic curve is defined;

• a, b – short Weierstrass equation coefficients (y2 = x3 + ax+ b );

• ε, δ – twisted Edwards curve equation coefficients ( εu2 + v2 = 1 +
δu2v2 );

• E(a, b) – the group of the points of the elliptic curve defined by short
Weierstrass equation with coefficients a and b ;

• E(ε, δ) – the group of the points of the elliptic curve defined by a
twisted Edwards curve equation with coefficients ε and δ ;

• m – the order of the elliptic curve points group;

• q – a prime number, the order of the prime subgroup of the elliptic
curve points group;

• P – a base point of the prime subgroup of the elliptic curve points
group;

• O – neutral element of the elliptic curve points group;

• m′ – the order of the non-trivial quadratic twist points group;
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• q′ – a prime number, the order of the prime subgroup of the non-trivial
quadratic twist points group.

By ⊕ we denote elliptic curve point addition. By [a]P we denote scalar
point multiplication (point P is here multiplied by integer a ).

3 Curve generation

All standardized elliptic curves observed in this paper were generated
with accordance to the verifiable pseudo-randomness principle. This curve
generation principle allows to show that there are no properties of the elliptic
curve known only by it’s developers. This property is met by selecting curve
parameters as an output of a «one-way» function applied to a random seed.
The knowledge of this random argument proves the fact that none of the
curve parameters could be directly manipulated.

The curves, which can be written in twisted Edwards form were selected
by generating δ value. The GOST R 34.11-2012 hash function (Streebog, [8])
was used as a «one-way» function. As only 512 -bit variant of the function
was used, last 32 bytes of the output were taken when generating 256 -bit
curves. The resulted values were then taken modulo p . The random seeds
and the resulting values of δ of the standardized curves are presented in
Appendix C.

The Weierstrass curves were generated by selecting a verifiable pseudo-
random k = a3/b2 value and assuming a = −3 mod p (such a value of
a allows to create efficient implementations of elliptic curve arithmetic [9]).
The method of selecting value k is similar.

All base points of the standardized curves were selected by iterating ab-
scissa (x for short Weierstrass form and u for twisted Edwards form) be-
ginning with 0 till the point was in a subgroup of order q .

The use of such a generation procedure guarantees that it is impossible for
developers to add vulnerabilities into resulting elliptic curves. We would like
to mention that a so called «BADA55 curves» attack ([10]) does not violate
the last statement since it requires the existence of a large publicly unknown
class of weak curves. We suspect it is very unlikely that such a class could
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stay undiscovered for decades.

4 Cryptographic properties of the Russian standard-
ized elliptic curves

4.1 Common computational problems on elliptic curves

In this paper we consider the following computational problems on the
elliptic curve points groups.

• Discrete logarithm problem (DLP )

• Computational Diffie-Hellman problem (CDH )

• Decisional Diffie-Hellman problem (DDH )

• Discrete semilogarithm problem (DSLP )

It was shown in [11] that intractability of DSLP is a sufficient criterion
of GMR-security (existential unforgeabilty under adaptive chosen message
attack) of the digital schemes, defined in [1] and [3], in the tamper-proof
device model. The fact, that intractability of DDH is a sufficient condition
of the VKO key agreement scheme (defined in [4], [5]), was shown in [12],
while intractability of the CDH problem is here the necessary condition.

It is easy to see that the following reductions are correct:

DDH→ CDH→ DLP← DSLP

This statement implies that intractability of DLP is a necessary condition
of intractability of all the computational problems observed and therefore of
safety of all the cryptographic primitives and protocols discussed.

4.2 Generic algorithms

Here we show that the common algorithms, which do not rely on inner
structure of elliptic points groups but on some generic group assumptions
only, do not violate security of cryptographic primitives and protocols using
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Russian standardized curves. The conditions in which such algorithms work
are described by the generic group model ([13]). This paper also provides
the results on the lower bounds of complexity of solving DDH , CDH and
DLP . The same result for a similar group model was shown in [14]. These
results imply that the best generic algorithm that solves the mentioned tasks
is Pollard’s ρ -method ([15]) which has square-root complexity.

DSLP can be easily solved when one can efficiently solve DLP . Currently
there are no known results that showed this problem could be solved in the
other way. This implies that Pollard’s ρ -method remains the best method
that solves DSLP .

According to the requirements of [3] the order q of the elliptic curve
points subgroup used in the standardized digital signature schemes should
be at least 2254 for the 256 -bit fields and at least 2508 for the 512 -bit fields.
Since these requirements are met for all Russian standardized curves, it is
computationally infeasible to mount a successful attack based on Pollard’s
ρ -method.

4.3 Specific algorithms

The complexity of the computational problems discussed above is esti-
mated on the base of known results. The report [16] contains a summary
based on observation of a major amount of publications on the complexity
of these problems. It concludes the following statements.

• The fastest known algorithm that solves DLP is Pollard’s ρ -method.

• The fastest known algorithm that solves CDH is finding discrete loga-
rithm of one of public keys.

• The fastest known algorithm that solves DDH is finding discrete loga-
rithm of one of public keys.

It is also mentioned that these three problems can be solved more effec-
tively than using Pollard’s ρ -method in the groups in which there exist some
effectively computable isomorphisms (so called «pairing groups»).
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There are no known results on the methods of solving DSLP which had
lower complexity than computing corresponding discrete logarithm. Thus,
Pollard’s ρ -method remains the most effective method for solving DSLP .

All the studied elliptic curves were generated according to the require-
ments of the national standard [3].

• 2254 < q < 2256 for the 256-bit curves and 2508 < q < 2512 for the
512-bit curves. All the generated curves satisfy this condition.

• P belongs to the curve, P 6= O and [q]P = O . This condition is also
satisfied for all curves.

• 4a3/b2 + 27 = 0 mod p . When this inequality does not hold, the dis-
criminant of the curve is equal to 0. This means the curve is not smooth
and therefore elliptic. All the studied curves satisfy this condition.

• b 6= 0 mod p . If this condition is violated then j -invariant of the curve
equals 1728 what violates the requirements of [3]. All the studied curves
satisfy this condition.

• a3/b2 6= 0 mod p . When this condition is violated then a = 0 . This
implies j -invariant is equal to 0 what violates the requirements of [3].
All the studied curves satisfy this condition.

Further we study the properties of the elliptic curves which could decrease
the complexity of the main computational problems on the elliptic curve
points groups and thus lead to vulnerabilities in cryptographic primitives and
protocols using such curves. We are going to show that Russian standardized
curves do not have these properties.

There are several properties of elliptic curve points groups which can lead
to weaknesses when violated. Here we base on the document [17] and the
recommendations [18].

Condition 4.1. (m, p) = 1 .

According to [19] for the elliptic curve points groups that do not satisfy this
criterion it is possible to build effective isomorphism (for which evaluation of
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a value takes O(ln(p)) time) to the additive group of Fp , therefore one can
easily solve DLP in such groups in polynomial time.

It’s easy to see that all the studied curves satisfy this condition.

Condition 4.2. ord p in Z∗q should not be small.

There exist algorithms ([20]) which solve DLP in prime subgroups of the
elliptic curve points groups based on embedding of these groups into finite
fields multiplicative subgroups. In order to increase complexity of calculating
of these embeddings (what implies high complexity of the algorithms solving
DLP ) one should check that ord p in Z∗q is large enough. The document [17]
recommends to select curves in such a way that inequality ord p > (q − 1)/
100 holds.

In order to calculate the value of ord p effectively one has to factor q−1 .
The factorings of q − 1 for the curves observed and the values of ord p in
Z∗q can be found in Appendix D. It easy to see that these values satisfy the
condition. This implies it is not possible to calculate embeddings effectively
so there existed a DLP solving algorithm that had lower complexity than
Pollard’s ρ -method.

Condition 4.3. Complex multiplication discriminant should not be «small».

According to SafeCurves ([18]) Pollard’s ρ -method can be made more
efficient for the curves having small complex multiplication discriminant D .
SafeCurves propose to use elliptic curves for which inequality |D| > 2100

holds.
The values of discriminants are given in Appendix E. One can see that

this condition is satisfied for all the examined curves except for the curve
id-GostR3410-2001-CryptoPro-B-ParamSet. This does not make this curve
practically exploitable, however.

Condition 4.4. The largest prime subgroup of the non-trivial quadratic twist
points group should be secure.

SafeCurves ([18]) proposes that the curve should be twist-secure in or-
der to prevent attacks on scalar point multiplication using one coordinate
formulae like Montgomery ladder. The orders of the twisted elliptic curve
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points subgroups were estimated and checked to be secure against common
attacks (these parameters can be found in Appendix F). These checks include
security against attacks bases on Pollard’s ρ -method and small embedding
degrees.

These requirements are not held for the curves GostR3410-2001-CryptoPro-
A-ParamSet, GostR3410-2001-CryptoPro-C-ParamSet and id-tc26-gost-3410-
12-512-paramSetB. These curves, however, cannot be transformed into Mont-
gomery form so the attacks based on the use of the Montgomery ladder are
not applicable. Nevertheless, we highly recommend to add checks that a
point belongs to a curve in every implementation employing one coordinate
formulae.

Condition 4.5. The F ∗p group should not have many small subgroups.

In 2016 Petit, Kosters and Messeng proposed an algorithm ([21]) that
solves DLP in the groups of elliptic curve point defined over large charac-
teristic finite fields. This algorithm is based on the factor base algorithm.
Though the authors did not provide exact complexity estimations, they sup-
posed that curves defined over fields with characteristic p , where p−1 could
be split into small primes, could be vulnerable to such an attack.

Here we try to obtain criteria which guarantees that implementing such
an attack is more complex then implementing Pollard’s ρ -method when it is
met. Suppose p− 1 = p1 · . . . · ps , where all pi are prime and not necessarily
distinct. For some fixed B ∈ N let us set k = log2(

∏n′

j=1 pij) + 1 , where
pij ∈ {p1, . . . , ps} , pij < B and n = blog2(p)c , m = bn/kc . We will denote
as dmax the value max{4, pi1, . . . , pin′} .

Heuristic estimation 4.6. If the following inequality holds for every B <

n/4 :
k +m(log2m− 1) + 2dmax log2mn

′ > n/2,

then the proposed method is computationally harder then Pollard’s ρ -
method.

The proof of this estimation and the proof of the fact that this condition
is satisfied for all the curves can be found in Appendix A.
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5 Conclusion

In the papers observed it was shown there are no generic methods solv-
ing DLP more efficiently than Pollard’s ρ -method. These papers also state
that the best way to solve DDH , CDH or DSLP is to compute a value
of corresponding discrete logarithm. So there are no known efficient generic
algorithms that solve these problems.

We have also shown that none of known specific conditions (including the
one proposed by Petit, Kosters and Messeng) that may lead to speed-ups in
solving DLP holds for the examined curves.

The curve generation procedure was also presented here. This method em-
ploys a hash function in order to create values b and δ for the short Weier-
strass and twisted Edwards form respectively. One can see that it hardens
intentional embedding of the properties that could lead to vulnerabilities.

Thus we can conclude the use of Russian standardized curves does not
violate security of the national standards and other high-level primitives.
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Appendices

A Resistance to Petit-Kosters-Messeng attack

Here we give a brief description of the algorithm proposed by Petit, Kosters
and Messeng in [21] and prove Estimation 4.6. Here we denote by K algebraic
closure of a field K and by expression «a ∈R B » we mean «a is taken
uniformly random from the set B ». We also denote by ResX(f(X), g(X))
a resultant of polynomials f(X) and g(X) by variable X .

A.1 Algorithm description

The algorithm proposed by Petit, Kosters and Messeng in [21] uses so
called factor bases ([22]). Suppose Ω = {P1, . . . , PN} is some factor base
which consists of elliptic curve points. For some fixed m ∈ N (we will provide
comments on this value later) we need to build N + 1 equations:

[αi]P ⊕ [βi]Q =
m⊕
j=1

Wj, Wj ∈ Ω, αi, βi ∈R {1, . . . , q − 1}.

We obtain a (N + 1) × N matrix of coefficients. Then using Gaussian
elimination we can obtain equation [α]P ⊕ [β]Q = O and deduce the value
of the discrete logarithm as −αβ−1(modq) .

These equations can be build with the use of Semaev polynomials defined
in [23].

Definition A.1. The i-th Semaev summation polynomial Si(x1, . . . , xi) ∈
Fp[x1, . . . , xi] , i ≥ 2 , is a polynomial which turns to 0 on the input
x1, . . . , xi ∈ Fp if and only if ∃y1, . . . , yi ∈ Fp : (x1, y1) ∈ E(Fp), . . . , (xi, yi) ∈
E(Fp) such that

⊕i
j=1(xj, yj) = O .

Theorem A.2 (I. A. Semaev, [23]).

1. The following equalities hold:

S2(x1, x2) = x1 − x2,
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S3(x1, x2, x3) =

= (x1−x2)2x23−2((x1+x2)(x1x2+a)+2b)x3+((x1x2−a)2−4b(x1+x2)),

Sn(x1, . . . , xn) = ResX(Sn−k(x1, . . . , xn−k−1, X), Sk+2(xn−k, . . . , xn, X)),

for any n ≥ 4, 1 ≤ k ≤ n− 3 .

2. All polynomials are symmetric and have degree 2n−2 in each variable
when n ≥ 3 .

It is easy to see that the total degree of i -th Semaev polynomial does not
exceed i · 2i−2 when i > 2 . Indeed, the monomial x2i−21 · . . . · x2i−2i has the
highest total degree in the i -th Semaev polynomial.

Suppose an elliptic curve point R has coordinates (Rx, Ry) . The problem
of decomposition of R into a sum of m points of E(Fp) can be expressed
as:

Sm+1(x1,1, . . . , xm,1, Rx) = 0.

Since we have to decompose R not just into m random points but into
the points from the factor base Ω we have to add constraints on the variables
x1,1, . . . , xm,1 . The authors of [21] suppose to write down these constraints
as a system of additional polynomial equations which is satisfied if and only
if a point specified by its coordinates belongs to Ω .

The authors of [21] propose to define factor base Ω as a set of points
which abscissa belongs to some subgroup of a multiplicative group of a finite
field the curve is defined on. Suppose the following equality holds:

p− 1 = r
n′∏
i=1

pi,

where pi are primes (not necessarily pairwise distinct) such that pi < B for
some natural B for all i ∈ {1, . . . , n′} . Let us select a subgroup with order
equals to

∏n′

i=1 pi as an abscissa subgroup. Then the polynomial system of
constraints can be written as follows:{

xi,j+1 − x
pj
i,j = 0, i = 1, . . . ,m, j = 1, . . . n′ − 1

x
pn′
i,n′ − 1 = 0, i = 1, . . . ,m

(A.1)
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Here xi,j , j ≥ 2 , are additional variables for decreasing of degrees of the
constraint equations added to the system.

Finally we obtain an equation system over Fp which consists of mn′ + 1
equations with mn′ variables:

Sm+1(x1,1, . . . , xm,1, Rx) = 0

xi,j+1 − x
pj
i,j = 0, i = 1, . . . ,m, j = 1, . . . n′ − 1

x
pn′
i,n′ − 1 = 0, i = 1, . . . ,m

(A.2)

The maximal degree of an equation in the system equals max(B, (m +
1) · 2m−1) . Here we can also try to build a system with a lower maximal
degree using the technique proposed by Semaev in [24]. We change one
Sm+1(x1,1, . . . , xm,1, Rx) = 0 equation into a set of equations employing S3

polynomial. The system (A.2) can be overwritten as:

S3(x1,1, x2,1, u1) = 0

S3(ui, xi+2,1, ui+1) = 0, i ∈ 1, . . . ,m− 3

S3(um−2, xm,1, RX) = 0

xi,j+1 − x
pj
i,j = 0, i = 1, . . . ,m, j = 1, . . . n′ − 1

x
pn′
i,n′ − 1 = 0, i = 1, . . . ,m

(A.3)

The new system (A.3) consists of mn′ + m − 1 equations over Fp with
mn′ + m − 2 variables. The equations have now maximal degree equal to
max(B, 4) .

The (A.2) and (A.3) could be solved with the means of Grobner bases. In
order to build such a basis one can use common algorithms like F4 ([25]).

A.2 Complexity estimations

Complexity of the method described can be estimated for each of three
parts the algorithm consists of. First part is the initialization step. Second
part is the decomposition generation step. The third part is the linear algebra
step. Now we are going to estimate complexity of each of the steps.

The initialization step is performed once for each curve. One has to factor
n -bit length value p−1 what can be done in Tfactor = O(2c1n

1/3 log
2/3
2 n) using
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number field sieve method ([26]). The other task is to generate (m + 1) -th
Semaev polynomial. It can be done in TSem = O(2m

2

) (according to the
complexity of building resultant of two polynomials obtained in [27]). If one
uses (A.3), then only third Semaev polynomial is used. This polynomial is
implicitly defined in [23] therefore here TSem = 0 .

Now we are going to estimate the complexity of the third step. After
collecting all the decompositions we obtain a sparse matrix with size (N +
1)×N , which has only m non-null n -bit elements in each row. Complexity
of finding a nontrivial equation between P and Q can be estimated as
TGE = O(mnNω′) , where ω′ ≤ 2 .

The main problem is to estimate complexity of the second step. One has
to build N + 1 decompositions of random elliptic curve points into m point
of the factor base Ω . We will denote by TPDP (PDP here means point de-
composition problem) the complexity of building one such decomposition,
thus the complexity of the second step equals (N + 1) · TPDP . One obtains
a decomposition by solving (A.2) or (A.3). We will denote the probability
that one instance of the system has solutions as PPDP . We will also denote
the complexity of solving one instance of the system (A.2) or (A.3) as Ttrial .
Therefore TPDP = P−1PDPTtrial . Following [24] the complexity of solving one
instance of a system can be estimated as Ttrial = O(V ωDreg) , where V is a
number of variables, ω is a linear algebra constant and Dreg is the «regu-
larity degree».

Following [28] we can estimate PPDP as Nm

m!|E(Fp)| . Suppose p − 1 =

r
∏n′

i=1 pi, pi < B = 2l . We will put
∏n′

i=1 pi ≈ 2k and p ≈ 2n . The size
N of the factor base Ω can be estimated as O(2k) . This can be justified
as follows. For a random x ∈ G ⊂ F∗p , where G is a subgroup of F∗p of
order

∏n′

i=1 pi , the probability that x3 + ax+ b is quadratic residue modulo
p is about 1/2 , while every solution gives us two points. Thus there exist
about O(2mk) sums of m points of the factor base Ω . Since the order of
the summands does not change the sum we have to divide the number of
sums by m! in order to estimate the number of different sums. We can quite
inaccurate estimate the number of the points using Hasse theorem as O(2n) .
Then we get the value PPDP = O(2mk−n/m!) .
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In order to estimate the complexity of solving one instance of (A.2) and
(A.3) one has to estimate the «regularity degree» of the corresponding poly-
nomial ideal.

For some polynomial ring ideal I ⊆ Fp[x1, . . . , xt] with basis f1(x1, . . . , xt),
. . . , fs(x1, . . . , xt) the following inequality holds ([29]):

Dreg ≥ max
1≤i≤s

deg(fi(x1, . . . , xt)).

Thus the (A.2) system can be solved in Ttrial = O(2log2(mn′)ωDreg) ,
where Dreg ≥ max(B, (m + 1) · 2m−1) , while the (A.3) system for Ttrial =
O(2log2(mn′+m−2)ωDreg) , where Dreg ≥ max(B, 4) .

The total complexity of retrieving discrete logarithm TECDLP is:

TECDLP = Tfactor + TSem +N · P−1PDPTtrial + TGE,

what gives for the (A.2) system:

TECDLP = O(2c1n
1/3 log

2/3
2 n) +O(2m

2

) +O(2k+m log2 m−m+n−mk+log2(mn′)ωDreg)+

+O(2w
′k+log2 m+log2 n),

and for the (A.3) system:

TECDLP = O(2c1n
1/3 log

2/3
2 n) +O(2k+m log2 m−m+n−mk+log2(mn′+m−2)ωDreg)+

+O(2w
′k+log2 m+log2 n).

In order to avoid parameter m in the exponent, the authors of [21] sup-
pose to assume m = dn/ke . Then for the both systems we can rewrite the
complexity estimations.

TECDLP = O(2c1n
1/3 log

2/3
2 n) +O(2m

2

) +O(2k+m(log2 m−1)+log2(mn′)ωDreg)+

+O(2w
′k+log2 m+log2 n),

TECDLP = O(2c1n
1/3 log

2/3
2 n) +O(2k+m(log2 m−1)+log2(mn′+m−2)ωDreg)+

+O(2ω
′k+log2 m+log2 n).

Now we are going to analyse the results in order to find out the values
of m, k, n′, B that make the complexity of the described method worse then
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the Pollard’s ρ -method, which has the complexity TPollard = O(2n/2) . We
will denote by dmax the maximal degree of the polynomials emerging in the
system. The following relations should hold:

mk = n (A.4a)
m2 < n/2 (A.4b)
2B < n/2 (A.4c)
k +m(log2m− 1) + 2dmax log2mn

′ < n/2 (A.4d)

The last three inequalities are the sufficient conditions that building the
required amount of decompositions will take less time then running Pollard’s
ρ -method. This relations system corresponds to the system (A.2). The corre-
sponding relations system for (A.3) differs only in the absence of the (A.4b)
inequality.

Thus, we have proved Estimation 4.6.

A.3 256-bit curves

1. p = 2256 − 617
p− 1 = 2 · 7 · 43 · 9109 · 87640387787 · 16876409960174552741·
·14276683752608433211265709130033043243453

2. p = 2255 + 3225
p− 1 = 23 · 11 · 33797 · 633062117 · 43400749232432159 ·
· 39607009966486015397 ·17888439653017795004024467

3. p = 70390085352083305199547718019018437841079516630045180471
284346843705633502619
p− 1 = 2 · 17 · 37 · 113 · 244997 · 7044765983457327077589232961·
·286896380833551689651093852714669043701

A.4 512-bit curves

1. p = 2512 − 569
p− 1 = 2 · 23 · 41 · 353 · 105095387 · 45130584520747958722981·
·582271299047893027187874292913927407·
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·2440563294432588452310063876982204011061·
·2987936166061269764733822017919288608395313

2. p = 2511 + 111
p− 1 = 2 · 7 · 17 · 9433·
·29860769339941482698353859190482380663180854047591713557276
487433535594311035607555100844563575983980095872656485069069
28241789019762235105800049577

A.5 The effectiveness of using Petit-Kosters-Messeng method for
breaking Russian standardized elliptic curves

Keeping the fact that 2 < ω ≤ 3 we have that for 256-bit curves B
should be less than 64 . No we are going to estimate m and k for each curve
using (A.4a) and (A.4c).
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Curve Divisors k m n′ dmax ((A.3) case)
1 2 1 256 1 4
1 2 · 7 4 53 2 7
1 2 · 43 6 39 2 43
1 2 · 7 · 43 10 25 3 43
1 7 2 91 1 7
1 7 · 43 9 27 2 43
1 43 5 47 1 43

2 2 1 256 1 4
2 2 · 2 2 128 2 4
2 2 · 2 · 2 3 85 3 4
2 2 · 2 · 2 · 11 6 39 4 11
2 2 · 2 · 11 5 46 3 11
2 2 · 11 4 57 2 11
2 11 3 74 1 11

3 2 1 256 1 4
3 2 · 17 5 50 2 17
3 2 · 37 6 41 2 37
3 2 · 17 · 37 11 22 3 37
3 17 4 62 1 17
3 17 · 37 9 27 2 37
3 37 5 49 1 37

It is easy to see that (A.4d) does not hold for any of the parameters
specified, so the method that uses (A.2) or (A.3) is slower then the Pollard’s
ρ -method.

Now we are going to study 512-bit curves. Here B < 128 . Now we have
the following limitations.
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Curve Divisors k m n′ dmax ((A.3) case)
1 2 1 512 1 4
1 2 · 23 5 92 2 23
1 2 · 41 6 80 2 41
1 2 · 23 · 41 10 47 3 41
1 23 4 113 1 23
1 23 · 41 9 51 2 41
1 41 5 95 1 41

2 2 1 512 1 4
2 2 · 7 4 106 2 7
2 2 · 17 5 100 2 17
2 2 · 7 · 17 7 64 3 17
2 7 2 182 1 7
2 7 · 17 6 74 2 17
2 17 4 125 1 17

Here we see that (A.4d) does not hold for any of the parameter sets again,
hence Petit-Kosters-Messeng method does not provide any improvement of
DLP solving in comparison with Pollard’s ρ -method.

A.6 On some probably vulnerable curve

The authors of [21] mentioned NIST P-224 elliptic curve as probably vul-
nerable. This curve is defined over Fp , where p = 2224 − 296 + 1 . Value
p− 1 can be factored as 296 · 3 · 5 · 17 · 257 · 641 · 65537 · 274177 · 6700417 ·
67280421310721 . One can easily check having fixed B = 56 that inequality
(A.4d) holds for some parameter sets. This fact, however, does not imply that
method provided in [21] is computationally easier than Pollard’s ρ -method
for this curve.

B Parameters of the examined curves

Here we denote by x(P ) and y(P ) coordinates of the elliptic curve point
P in short Weierstrass form. By u(P ) and v(P ) we denote coordinates of
the elliptic curve point P in twisted Edwards form.
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• id-GostR3410-2001-CryptoPro-A-ParamSet (256-bit Weierstrass curve)
p = 2256 − 617
a = p− 3 = −3 mod p
b = 166
m = 1157920892373161954235709850086879078530737629084992432
25378155805079068850323
q = m
x(P ) = 1
y(P ) = 64033881142927202683649881450433473985931760268884941
288852745803908878638612

• id-GostR3410-2001-CryptoPro-B-ParamSet (256-bit Weierstrass curve)
p = 2255 + 3225
a = p− 3 = −3 mod p
b = 28091019353058090096996979000309560759124368558014865957
655842872397301267595
m = 5789604461865809771178549250434395392710213316025582682
0068844496087732066703
q = m
x(P ) = 1
y(P ) = 28792665814854611296992347458380284135028636778229113
005756334730996303888124

• id-GostR3410-2001-CryptoPro-C-ParamSet (256-bit Weierstrass curve)
p = 70390085352083305199547718019018437841079516630045180471
284346843705633502619
a = p− 3 = −3 mod p
b = 32858
m = 7039008535208330519954771801901843784092088264716408103
5322601458352298396601
q = m
x(P ) = 0
y(P ) = 29818893917731240733471273240314769927240550812383695
689146495261604565990247
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• id-tc26-gost-3410-12-512-paramSetA (512-bit Weierstrass curve)
p = 2512 − 569
a = p− 3 = −3 mod p
b = 12190580024266230156189424758340094075514844064736231252
208772337825397464478540423418981074322718899427039088997221
609947354520590448683948135300824418144
m = 1340780792994259709957402499820584612747936582059239337
772356144372176403007344923231829058581763649804962861255659
6899500625279906416653993875474742293109
q = m
x(P ) = 3
y(P ) = 61285671321593683755506766505341533718267088079063531
322960495468664645454726071191345292217033369215164051073690
28606191097747738367571924466694236795556

• id-tc26-gost-3410-12-512-paramSetB (512-bit Weierstrass curve)
p = 2511 + 111
a = p− 3 = −3 mod p
b = 54725171305140472547604330712816572741710343895537697797
479416031257965496939070366962372739527026378575800712932542
40945079496484373854264998452887027990
m = 6703903964971298549787012499102923063739682910296196688
861780721860882015036922585419853748190383615062910947743405
567510148398820717100282856877776119229
q = m

x(P ) = 2
y(P ) = 13910877977955572587117358747504633286667292976475538
607943404349820727624912779633246684899931850893657030334942
04180568181905548968011075910357787492797

• id-tc26-gost-3410-2012-256-paramSetA (256-bit twisted Edwards curve)
p = 2256 − 617
a = 87789765485885808793369751294406841171614589925193456909
855962166505018127157
b = 18713751737015403763890503457318596560459867796169830279
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162511461744901002515
ε = 1
δ = 27244141104746059318342685011647576459987268784730768094
32604223414351675387
m = 1157920892373161954235709850086879078533542411923690137
70048613635142121435548
q = m/4 = 28948022309329048855892746252171976963338560298092
253442512153408785530358887
x(P ) = 65987350182584560790308640619586834712105545126269759
365406768962453298326056
y(P ) = 22855189202984962870421402504110399293152235382908105
741749987405721320435292
u(P ) = 13
v(P ) = 43779144989398987843428779166090436406934195821915183
574454224403186176950503

• id-tc26-gost-3410-2012-512-paramSetC (512-bit twisted Edwards curve)
p = 2512 − 569
a = 11552207741726624081384854431754270453419990958158536547
453630472753284279856029013033421730195977772912484970560977
054897563749457966985165428182284278739
b = 94676543149742393648497798934979359976165466808936423772
359818687410512156510324468289947505282676306043061016107115
21055955290148577159125187794668181473
ε = 1
δ = 82913685825403917599563255994496962501717378386512412895
859979405570587036826119832769338213157242732624569794907836
02284025399599007870613061010570769744
m = 1340780792994259709957402499820584612747936582059239337
772356144372176403007344846347320033739688509767539282340336
6582058868465127637383742173859717091252
q = m/4 = 33519519824856492748935062495514615318698414551480
983444308903609304410075183621158683000843492212744188482058
50841645514717116281909345935543464929272813
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x(P ) = 11883046340949417535959253611031637438486121989357748
247963585015455167053565085942161130870937622596747831459979
590245849590330315393322885186213222089032
y(P ) = 12873887912291418762163219174899249027788909354964279
561044704584079894283286935688639587101137346765264237830933
785897290140286858111689735138773336704015
u(P ) = 18
v(P ) = 36979017503500364661955013706809651308929254455287941
065157006855305279130383310151063822343988427973147742640617
02328469726236276369898526828850803907133

C Curve generation

Here we present the seeds used to generate twisted Edwards curves. By
H512 we denote 512 -bit variant of the Streebog hash function ([8]).

• id-tc26-gost-3410-2012-256-paramSetA:
seed :
97 B9 57 56 E0 59 D5 75 E6 05 99 7A FE A2 46 D7
95 C6 84 FB 87 74 86 9A 9B 18 53 8F 13 F3 8A C2
14 42 8D 87 1D 12 CA 10 9C 9A 4F E6 C4 DD F3 AF
26 F6 38 6D 2D 51 4C CC B6 D1 AB 82 83 3C 30 D0
79 8E 9B 30 37 FC 86 A3 B6 15 60 2E A1 56 E1 2D
30 CD 63 53 E6 7D F6 42 82 D4 52 A2 03 3C BB 03

H512(seed) :
AF 83 BE 4E C7 BA C6 DD ED 83 3C 44 F1 D0 CF 6A
18 E7 B1 9D EA 5F 4E 69 BA E3 C2 CC B2 F9 9B 07
06 05 F6 B7 C1 83 FA 81 57 8B C3 9C FA D5 18 13
2B 9D F6 28 97 00 9A F7 E5 22 C3 2D 6D C7 BF FB

Coefficient δ :
δ = 0x605f6b7c183fa81578bc39cfad518132b9df62897009af7e522c32
d6dc7bffb
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• id-tc26-gost-3410-2012-512-paramSetC:
seed :
1F BB 79 69 B9 1B 3E A0 81 17 FB 10 74 BF BF 55
49 DD 66 07 63 F6 A5 AF 09 57 77 5B 66 4C B1 13
CF CB 91 C4 A7 7D 27 98 06 BC F2 4A 56 77 F2 5E
AF FE C6 67 76 70 2E E2 C7 AA 84 16 07 50 DA 1D
D1 50 AE D2 8C 30 26 AC 7E D6 D1 9B 97 AC 2C B5
82 7C 00 03 18 47 13 53 5B FA 65 24 B3 E4 60 83

H512(seed) :
9E 4F 5D 8C 01 7D 8D 9F 13 A5 CF 3C DF 5B FE 4D
AB 40 2D 54 19 8E 31 EB DE 28 A0 62 10 50 43 9C
A6 B3 9E 0A 51 5C 06 B3 04 E2 CE 43 E7 9E 36 9E
91 A0 CF C2 BC 2A 22 B4 CA 30 2D BB 33 EE 75 50

Coefficient δ :
δ = 0x9e4f5d8c017d8d9f13a5cf3cdf5bfe4dab402d54198e31ebde28a0
621050439ca6b39e0a515c06b304e2ce43e79e369e91a0cfc2bc2a22b4ca3
02dbb33ee7550

D Embedding degrees

• id-GostR3410-2001-CryptoPro-A-ParamSet (256-bit Weierstrass curve)
q − 1 = 2 · 3 · 7 · 17 · 37 · 127 · 121493 · 5592900119·
·50791017540450015071456350284045037169936855765408748581
ord p = (q − 1)/2

• id-GostR3410-2001-CryptoPro-B-ParamSet (256-bit Weierstrass curve)
q − 1 = 2 · 47336631894758162101·
·611535319489737880361765400867656717933201264526640746251
ord p = (q − 1)/2

• id-GostR3410-2001-CryptoPro-C-ParamSet (256-bit Weierstrass curve)
q− 1 = 2 · 2 · 2 · 3 · 3 · 5 · 5 · 47 · 207130852417 · 15398703602419036183·
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·260862815097120313262827914162129492639311
ord p = q − 1

• id-tc26-gost-3410-12-512-paramSetA (512-bit Weierstrass curve)
q−1 = 2 ·2 ·19 ·41 ·257 ·619681 ·56230387 ·3067250436697090551527·
·15665300049585351442709496647505686649347704944533808966395
4622108777301298738109970223050607345391305841500928811
ord p = q − 1

• id-tc26-gost-3410-12-512-paramSetB (512-bit Weierstrass curve)
q− 1 = 2 · 2 · 3 · 2389 · 23384623848790632586113480183838855391864
388552728466195276198973981031167283809771940329803929062421
7347249467 817970123836626162296536217484891787921
ord p = (q − 1)/6

• id-tc26-gost-3410-2012-256-paramSetA (256-bit twisted Edwards curve)
q − 1 = 2 · 1597·
·90632505664774730293966018322391912847021165617070298818134
48155537110319
ord p = q − 1

• id-tc26-gost-3410-2012-512-paramSetC (512-bit twisted Edwards curve)
q−1 = 2·2·2819·7673·1683089·8490713317·11424320126732366161793·
·13932905458310476305278334845959·
·17031551406759063641230097822523168865377062804005237213018
459123037212618699
ord p = q − 1

E Complex-multiplication discriminants

• id-GostR3410-2001-CryptoPro-A-ParamSet (256-bit Weierstrass curve)
|D| = 169866151589454918318256355404710297570017091418414794
6754826998005417449165068
|D| > 2100
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• id-GostR3410-2001-CryptoPro-B-ParamSet (256-bit Weierstrass curve)
|D| = 2476
|D| < 2100

• id-GostR3410-2001-CryptoPro-C-ParamSet (256-bit Weierstrass curve)
|D| = 225582403534449087570893262906079377782519721590934732
343094982397458255928460
|D| > 2100

• id-tc26-gost-3410-12-512-paramSetA (512-bit Weierstrass curve)
|D| = 176308990594895101831812239635692069490438040091159251
133715331100958895534786995306510452439046262349503427868505
276858381717314005007176133917595472554188
|D| > 2100

• id-tc26-gost-3410-12-512-paramSetB (512-bit Weierstrass curve)
|D| = 733711169610957163035988136099483742961244593884181083
755723481156762781921366218027107268488731306020886898973802
079016197327401725226333089103743766060
|D| > 2100

• id-tc26-gost-3410-2012-256-paramSetA (256-bit twisted Edwards curve)
|D| = 456069194652922817833172763729828275844502106275118018
404003399379926643529292
|D| > 2100

• id-tc26-gost-3410-2012-512-paramSetC (512-bit twisted Edwards curve)
|D| = 439263557933465671521763589803629925633969797171182125
737961818888035237104271799336595640222275623570742627639773
24053455451639427708084065438532436673932
|D| > 2100

F Twist security

Here we present auxiliary data needed to analyse twist security of Russian
standardized curves. For each curve we provide the number of point of the
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non-trivial quadratic twist (m′ ), the order of largest prime subgroup ( q′ ) and
order of p in Z∗q′ . We do not estimate complex multiplication discriminants
of the twists as they are equal to the discriminants of the original curves.

• id-GostR3410-2001-CryptoPro-A-ParamSet (256-bit Weierstrass curve)
m′ = 1157920892373161954235709850086879078534662064227818848
53537012210747190428317
q′ = m′/(67 · 1197515797 · 112960388171533961) = 1277605168546469
3103815859587282398207663184917003
q′ < 2200

q′ 6= p
q′−1 = 2·3·157·179·1553·48788927410949333231569954455332516953313
ord p = (q′ − 1)/2

• id-GostR3410-2001-CryptoPro-B-ParamSet (256-bit Weierstrass curve)
m′ = 5789604461865809771178549250434395392616785150538473721
9388739511825397579685
q′ = m′/(5 · 113093) = 1023866103448632500893697974310416275563
79000478163524213503469731681709
q′ > 2200

q′ 6= p

q′ − 1 = 22 · 33 · 6113 · 15508329295924176480204572742825191540248
0143225674979572228386577
ord p = (q′ − 1)/3

• id-GostR3410-2001-CryptoPro-C-ParamSet (256-bit Weierstrass curve)
m′ = 7039008535208330519954771801901843784123815061292627990
7246092229058968608639
q′ = m/(11 · 433 · 1951561 · 9245309 · 104138341) = 7865325388019627
074611138979082913271426129070825717
q′ < 2200

q′ 6= p
q − 1 = 22 · 3469 · 259421 · 531572647637 · 426526067872013 ·
· 9636938087179541
ord p = (q′ − 1)/2

137



• id-tc26-gost-3410-12-512-paramSetA (512-bit Weierstrass curve)
m′ = 1340780792994259709957402499820584612747936582059239337
772356144372176403007364472128545801051617035733043510381637
5202206882485717476485898991823269873947
q′ = m′/(23·61·4447·142799·205285055011140558581260164490369) =
733078495620179237339561502178730969216876708146598508325977
89030697445789538267547684057083080453035490394257
q′ > 2200

q′ 6= p
q′− 1 = 24 · 3 · 328302760325728843 · 4651946466609358601973014032
777515509614079816480771074075608475236947578881524343127730
729
ord p = (q′ − 1)/16

• id-tc26-gost-3410-12-512-paramSetB (512-bit Weierstrass curve)
m′ = 6703903964971298549787012499102923063739682910296196688
861780721860882015036624391382020549976519812627120910443080
483343605483991229469663576771229965091
q′ = m′/(107 · 457 · 11279 · 288867653 · 8115660434350138997 · 793945
3682920433906546174291390263043 · 4818517832205402043366003520
2680240077) = 13552840881400009935629935782603930805279121
q′ < 2200

q′ 6= p

q′− 1 = 24 · 5 · 347 · 1021 · 22063110703 · 21672968087599576942739749
ord p = (q′ − 1)/10

• id-tc26-gost-3410-2012-256-paramSetA (256-bit twisted Edwards curve)
m′ = 1157920892373161954235709850086879078531857281389121143
08866554380684137843092
q′ = m′/4
q′ > 2200

q′ 6= p
q′ − 1 = 22 · 32 · 97223288653 · 8270772794825465751904493795652338
636049276411384081918269885909
ord p = (q′ − 1)/12
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• id-tc26-gost-3410-2012-512-paramSetC (512-bit twisted Edwards curve)
m′ = 1340780792994259709957402499820584612747936582059239337
772356144372176403007364549013054825893692175770467089296960
5519648639300496255756150693438295075804
q′ = m′/4
q′ > 2200

q′ 6= p
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Some Security Comparisons of GOST R 34.10-2012
and ECDSA Signature Schemes

Trieu Quang Phong, Nguyen Quoc Toan

Abstract

The purpose of this article is to provide two security comparisons between GOST
R 34.10-2012 and ECDSA. First, we compare GOST R 34.10-2012 with ECDSA via
two flaws of ECDSA analyzed by J. Stern, D. Pointcheval, J. Malone-Lee and N.P.
Smart. In particular, we obtain that GOST R 34.10-2012 is able to resist these two
flaws of ECDSA. Second, we consider the security of their variants in the random
oracle model. In more detail, J. Malone-Lee and N.P. Smart proposed two variants
of ECDSA and proved that those variants are secure in the random oracle model. In
a similar way, we also describe two variants of GOST R 34.10-2012 and then provide
the security proofs of these variants in the random oracle model.

Keywords: GOST R 34.10-2012, ECDSA, random oracle model, no-message
attack, ECTEGTSS, improved forking lemma.

1 Introduction

ECDSA [7] and GOST R 34.10-2012 [5] are considered as the secure and pop-
ular signature schemes. These schemes are the elliptic curve versions of DSA
and GOST R 34.10-94, respectively. However, there are not much research
comparing the efficiency and security of these schemes.

The common point between GOST R 34.10-2012 and ECDSA is that in
these two schemes the value of the hash function only depends on the signed
message. This implies that there is no security proof for these two schemes
in the random oracle model.
Related Works

In [3], E. Brickell, D. Pointcheval, S. Vaudenay, M. Yung introduced design
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validation for discrete logarithm based signature schemes, and then provide
the security proof for these schemes in the random oracle model using The
Improved Forking Lemma. Moreover, these authors presented two variants
DSA-I and DSA-II of as their example.

In [1], J. Malone-Lee and N.P. Smart described two variants ECDSA-II
and ECDSA-III of ECDSA which are secure against the no-message attack
in the random oracle model using The Improved Forking Lemma.

In [2], J. Stern, D. Pointcheval, J. Malone-Lee and N.P. Smart provided
two flaws of ECDSA, namely duplicate signature and malleability.
Our contributions

In this article, we will provide a comparison between GOST R 34.10-2012
and ECDSA by applying the method of J. Malone-Lee and N.P. Smart in [1]
for GOST R 34.10-2012. As a consequence, we obtain two variants GOST-I
and GOST-II of GOST R 34.10-2012 that are secure against the no-message
attack in the random oracle model. This result is similar to the result for
ECDSA in [1]. Besides, this article also provides another comparison between
GOST R 34.10-2012 and ECDSA via two flaws of ECDSA described in [2],
although these two flaws do not actually affect too much to the security of
ECDSA.
Organization

This article includes five Sections: Section 1 presents the introduction.
Section 2 provides the description of ECDSA and GOST R 34.10-2012. In
Section 3, we will present our comparison result between GOST R 34.10-2012
and ECDSA via two flaws of ECDSA described in [2]. Section 4 represents
the security proof results of J. Malone-Lee and N.P. Smart for two variants
ECDSA-II and ECDSA-III of ECDSA, and then we apply their method to
obtain two variants GOST-I and GOST-II of GOST R 34.10-2012 that are
secure against the no-message attack in the random oracle model. Finally,
our conclusion and future research are presented in Section 5.
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2 GOST R34.10-2012 and ECDSA Schemes

2.1 Notations

The signature schemes in this paper are the elliptic curve based signature
schemes. We now present the notations used in this paper before describing
these schemes in details.

p Prime number, p > 3.
Fp Finite prime field represented by a set of integers {0, 1, ..., p− 1}.
E(Fp) Elliptic curve defined on Fp.
|E(Fp)| The number of Fp-rational points on E(Fp).
O Zero point of the elliptic curve E(Fp).
n A prime divisor of |E(Fp)|.
c Cofactor, c = |E(Fp)|

n .
P Elliptic curve point of order n.
H,HGOST Hash function.
A Signer.
A Attacker.
∈R Generate a random integer.
d Integer number, the signature (private) key of signer A.
Q Elliptic curve point, the verification (public) key of signer A.
k Ephemeral secret value.
M Signer’s message.
(r, s) digital signature for the message M .
xR, yR Coordinates of elliptic point R.
log(x) Binary logarithm of x.

2.2 Description of GOST R 34.10-2012

GOST R 34.10-2012 is described in [5] as follow:

• Key Generation Algorithm (of signer A):

1. Select d ∈R [1, n− 1].
2. Compute Q = dP .
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3. The private key of signer A is d.

4. The public key of signer A is Q.

• Signing Algorithm (A signs on message M):

1. Calculate the message hash code M : h = HGOST (M).

2. Calculate an integer α, the binary representation of which is the
vector h, and determine e = α(mod n). If e = 0, then assign e = 1.

3. Generate a random (pseudorandom) integer k, satisfying the in-
equality: 0 < k < n.

4. Calculate R = kP = (xR, yR), and r = f(R) = xR mod n, if r = 0
return to Step 3.

5. Calculate s = rd+ ke mod n; if s = 0, return to Step 3.

6. The signature of A on M is (r, s).

• Verification Algorithm (the verified signature (r, s) on M of signer A):

1. Verifying whether r, s belong to [1, n− 1] or not.

2. Compute h = HGOST (M).

3. Calculate an integer Оҫ, the binary representation of which is the
vector h, and determine e = α(mod n). If e = 0, then assign e = 1.

4. Compute w = e−1mod n.

5. Compute u1 = sw mod n and u2 = −rw mod n.

6. Compute R = u1P + u2Q = (xR, yR) and v = xR mod n.

7. The signature is verified only if v = r.

2.3 Description of ECDSA

The signing and verification algorithms of ECDSA are described in [1] as
follow:

• Signing Algorithm (A signs on message M):

1. Select k ∈R [1, n− 1].
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2. Compute R = kP = (xR, yR), and r = f(R) = xR mod n, if r = 0
return to Step 1.

3. Compute h = H(M).

4. Compute s = k−1(h+ dr) mod n; if s = 0, return to Step 1.

5. The signature of A on M is (r, s).

• Verification Algorithm (the verified signature (r, s) on M of signer A):

1. Verifying whether r, s belong to [1, n− 1] or not.

2. Compute w = s−1 mod n.

3. Compute h = H(M).

4. Compute u1 = hw mod n and u2 = rw mod n.

5. Compute R = u1P + u2Q = (xR, yR) and v = xR mod n.

6. The signature is verified only if v = r.

3 Comparison of GOST R 34.10-2012 and ECDSA scheme
via two flaws of ECDSA

In this section, we compare GOST R 34.10-2012 and ECDSA via two flaws
of ECDSA in [2]. Our result is that GOST R 34.10-2012 scheme is able to
resist the two flaws of ECDSA.

3.1 Two flaws of ECDSA

We now consider two flaws of ECDSA specified in [2].The cause of these flaws
is that the function f in Step 2 of ECDSA signing algorithm has the prop-
erty: f(R) = f(−R),∀R ∈ E(Fp). In particular, the first flaw is duplicate
signature – for any two distinct messages m1 andm2, we always can generate
a signature which is valid for both messages, if we have a possible control on
the key generation. (It is worth noting that this flaw is out of scope of the
duplicate signature key selection attack (DSKS) defined in [9], since in the
DSKS attack the "duplicate signature" only needs a message.) The second
flaw is that from a signature (r, s) of a message m, one can derive a valid
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second signature of m, namely (r,−s).
The first flaw. For any two distinct messages m1 and m2, compute h1 =
H(m1) and h2 = H(m2). We next generate k ∈R {1, .., n − 1}, compute
r = f(kP ), and then set the private key to be

d = −((h1 + h2))/2r mod n,

with the public key being given byQ = dP . Finally, we compute s = k−1(h1+
dr) mod n. We can see that (r, s) is a valid signature for both messages
m1 and m2, with the public/ private key pair (Q, d). Indeed, it is obvious
that (r, s) is a valid signature for m1. On the other hand, from the ECDSA
verification algorithm, compute

R′ =
h2
s
P +

r

s
Q =

(h2 + rd)

k−1(h1 + dr)
P

= k
h2 − (h1+h2)

2

h1 − (h1+h2)
2

P = −kP.

The second flaw. From a valid signature (r, s) of a message m, one can
derive a valid second signature of m, namely (r,−s). Indeed, since (r, s) is a
valid signature on m, we have

r = f(
H(m)

s
P +

r

s
Q) = f(−(H(m)

s
P +

r

s
Q))

= f(
H(m)

−s
P +

r

−s
Q).

Therefore, (r,−s) is also a valid signature for m.

3.2 GOST R 34.10-2012 is resistant to two flaws of ECDSA

Before we show that GOST R 34.10-2012 can resist two flaws of ECDSA, let
us analyze the cause of these flaws from the property of the function f in
ECDSA.
The first flaw. In order to generate an ECDSA duplicate signature for two
distinct messages, one can choose k ∈R {1, .., n − 1}, and compute the first
component of duplicate signature r = f(kP ). After that the private key d
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and the second component of the duplicate signature are computed by solving
the following equation system:{

s = k−1(H(m1) + dr) mod n

s = −k−1(H(m2) + dr) mod n.

We note that this equation always has solution d = −H(m1)+H(m2)
2r mod n,

and s = k−1(H(m1) + H(m2)) mod n. Therefore, we can always find a
duplicate signature for two distinct messages by using this simple method.
The second flaw. In the ECDSA for verification algorithm for signature
(r, s) and messagem, we need to compute an elliptic point R = s−1H(m)P+
s(− 1)rQ and check the equality f(R) = r mod n. However, if the equation
f(R) = r mod n holds, then we also obtain the equation f(−R) = r mod n

holds. On the other hand, it is easy to compute the elliptic point −R from
(r,−s) andm (by −R = (−s)−1H(m)P+(−s)−1rQ). It implies that (r,−s)
is a valid signature for m when (r,−s) is a valid signature for m.

As above reason, we observe that, for any hash function, ECDSA still has
these two flaws. Here, we give an informal argument to show that GOST R
34.10-2012 is able to resist these flaws if the values of the hash function are
uniformly distributed.
GOST R 34.10-2012 is able to resist the first flaw. In order to make
a duplicate signature for two distinct messages m1 and m2, one will compute
d and s by solving an equation system. However, if we apply this method to
GOST R 34.10-2012, we will obtain the equation system:{

s = kHGOST (m1) + dr mod n

s = −kHGOST (m2) + dr mod n.

where k is preselected and r is derived from k. It is easy to see that this equa-
tion system has a solution (d, s) ifHGOST (m1) = e1 = −e2 = −HGOST (m2)mod n.
However, the number of pairs (e1, e2) that e1 = −e2 mod n is n − 1 (i.e,
(e1, e2) ∈ {(i, n−i)|i = (1, .., n−1)}), and the number of pairs (e1, e2) (where
e1, e2 ∈ {1, .., (n− 1)}) is (n− 1)2. Therefore, using the assumption that the
values of the hash function are uniformly distributed, we have the probabil-
ity of two distinct message satisfying HGOST (m1) = −HGOST (m2) is only

146



(n− 1)−1, this value is negligible because 2254 < n < 2256 or 2508 < n < 2512

in GOST R 34.10-2012. Therefore, the first flaw on GOST R 34.10-2012 is
negligible.
GOST R 34.10-2012 is able to resist the second flaw. We will show
that in the GOST R 34.10-2012 verification algorithm, if an elliptic point R is
derived from a signature (r, s) and a message m, then its opposite point can
not be derived from (r,−s) and m. Therefore, the property f(R) = f(−R)
(∀R ∈ E(Fp)) is no longer to be exploited to make the second flaw in GOST
R 34.10-2012. It implies that GOST R 34.10-2012 is able to resist the second
flaw. Indeed, if we have (r, s) and m such that{

R = wsP − wrQ
−R = −wsP − wrQ.

where w = HGOST (m)−1 mod n, then we obtain the equation

wsP − wrQ = −(−wsP − wrQ).

It is equivalent to
wrQ = O.

This equation does not hold (because gcd(wr, n) = 1 and Q is the elliptic
point of order n).

Moreover, even if we can find (r′, s′) such that r′ 6= r mod n and −R is
derived from (r′, s′) andm, then the verification is not valid. For example, one
can compute the elliptic point from (−r,−s) andm, and then the verification
equation will be whether f(−R) = −r mod n or not. This verification is not
valid, because

f(−R) = f(R) = r 6= −r mod n.
Hence, we obtain that GOST R 34.10-2012 is able to resist the second

flaw. �
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4 Constructing two variant of GOST R 34.10-2012 in
the way of ECDSA-II and ECDSA-III construction

4.1 Two variants of ECDSA

In this section, we will describe two variants of ECDSA in [1], and recall the
security results for these two variants.

4.1.1 ECDSA-II

The first variant of ECDSA is called ECDSA-II, which replace the hash
function evaluation h = H(m) with h = H(m||r). This variant is similar to
the Pointcheval-Vaudenay scheme defined in [8]. In [1], ECDSA-II is described
as follows.

• Signing Algorithm (A signs on message M):

1. Select k ∈R [1, n− 1].

2. Compute R = kP = (xR, yR), and r = f(R) = xR mod n, if r = 0
return to Step 1.

3. Compute h = H(M ||r).
4. Compute s = k−1(h+ dr) mod n; if s = 0, return to Step 1.

5. The signature of A on M is (r, s).

• Verification Algorithm (the verified signature (r, s) on M of signer A):

1. Verifying whether r, s belong to [1, n− 1] or not.

2. Compute w = s−1 mod n.

3. Compute h = H(M ||r).
4. Compute u1 = hw mod n and u2 = rw mod n.

5. Compute R = u1P + u2Q = (xR, yR) and v = xR mod n.

6. The signature is verified only if v = r.

Flaws in ECDSA-II. The only difference between ECDSA-II and ECDSA
is the hash function evaluation. Therefore, ECDSA-II can not resist the two
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flaws of ECDSA, because this difference does not effect to these two flaws.
The security proof for ECDSA-II. In [1], ECDSA-II is proved secure
against the no message attack in the random oracle model by using The
Improved Forking Lemma [3] and the property of the Elliptic Curve Trusted
El Gamal Type Signature Scheme (ECTEGTSS ) [1] – we will present these
notions in section 4.2.

Theorem 1 ([1]). Suppose an adversary A against ECDSA-II exists which
succeeds with probability ε > 4/p after q queries to the random oracle H,
then one can solve the discrete logarithm problem in E(Fp) using fewer than

150q log 12

ε

replays of A with probability greater than 1/100.

Note that, two flaws of ECDSA-II does not conflict with the security
against the no-message attack of this scheme. The reason is that an attacker
in the no-message attack scenario does not have other ability than knowledge
of the public data.

4.1.2 ECDSA-III

ECDSA-III is identical to ECDSA-II, except that replace f(R) = xR mod n

with f(R) = xR+yR. [1] shows that this alternation of ECDSA-III can resist
two flaws of ECDSA in [2].

• Signing Algorithm (A signs on message M):

1. Select k ∈R [1, n− 1].

2. Compute R = kP = (xR, yR), and r = f(R) = xR + yR, if r = 0
return to Step 1.

3. Compute h = H(M ||r).
4. Compute s = k−1(h+ dr) mod n; if s = 0, return to Step 1.

5. The signature of A on M is (r, s).

• Verification Algorithm (the verified signature (r, s) on M of signer A):
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1. Verifying whether r, s belong to [1, n− 1] or not.

2. Compute w = s−1 mod n.

3. Compute h = H(M ||r).
4. Compute u1 = hw mod n and u2 = rw mod n.

5. Compute R = u1P + u2Q = (xR, yR) and v = xR + yR.

6. The signature is verified only if v = r.

The security proof for ECDSA-III. Similar to ECDSA-II, ECDSA-III
is also proved secure against the no-message attack in the random oracle
model by using the Improved Forking Lemma [3] and the property of the
ECTEGTSS [1].

Theorem 2 ([1]). Suppose an adversary A against ECDSA-III exists which
succeeds with probability ε > 4/p after q queries to the random oracle H,
then one can solve the discrete logarithm problem in E(Fp) using fewer than

100q log 8

ε
=

300q

ε

replays of A with probability greater than 1/100.

4.2 Two variants of GOST R34.10-2012

In this section, we will present two variants of GOST R 34.10-2012, called
GOST-I and GOST-II. We also assume that the parameters p and n for these
variants satisfy:

• If 2254 < n < 2256 then p < 2256.

• If 2508 < n < 2512 then P < 2512.

4.2.1 GOST-I

In a similar way to gain ECDSA-II, we obtain GOST-I by replacing the
hash function evaluation h = HGOST (M) in GOST R 34.10-2012 by h =
HGOST (M ||r). This variant is described as follows.
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• Signing Algorithm (A signs on message M):

1. Generate a random (pseudorandom) integer k, satisfying the in-
equality: 0 < k < n.

2. Calculate R = kP = (xR, yR), and r = f(R) = xR mod n, if r = 0
return to Step 1.

3. Calculate the message hash code M : h = HGOST (M ||r).
4. Calculate an integer α, the binary representation of which is the

vector h, and determine e = α(mod n). If e = 0, then assign e = 1.
5. Calculate s = rd+ ke mod n; if s = 0, return to Step 1.
6. The signature of A on M is (r, s).

• Verification Algorithm (the verified signature (r, s) on M of signer A):

1. Verifying whether r, s belong to [1, n− 1] or not.
2. Compute h = HGOST (M ||r).
3. Calculate an integer Оҫ, the binary representation of which is the

vector h, and determine e = α(mod n). If e = 0, then assign e = 1.
4. Compute w = e−1mod n.
5. Compute u1 = sw mod n and u2 = −rw mod n.
6. Compute R = u1P + u2Q = (xR, yR) and v = xR mod n.
7. The signature is verified only if v = r.

The security proof for GOST-I. Here, we consider the security of GOST-
I against the no-message attack in the random oracle model by applying the
method provided in [1]. In order to consider the security of GOST-I, we will
recall the definition of ECTEGTSS in [1] and the Improved Forking Lemma
in [3].

According to [1], a signature scheme is an ECTEGTSS if it has the fol-
lowing properties:

i. The underlying group is from an elliptic curve E over a finite field Fp

whose order is equal to a prime n times a small cofactor c, i.e. |E(Fp)| =
c · n. A base point P ∈ E(Fp) of order n is given.
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ii. It uses two function G and H, with ranges G and H respectively. For
security analysis, the functions H is modelled as a random oracle and
G requires some practical property such as (multi)-collision-resistance
or (multi)-collision-freeness.

iii. There are three functions:

F1 : Zn × Zn × G ×H → Zn,
F2 : Zn × G ×H → Zn,
F3 : Zn × G ×H → Zn

satistfying for all (k, d, r, h) ∈ (Zn,Zn,G,H),

F2(F1(k, d, r, h), r, h) + dF3(F1(k, d, r, h), r, h) = k mod n.

iv. Each user has private and public keys d,Q such that Q = dP .

v. To sign a message m, the signer Alice picks k ∈ Z∗n, computes R =
kP and r = G(R). She then gets h = H(m||r) and computes s =
F1(k, x, r, h). The signature on m is (s, r, h), although (s, r) is enough
in practice since h may be recovered from m and r.

vi. To verify the signature (s, r, h) on a message m the verifier Bob com-
putes eP = F2(s, r, h), eQ = F3(s, r, h) and finally W = ePP + eQQ. He
then checks that r = G(W ) and h = H(m||r).

vii. The functions F2 and F3 must satisfy the following one-to-one condition:
for given r, eP and eQ, there exists a unique pair (h, s) such that

eP = F2(s, r, h) and eQ = F3(s, r, h).

Furthermore, this pair is easy to find.

Note that, if a signature scheme is an ECTEGTSS is also, it is also a
TEGTSS-II [3]. Therefore, we can apply the Improved Forking Lemma in [3]
for this scheme.
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Lemma 3 (The Improved Forking Lemma, [3]) Let us consider a prob-
abilistic polynomial time Turing machine A, called the attacker, and a proba-
bilistic polynomial time simulator B. If A can find with probability ε > 4/p a
verifiable tuple (M,R, S, T, U) with less than q queries to the hash function,
for a new messageM and for a U directly defined by H, then with a constant
probability 1/96, with (1+ 24q` log(2`))/ε replays of A and B with different
random oracles, A will output `+1 verifiable tuples (Mi, Ri, Si, Ti, Ui)i=1,..,`+1

such that the Ui are pairwise distinct, and all the Ri equal for TEGTSS-I
schemes but all the (Mi, Ti) equal for TEGTSS-II schemes.

The following result shows that GOST-I is an ECTEGTSS.

Lemma 4 The GOST-I signature scheme is an ECTEGTSS.

Proof. We will prove that GOST-I satisfies all properties of an ECTEGTSS.

i. The underlying group of GOST-I is from the elliptic curve E(Fp) whose
order is equal to a prime n times a cofactor c, and the base point is
P ∈ E(Fp) of order n. As our assumption, the parameters p and n for
GOST satisfy: the first case, p < 2256 and 2254 < n < 2256; the second
case, p < 2512 and 2508 < n < 2512. According to the Hasse Theorem, the
number of points on E(Fp) satisfies p−2

√
p+1 < |E(Fp)| < p+2

√
p+1.

Therefore, if |E(Fp)| = c · n, then c 6 16.

ii. GOST-I uses the hash function HGOST and the function f(R) = xR
(where R ∈ E(Fp)). In the random oracle model, HGOST is modelled
as a random function. Our task is to prove that the function f is `-
collision-resistance or `-collision- freeness. According to [1], if there exists
c + 1 integer numbers k1, .., kc+1 satisfying f(k1P ) = f(k2P ) = .. =
f(kc+1P ), then there must exist i, j ∈ {1, .., c+1} with i 6= j such that
ki = kj or ki = −kj. It implies that f is 2c + 1-collision-freeness. By
using (i), we have c 6 16, therefore f is 33-collision-freeness.

iii. GOST-I satisfies property (iii). Indeed, we consider

F1(k, d, r, h) = hk + dr,

F2(s, r, h) = sh−1,

F3(s, r, h) = −rh−1,
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compute

S = F2(F1(k, d, r, h), r, h) + d · F3(F1(k, d, r, h), r, h)

= F1(k, d, r, h)h
−1 − drh−1

= (hk + dr)h−1 − drh−1

= k.

It is easy to see that GOST-I satisfies properties (iv) to (vii) by using its
description and the definition of the functions F1, F2, F3.

Therefore, we obtain that GOST-I is an ECTEGTSS.

Proposition 5 Suppose an adversary A against GOST-I exists which suc-
ceeds with probability ε > 4/p after q queries to the random oracle H, then
one can solve the discrete logarithm problem in E(Fp) using

1 + 768q log 64

ε
=

1 + 4608q

ε

replays of A with probability greater than 1/100.

Proof. According to Lemma 4, GOST-I is an ECTEGTSS, therefore it is also
a TEGTSS-II. Applying Lemma 3 for GOST-I with the parameters M (the
message), S = s, U = HGOST (M, r) = h and l = 32, we obtain that after

1 + 768q log 64

ε
=

1 + 4608q

ε

replays of A with a constant probability 1/96 (greater than 1/100), A will
output 33 verifiable tuples (Mi, Ri, Si, Ti, Ui)i=1,..,33 such that the Ui are pair-
wise distinct, and (Mi, Ti) = (M, r). These 33 tuples correspond to 33 elliptic
points, R1 = k1P, .., R33 = k33P , and then we have f(R1) = .. = f(R33) = r.
Because f is 33-collision-freeness (i.e. there at most 32 distinct points such
that the values of the function f at these points are equal), there must exist
two points Ri, Rj ∈ {R1, .., R33} with i 6= j such that Ri = Rj. Therefore,
we have

k1 = k2 mod n,

or
h2(s1 − rd) = h1(s2 − rd) mod n,
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therefore
d = r−1(h2 − s1)−1(h2s1 − h1s2) mod n.

Hence, we recovered the discrete logarithm of the public key Q. �
Remark 1. It is similar to the proof of Proposition 1, we obtain that GOST-I
is able to resist two flaws of ECDSA in [2].
Remark 2. In the security proof of GOST-I, we can see that the reduction
needs 1+4608q

ε replays of A. However, in the security proof of ECDSA-II, the
reduction only needs 150q log 12

ε replays of A. This does not imply that GOST-I
is less secure than ECDSA-II. The reason is that the security of ECDSA is
only reduced to the hardness of the discrete logarithm problem in E(Fp) with
the size of p being 256 bit, but the security of GOST-I can be reduced to the
hardness of the discrete logarithm problem in E(Fp) with the size of p being
512 bit.

4.2.2 GOST-II

GOST-II is identical to GOST-I, except that replace f(R) = xR mod n with
f(R) = xR + yR. It is similar to GOST-I and GOST R 34.10-2012, this
scheme is able to resist two flaws of ECDSA in [2].

• Signing Algorithm (A signs on message M):

1. Generate a random (pseudorandom) integer k, satisfying the in-
equality: 0 < k < n.

2. Calculate R = kP = (xR, yR), and r = f(R) = xR + yR, if r = 0
return to Step 1.

3. Calculate the message hash code M : h = HGOST (M ||r).
4. Calculate an integer α, the binary representation of which is the

vector h, and determine e = α(mod n). If e = 0, then assign e = 1.

5. Calculate s = rd+ ke mod n; if s = 0, return to Step 1.

6. The signature of A on M is (r, s).

• Verification Algorithm (the verified signature (r, s) on M of signer A):

1. Verifying whether r, s belong to [1, n− 1] or not.
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2. Compute h = HGOST (M ||r).
3. Calculate an integer Оҫ, the binary representation of which is the

vector h, and determine e = α(mod n). If e = 0, then assign e = 1.

4. Compute w = e−1mod n.

5. Compute u1 = sw mod n and u2 = −rw mod n.

6. Compute R = u1P + u2Q = (xR, yR) and v = xR + yR mod n.

7. The signature is verified only if v = r.

The security proof for GOST-II. Here, we consider the security of GOST-
II against the no-message attack in the random oracle model.

Lemma 6 The GOST-II signature scheme is an ECTEGTSS.

Proof. The proof of this lemma is the same that of Lemma 4, except that the
proof for property (ii) will be changed. Note that, the equation x+y = t will
intersect the curve E(Fp) in at most three points. Therefore, the function
f(R) = xR + yR is 4-collision-freeness. Hence, GOST-II satisfies property
(ii), and then it is an ECTEGTSS. �

Proposition 7 Suppose an adversary A against GOST-II exists which suc-
ceeds with probability ε > 4/p after q queries to the random oracle H, then
one can solve the discrete logarithm problem in E(Fp) using

1 + 72q log 6

ε

replays of A with probability greater than 1/100.

Proof. It is the same proof of Proposition 5, we apply Lemma 3, Lemma 6
with the parameters M (message), S = s, T = r, U = HGOST (m, r) = h,
and l = 3. �
Remark 3. We note that the above security results of GOST-I and GOST-II
still holds if we use the assumption that c is a small number (such as c ≤ 16)
instead of the assumption in the start of Section 4.2.

156



5 Our Future Research

In this paper, we provided two security comparisons between GOST R 34.10-
2012 and ECDSA. The first, we compared GOST R 34.10-2012 with ECDSA
via two flaws of ECDSA analyzed in [2], although these two flaws do not
actually affect too much the security of ECDSA. In particular, we obtain
that GOST R 34.10-2012 is able to resist these two flaws of ECDSA. Second,
we presented another comparison between GOST R 34.10-2012 and ECDSA
by applying the method of J. Malone-Lee and N.P. Smart in [1] for GOST R
34.10-2012. As a consequence, we obtain two variants GOST-I and GOST-
II of GOST R 34.10-2012 that are secure against the no-message attack in
the random oracle model. This result is similar to the result for the variants
ECDSA-II and ECDSA-III of ECDSA in [1]. And, our comparison results
may be summarized in the following table.

In our future works, we want to consider the security of GOST-I, GOST-
II, ECDSA-II, ECDSA-III against the adaptively chosen message attack in
the random oracle model. Besides, another our concern is whether GOST
R 34.10-2012 is secure against the adaptively chosen message attack in the
generic group model [6].

Moreover, N. P. Varnovskii [4] presented a modification for GOST signa-
ture schemes (GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.10-
2012) which may be proved secure in the tamper-proof device model. Hence,
on the topic of "Comparisons of GOST R34.10-2012 and ECDSA Schemes",
we will study this modification on ECDSA.
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Approximate Common Divisor Problem and Lattice
Sieving

Kirill Zhukov

Abstract

In this paper we describe a heuristic algorithm for computing a common divi-
sor of two integers, one of these integers being known approximately. We reduce
this computational problem to solving a system of integer linear inequalities. We
solve this system with two unknowns using a method suggested by J. Franke and
T. Kleinjung for lattice sieving. There are cases in which our algorithm is applicable
and the best algorithm based on Coppersmith’s method is not applicable.

Keywords: approximate common divisor problem, lattice sieving, system
of integer linear inequalities, integer linear programming, Gaussian Volume
Heuristics

1 Introduction

Let us describe a partially approximate common divisor problem (PACDP).
Consider two integers N1 and N2. Assume that for some unknown integer
∆ integers N1 and N2 −∆ have common divisor A > |∆|. The goal is to
find A.

The PACDP was introduced in 2001 by N. Howgrave-Graham [2] who
used the continued fraction techniques and Coppersmith’s method.

An algorithm of S. Sarkar and S. Maitra [3] for solving the PACDP is
known to be the best. This algorithm is based on Coppersmith’s method
and finds a common divisor in time which is polynomial of n = max{[lnN1],

[lnN2]} provided that lA > lN1/A + l∆−
l2N1/A

lN1
, where lA, lN1/A, lN1

and l∆ are

the binary lengths of A, N1

A , N1 and ∆ respectively. In paper [4] a method
for computing a common divisor with continued fractions is proposed. The
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time complexity of that method is polynomial of n and c provided that
lA ≥ lN1/A + l∆ + 2− log2 c. Here we introduce a new algorithm, which has
the same restrictions but is faster in ln c times.

2 PACDP and a system of integer linear inequalities

Suppose that positive integers N1 and N2 −∆ have a nontrivial common
divisor A. Then the integers N1 and N2 have representations N1 = AB1

and N2 = AB2 + ∆.
Suppose that we want to find a divisor A > D, where D is some known

bound, in the PACDP with the inputs N1 and N2. It is easy to see that if

A ≥ D >

√
N1 |∆|
c

(1)

for some known positive real c, then:

0 < B1 <
N1

D
−cD < N2B1 −N1B2 < cD

(2)

Therefore, the vector (B2, B1) is a solution of a system of integer linear
inequalities

v1 ≤ xA ≤ v2, (3)

where v1 = (−cD, 0), v2 = (cD, N1

D ), A =
( −N1 0

N2 1

)
and x = (x, y) is

a vector of unknown variables. The solution of system (3) in terms of
geometry of numbers is equivalent to finding all points of a lattice

L = {(−N1, 0)x+ (N2, 1)y | x, y ∈ Z} ,

inside a rectangle

R =

{
(a, b) ∈ R2 | −cD ≤ a ≤ cD, 0 ≤ b ≤ N1

D

}
.

Each point (a, b) ∈ L ∩R corresponds to a solution of (3) with x = N2b−a
N1

,
y = b.
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In the next section we describe an algorithm of J. Franke and T. Klein-
jung that finds all points of two dimensional lattice inside a rectangle.
Using this algorithm one could easily formulate a practical procedure for
solving PACDP provided the number of solutions of system (3) is small.

Using the Gaussian volume heuristic we could estimate the number of
solutions of system (3) in Vol(R)

det(L) , where Vol(R) = 2cN1 is the volume of

rectangle R and det(L) = N1 is the determinant of the lattice L. Further
we will use the following assumption.

Assumption 1. The rectangle R contains no more than 2c points of the
lattice L.

Notice that for some special lattices and rectangles we can not use the
Gaussian volume heuristic to estimate the cardinality of their intersection.
But in our experiments all the random PACDP fulfill heuristic assump-
tion 1.

3 Algorithm of J. Franke and T. Kleinjung

For k ∈ N and vector v ∈ Rk, where R — a ring, we denote the i-th
coordinate as v(i), i ∈ 1, k (therefore v = (v(1), v(2), . . . , v(k))). For matrix
A =

(
a1
a2

)
∈ Z2,2, vectors v1,v2 ∈ Z2 and integers I1, I2 ∈ Z we define the

following subsets of R2.

L(A) = {a1x+ a2y | x, y ∈ Z} ,

R(v1,v2) =
{

v ∈ R2 : v1
(i) < v(i) < v2

(i) | i = 1, 2
}
,

S(I1, I2) =
{

v ∈ R2 | I1 < v(1) < I2

}
,

LS(A, I1, I2) = L(A) ∩ S(I1, I2).

Definition 1. We say that matrix B =
(
b1

b2

)
∈ Z2,2 is FK-reduced with

parameter I ∈ Z>0 if:
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1. −I < b1
(1) ≤ 0 and 0 ≤ b2

(1) < I,

2. b1
(2) > 0 and b2

(2) > 0,

3. b2
(1) − b1

(1) > I

We denote the set of FK-reduced with parameter I matrices as FKI(Z2,2).

Proposition 1. If matrix A =
(
a1
a2

)
∈ Z2,2 satisfies the restrictions

1. a1
(1) < 0 a2

(1) > 0,

2. a1
(2) ≥ 0 a2

(2) > 0,

3. a1
(1) + a1

(1) < 0.

then there exists the unique decomposition A = UB such that U ∈ Z2,2 is
invertible and B ∈ FKI(Z2,2).

Proposition 2. If B =
(
b1

b2

)
∈ FKI(Z2,2), then for any b ∈ L(B), such

that −I < b(1) < I and b(2) > 0, representation b = xb1 + yb2 has
non-negative coefficients x ≥ 0, y ≥ 0.

The proofs of propositions 1 and 2 are in [1]. The next algorithm is
reformulation of a reduction procedure from [1].

Algorithm 1 (FK reduction)

Require: I ∈ N, A =
(
a1
a2

)
: a1

(1) < 0, a2
(1) > 0, a1

(2) ≥ 0, a2
(2) > 0, a1

(1) + a1
(1) < 0.

Ensure: B ∈ FKI(Z2,2) : L(A) = L(B)
1: procedure Reduce(A, I)
2: b1 ← a1, b2 ← a2

3: while 1 do
4: b1 ← b1 + b|b1

(1)/b2
(1)|c · b2

5: if b1
(1) > −I then

6: b2 ← b2 + d(I − b2
(1))/b1

(1)e · b1

7: return
(
b1
b2

)
8: b2 ← b2 + b|b2

(1)/b1
(1)|c · b1

9: if b2
(1) < I then

10: b1 ← b1 + d(b1
(1) − I)/b2

(1)e · b2

11: return
(
b1
b2

)
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If a lattice basis is FK-reduced with parameter I, then we can succes-
sively enumerate all the lattice points inside a strip of a width I. The proof
of correctness of the next algorithm is given in [1].

Algorithm 2 (Next lattice point in a strip)

Require: I1, I2 ∈ Z : I1 < I2,
B ∈ FKI2−I1(Z2,2),
a ∈ LS(B, I1, I2)

Ensure: b ∈ LS(B, I1, I2) : b(2) = min{c(2) | c ∈ LS(B, I1, I2), c(2) > a(2)}
1: procedure StripNextPoint(B, a, I1, I2)
2: if a(1) ≥ I1 − b1

(1) then
3: b← a + b1

4: else if a(1) < I2 − b2
(1) then

5: b← a + b2

6: else
7: b← a + b1 + b2

8: return b
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Algorithm 3 (Next lattice point in a strip with step D)

Require: I1, I2 ∈ Z : I1 < I2,
B ∈ FKI2−I1(Z2,2),
a ∈ LS(B, I1, I2),
D ∈ Z

Ensure: b∈LS(B, I1, I2) : b(2) =min{c(2) | c∈LS(B, I1, I2), c(2) > a(2) +D}
1: procedure StripJumpPoint(B, a, I1, I2, D)
2: J ← a(2) +D
3: s← b−b2

(1)D/ det(B)c, t← bb1
(1)D/ det(B)c, b← a + sb1 + tb2

4: if b(1) ≥ I1 − b1
(1) then

5: b← b + b1

6: if b(2) > J then
7: l← min

{
b(b(1) − I1)/b2

(1)c, b(b(2) − J)/b2
(2)c
}

, b← b− lb2

8: else
9: l← min

{
b(I1 − b(1))/b1

(1)c, b(J − b(2))/b1
(2)c
}

, b← b + lb1

10: b← StripNextPoint(B, b, I1, I2)

11: else if b(1) < I2 − b2
(1) then

12: b← b + b2

13: if b(2) > J then
14: l← min

{
b(b(1) − I2)/b1

(1)c, b(b(2) − J)/b1
(2)c
}

, b← b− lb1

15: else
16: l← min

{
b(I2 − b(1))/b2

(1)c, b(J − b(2))/b2
(2)c
}

, b← b + lb2

17: b← StripNextPoint(B, b, I1, I2)

18: else
19: b← b + b1 + b2

20: return b

Remark 1. In the original description [1] of procedure StripJumpPoint
steps 7 and 14 are omitted. In that case the procedure may not work. We
prove the correctness of our version of procedure in the appendix.
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Algorithm 4 (Lattice points inside a rectangle)

Require: A =
(
a1
a2

)
: a1

(1) < 0, a2
(1) > 0, a1

(2) ≥ 0, a2
(2) > 0, a1

(1) + a1
(1) < 0

v1,v2 ∈ Z2 : R(v1,v2) 6= ∅
Ensure: L(A) ∩R(v1,v2)

1: procedure RectAllPoints(A, v1, v2)
2: T ← ∅
3: B← Reduce(A, v2

(1) − v1
(1))

4: b← bv(1)
2 /b

(1)
2 c · b2

5: b← StripJumpPoint(B, b, v
(1)
1 , v

(1)
2 , v

(2)
1 )

6: while b(2) < v
(2)
2 do

7: T ← T ∪ {b}
8: b← StripNextPoint(B, b, v

(1)
1 , v

(1)
2 )

9: return T

It easy to see that the complexity of Algorithm 4 is the sum of complex-
ities of Reduce procedure and StripJumpPoint procedure, and also the
complexity of StripNextPoint procedure multiplied by the number of
iterations of loop 6–8.

4 Algorithm for PACDP

Suppose that the naturals N1 and N2 are the inputs of PACDP and N1 >

N2. As mentioned in [2] the restriction N1 > N2 is not a limitation at all.
If N1 < N2 we solve PACDP with the inputs N1 and N2 −N1 · bN2/N1c.

If N1 > N2, then the matrix
(

N2 1
−N1 0

)
satisfies the restrictions from

Proposition 1 hence we can apply algorithm 4 to find all solutions of system
of integer inequalities (3). Then we have to check each solution of (3) for
being a solution for PACDP. In practical implementation we would like to
check each solution individually, rather than to collect all the solutions in
memory. This leads to the following algorithm for solving PACDP.
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Algorithm 5 (PACDP)

Require: N1 and N2 — natural numbers, N1 > N2; c,D — method’s real parameters
Ensure: W ⊂ N× Z — a set of pairs (A,∆), such that N1 = AB1, N2 = AB2 + ∆ and

A ≥ D >
√

N1|∆|
c

1: procedure SolvePACDP(N1, N2, c, D)
2: A←

(
N2 1
−N1 0

)
, v1 ← (cD, 0), v2 ← (cD, N1

D
)

3: W ← ∅
4: B← Reduce(A, v2

(1) − v1
(1))

5: b← bv(1)
2 /b

(1)
2 c · b2

6: b← StripJumpPoint(B, b, v
(1)
1 , v

(1)
2 , v

(2)
1 )

7: for i = 1, 2, . . . , 2c do
8: if b(2)|N1 then

9: B1 ← b(2), B2 ← N2B1−b(1)
N1

, A← N1

B1
, ∆← N2 − AB2

10: W ←W ∪ {(A,∆)}
11: b← StripNextPoint(B, b, v

(1)
1 , v

(1)
2 )

12: return W

Algorithm 5 is correct for inputs such that Assumption 1 holds. For
such inputs Algorithm 5 finds all the pairs (A,∆) satisfying condition (1).
Let n = max{[lnN1], [lnN2]}. The complexity of step 4 is O(n2) bi-
nary operations (the Euclidean algorithm). The complexity of loop 7–11
is O(cn lnn ln lnn) binary operations. Therefore the total complexity is
estimated as follows.

Proposition 3. If n = O(c) then the complexity of Algorithm 5 is

O(cn lnn ln lnn)

binary operations, where n = max{[lnN1], [lnN2]}.

5 Experements

We have implemented Algorithm 5 using the MPIR library [5] for bignum
arithmetic. We used the Microsoft Visual C++ compiler (64-bit). We ran
our program on a single core of an Intel Xeon processor (3.5 GHz).

In Table 1 lA denotes the length of the binary representation of A, l∆
denotes the length of ∆, lB denotes the lengths of B1 and B2, and the
parameter c satisfies condition the lA ≥ lB + l∆ + 2− log2 c.
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Table 1: Program implementation of Algorithm 5

lA lB log2 c l∆ Time, sec

2795 277
27
30

2543
2546

167
1340

3819 277
21
30

3561
3570

3.5
1689

The values from the first and the third lines of Table 1 are on the bound
of applicability of S. Sarkar’s and S. Maitra’s method. The values from the
second and the forth lines are out of the range of S. Sarkar’s and S. Maitra’s
method applicability. In each case the computing a common divisor with
our implementation took the time showed in the last column of Table 1.
In our experiments we’ve gained a speed up at least by a factor of 5 as
compared with the experiments of [4].
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A Correctness of Algorithm 3

Proof. Denote (µ, ν) = (0, D)A−1. After step 3 the equalities s = bµc,
t = bνc hold. Hence, after step 3 the estimates I1− b2

(1) ≤ b(1) < I2− b1
(1)

and b(2) < J hold.
Suppose b(1) ≥ I1 − b1

(1). We are going to show that the algorithm
is correct in this case (the correctness in the case b(1) < I2 − b2

(1) can
be proved in the same way). After step 5 the following inclusion holds
b ∈ L(B) ∩ S(I1, I2). Consider the cases b(2) > J and b(2) ≤ J separately.

If after step 5 the inequality b(2) > J holds, then for

l = min
{
b(b(1) − I1)/b2

(1)c, b(b(2) − J)/b2
(2)c
}

the vector b− lb2 has the second coordinate minimal with property b(2)−
lb

(2)
2 ≤ J . To see this consider the vector b′ which has the second coordinate

maximal with property b′(2) < b(2) − lb(2)
2 . According to Algorithm 2 the

vector b′ is the difference of b − lb2 and either b1 either b2 or b1 + b2.
If b′ = b − (l + 1)b2, then b(2) ≤ J by the definition of l. Else b′ =
a + sb1 + (t− l′)b2 (l′ = l or l′ = l + 1), hence b(2) ≤ J .

If after step 5 the inequality b(2) ≤ J holds, then for

l← min
{
b(I1 − b(1))/b1

(1)c, b(J − b(2))/b1
(2)c
}

the vector b + lb1 has the second coordinate maximal with property b(2) +
lb

(1)
1 ≤ J . To see this consider the vector b′′ which has second coordinate

minimal with property b′′(2) > b(2) + lb
(2)
1 . According to Algorithm 2 the

vector b′′ is the sum of b+lb1 and b1 or b2 (or both). If b′′ = b+(l+1)b1,
then b(2) > J by the definition of l. Else b′′ = a+ (s+ 1 + l′)b1 + (t+ 1)b2,

(l′ = l or l′ = l + 1), hence b′′(2) > J . Notice that in this case algorithm
outputs b′′.

Consider step 18. By the transition condition we have b(1) + b
(1)
1 < I1.

Since the matrix B is FK-reduced with parameter (I2 − I1), then b
(1)
1 >

I1− I2. Hence, b(1) < I2. In the same manner we get an estimate b(1) > I1.
Therefore b ∈ L(B) ∩ S(I1, I2). Using Algorithm 2 we calculate the next
point as on step 19. After step 19 the estimate b(2) > a(2) +D holds.
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Estimates of extremal codeword weights
of random linear codes over Fp

Vasily Kruglov, Andrey Zubkov

Abstract

We propose two-sided estimates for the typical values of minimal and maximal
non-zero codeword weights in random equiprobable linear code over Fp.

Keywords: random linear codes, weight spectrum, minimal and maximal
codeword weights

Let p be any fixed prime number. By FN
p = {X =

(x1, . . . , xN) : x1, . . . , xN ∈ Fp} we denote the N -dimensional linear space
over the prime field Fp. Any k-dimensional subspace L ⊂ FN

p we understood
as k-dimensional linear code.

Weight of the vector X = (x1, . . . , xN) ∈ FN
p is defined as the number

w(X) =
∑N

k=1 I{xk ̸= 0} of its non-zero coordinates.
By
(
FN

p

)
s

we denote the set of vectors of fixed weight s. For a linear code
L we denote by vs(L) = |L ∩

(
FN

p

)
s
| the number of codewords in L having

the weight s, the set of all vs(L) is called weight spectrum of code L. Then

v⩽s(L) =
s∑

u=1

vs(L) and v⩾s(L) =
N∑
u=s

vs(L)

are the numbers of non-zero codewords with the weight not exceeding s and
not smaller than s correspondingly.

The following statement follows from the results in [8].
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Theorem 1. If L ⊂ FN
p is a random linear k-dimensional code in FN

p having
the uniform distribution on the set of all k-dimensional codes in FN

p , then

Ev⩽s(L) =
pk − 1

pN − 1

s∑
u=1

Cu
N(p− 1)u,

Ev⩾s(L) =
pk − 1

pN − 1

N∑
u=s

Cu
N(p− 1)u.

If µ∗(L) = min{w(X) : X ∈ L\{0}} and µ∗(L) = max{w(X) : X ∈ L} are
the minimal and maximal weights of non-zero codewords in L, then

1

1 + pN−pk

pN−1 (p− 1)(Ev⩽s(L))−1
⩽ P{µ∗(L) ⩽ s} ⩽ Ev⩽s(L), (1)

1

1 + pN−pk

pN−1 (p− 1)(Ev⩾s(L))−1
⩽ P{µ∗(L) ⩾ s} ⩽ Ev⩾s(L). (2)

Note that Poisson limit theorems for random variables vs(L) under some-
what another assumptions on the distributions of random codes were proved
in [6], [4].

Equalities for Ev⩽s(L) and Ev⩾s(L) involve binomial sums. The inequal-
ity

Ev⩽s+1(L) ⩾
pk − 1

pN − 1

s+1∑
u=2

Cu
N(p− 1)u =

=
pk − 1

pN − 1

s∑
u=1

Cu
N(p− 1)u

N − u

u+ 1
(p− 1) ⩾ N − s

s+ 1
(p− 1)Ev⩽s(L)

(3)

shows that the sequence Ev⩽s(L) is growing almost geometrically if s <
cN p−1

p where N is large and c ∈ (0, 1) is separated from 1.
The binomial sums may be estimated by means of inequalities proved in

[7].

Theorem 2. Let H(x, r) = x ln x
r + (1 − x) ln 1−x

1−r , sgn(x) = x
|x| for x ̸= 0

and sgn(0) = 0, let {CN,r(m)}Nm=0 be increasing sequences defined as follows:
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CN,r(0) = (1− r)N , CN,r(N) = 1− rN ,

CN,r(m) = Φ

(
sgn

(
m
N − r

)√
2NH

(
m
N , r

))
, 1 ⩽ m < N.

Then for every m = 0, 1, . . . , N − 1 and for every r ∈ (0, 1)

CN,r(m) ⩽
m∑
u=0

Cu
Nr

u(1− r)N−u ⩽ Cn,r(m+ 1), (4)

and inequalities become equalities only for m = 0 or m = N − 1.

If r ∈ (0, 1) is fixed, then the function H(x, r) is convex (H ′′
x(x, r) =

1
x(1−x) > 0); it decreases monotonically from H(0, r) = − ln(1 − r) to
H(r, r) = 0 and further increases to H(1, r) = − ln r.

It follows from the Theorem 2 that for 0 < s < p−1
p

Φ

(
−
√
2NH

(
s
N , p−1

p

))
<

1

pN

s∑
u=0

Cu
N(p−1)u<Φ

(
−
√
2NH

(
s+1
N , p−1

p

))
.

(5)

Further, it follows from (1) that P{µ∗(L) ⩽ s} is close to 1 if Ev⩽s(L) is
large and P{µ∗(L) ⩽ s} is close to 0 if Ev⩽s(L) is small. So, typical values
of µ∗(L) for the random uniformly distributed linear code L correspond to
the interval where P{µ∗(L) ⩽ s} increases from small values to values close
to 1 and Ev⩽s(L) increases from small to large values.

In view of Theorem 1 and inequalities (5) we define values zk > 0 and
xk < 1− 1

p as solutions of equations

Φ
(
−
√
2zk
)
= 1

pk
, NH

(
xk, 1− 1

p

)
= zk. (6)

Statement 1. If k ⩾ 4 and k ln p ⩾ 2 ln(4eπk ln p), then

|zk − (k ln p− ln(4πk ln p))| < 1. (7)

and
Ev⩽Nxk−1(L) < 1 < Ev⩽Nxk+1(L). (8)
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Proof. To estimate the value of zk we use well-known (see [3]) inequalities(
1− 1

x2

)
1√
2π|x|

e−x2/2 < Φ(x) <
φ(x)

|x|
=

1√
2π|x|

e−x2/2, x < 0.

Then for the first equation in (6) we have(
1− 1

2zk

)
1√
4πzk

e−zk < Φ
(
−
√
2zk
)
=

1

pk
<

1√
4πzk

e−zk. (9)

If k ⩾ 4, then zk > 1 and ln
(
1− 1

2zk

)
> −1, so it follows from (9) that

zk +
1

2
ln(4πzk) < k ln p < zk +

1

2
ln(4πzk) + 1 .

According to the left inequality zk < k ln p; substituting this estimate into
the right inequality we obtain k ln p < zk + ln(4πk ln p) + 1, or

zk > k ln p− ln(4πk ln p)− 1.

Using this estimate along with the left inequality, we find that

zk < k ln p− ln (4π(k ln p− ln(4πk ln p)− 1)) =

= k ln p− ln(4πk ln p)− ln

(
1− ln(4eπk ln p)

k ln p

)
< k ln p− ln(4πk ln p) + 1

if k ln p ⩾ 2 ln(4eπk ln p). This proves (7).
Further, if NH

(
xk, 1− 1

p

)
= zk, then

Φ

(
−
√

2NH
(
[Nxk]
N , 1− 1

p

))
⩽

⩽ Φ

(
−
√
2NH

(
xk, 1− 1

p

))
=

1

pk
< Φ

(
−
√

2NH
(
[Nxk]+1

N , 1− 1
p

))
and

1

pk
< Φ

(
−
√
2NH

(
[Nxk]+1

N , 1− 1
p

))
<

1

pN

[Nxk]+1∑
u=0

Cu
N(p− 1)u,

1

pN

[Nxk]−1∑
u=0

Cu
N(p− 1)u < Φ

(
−
√
2NH

(
[Nxk]
N , 1− 1

p

))
⩽ 1

pk
.

This proves (8).
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So, approximate typical values s < N(p−1)
p of µ∗(L) for random uniformly

distributed k-dimensional code L in FN
p satisfy the equation

H
(

s
N , p−1

p

)
= 1

N (k ln p− ln(4πk ln p)) . (10)

In particular, if dimension k of random code L and dimension N of the
space FN

p are growing proportionally, then the typical value s of the minimal
nonzero codeword weight also is growing proportionally to N . Upper bounds
of typical values of µ∗(L) are close to lower ones because according to (3)
values of Ev⩽s(L) for typical values of µ∗(L) are increasing as geometric
progression.

The case of maximal codeword weight of random linear k-dimensional
code may be considered analogously. In this case instead of equations (6) we
should consider equations

Φ
(√

2zk
)
= 1− 1

pk
, NH

(
xk, 1− 1

p

)
= zk, xk > 1− 1

p . (11)

So, the solution zk of the first equation in (11) satisfy the same conditions
(7) and approximate typical values s > N(p−1)

p of µ∗(L) satisfy the equation

H
(

s
N , p−1

p

)
= 1

N (k ln p− ln(4πk ln p)) . (12)

Let us illustrate this results by some numerical and graphical examples.
Fig. 1 presents lower and upper bounds for probabilities P{µ∗(L) ⩽ s}

for p = 2, L ⊂ F128
2 and some k = dimL. Same bounds for L ⊂ F1024

2 are
presented on fig. 2.

The equation (10) leads to the following estimates of the typical values of
µ∗(L) for considered values of N and k :

k = 3N/4 k = N/2 k = N/4

N = 128 7.628 17.293 32.176
N = 1024 45.533 116.727 225.669
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Figure 1: From left to right: k = 3N/4, k = N/2, k = N/4.
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Figure 2: From left to right: k = 3N/4, k = N/2, k = N/4.

Fig. 3 and fig. 4 present lower and upper bounds for probabilities
P{µ∗(L) ⩾ s} for L ⊂ F128

2 and for L ⊂ F1024
2 correspondingly.
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Figure 3: From left to right: k = 3N/4, k = N/2, k = N/4.

The equation (12) leads to the following estimates of the typical values of
µ∗(L) :
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Figure 4: From left to right: k = 3N/4, k = N/2, k = N/4.

k = 3N/4 k = N/2 k = N/4

N = 128 120.371 110.706 95.823
N = 1024 978.466 907.272 798.330

Comparing inequalities (1) and (2) we can note that

Ev⩾s(L) =
2k − 1

2N − 1

N∑
r=s

Cr
N =

2k − 1

2N − 1

N−s∑
r=0

Cr
N = Ev⩽N−s(L) +

2k − 1

2N − 1
,

and thus lower and upper bounds for probability P{µ∗(L) ⩾ s} differ only
very slightly from lower and upper bounds for probability P{µ∗(L) ⩽ N−s}.

The estimates of the minimal weights of nonzero codewords may be used
to choose the parameters of McEliece cryptosystem [5]. If McEliece cryp-
tosystem is used and someone has intercepted single encrypted message, he
or she faces the problem of decoding for seemingly random linear code and
such a problem is equivalent ([2], p. 368) to a problem of finding codeword
of minimal weight in extended code with dimension increased by 1. It was
shown in [1] that general problem of determining minimal weight of codeword
for given code is NP -hard.

According to estimate (10) for the case of binary spaces FN
2 and linear

codes of dimension k = N/2, the typical values of minimal weight µ∗(L) of
non-zero codeword for random linear code L may be approximated by value
0.110023 . . . ·N that corresponds to propositions of well-known paper [2]
where probabilistic algorithm for finding vectors of minimal weight in random
binary (n, k)-code with minimal Hamming distance d between elements of
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code is suggested. One may compare values of parameters n, k, d from chapter
3.3.1 of [2] and numerical estimates from (10):

n k d µ∗(L) estim.
64 32 7 10.043
128 64 15 17.293
256 128 29 31.634
512 256 57 60.088
768 384 85 88.431
1024 512 113 116.727
1536 768 170 173.244
2048 1024 226 229.710
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Poisson Approximation for Non-Decreasing Runs in
Markov Chains

Alexander Minakov

Abstract

We consider a sequence X1, X2, . . . , Xn of random variables generated by a sta-
tionary irreducible and aperiodic Markov chain with state space A = {1, . . . , N},
N ≥ 1. We study the non-overlapping appearances of non-decreasing runs in the se-
quence X1, X2, . . . , Xn. By means of Stein’s method we estimate the total variation
distance between the distribution of the number of non-overlapping appearances of
non-decreasing monotone runs and Poisson distribution. As corollary for this result
we prove the appropriate limit theorem.

Keywords: non-decreasing runs, Poisson approximation, Stein’s method,
Markov chain, Jordan normal form, upper triangular matrix.

1 Introduction

Let X = (X1, X2, . . . , Xn) be a segment of stationary irreducible and
aperiodic Markov chain {Xa}a∈Z on a finite spaceA = {1, . . . , N}, N ≥ 1,
with transition probability matrix P = (pij)(i,j)∈A×A and stationary distri-
bution ~π = (πi)i∈A.

A non-decreasing run length s (s ≥ 2) with the beginning at local min-
imum at time t+ 1 is called an event

Et,s = {Xt > Xt+1 ≤ . . . ≤ Xt+s} .

Let I {B} be a indicator of the event B. We define the random variable

ξn (s) =
n∑
t=1

I {Et,s} , (1)
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which enumerates the non-overlapping appearances of non-decreasing runs
with length s ≥ 2, that begin at local minimum in the sequence X1, X2,
. . ., Xn.

In order to avoid edge effects and to facilitate calculations, we assume
that doubly infinite sequence {Xa}a∈Z is observed. Therefore at the be-
ginning or at the end of X1, X2, . . . , Xn the structure of runs is the
same.

In papers [4, 10], the non-overlapping appearances of increasing runs
were studied in random permutations. In the paper [9] the Poisson limit
theorem was proved for the number of increasing runs with length larger or
equal to some fixed length. The Poisson limit theorem for increasing runs
of fixed length was proved in the paper [3]. The author of the paper [7]
formulated multinomial normal theorem for the number of increasing runs
with fixed length. In the paper [8] the compound Poisson limit theorem was
proved for the number of non-decreasing runs. All theorems was formulated
for sequences of independent identically distributed random variables.

In this paper we construct an estimate of the variation distance between
distribution of random variable ξn (s) and Poisson distribution in the sta-
tionary irreducible and aperiodic Markov chain. As corollary for this result
we prove the appropriate Poisson limit theorem.

2 Main results

Let us recall some definitions. By d (Φ,Ψ) denote the variation distance
between distributions Φ and Ψ. For the distribution Φ and Ψ on the set
{0, 1, . . .} (see the book [2])

d (Φ,Ψ) =
1

2

∞∑
m=0

|Ψ {m} − Φ {m}| .

Let L (ζ) denote a distribution of random variable ζ.
Let M = (mij)(i,j)∈A×A be the matrix such that all the entries below

the main diagonal are zero and the other entries are equal to appropriate
elements of the matrix P (mij = pij, for i ≥ j). The matrix M defines
transition probabilities from i ∈ A to j ∈ A under the condition i ≤ j.
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By the Jordan canonical form theorem (see the book [5]) there exists

invertible matrix T = (tij)(i,j)∈A×A

(
and T−1 =

(
t′ij
)

(i,j)∈A×A

)
such that

M = T · J · T−1, (2)

where
J = Diag

{
Jd1 (pi1,i1) , Jd2 (pi2,i2) , . . . , Jdq

(
piq,iq

)}
(3)

is a block diagonal matrix and Jd1 (pi1,i1), . . ., Jdq
(
piq,iq

)
are Jordan blocks

of order d1, . . . , dq and d1 + . . .+ dq = N . The matrix J has q ∈ {1, . . . , N}
blocks.

Choose the matrix T such that the Jordan blocks are arranged from
greatest eigenvalue to least and then the subdiagonal 1 blocks are arranged
from longest to shortest inside each Jordan block. Suppose b ∈ {1, . . . , q}
first Jordan blocks have greatest eigenvalue that equals p:

pi1,i1 = . . . = pib,ib ≡ p. (4)

Let
K = P−M. (5)

The matrix K defines transition probabilities from i ∈ A to j ∈ A under
the condition i > j.

Suppose
~α = (α1, . . . , αN) = ~πKMs−1. (6)

The sum of vector’s components ~α equals the probability of the non-
decreasing run length s with the beginning at local minimum. Therefore,
for any t ∈ {1, . . . , n} and s ≥ 2 we have

P{Et,s} = α1 + . . .+ αN . (7)

Let λ be the expectation value of random value ξn (s). From (7) it
follows that

λ = Eξn (s) =
n∑
t=1

P{Et,s} = n ·P{Et,s} = n · (α1 + . . .+ αN) . (8)
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Let p
(t)
ij denote the t-order transition probability of the irreducible and

aperiodic Markov chain {Xa}a∈Z and p
(t)
(R)ij = πjp

(t)
ji πi

−1 the t-order transi-

tion probability of the reversed Markov chain {XR
a }a∈Z, for t ∈ N. Follow-

ing a coupling argument (see the paper [6]), we deduce

max
x∈A

max

{∑
y∈A

∣∣∣p(t)
xy − πy

∣∣∣,∑
y∈A

∣∣∣p(t)
(R)xy − πy

∣∣∣} ≤ 2%t,∀t ≥ 1, (9)

where

% = 1−min

{∑
y∈A

min
x∈A

pxy,
∑
y∈A

min
x∈A

p(R)xy

}
. (10)

Now we are ready to state the first main result of this work. Using
Stein’s method and results of the paper [1] we prove the following theorem.

Theorem 1. Let X1, X2, . . . , Xn be a segment of stationary
irreducible and aperiodic Markov chain {Xa}a∈Z on a finite space A =
{1, . . . , N}, N ≥ 1, with transition probability matrix P = (pij)(i,j)∈A×A
and stationary distribution ~π = (πi)i∈A, then

d
(
L
(
ξn (s)

)
, Pois (λ)

)
≤
(
1− e−λ

)
(2s+ 2r + 3)λ

n
+ 2λ%r+1

(
2 + 2%s+r+1 + %2s+r+1

)
, (11)

where λ defined in (8), % defined in (10), and r ≥ 0.
Follows from Theorem 1 we give limit theorem for random variable (1).
Theorem 2. Let X1, X2, . . . , Xn be a segment of stationary

irreducible and aperiodic Markov chain {Xa}a∈Z on a finite space A =
{1, . . . , N}, N ≥ 1, with transition probability matrix P = (pij)(i,j)∈A×A
and stationary distribution ~π = (πi)i∈A. if the following conditions hold

n, s→∞ ,
s

n
→ 0 nps−2N (s− 1)2N−1

(2N − 1)!
→ Q ∈ (0,∞) , (12)

then
L
(
ξn (s)

)
→ Pois

(
λ).
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3 Proof of Theorems 1 and 2

Following the paper [1] we consider the sum W =
∑

i∈I Yi of random
indicators {Yi|i ∈ I}. Let Γi be an arbitrary finite set of indices for any
i ∈ I. Γi consist of j 6= i such that Yj depends on Yi strongly. Let us define
the following variables

A∗ =
n∑
i=1

∑
j∈Γi∪{i}

P{Yi = 1}P{Yj = 1},

B∗ =
n∑
i=1

∑
j∈Γi

P{Yi = 1, Yj = 1},

C∗ =
n∑
i=1

E
∣∣∣E{(Yi −P{Yi = 1}

)
: σ
(
Yj, j 6∈ Γi

)}∣∣∣,
where σ

(
Yj, j ∈M

)
is a σ-algebra generated by

{
Yj, j ∈M

}
.

In the paper [1], the estimate of the total variation distance between
the sum W and Poisson distribution with expectation value θ = EW was
constructed:

d
(
L
(
W
)
, Pois (θ)

)
≤ 1− e−θ

θ
(A∗ +B∗) + max{1; 1.4θ−1/2}C∗. (13)

Let us use this estimate for random value (1). For any i ∈ {1, . . . , n}
and r ≥ 0 choose the set Γi = {i− s− r, . . . , i+ s+ r}\{i} and values

A∗ =
n∑
i=1

∑
j∈Γi∪{i}

P{Ei,s}P{Ej,s},

B∗ =
n∑
i=1

∑
j∈Γi

P{Ei,s, Ej,s},

C∗ =
n∑
i=1

E
∣∣∣E((I{Ei,s} −P{Ei,s}

)
|σ
(
I{Ej,s}, j 6∈ Γi

))∣∣∣.
The set Γi is selected such that Ei,s and Ej,s are ”weakly” dependent

whenever j ≥ i+s+ r or i ≥ j+s+ r for sufficiently large r. We note that
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r results from Markovian structure of the problem, which necessitates a
larger neighborhood that in of independent identically distributed random
variables X1, . . . , Xn.

Let the vector

~β(h) =
(
β

(h)
1 , . . . , β

(h)
N

)
= ~πKMs−1PhKMs−1. (14)

The sum of vector’s components β
(h)
1 + . . . + β

(h)
N equals to probability

the non-overlapping appearances of two non-decreasing runs with length s
at a distance h between the end of the one run and the beginning of the
other run.

We note that two non-decreasing runs with the beginning at local min-
imum have not common elements. In other words if I{Ei,s} = 1 then
I{Ej,s} = 0 for any j ∈ {i− s+ 1, . . . , i+ s− 1}. Hence

P{Ei,s, Ej,s} = 0 (15)

for any j ∈ {i− s+ 1, . . . , i+ s− 1}.
If j ≤ i− s or j ≥ i+ s then

P{Ei,s, Ej,s} = β
(h)
1 + . . .+ β

(h)
N . (16)

Using (7), (14), (15), and (16) we get

A∗ =n (2s+ 1) (α1 + . . .+ αN)2 , (17)

B∗ =2n
r∑

h=0

(
β

(h)
1 + . . .+ β

(h)
N

)
≤ 2n (r + 1) (α1 + . . .+ αN)2 , (18)

where r ≥ 0 results from Markovian structure of the problem.
Next, we turn our attention to the term C∗. Define an event Et,s (x, y) =

{Xt > Xt+1 ≤ . . . ≤ Xt+s > Xt+s+1|Xt = x,Xt+s+1 = y}, x, y ∈ A. It holds
true that σ

(
I{Ej,s}|j 6∈ Γi

)
⊆ σ

(
X1, . . . , Xi−s−1, Xi+s+1, . . . , Xn

)
, and us-
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ing the Markov property and definition (1), we obtain

C∗ ≤
n∑
i=1

E
∣∣∣E((I{Ei,s} −P{Ei,s}

)
|σ
(
X1, ..., Xi−s−r−1, Xi+s+r+1, ..., Xn

))∣∣∣
≤

n∑
i=1

∑
x,y∈A

E
∣∣∣E(I{Ei,s (x, y)}|σ

(
Xi−s−r−1, Xi+s+r+1

))
−P{Ei,s (x, y)}

∣∣∣
=

n∑
i=1

∑
z,w∈A

∑
x,y∈A

∣∣∣P{I{Ei,s (x, y)} = 1, Xi−s−r−1 = z,Xi+s+r+1 = w
}

−P{Ei,s (x, y)}P{Xi−s−r−1 = z,Xi+s+r+1 = w}
∣∣∣. (19)

We have (19):

P{Xi−s−r−1 = z,Xi+s+r+1 = w} = πzp
(2s+2r+2)
zw

and

P
{
I{Ei,s (x, y)} = 1, Xi−s−r−1 = z,Xi+s+r+1 = w

}
= p

(s+r+1)
(R)xz P{Ei,s (x, y)}p(r+1)

yw ,

where p
(t)
(R)xz = πzp

(t)
zx/πx is the transition probability of order t of the

reversed Markov chain. Furthermore, if we set

ε(t)
xy =

∣∣∣p(t)
xy − πy

∣∣∣ ε
(t)
(R)xy =

∣∣∣p(t)
(R)xy − πy

∣∣∣ ,
then∣∣∣P{I{Ei,s (x, y)} = 1, Xi−s−r−1 = z,Xi+s+r+1 = w

}
−P{Ei,s (x, y)}P{Xi−s−r−1 = z,Xi+s+r+1 = w}

∣∣∣
= P{Ei,s (x, y)}

∣∣∣p(s+r+1)
(R)xz p(r+1)

yw − πzp(2s+2r+2)
zw

∣∣∣
≤ P{Ei,s (x, y)}

(
ε

(s+r+1)
(R)xz ε(r+1)

yw + πwε
(s+r+1)
(R)xz + πzε

(r+1)
yw + πzε

(2s+2r+2)
zw

)
,
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and substituting this to relation (19), we get

C∗ ≤
n∑
i=1

∑
x,y∈A

P{Ei,s (x, y)}

×

∑
z,w∈A

ε
(s+r+1)
(R)xz ε(r+1)

yw +
∑
z∈A

ε
(s+r+1)
(R)xz +

∑
w∈A

ε(r+1)
yw +

∑
z,w∈A

πzε
(2s+2r+2)
zw

 .

Using (9), we obtain

C∗ ≤
n∑
i=1

∑
x,y∈A

P{Ei,s (x, y)}
(
4%s+2r+2 + 2%s+r+1 + 2%r+1 + 2%2s+2r+2

)
≤

n∑
i=1

∑
x,y∈A

P{Ei,s (x, y)}2%r+1
(
2 + 2%s+r+1 + %2s+r+1

)
= 2λ%r+1

(
2 + 2%s+r+1 + %2s+r+1

)
,

(20)

where λ is defined in (8).
Now we formulate the lemma in which we calculate the expectation

value of random value ξn (s).
Lemma 1.

λ = Eξn (s) = n ·
N∑
l=1

N−1∑
k=1

wk,l

N∑
t=k+1

πtpt,k, (21)

where for any k ≤ l:

wk,l =

q∑
r=1

d1+...+dr∑
j=d0+d1+...+dr−1

t′j,l

j∑
i=1

tk,ip
s−j+i−d0−d1−...−dr−1
ir,ir

(
s−1

s−j+i−d0−d1−...−dr−1

)
,

where d0 ≡ 1, and for any k > l:

wk,l = 0.
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Proof of Lemma 1 you can see in Appendix.
If we combine (17), (18), (20), and the results of Lemma 1 with (13),

we get the estimate (11). This completes the proof of Theorem 1.
Let us prove that under conditions of Theorem 2 λ is bounded above.

λ = n ·
N∑
l=1

N−1∑
k=1

N∑
t=k+1

πtpt,k

q∑
r=1

d1+...+dr∑
j=d0+d1+...+dr−1

t′j,l

×
j∑
i=1

tk,ip
s−j+i−d0−d1−...−dr−1
ir,ir

(
s−1

s−j+i−d0−d1−...−dr−1

)
≤ n

(
s−1
s−2N

)
·

q∑
r=1

ps−2N
ir,ir

·
N∑
l=1

N−1∑
k=1

N∑
t=k+1

πtpt,k

d1+...+dr∑
j=d0+d1+...+dr−1

t′j,l

j∑
i=1

tk,i ≡ λ′.

Using (4) we isolate summands depend on eigenvalue p:

λ′ = n
(
s−1
s−2N

)
ps−2Nb ·

b∑
r=1

N∑
l=1

N−1∑
k=1

N∑
t=k+1

πtpt,k

d1+...+dr∑
j=d0+d1+...+dr−1

t′j,l

j∑
i=1

tk,i

+ n
(
s−1
s−2N

)
·

q∑
r=b+1

ps−2N
ir,ir

·
N∑
l=1

N−1∑
k=1

N∑
t=k+1

πtpt,k

d1+...+dr∑
j=d0+d1+...+dr−1

t′j,l

j∑
i=1

tk,i.

Note that under conditions s→∞ and G = const > 0 we have(
s+G

s

)
=

(
s+G

G

)
=

(s+G)G

G!
(1 + o (1)) . (22)

Using (22) and under conditions (12), we obtain

λ′ = n · (s−1)
2N−1

(2N−1)!

(
ps−2Nb ·

b∑
r=1

N∑
l=1

N−1∑
k=1

N∑
t=k+1

πtpt,k

d1+...+dr∑
j=d0+d1+...+dr−1

t′j,l

j∑
i=1

tk,i

+

q∑
r=b+1

ps−2N
ir,ir

·
N∑
l=1

N−1∑
k=1

N∑
t=k+1

πtpt,k

d1+...+dr∑
j=d0+d1+...+dr−1

t′j,l

j∑
i=1

tk,i

)
(1 + o (1))

→ Q · b ·
b∑

r=1

N∑
l=1

N−1∑
k=1

N∑
t=k+1

πtpt,k

d1+...+dr∑
j=d0+d1+...+dr−1

t′j,l

j∑
i=1

tk,i ∈ (0,∞)
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then λ ∈ (0,∞).
In the definition of Γi we choose r such that r / s→ 1 under s→∞ (for

example, let r = s). Therefore using the estimate (11) and the inequality
% < 1, we obtain

d
(
L
(
ξn (s)

)
, Pois (λ)

)
≤
(
1− e−λ

)
(2s+ 2r + 3)λ

n
+ 2λ%r+1

(
2 + 2%s+r+1 + %2s+r+1

)
≤
(
1− e−λ′

)
(2s+ 2r + 3)λ′

n
+ 10λ′%r+1

= O
(

(s+ r) ps−2N (s− 1)2N−1
)

= o (1) .

The proof of Theorem 2 is complete.
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4 Appendix

Proof Lemma 1.
First we calculate components of vector (6) and then we substitute into

(8).
Using (2) and properties of Jordan matrices the following equalities is

true:
Ms−1 = T · Js−1 · T−1

and
Js−1 = Diag

{
Js−1
d1

(pi1,i1) , Js−1
d2

(pi2,i2) , . . . , Js−1
dq

(
piq,iq

)}
.

For brevity denote Js−1 by Y. Then multiply Y by T, and the result
denote by F:

T · Y = (fk,l)(k,l)∈A×A ≡ F.

Taking into account that Y is upper triangular matrix, we get the ex-
pression for (k, l)-th element of F:

fk,l =
l∑

i=1

tk,iyi,l.
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Now multiplying F by T−1 we obtain the matrix Ms−1:

Ms−1 = F · T−1.

Denote Ms−1 by W. Using fact that W is upper triangular matrix, we
get (k, l)-th element of W under conditions k ≤ l:

wk,l =
N∑
j=1

t′j,l

j∑
i=1

tk,iyi,j, (23)

and under conditions k > l:
wk,l = 0.

Now let’s find the formula for each Jordan block of the matrix Y. Sup-
pose r-th Jordan block in degree s− 1:

Js−1
dr

(pir,ir) = (pir,irE + H)s−1 , r ∈ {1, . . . , q},

where Edr is the identity matrix of size dr×dr, and Hdr is the matrix of size
dr × dr such that superdiagonal of Hdr consists of 1 and the other entries
are zeros:

H =


0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .

0 0 0 . . . 0 1
0 0 0 . . . 0 0

 ,

It follows from [5, § 3.2.5] that:

Js−1
dr

(pir,ir) =
s−1∑

h=s−dr

(
s− 1

h

)
phir,irH

s−h−1.

Therefore the (i, j)-th
(
i, j ∈ {1, . . . , dr}

)
element of Js−1

dr
(pir,ir) equals

to ps−j+i−1
ir,ir

(
s−1

s−j+i−1

)
. Notice that the matrix Y has block structure, we
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substitute the formula for yi,j into (23). Under condition k ≤ l we have:

wk,l =

d1∑
j=d0

t′j,l

j∑
i=1

tk,iyi,j +

d1+d2∑
j=d0+d1

t′j,l

j∑
i=1

tk,iyi,j + . . .

+

d1+...+dq∑
j=d0+d1+...+dq−1

t′j,l

j∑
i=1

tk,iyi,j

=

q∑
r=1

d1+...+dr∑
j=d0+d1+...+dr−1

t′j,l

j∑
i=1

tk,iyi,j

=

q∑
r=1

d1+...+dr∑
j=d0+d1+...+dr−1

t′j,l

j∑
i=1

tk,ip
s−j+i−d0−d1−...−dr−1
ir,ir

(
s−1

s−j+i−d0−d1−...−dr−1

)
,

where d0 ≡ 1.
Now we multiply the vector ~π by K is defined in (5):

~π ·K =

(
N∑
l=2

πlpl,1,

N∑
l=3

πlpl,2, . . . , πNpN,N−1, 0

)
.

And multiply the vector ~πK by W:

~α = ~πKW =
N−1∑
k=1

~Wk

N∑
l=k+1

πlpl,k.

Now let us write the formula for the entries of ~α:

αl =
N−1∑
k=1

wk,l

N∑
t=k+1

πtpt,k, (24)

where l ∈ {1, . . . , N}.
Using (8) and (24), we get:

λ = n ·
N∑
l=1

N−1∑
k=1

wk,l

N∑
t=k+1

πtpt,k.

This completes the proof of Lemma 1.
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Limit theorem for the image size of a subset
under compositions of random mappings

Andrey Zubkov, Alexandr Serov

Abstract

Let XN be a set consisting of N elements and F1, F2, . . . be a sequence of random
independent equiprobable mappings XN → XN . For a subset S0 ⊂ XN , |S0| = n,
we consider a sequence of its images St = Ft(. . . F2(F1(S0)) . . .), t = 1, 2 . . . The
conditions on n, t, N → ∞ under which the distribution of image sizes |St| is
asymptotically normal are presented.

Keywords: random equiprobable mappings, compositions of random
mappings, image sizes

1 Introduction

One of the well-known computationally hard problem is the search for
solution of the equation

G(x) = a, (1)

where G is a mapping of the finite set XN = {X1, . . . , XN} to itself such
that all known methods of computation of the value G−1(a) have complex-
ity comparable with the exhaustive search over the entire set XN , i. e. with
O(N) as N →∞.

M. E. Hellman [2] had proposed the universal (independent on the type
of the function G) method for searching the solutions of the equation (1)
permitting (after the preliminary construction of tables having volume
smaller than O(N) in time O(N)) to find a solution of equation (1) with
a high probability in time of the order smaller than O(N). This approach
had been called the time-memory tradeoff. Let R : XN → XN be some one-
to-one mapping and F (x) = R(G(x)), x ∈ XN . At the preliminary stage
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of the Hellman method and its later modifications the tables containing in
total O(N/t) pairs of the form (x, F t(x)), where F t(x) is the t-fold iteration
of the mapping F (x) = R(G(x)). These tables allow at the main stage to
find the solution of the equation (1) for any a ∈ XN by the computation of
O(N/n) values of R(G(x)). If n and t are of the order O(N 1/3), then the
size of tables constructed on the preliminary stage has the order O(N 2/3),
and at the main stage the search of a solution is performed by O(N 2/3)
computations of values R(G(x)) (all these estimates are given up to the
logarithmic factors).

We consider the version of the time-memory tradeoff method which
is called ”rainbow” table method. This method was proposed in [3], and
its simplified mathematical model is as follows: an initial subset S0 ⊂
XN , |S0| = n, is chosen and its images

S1 = F1(S0), S2 = F2(F1(S0)), . . . , St = Ft(Ft−1(. . . (F1(S0)) . . .)), (2)

are calculated, where F1, . . . , Ft are independent random mappings of the
set XN into itself having uniform distribution on the set ΣN , |ΣN | = NN ,
of all mappings XN → XN . Obviously, the sequences {St} and {|St|} are
Markov chains with non-increasing trajectories.

2 Main results

Assertion 1. If the images of the initial subset S0 ⊂ XN , |S0| = n, are
calculated according to the formulas (2), then the following identities are
true:

P
{
|St| = n

∣∣ |S0| = n
}

=

(
n−1∏
q=1

(
1− q

N

))t

, (3)

P
{
|St| = n− 1

∣∣ |S0| = n
}

=
n

2

(
1−

(
1− n− 1

N

)t)(n−2∏
q=1

(
1− q

N

))t

.

(4)
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Assertion 2. If n = CN 1/3, then

1− C2

2N 1/3
≤ P

{
|Si| = n

∣∣ |Si−1| = n
}
≤ e−

n(n−1)
2N <

< 1− C2

2N 1/3
+

C

2N 1/3
· C

3 + 4

4N 1/3
, (5)

C2

2N 1/3

(
1− C2 + 2/C

2N 1/3

)
≤ P

{
|Si| = n− 1

∣∣ |Si−1| = n
}
≤

≤ C2

2N 1/3

(
1− C2

2N 1/3
+
C(C3 + 16)

8N 2/3
− C3

2N

)
, (6)

P
{
|Si| < n− 1

∣∣ |Si−1| = n
}
≤
C
(
C3 + 2

)
4N 2/3

. (7)

Let

p0(n) = P
{
|S1| = n

∣∣ |S0| = n
}
, p1(n) = P

{
|S1| = n− 1

∣∣ |S0| = n
}
,

p2(n) = P
{
|S1| < n− 1

∣∣ |S0| = n
}
.

(8)

Assertion 3. If n = CN 1/3, then

1− p0(2) < 1− p0(3) < . . . < 1− p0(n) 6
C2

2N 1/3
, (9)

C
(
C3 + 2

)
4N 2/3

≥ p2(n) > p2(n− 1) > . . . > p2(3) > p2(2). (10)

Theorem 1. If n, m, t, N →∞ in such a way that n has the order N 1/4

and m = o(n), then for any fixed x ∈ R and

t = 2N

(
1

m
− 1

n

)
+ (1 + o(1))x

2N√
3

√(
1

m3
− 1

n3

)
,

the following relation is true:

P

{
|St| ≤

2nN

n t+ 2N

}
→ Φ(x) ,

where Φ(x) is the standard normal distribution function.
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3 Proofs

Proof of assertion 1. Since the sequence |S0|, |S1|, . . . is non-increasing,
then

{|St| = n, |S0| = n} =
t−1⋂
i=0

{|Si+1| = n, |Si| = n} .

As P
{
|Si+1| = n

∣∣ |Si| = n
}

=
n−1∏
q=1

(
1− q

N

)
for any i = 0, 1, . . ., then (3)

follows from the independence of random mappings F1, . . . , Ft.

In order to prove the equality (4) we consider the random variable
τn = min{j : |Sj| < n} supposing that {|S0| = n}. According to the to-
tal probability law, taking into account that under condition {|S0| = n}
the events {τn = i}, i = 1, 2 . . ., are incompatible and the sequence |Si| is
non-increasing, we find:

P
{
|St| = n− 1

∣∣ |S0| = n
}

=
t∑
i=1

P
{
τn = i, |St| = n− 1

∣∣ |S0| = n
}
.

(11)

Due to the Markov structure of the sequence |St| the items in (11) have
the form

P
{
τn = i, |St| = n− 1

∣∣ |S0| = n
}

= P
{
|Si−1| = n

∣∣ |S0| = n
}
×

×P
{
|Si| = n− 1

∣∣ |Si−1| = n
}
P
{
|St| = n− 1

∣∣ |Si| = n− 1
}
. (12)

The first and the last factors may be calculated by the formula (3).
To find P

{
|Si| = n− 1

∣∣ |Si−1| = n
}

we will assume without loss of gen-
erality that Si−1 = {1, . . . , n}. Then

P {|Si| = n− 1 | |Si−1| = n} = P
{
|Fi({1, . . . , n})| = n− 1

}
=

= P

 ⋃
16k<j6n

{Fi(k)=Fi(j), Fi(u) 6=Fi(v), 1 ≤ u < v ≤ n, (u, v) 6= (k, j)}

 .
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Here we have a union of C2
n incompatible events, the probabilities of these

events do not depend on k and j. Further,

P{Fi(1) = Fi(2), |{Fi(2), . . . , Fi(n)}| = n− 1} =
1

N

n−2∏
q=1

(
1− q

N

)
,

therefore

P
{
|Si| = n− 1

∣∣ |Si−1| = n
}

=
n(n− 1)

2N

n−2∏
q=1

(
1− q

N

)
. (13)

Then, according to (11), (12) and (13),

P
{
|St| = n− 1

∣∣ |S0| = n
}

=

=
t∑
i=1

(
n−1∏
q=1

(
1− q

N

))i−1(n−2∏
q=1

(
1− q

N

)) n(n− 1)

2N

(
n−2∏
q=1

(
1− q

N

))t−i

=

=
n(n− 1)

2N

(
n−2∏
q=1

(
1− q

N

))t t∑
i=1

(
1− n− 1

N

)i−1
=

=
n

2

(
n−2∏
q=1

(
1− q

N

))t(
1−

(
1− n− 1

N

)t)
.

Thus the equality (4) is proved.

Proof of assertion 2. To prove two-sided estimate (5) we use inequalities

1−
∑k

i=1
xi 6

k∏
i=1

(1− xi) 6 exp

{
−
∑k

i=1
xi

}
6

6 1−
∑k

i=1
xi +

1

2

(∑k

i=1
xi

)2

, x1, . . . , xk ∈ [0, 1),

(14)
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and equalities (3), (4) for t = 1:

P
{
|Si| = n

∣∣ |Si−1| = n
}

=
n−1∏
q=1

(
1− q

N

)
, (15)

P
{
|Si| = n− 1

∣∣ |Si−1| = n
}

=
n(n− 1)

2N

n−2∏
q=1

(
1− q

N

)
. (16)

Then it follows from (14) and (15) that

P
{
|Si| = n

∣∣ |Si−1| = n
}
≥ 1−

n−1∑
q=1

q

N
= 1− n(n− 1)

2N
> 1− C2

2N 1/3
(17)

and

P
{
|Si| = n

∣∣ |Si−1| = n
}
≤ exp

{
−

n−1∑
q=1

q

N

}
= exp

{
−n(n− 1)

2N

}
<

< 1− (n− 1)n

2N
+

(n− 1)2n2

8N 2
< 1− C2

2N 1/3
+

C

2N 2/3
+

C4

8N 2/3
.

Thus, two-sided inequality (5) is proved.
According to (16) and (14)

P
{
|Si| = n− 1

∣∣ |Si−1| = n
}
≥ n(n− 1)

2N

(
1−

n−2∑
q=1

q

N

)
=

=
n(n− 1)

2N
− n(n− 1)2(n− 2)

4N 2
>

n2

2N
− n

2N
− n4

4N 2
= (18)

=
C2

2N 1/3
− C(2 + C3)

4N 2/3
.

Again using (16) and (14), we get the upper estimate:

P
{
|Si| = n− 1

∣∣ |Si−1| = n
}
≤ n(n− 1)

2N
e
− 1

N

n−2∑
q=1

q

=
n(n− 1)

2N
e−

(n−1)(n−2)
2N <

<
n(n− 1)

2N

(
1− (n− 1)(n− 2)

2N

(
1− (n− 1)(n− 2)

4N

))
.
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For n = CN 1/3 we have

(n− 1)(n− 2)

N
>

(n− 2)2

N
>
n2

N
− 4n

N
= C2N−1/3 − 4CN−2/3

and
(n− 1)(n− 2)

N
<
n2

N
= C2N−1/3,

so

P
{
|Si| = n− 1

∣∣ |Si−1| = n
}
≤

≤ C2

2N 1/3

(
1−

(
C2

2N 1/3
− 2C

N 2/3

)(
1− C2

4N 1/3

))
=

=
C2

2N 1/3

(
1− C2

2N 1/3
− C3

2N
+

2C

N 2/3
+

C4

8N 2/3

)
.

This proves the inequality (6).
The last inequality follows from (5), (6) and total probability law:

P
{
|Si| = n

∣∣ |Si−1| = n
}

+ P
{
|Si| = n− 1

∣∣ |Si−1| = n
}

+

+ P
{
|Si| < n− 1

∣∣ |Si−1| = n
}

= 1 .

Proof of assertion 3. Indeed, for any i = 2, 3, . . . , n− 1 we have according
to (3)

1− p0(i)=1−
i−1∏
q=1

(
1− q

N

)
<1−

i∏
q=1

(
1− q

N

)
=1− p0(i+ 1) .

For n = CN 1/3 the last inequality in (9) follows from (5).
The first inequality in (10) coincides with the inequality (7) of the asser-

tion 2. Further, since p2(k) = 1− p0(k)− p1(k) for any k = n, n− 1, . . . , 3,
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we have

p2(k)− p2(k − 1) = p0(k − 1)− p0(k) + p1(k − 1)− p1(k) =

=
k − 1

N

k−2∏
q=1

(
1− q

N

)
+

(k − 1)

2N

(
k(k − 2)

N
− 2

) k−3∏
q=1

(
1− q

N

)
=

=
(k − 1)(k − 2)

N 2

(
k

2
− 1

) k−3∏
q=1

(
1− q

N

)
> 0.

That completes the proof of the assertion 3.

Proof of theorem 1. Consider the event

An,t =

{
|S0| = n,

t−1⋂
k=0

{|Sk+1| ≥ |Sk| − 1}

}
.

From (17) and (18) it follows, for example, that

P{An,t} > (1− p2(n))t = (p0(n) + p1(n))t >

>

(
1− n(n− 1)2(n− 2)

2N 2

)t
> 1− t n(n− 1)2(n− 2)

2N 2
> 1− tn4

2N 2

for t n4 ≤ 2N 2. Thus, if n, t,N → ∞, n < CN 1/4, t = o(N), then
P{An,t} → 1.

Consider the auxiliary Markov chain {S∗k}∞k=0 with S∗0 = |S0| = n and
transition probabilities

P{S∗k+1 = j |S∗k = j} = p0(j),

P{S∗k+1 = j − 1 |S∗k = j} = 1− p0(j) = P{|Sk+1| ≤ j − 1 | |Sk| = j} ≥
≥ P{|Sk+1| = j − 1 | |Sk| = j}, j = 2, . . . , n.

So, for any nonincreasing sequence n0 = n ≥ n1 ≥ . . . ≥ nt ≥ 1 such that
max0≤k<t(nk − nk+1) ≤ 1 we have

P{S∗k = nk (1 ≤ k ≤ t) |S∗0 = n} ≥ P{|Sk| = nk (1 ≤ k ≤ t) | |S0| = n},

198



and P{S∗k = nk (1 ≤ k ≤ t) |S∗0 = n} = 0 otherwise. Thus∑
n0=n≥n1≥...≥nt≥1

|P{S∗k = nk (1 ≤ k ≤ t) |S∗0 = n}−

−P{|Sk| = nk (1 ≤ k ≤ t) | |S0| = n}| =

= 2P

{
max
0≤k<t

(|Sk| − |Sk+1|) > 1

}
= 2(1−P{An,t}),

that is if n, t and N tend to ∞ in such a way that P{An,t} → 1, then the
total variation distance between the distributions of trajectories of Markov
chains {|Sk|}tk=0 and {S∗k}tk=0 tends to 0. Consequently, the total variation
distance between the distributions of any functions of these trajectories
tends to 0. Therefore in order to prove Theorem 1 we may consider the
chain {S∗k}tk=0 instead of the chain {|Sk|}tk=0.

Further, from the Markov property of the sequence {S∗j } it follows that
the random variables Tm = min{k > 1: S∗k = m}, m = 1, . . . , n, are defined
correctly, the differences δm = Tm−1 − Tm, m = 2, 3, . . . , n, are independent
and according to the definition of the chain {S∗k} have the geometric dis-
tribution

P{δj = k} = P{S∗k = j − 1, S∗k−1 = j
∣∣S∗0 = j} = λk−1j (1− λj),

where in view of (14)

λj =

j−1∏
v=1

(
1− v

N

)
∈
(

1− j(j−1)
2N , 1− j(j−1)

2N + j2(j−1)2
8N2

)
, j = 1, 2, . . . , n.

So,

Eδj =
1

1− λj
∈

 2N

j(j − 1)
,

2N

j(j − 1)
(

1− j(j−1)
4N

)
 , (19)

Dδj =
λj

(1− λj)2
∈

4N 2(1− j(j−1)
2N )

j2(j − 1)2
,

4N 2

j2(j − 1)2
(

1− j(j−1)
4N

)2
 . (20)
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Since E(δj − Eδj)
4 = Eδ4j − 4Eδ3jEδj + 6Eδ2j (Eδj)

2 − 3 (Eδj)
4 and the

moment-generating function of δj has the form

gδj (ez) = Eezδj =
∞∑
v=1

ezvλv−1j (1− λj) =
ez (1− λj)
1− ez λj

,

Eδkj = g
(k)
δj

(ez)
∣∣
z=0

, k = 1, 2, . . . ,

we find that Eδ3j =
λ2j+4λj+1

(1−λj)3 , Eδ4j =
(1+λj)(λ

2
j+10λj+1)

(1−λj)4 and

E(δj − Eδj)
4 =

λj(λ
2
j + 7λj + 1)

(1− λj)4
<

9

(1− λj)4
.

Using the Lyapunov inequality we obtain an estimate of the third ab-
solute central moment of δj

E|δj − Eδj|3 6 (E(δj − Eδj)
4)3/4 <

33/2

(1− λj)3
<

42N 3

j3(j − 1)3
(

1− j(j−1)
4N

)3 .
(21)

Thus, if n,m,N → ∞ in such a way that n is of the order N 1/4 and
m = o(n), then for Tm =

∑n
j=m+1 δj we have

ETm =
n∑

j=m+1

1

1− λj
= 2N

(
1

m
− 1

n

)(
1 +O

(
n2

N

))
,

DTm =
n∑

j=m+1

λj
(1− λj)2

=
4N 2

3

(
1

m3
− 1

n3

)
(1 + o(1)) ,

C3(m,n) =
n∑

j=m+1

E|δj − Eδj|3 < 10N 3

(
1

m5
− 1

n5

)
.

(22)

Remark 1. The estimate of ETm is the consequence of (19) and identities
n∑

j=m+1

2N

j(j − 1)
= 2N

n∑
j=m+1

(
1

j − 1
− 1

j

)
= 2N

(
1

m
− 1

n

)
,

1 ≤ 1

1− j(j−1)
4N

≤ 1

1− n2

4N

= 1 +O

(
n2

4N

)
.
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The estimate of DTm is the consequence of (20), the identities

n∑
j=m+1

4N 2(1− j(j−1)
2N )

j2(j − 1)2
=

n∑
j=m+1

(
4N 2

j2(j − 1)2
− 2N

j(j − 1)

)
,

n∑
j=m+1

4N 2

j2(j − 1)2
(

1− j(j−1)
4N

)2 =
n∑

j=m+1

4N 2
(

1 + j(j−1)
4N

)2
j2(j − 1)2

(
1− j2(j−1)2

16N2

)2
and the inequalities

n∑
j=m+1

4N 2

j2(j − 1)2
≥
∫ n+ 1

2

m+ 1
2

4N 2

j4
dj =

4N 2

3

(
1

(m+ 1
2)3
− 1

(n+ 1
2)3

)
≥ 4N 2

3

(
1

(m+ 1)3
− 1

n3

)
,

n∑
j=m+1

4N 2

j2(j − 1)2
≤
∫ n+ 1

2

m+ 1
2

4N 2

(j − 1)4
dj =

4N 2

3

(
1

(m− 1
2)3
− 1

(n− 1
2)3

)
≤ 4N 2

3

(
1

(m− 1)3
− 1

n3

)
.

Finally, the estimate C3(m,n) is the consequence of (21) and

n∑
j=m+1

42N 3

j3(j − 1)3
≤
∫ n+ 1

2

m+ 1
2

42N 3

(j − 1)6
dj =

42N 3

5

(
1

(m− 1
2)5
− 1

(n− 1
2)5

)
≤ 42N 3

5

(
1

(m− 1)5
− 1

n5

)
.

If 0 < ε < m
n < 1 − ε, then the Lyapunov ratio (see, for example,

[1, p. 188])
C3(m,n)

(DTm)3/2
= O(m3·3/2−5) = O(m−1/2) (23)

tends to 0 as N, n,m → ∞, m = o(n). According to the Lyapunov the-
orem the distribution of Tm is asymptotically normal with parameters
(ETm,DTm).
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The equalities {S∗t ≤ m} = {Tm ≤ t} allow to find the asymptotic
behavior of distribution of S∗t for N, n→∞,m = o(n), since

P

{
Tm − ETm√

DTm
≤ x

}
= P

{
Tm ≤ ETm + x

√
DTm

}
= P{S∗ETm+x

√
DTm
≤ m} → Φ(x),

(24)

where Φ(x) is the standard normal distribution function.
Denote by

u(n,m, x) = ETm + x
√

DTm (25)

(in what follows, for brevity, we shall simply write u). The right part of
(25) is an increasing function of m. Let

m = f(u) (26)

be the solution of the equation (25). Then

P{|S∗u| ≤ f(u)} → Φ(x).

So, it remains to find the required representation (26). To this aim we
use in (25) the values of ETm, DTm from (22), denoting the remainder
terms in these representations by c1, c2 respectively:

u = 2N

(
1

m
− 1

n

)
(1 + c1) + x

2N√
3

√(
1

(m3
− 1

n3

)
(1 + c2) .

Note that if N, n,m→∞, m = o(n), then N = o(un).
Sequential identity transformations of this formula give the cubic equa-

tion for the unknown 1
m :(

1

m

)3

− 3(1 + c1)
2

x2(1 + c2)

(
1

m

)2

+
1

x2

(
6(1 + c1)

2

(1 + c2)n
+

3u(1 + c1)

(1 + c2)N

)(
1

m

)
− 1

n3
− 3

(1 + c2)x2

(
u

2N
+

1 + c1
n

)2

= 0 .

We are interested in a root of this equation satisfying condition m →
∞, i. e. 1

m → 0 as n,N → ∞. This equation may be represented in the
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equivalent form

3

x2(1 + c2)

(
(1 + c1)

(
1

m

)
−
(
u

2N
+

1 + c1
n

))2

=
1

m3
− 1

n3
.

So, if m,n→∞, m = o(n), then the solution should have the form

m =
2nN(1 + c1)

u n+ 2(1 + c1)N
(1 + o(1)). (27)

Here N = o(un), so

m =
2nN

un+ 2N
(1 + o(1)).

The theorem is proved.
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The permutation group insight on diffusion property
of linear mappings

Dmitry Burov, Boris Pogorelov

Abstract

In this paper we investigate the properties of linear mappings related to the
structures of the group, generated by s-box layer and the group of key addition
layer, i.e. the translation group of a vector space. We propose new parameters which
characterize diffusion properties of linear mapping. We give a new characterization of
MDS linear mappings. Moreover MDS linear mappings which are used in connection
with resistance to linear and differential methods can be derived from permutation
group point of view. This fact shows that permutation group strategy is a general
approach for design block cipher primitives.

Keywords: block cipher, linear mapping, wreath product, exponentiation, struc-
tures for permutation groups, systems of blocks, metrics.

1 Introduction

Linear and differential methods are the most well known methods of block ci-
pher cryptanalysis. These methods had an influence on constructing of block
ciphers. In particular, differential characteristic and linear characteristic are
one of the main properties of s-boxes. Linear and differential branch num-
bers are the main characteristics of a linear mapping. Linear and differential
branch numbers are associated with linear and differential methods.

Furthermore, we consider XSL block ciphers. The round function of XSL
block ciphers consists of the following layers: key addition layer, nonlinear
s-box layer, linear layer. Let GXS be the group generated by s-box layer and
the group of key addition layer, i.e. the translation group of a vector space,
GXL be the group generated by linear mapping and the group of key addition
layer. We show that the group GXS is a subgroup of the wreath product
of symmetric permutation groups and a subgroup of exponentiation of the
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symmetric permutation group [11], [6]. Moreover there exist GXS-invariant
partitions and GXS-invariant metrics. Linear mapping is intended to diffuse
these structures in order to avoid some attacks. GXL-invariant metrics are
studied by Pogorelov B.A. and Pudovkina M.A. [13]. In this paper we study
the properties of a linear mapping from the point of view of diffusion of
structures of the group GXS. In particular we show that a linear mapping
optimally diffuses the partitions if only if it is MDS mapping. Nevertheless
even MDS mapping can be reducible. This leads to an imprimitivity of the
group GXL. The reducibility of a linear mapping are used in attacks on
Khazad block cipher [2], [3]. Implicitly the reducibility of a linear mapping
is used in attacks on Print [9], Zorro, Robin, iSCREAM [10], Midori [7].

2 Preliminaries

Recall some definitions. Let K and H be groups and suppose H acts on the
nonempty set Ω. Denote by Fun (Ω, K) the set of all functions from Ω into
K. The set Fun (Ω, K) with respect to a product:

(fg) (γ) = f (y) g (γ) , ∀f, g ∈ Fun (Ω, K) , γ ∈ Ω

is a group. The wreath product of K by H with respect to this action is
defined to be the semiderect product Fun (Ω, K) hH where H acts on the
group Fun (Ω, K) via

f g (γ) = f
(
γg
−1
)
, ∀f ∈ Fun (Ω, K) , γ ∈ Ω, g ∈ H.

Denote this group by K wr H.
The wreath product K wr H has two actions. Namely, if K acts on a set

∆, then we can define an action of K wr H on ∆× Ω by

(δ, γ)(f,u) =
(
δf(γ), γu

)
, ∀ (δ, γ) ∈ ∆× Ω,

where (f, u) ∈ K wr H. Denote the group (K wr H,∆× Ω) by K oH.
Suppose K acts on a set ∆. Define the action of the group K wr H on

the set Fun (Ω,∆) as follows:
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ϕ(γ)(f,x) = ϕ
(
γx
−1
)f(γx−1)

, ∀γ ∈ Ω.

Denote the group (K wr H,Fun (Ω,∆)) by K ↑ H.
Denote the symmetric permutation group on a finite set Ω of n elements

by Sn = S (Ω).
Let us do some remarks on the properties of these actions. Suppose

W= {W1, . . .,Wr}

is a partition of the set Ω and |Wi| = w, i = 1, . . . , r. Then the group
G = {g ∈ S (Ω) |Wg = W} is equal to the group S (W )oSr (strictly speaking
G is permutation isomorphic to S (W ) o Sr).

Suppose Ω is equal An for any set A, n ∈ N. Then the isometry group
of Hamming metric on the set An is equal to the group S|A| ↑ Sn (strictly
speaking the isometry group is permutation isomorphic to S|A| ↑ Sn). For
other properties of the wreath product actions we refer to [11], [6].

Denote by Vn the vector space of dimension n over the field GF (2). Sup-
pose vα : x 7→ x⊕α for all x ∈ Vn, where binary operation ⊕ is the operation
of vector addition. Denote by V +

n the translation group of the vector space
Vn, i.e.

V +
n = {vα|α ∈ Vn} .

Let s ∈ S (Vn) be a parallel action of substitutions s1, . . . , sm ∈ S (Vd),
n = md, i.e.

s : (α1, . . . , αm) 7→ (αs11 , . . . , α
sm
m ) , αi ∈ Vd, i = 1, . . . ,m.

Mapping s is used in XSL ciphers as s-box layer.
Let GLn (2) be the group of invertible (n× n)-matrixes. Each matrix

h ∈ GLn (2) induces the bijective linear mapping of the vector space Vn
by multiplying vector-rows by h. Denote this linear mapping also by h.
Further we use special submatrixes of matrix h. Namely, suppose n = md,
t, r ∈ {1, . . . ,m}, 1 ≤ i1 < · · · < it ≤ m, 1 ≤ j1 < · · · < jr ≤ m. Let
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h

(
i1, . . . , it
j1, . . . ,jr

)
be a (td× rd)-submatrix of the matrix h which is obtained

by deleting rows

{1, . . . , n} \ {(i1 − 1) d+ 1, . . . , (i1 − 1) d+ d, . . . , (it − 1) d+ d}

and columns

{1, . . . , n} \ {(j1 − 1) d+ 1, . . . , (j1 − 1) d+ d, . . . , (jr − 1) d+ d} .

Denote the vector (0, . . . , 0) ∈ Vd by 0d. For α = (α1, . . . , αm) ∈ Vn,
αi ∈ Vd, i = 1, . . . ,m, suppose wt (α) = |{i ∈ {1, . . . ,m} |αi 6= 0d}|. Usu-
ally diffusion property of linear mappings is characterized by the differential
branch number bnd (h) and linear branch number bnl (h) [5] defined as

bnd (h) = min
{

wt (α) + wt
(
αh
)
|α ∈ Vn\ {0}

}
,

bnl (h) = min
{

wt (α) + wt
(
α

th
)
|α ∈ Vn\ {0}

}
.

Here th is a transpose matrix. It is easily to show that bn (h) ≤ m+ 1. If
bnd (h) = m+ 1, then h is called MDS linear mapping. Besides if bnd (h) =
m+ 1, then bnl (h) = m+ 1 [4]. The differential and linear branch numbers
have influence on resistance of block ciphers with respect to differential and
linear cryptanalysis, respectively.

3 Structures of the group GXS

Recall that GXS is equal to 〈V +
n , s〉. Suppose

V (i1, . . . , it) =


 it−1︷ ︸︸ ︷

0d, . . . , 0d︸ ︷︷ ︸
i1−1

, α1, 0d, . . . , 0d, αt, 0d, . . . , 0d

 |α1, . . . , αt ∈ Vd

 .

Let V (i1, . . . , it) be a partition of cosets of V (i1, . . . , it) in the vector
space Vn. Since V +

n is a regular group and V (i1, . . . , it) < Vn, the partition
V (i1, . . . , it) is a system of blocks for the group V +

n . It is easily to show that
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the partition V (i1, . . . , it) is s-invariant. Therefore V (i1, . . . , it) is system
of blocks for the group GXS. Maximal subgroup of symmetric group S (Vn)
preserving partition V (i1, . . . , it) is the wreath product S (V (i1, . . . , it)) o
S2n−dt. Hence, GXS is a subgroup of the wreath product S (V (i1, . . . , it)) o
S2n−dt for all t = 1, . . . ,m − 1, 1 ≤ i1 < · · · < it ≤ m. Therefore, we have
the following proposition.

Proposition 1. For all m ≥ 2, d ≥ 2, 1 ≤ i1 < · · · < it ≤ m, t =
{1, . . . ,m− 1} the group GXS is imprimitive and V (i1, . . . , it) is a system
of blocks for the group GXS.

Let A = {A1, . . . , Au} be a partition of the set {1, . . . ,m}, |Ai| = m
u , i =

1, . . . , u. Define a weight of the vector α = (α1, . . . , αm) ∈ Vn, αi ∈ Vd, i =
1, . . . ,m, with respect to partition A by

wtA (α) = |{i ∈ {1, . . . , u} |∃j ∈ Ai, αj 6= 0}| .
Note if Ai = {i} , i = 1, . . . ,m, then wtA (α) is equal to wt (α) for

all α ∈ Vn. Let χA : Vn × Vn → {0, . . . , u+ 1} be a metric defined as
χA (α, β) = wtA (α⊕ β). The isometric group GA < S (Vn) of metric χA

is permutation isomorphic to the exponentiation S2
n
u ↑ Su. It is clearly that

χA (α, β) = χ (αs, βs) and χA (α, β) = χA (α⊕ γ, β ⊕ γ) for all α, β, γ ∈
Vn. Hence, we have the following proposition.

Proposition 2. For all partitions A = {A1, . . . , Au} of the set {1, . . . ,m},
|Ai| = m

u , i = 1, . . . , u , the metric χA is GXS-invariant.

For any p ∈ Sm denote by p̂ ∈ S (Vn) the action permutation p on Vn, i.e.
for all α = (α1, . . . , αm) ∈ Vn, αi ∈ Vd, i = 1, . . . , m, we have

p̂ : (α1, . . . , αm) 7→
(
α1p−1 , . . . , αmp−1

)
.

Proposition 3. Let A = {A1, . . . , Au} be a partition of the set {1, . . . ,m},
Ai =

{
i1, . . . , imu

}
⊂ {1, . . . ,m}, i = 1, . . . , u. Suppose g belongs to GA.

Then there exists a permutation pg ∈ Sm such that gp̂g ∈ S
(
V
(
i1, . . . , imu

))
o

S2n−dt.
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Proof. There exists p ∈ Sm such that

Ap
i =

{
(i− 1)

m

u
+ 1, . . . , (i− 1)

m

u
+
m

u

}
.

Let A′ = {A′1, . . . , A′u} be a partition of the set {1, . . . ,m} and A′i = Ap
i .

Hence, χA′ is the Hamming metric,
χA (α, β) = χA′

(
αp̂, β p̂

)
, GA = p̂GA′p̂

−1. Since GA′ is the group of
isometric of the Hamming metric, for any f ∈ GA there exist f1, . . . , fu ∈
S
(
Vdm

u

)
, r ∈ Su such that

f : (β1, . . . , βu)→
(
β
f
1r
−1

1r−1
, . . . , β

f
ur
−1

ur−1

)
, βi ∈ Vdm

u
, i = 1, . . . , u.

Hence, for any f ∈ GA′ there exist f1, . . . , fu ∈ S
(
Vdm

u

)
, q ∈ Sm such

that
f : (β1, . . . , βu)→

(
βf11 , . . . , β

fu
u

)q̂
and f q̂−1 ∈ S

(
Vdm

u

)
× · · · × S

(
Vdm

u

)︸ ︷︷ ︸
u times

< S
(
V
(
1, . . . , mu

))
o S2n−

n
u . Suppose

q′ ∈ Sm such that p−1q′ = qp−1.
Thus, for any g ∈ GA there exist f ∈ GA′, q, q′ ∈ Sm such that

gq̂′ = p̂f p̂−1q̂′ = p̂f q̂p̂−1 ∈ p̂S
(
V
(
1, . . . , mu

))
o S2n−

n
u p̂
−1 =

= S
(
V
(
i1, . . . , imu

))
o S2n−

n
u

4 Diffusion properties of linear mapping

Since partitionsV (i1, . . . , it) are GXS-invariant, diffusion properties of linear
mapping h are important. Suppose W=V (i1, . . . , it), W

′
=V (j1, . . . , jr).

Denote by ρ (a,b) the Euclid distance between real matrixes a,b ∈ Rn×m,
i.e. ρ (a,b) =

√∑
i,j (ai,j − bi,j)2. Diffusion property of linear mapping h

with respect to the pair of partitions (W,W′) is characterized by(
2(m−t)d × 2(m−r)d

)
-matrix cW,W′ (h) = ‖ci,j (h)‖, where

ci,j (h) =
∣∣W h

i ∩W ′
j

∣∣ .
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More precisely, we study the Euclid distance between matrix cW,W′ (h)
and the uniform

(
2(m−t)d × 2(m−r)d

)
-matrix

∥∥2(t+r−m)d
∥∥. The Euclid distance

is less the property linear mapping h is better. For example

ρ
(
cW,W (h) ,

∥∥∥2(t+r−m)d
∥∥∥)

is maximum, i.e. 2−tdcW,W (h) is a substitution matrix, if and only if h ∈
S (V (i1, . . . , it)) oS2(m−t)d, i.e. partition W is h-invariant. On the other hand,
h has optimal diffusion property under pair of partitions (W,W′) if

ρ
(
cW,W′ (h) ,

∥∥∥2(t+r−m)d
∥∥∥)

is the least. In the next proposition the lower bound for

ρ
(
cW,W′ (h) ,

∥∥∥2(t+r−m)d
∥∥∥)

is derived.

Proposition 4. Let h ∈ GLn (2), W=V (i1, . . . , it), W
′
=V (j1, . . . , jr),

1 ≤ i1 < · · · < it ≤ m, 1 ≤ j1 < · · · < jr ≤ m, n = md, m, d ≥ 2. Then we
have

ρ

(
cW,W′ (h) ,

∥∥∥2(t+r−m)d
∥∥∥
2(m−t)d,2(m−r)d

)
≥
{

0, if t+ r ≥ m,√
2md − 2(t+r)d, if t+ r < m;

ci,j (h) ∈

0, 2
td−rang h

 i1, . . . , it
j′1, . . . , j

′
m−r


 ,

where {j′1, . . . , j′m−r} = {1, . . . ,m} \ {j1, . . . , jr}, 1 ≤ j′1 < · · · < j′m−r ≤ m.

Proof. By definition we have

ci,j (h) =
∣∣W h

i ∩W ′
j

∣∣ =
∣∣∣(V (i1, . . . , it)⊕ δ)h ∩ (V (j1, . . . , jr)⊕ γ)

∣∣∣
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for appropriate δ = (δ1, . . . , δm), γ = (γ1, . . . , γm) ∈ Vn, δl, γl ∈ Vd, l =
1, . . . ,m. Therefore ci,j (h) is equal to the number of solutions of the linear
system

αh

(
i1, . . . , it

j′1, . . . , j
′
m−r

)
=
(
γj′1, . . . , γj′m−r

)
.

Hence, ci,j (h) ∈

0, 2
td−rang h

 i1, . . . , it
j′1, . . . , j

′
m−r


.

It is easily to show that ρ
(
cW,W′ (h) ,

∥∥2(t+r−m)d
∥∥) is minimal if and only

if rang h

(
i1, . . . , it

j′1, . . . , j
′
m−r

)
= min {td, (m− r) d} .

Suppose t + r ≥ m. If rang h
(
i1, . . . , it, j

′
1, . . . , j

′
m−r

)
= (m− r) d,

then ci,j (h) = 2(t+r−m)d for all i, j. Hence cW,W′ (h) =
∥∥2(t+r−m)d

∥∥ and
ρ
(
cW,W′ (h) ,

∥∥2(t+r−m)d
∥∥) = 0.

Suppose t+ r < m. Then we have

∣∣∣{(i, j) ∈
{

1, . . . , 2(m−t)d
}
×
{

1, . . . , 2(m−r)d
}
|ci,j (h) = 1

}∣∣∣ = 2md,∣∣{(i, j) ∈
{

1, . . . , 2(m−t)d
}
×
{

1, . . . , 2(m−r)d
}
|ci,j (h) = 0

}∣∣ =

= 2(2m−(t+r))d − 2md.

Hence,

ρ
(
cW,W′ (h) ,

∥∥2(t+r−m)d
∥∥) =

=
√

2dt
(
1− 2(t+r−m)d

)2
+
(
2d(m−r) − 2dt

) (
2(t+r−m)d

)2
=
√

2md − 2(t+r)d.

Therefore ρ
(
cW,W′ (h) ,

∥∥2(t+r−m)d
∥∥
2n−td,2n−tr

)
depends on rang of appro-

priate submatrix only.
Suppose

ϕm (t, r) =

{
0, if t+ r ≥ m,√

2md − 2(t+r)d, if t+ r < m.
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Corollary 5. The equalities

ρ

(
cR,R′ (h) ,

∥∥∥2(t+r−m)d
∥∥∥
2(m−t)d,2(m−r)d

)
=ϕm (t, r)

hold for all t, r ∈ {1, . . . ,m}, 1 ≤ i1 < · · · < it ≤ m, 1 ≤ j1 < · · · < jr ≤ m,
if and only if h is MDS linear mapping.

Proof. It is know [1] that h ∈ GLn (2) is MDS linear mapping if and only if
for all t ∈ {1, . . . ,m}, 1 ≤ i1 < · · · < it ≤ m, 1 ≤ j1 < · · · < jt ≤ m we
have

rang h

(
i1, . . . , it
j1, . . . , jt

)
= t.

Therefore h is MDS linear mapping if and only if for all t, r ∈ {1, . . . ,m},
1 ≤ i1 < · · · < it ≤ m, 1 ≤ j1 < · · · < jr ≤ m, we have

rang h

(
i1, . . . , it

j1, . . . , jm−r

)
= min {td, (m− r) d} .

Hence, h is MDS linear mapping if and only if the equalities

ρ

(
cR,R′ (h) ,

∥∥∥2(t+r−m)d
∥∥∥
2(m−t)d,2(m−r)d

)
=ϕm (t, r)

hold for all t, r ∈ {1, . . . ,m}, 1 ≤ i1 < · · · < it ≤ m, 1 ≤ j1 < · · · < jr ≤
m.

Corollary 5 gives a new characterization of MDS linear mappings. More-
over MDS linear mappings which are used in the connection with resistance
to linear and differential methods can be derived from permutation group
point of view. This fact shows that permutation group strategy is a general
approach for design block cipher primitives.

For any linear mapping h ∈ GLn (2) suppose

Bh =

{
(t, r)

∣∣∣∣∣ t+ r ≤ m,∃ 1 ≤ i1 < · · · < it ≤ m, 1 ≤ j1 < · · · < jr ≤ m,

ρ
(
cV(i1,...,it),V(j1,...,jr) (h) ,

∥∥2(t+r−m)d
∥∥
2(m−t)d,2(m−r)d

)
> ϕm (t, r)

}
.

In the following proposition the differential branch number of a linear map-
ping h is derived using the set Bh.

212



Proposition 6. For any h ∈ GLn (2) we have

bnd (h) =

{
min {t+ r| (t, r) ∈ Bh} , if Bh 6= ∅,

m+ 1, if Ah = ∅.

Proof. Let bnd (h) = b and b < m + 1. Then there exist t, r ∈ N, α ∈ Vn
such that t + r = b, wt (α) = t, wt

(
αh
)

= r. Therefore, there ex-
ist 1 ≤ i1 < · · · < it ≤ m,

∣∣∣V (i1, . . . , it)
h ∩ V (j1, . . . , jr)

∣∣∣ > 1 and

ρ
(
cV(i1,...,it),V(j1,...,jr) (h) ,

∥∥2(t+r−m)d
∥∥
2(m−t)d,2(m−r)d

)
> ϕm (t, r). Hence, we

have that (t, r) ∈ Bh and bnd (h) ≥ min {t+ r| (t, r) ∈ Bh} . On the other
hand, if (t0, r0) ∈ Bh, then there exists α ∈ Vn such that wt (α) = t0,
wt
(
αh
)

= r0. Hence, bnd (h) ≥ t0 + r0 ≥ min {t+ r| (t, r) ∈ Bh} .

Note that the linear branch number can be expressed similarly to the
differential branch number using matrix th.

5 The distances from the linear mappings to the groups
S (V (i1, . . . , it)) o S2n−dt and S

2
n
u
↑ Su

Since GXS is a subgroup of the wreath product S (V (i1, . . . , it)) o S2n−dt and
S2

n
u ↑ Su it is importantly to study the Hamming distances from h to the

groups S (V (i1, . . . , it)) o S2n−dt and S2
n
u ↑ Su. If the Hamming distance is

little, then it may be used for construction a distinguishing of cipher function.
Suppose

χW (h) = min {χ (h, g) |g ∈ S (W ) o S2n−dt} ,
where χ (h, g) is the Hamming distance between g and h, i.e. χ (g, h) =
2n −

∑
α∈Vn Ind

{
αg = αh

}
.

Suppose cW (h) = cW,W (h), W =
{
Wi|i = 1, . . . , 2n−dt

}
is a partition

of the vector space Vn and |Wi| = 2dt, i = 1, . . . , 2n−dt. It is known [12] that
for all substitution h ∈ S (Vn) we have
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χW (h) = 2n −max


2n−dt∑
i=1

ci,if (h) |f ∈ S2dt

 ,

χW (h) ≤ 2n − 2n−dt
⌈
22dt−n

⌉
.

In the following proposition we obtain χW (h) for linear mapping h ∈ GLn
using the rang of its submatrix.

Proposition 7. Let h ∈ GLn (2), t ∈ {1, . . . ,m− 1}, 1 ≤ i1 < · · · < it ≤
m, W = V (i1 . . . , it), n = md. Then we have

χW (h) = 2n − 2
n−rang h

 i1, . . . , it
i′1, . . . , i

′
m−t


,

where {i′1, . . . , i′m−t} = {1, . . . ,m} \ {i1, . . . , it}, 1 ≤ i′1 < · · · < i′m−t ≤ m.

Proof. Using proposition 4, we get ci,j (h) ∈

0, 2
td−rang h

 i1, . . . , it
i′1, . . . , i

′
m−t


,

i, j = 1, . . . , 2n−dt. It is easily to show that the matrix

2
rang h

 i1, . . . , it
i′1, . . . , i

′
m−t

−td
cW (h)

is a doubly stochastic matrix. Therefore, there exists g ∈ S2dt such that

ci,ig (h) = 2
td−rang h

 i1, . . . , it
i′1, . . . , i

′
m−t


, i = 1, . . . , 2dt.

Hence, we have

χW (h) = 2n −max
{∑2n−dt

i=1 ci,if (h) |f ∈ S2dt

}
=

= 2n −
∑2n−dt

i=1 ci,ig (h) = 2n − 2
n−rang h

 i1, . . . , it
i′1, . . . , i

′
m−t


.
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Since rang h

(
i1, . . . , it
i′1, . . . , i

′
m−t

)
= min {td, (m− t) d} , we have the follow-

ing corollary.

Corollary 8. Let h ∈ GLn (2) be an MDS linear mapping. Then for all
t ∈ {1, . . . ,m− 1}, 1 ≤ i1 < · · · < it ≤ m, we have that χW (h) achieves
the maximum possible value, i.e.

χW (h) = 2n − 2n−dt
⌈
22dt−n

⌉
.

In the following proposition we obtain lower bounds of a distances from a
MDS linear mappings to the groups GA.

Proposition 9. Let h ∈ GLmd be a MDS linear mapping, A = {A1, . . . , Au}
be a partition of the set {1, . . . ,m}, |Ai| = n

u . Then we have

χ (h,GA) ≥ 2n − 2n−
n
u .

Proof. Suppose χ (h,GA) is equal to r, g ∈ GA and χ (h, g) = r. Taking into
account proposition 3, we obtain that there exists permutation p ∈ Sm such
that gp̂ ∈ S

(
V
(
i1, . . . , inu

))
o S2n−

n
u . Notice that hp̂ is MDS linear mapping.

Using corollary 8, we get

χ (h, g) = χ (hp̂, gp̂) ≥ χW (hp̂) = 2n − 2
n
u .

From proposition 9 it follows that there are no good approximations for
MDS linear mapping in the group GA.
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The branch numbers of linear transformations in
encryption algorithms

Andrey Erokhin, Fedor Malyshev, Andrey Trishin

Abstract

We study the properties of linear medium of cipher related to resistance against
multidimensional linear cryptanalysis. We define the branch number of linear
medium of cipher transformation and the branch number of nonsingular matrix.

Keywords: symmetric encryption, branch number, multidimensional lin-
ear cryptanalysis

Introduction

C. Shannon [1] stated essential requirements of confusion and diffusion for
encryption algorithms. These requirements were necessary to ensure a prac-
tical security of a secret communication. By the 60th years of the twentieth
century his recommendations were implemented in emerging of SP -networks
([2], [3]). The SP -network contains interleaving transformations with "good"
local confusion and "weak" diffusion properties (S-boxes) and transforma-
tions with "good" diffusion and "weak" confusion properties (overall permu-
tations of bits).

The linear cryptanalysis and its dual differential cryptanalysis (see [4])
led to emergence of new block ciphers including XSL-ciphers [5]. The linear
and differential cryptanalysis techniques allowed deeper understanding of an
essence of diffusion property. A new diffusion criteria was found. The diffu-
sion property began to be measured by a numerical characteristic called the
linear medium’s coefficient of diffusion (LMCD) of cipher transformation [6].
Actually the linear medium of a cipher has two coefficients of diffusion asso-
ciated with the linear and differential cryptanalysis. The related terms are
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the linear medium’s linear coefficient of diffusion (LMLCD) and the linear
medium’s differential coefficient of diffusion (LMDCD) of cipher transfor-
mation. In this paper we will consider only the LMLCD (in short, LMCD).
Its clear definition will be given later (in section 2.1).

Usually the LMLCD and the LMDCD may be estimated relatively eas-
ily. So these coefficients are a good supplement to parameters such as the
length of encryption key and the number of rounds in a cipher [6], [5]. This
parameters characterize security of a cipher. Linear transformations (and
their matrices) in ciphers are characterized by the branch numbers called the
linear and differential branch numbers. The linear and differential branch
numbers are induced by the LMLCD and the LMDCD respectively. The
MDS matrices [7] have a maximum value of the branch numbers among all
nonsingular matrices of the same size.

Unfortunately, the linear and differential branch numbers do not distin-
guish substitution matrices used in SP -networks. All permutations have a
minimal value of the branch number equal to 2, but different permutations
have different diffusion properties (according to Shannon) as is demonstrated
by the avalanche effect. This paper aims to eliminate this disadvantage using
the multidimensional linear cryptanalysis [8].

This paper is organized as follows: Section 1 contains a description of the
s-dimensional linear cryptanalysis, s > 1, considered in [4], [6] for arbitrary
functional schemes defining mappings of binary vector spaces; in Section 2
we define (in connection with the multidimensional linear cryptanalysis) the
LMCD of cipher transformation. Also in Section 2 for nonsingular matrices
we define the matrix’s linear characteristic of diffusion (MLCD). The linear
branch number is a special case of MLCD.

1 Multidimensional linear cryptanalysis

The main aim of multidimensional linear cryptanalysis is to construct the
s-dimensional linear relation linking bits of plaintext and ciphertext. Cipher
transformations will be given further by the functional schemes. We give
below necessary notations related to the functional schemes.
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1.1. The functional scheme defining the cipher transformation

F : VN × VK → VM , F (a, z) = b, (a, z) ∈ VN × VK , (1)

may be represented by the command sequence of its program implementation.
Here VK = GF (2)K is a set of encryption keys, VN is a set of plaintexts, and
VM is a set of ciphertexts.

In the case of block ciphers M = N . Then a ∈ VN is a block of plaintext,
b ∈ VM is a block of ciphertext, z ∈ VK is a secret key. Then vectors
(a, z) ∈ VN × VK and b ∈ VM are the input and output of the functional
scheme, respectively.

Let
fi : Vni → Vmi

, i = 1, . . . , k, (2)

be nonlinear functional elements of the functional scheme defining the cipher
transformation (1). The argument (input) of the map fi is denoted by xi ∈
Vni, the image (output) of the map fi is denoted by yi ∈ Vmi

, yi = fi(xi), i =
1, . . . , k. All other operations of the functional scheme are linear. These
linear operations form the linear medium of cipher transformation.

We may assume that the mappings (2) are arranged in such way that
outputs of fi may be inputs of fj (perhaps indirectly, after linear operations)
only if i < j. As a result,

xj = cj(z, a, y1, . . . , yj−1) = zc∗j + ac0j + y1c1j + . . .+ yj−1cj−1,j, (3)

b = ck+1(z, a, y1, . . . , yk) = zc∗,k+1 + ac0,k+1 + y1c1,k+1 + . . .+ ykck,k+1, (4)

where cj : VK+N+
∑j−1

i=1 mi
→ Vnj , j = 1, . . . , k, k + 1, (5)

are linear (over GF (2)) mappings. Here cij, i = 0, 1, . . . , j − 1, j =
1, . . . , k, k + 1, are mi × nj matrices, m0 = N , nk+1 = M . Further,
c∗j, j = 1, . . . , k, k + 1, are K × nj matrices. Linear mappings and their
matrices are denoted by the same symbols.

Suppose round keys are added to intermediate blocks of text by means of
bitwise XOR operation. The linear mappings (5) are combined into united
linear mapping

C : VK+N+
∑k

i=1mi
→ V∑k

i=1 ni+M

220



and C is a (K + N +
∑k

i=1mi) × (
∑k

i=1 ni + M) matrix. The uppermost
"row" of matrix C is the identity matrix C0 = (c∗1, ... , c∗k, c∗,k+1). Denote
submatrix of matrix C consisting of "rows" (ci1, ... , cik, ci,k+1), i = 0, 1, ... , k,
by C̃. (Suppose cij = 0 for i > j .) The equations (3) and (4) may be written
in the form (z, a, y1, . . . , yk)C = (x1, . . . , xk, b), or

(a, y)C̃ + zC0 = (z, a, y)C = (x, b),

where (y1, . . . , yk) = y, (x1, . . . , xk) = x.
1.2. Additive method for constructing multidimensional linear

relations. Suppose s > 1. As in the articles [4], [6] a multidimensional
linear relation of cipher transformation (1) is given by linear mappings L′ :
VN → Vs, L : VK → Vs, L

′′ : VM → Vs and is represented as

bL′′ = aL′ + zL+ η, (6)

where b = F (a, z), L′′ 6= 0, η = η(a, z) ∈ Vs is a random vector of "discrep-
ancy", a ∈ VN is a uniformly distributed random vector, z ∈ VK is a fixed
key.

An efficiency of the relation (6) is characterized by the probability dis-
tribution of the vector η on the set Vs. The closer this distribution is to a
degenerate distribution, the more relation (6) is effective. Consider an en-
tropy H(η) [1] of probability distribution of the vector η on the set Vs as a
measure of uncertainty of the vector η.

The relation (6) is obtained by summing the local s-dimensional proba-
bility linear relations of mappings (2) for all i = 1, . . . , k, namely

yil
′′
i = xil

′
i + ηi, (7)

where yi = fi(xi), ηi = ηi(xi) ∈ Vs is a random vector of "discrepancy".
The entire set of relations (7) is given by the set L = ((l′i, l

′′
i ), i = 1, . . . , k)

which consists of binary ni× s and mi× s matrices defining linear mappings
l′i : Vni → Vs, l

′′
i : Vmi

→ Vs, i = 1, . . . , k, such that Vs =
∑k

i=1 Iml′′i . We will
call this set L as the system of the local s-dimensional probability linear
relations of cipher transformation (1).

The mappings l′i, l′′i , i = 1, ..., k, must satisfy two requirements. The first
requirement is to move the distribution of vectors ηi = xil

′
i + yil

′′
i near to
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degenerate distribution, that is to make these vectors more specific, therefore,
in particular Iml′i ⊆ Iml′′i . The entropy H(ηi) of the probability distribution
of the vector ηi on the set Vs is a measure of uncertainty of each random
vector ηi ∈ Vs, i = 1, . . . , k. A probability distribution of ηi is calculated
under the assumption that xi ∈ Vni are uniformly distributed.

The second requirement is the conformity of the system L =
((l′i, l

′′
i ), i = 1, . . . , k) that is using (3), (4) (but without using equations

yi = fi(xi), i = 1, . . . , k). We can reduce the sum

ηL =
k∑
i=1

ηi =
k∑
i=1

(xil
′
i + yil

′′
i )

to the form
η = aL′ + zL+ bL′′,

where L′ : VN → Vs, L : VK → Vs, L′′ : VM → Vs are some linear mappings.
This is equivalent to the solvability of equation

C̃

(
l′

L′′

)
=

(
L′

l′′

)
(8)

with respect toN × s andM×smatrices L′, L′′. In equation (8) the matrices
l′, l′′ consist of stacked matrices l′i, l′′i , i = 1, ... , k, respectively.

If the system L is conformal then we suppose L = C0

(
l′

L′′

)
. Using (8)

and the first requirement for mappings l′i, l′′i , i = 1, ... , k, we get ImL′ ⊆
ImL′′ = Vs. The set Ws of all conformal systems L = (l′, l′′) is a vector
space over the field GF (2). If the system L = (l′, l′′) is conformal then

ηL = xl′ + yl′′ =
k∑
i=1

(xil
′
i + yil

′′
i ) =

k∑
i=1

ηi = aL′ + zL+ bL′′ = η. (9)

1.3.About key recovery. If there exist the conformal system L = (l′, l′′)
and a set of plaintext and ciphertext pairs

(
a(j), b(j)

)
∈ VN×VM , j = 1, . . . , T

(zL is fixed) then using (9) we get T realizations of a random vector η in the
form

k∑
i=1

η
(j)
i =

k∑
i=1

(
x
(j)
i l
′
i + y

(j)
i l′′i

)
= a(j)L′ + b(j)L′′ + zL, j = 1, . . . , T. (10)
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Here b(j) = F (a(j), z); x(j)i and y(j)i are the input and the output of mapping
fi, i = 1, . . . , k, if a(j) is the input of functional scheme; η(j)i = x

(j)
i l
′
i + y

(j)
i l′′i .

If zL is correct (i.e. zL = z0L, where z0 is a true key) then the set of vectors
(10) must correspond to the probability distribution of random vector η owing
to the fact that cryptanalyst can get some key information. Usually several
first and/or last operations of entire cipher are not included in the cipher
transformation (1). In this case vectors a(j), b(j), j = 1, . . . , T , are expressed
through plaintext, ciphertext and certain subkeys. These subkeys can also
be determined.

The efficiency of a key recovery depends on a value σ =
∑

v∈Vs ε
2
v ≈ ln 2 ·

(s−H(η))/2s−1, where
{
pv = 1

2s + εv, v ∈ Vs
}
is a probability distribution of

vector η taking values in Vs. This probability distribution is estimated under
the assumption that random summands ηi, i = 1, . . . , k, are statistically
independent and xi ∈ Vni, i = 1, . . . , k, are uniformly distributed. Each of
these assumptions may be wrong. We do not have any theoretical results
confirming the closeness of computed (under our assumptions) distributions{

1
2s + ε̃v, v ∈ Vs

}
to true distributions. Therefore the closeness of ε̃v to εv,

v ∈ Vs, requires an experimental verification.
The smaller is the uncertainty of H(η) (or the greater σ) the less amount

of data is needed for a key recovery attack. Therefore we are interested in
numbers i ∈ {1, . . . , k} such that xil′i = fi(xi)l

′′
i for all xi ∈ Vni, particularly

l′i = 0, l′′i = 0. For such numbers a random vector ηi does not introduce an
uncertainty into η. Thus conformal systems L having a minimal value of
θL = |{i ∈ {1, . . . , k} |l′′i 6= 0}| are preferred.

2 The linear medium’s coefficient of diffusion
of cipher transformations and the branch
numbers of nonsingular matrices

2.1. In the case s = 1 the LMCD of cipher transformation (1) with linear
medium C is determined by the formula [6]

θ1(C) = min
L∈W1\{0}

θL. (11)
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The coefficient θ1(C) allows to compare different nonsingular linear transfor-
mations of the space Vn = GF (2)n by their cryptographic features.

Let the matrix Λ ∈ GL(n, 2) be used in so-called canonical XSL-cipher
action on Vn, n = m · κ. One round of this cipher consists of two transfor-
mations. The first transformation S is nonlinear, S = (π, . . . , π︸ ︷︷ ︸

κ

), π ∈ SVm.

The second transformation is a multiplication of vectors from Vn by the ma-
trix Λ from the right. Round keys of the canonical XSL-cipher are equal to
0. In the case of the canonical XSL-cipher a set W1 in (11) is replaced by

W
(0)
1 = {L = ((l′i, l

′′
i ), i = 1, ... , k)| ∀i ∈ {1, ... , k} : (l′i = 0⇔ l′′i = 0)}.

By Ct(Λ) we denote the linear medium of the canonical XSL-cipher with
t rounds. The branch number of matrix Λ is defined as ρ1,2(Λ) = θ1(C2(Λ)).
If the column l ∈ V ∗n is composed of columns l1, . . . , lκ ∈ V ∗m and w(l) =∣∣{j ∈ {1, . . . , κ}∣∣ lj 6= 0}

∣∣ then we can see that

ρ1,2(Λ) = min
l∈V ∗n \{0}

(w(l) + w(Λl)) . (12)

Indices 1 and 2 in the notation ρ1,2(Λ) correspond to s = 1 и t = 2. The
branch number ρ1,2(Λ) refers to the matrix Λ divided into κ strips of m rows
in each strip and into κ groups of m columns in each group. So the linear
branch number of nonsingular matrix is equal to LMCD of related XSL-
cipher with 2 rounds. Note that the equation (12) is contained in [5] as a
definition of the linear branch number of linear mappings.

Matrices Λ ∈ GL(n, 2) having large branch number ρ1,2(Λ) are preferable
from the viewpoint of a cryptographic design. Using definition (12) we get

2 6 ρ1,2(Λ) 6 κ+ 1. (13)

2.2. Let P ∈ GL(n, 2) be a substitution matrix, then according to (12)
ρ1,2(P ) = 2. Using (13) we can see that for nonsingular matrices 2 is the
smallest value of this characteristic. Thus the branch number ρ1,2(P ) does
not distinguish substitution matrices. This fact is a main disadvantage of
ρ1,2(P ).

Also this disadvantage takes place for sparse matrices, particularly for
matrices Λ such that Λ and Λ−1 have the same small number of 1 in each

224



row and in each column [9]. These matrices are used in different block ciphers
[10].

A set of characteristics ρ1,τ(P ) = θ1(Cτ(P )) = τ , τ > 2, does not change
the situation. But distinguishing of different permutations P ∈ Sn according
to the degree of diffusion (in the sense of Shannon) took place in a crypto-
graphic practice. Originally the diffusion properties of permutations P are
defined by the avalanche effect. Theorem 1 below describes optimal in this
sense permutations P . For these permutations pairs (i, P (i)), i = 1, . . . , n,
are edges of the generalized de Bruijn graphs [11].

To formulate the Theorem 1 we must introduce some notations. The
substitution π : Vn → Vn, x = (x1, . . . , xn) 7→ (y1, . . . , yn) = y, is called
significant if the following conditions hold: (i) yj depends significantly on xi
for all i, j ∈ {1, . . . , n}; (ii) xi depends significantly on yj for all i, j. The
SP -networks comprising significant substitutions are called canonical.

Other concept refers to directed graphs [11]. If there exists only one
directed path from i to j for any vertices i, j ∈ {1, . . . , n} and this path
contains r edges then directed graph Γ on n > 1 vertices is called ∂-graph of
order r > 1. The graph Γ+ dual to Γ is the ∂-graph of order r + 1. Recall
[12] that vertices of Γ+ are edges of Γ; graph Γ+ contains an edge (α, β) if
in graph Γ the end of edge α coincides with the beginning of edge β. If we
change the direction of all edges of ∂-graph Γ then we get ∂-graph Γ of the
same order. For example, the de Bruijn graph on n = mr vertices is ∂-graph.
The de Bruijn graph on n = mr (r > 1) vertices is dual to the de Bruijn
graph on n = mr−1 vertices.

The theorem stated below refers to canonical SP -network on a set Vn, n =
mκ. Further set {1, . . . , n} is divided into m-subsets

N(j) = {(j − 1)m+ 1, (j − 1)m+ 2, . . . , jm}, j = 1, . . . , κ.

The substitutions π of transformation S act on vectors from Vm; the
components of these vectors have numbers N(j), j = 1, . . . , κ. Further the
permutation P : Vn → Vn is associated with directed graph Γ(P ) on a set of
vertices {1, . . . , n}; each number i ∈ {1, . . . , n} is a beginning of m edges.
Ends of these edges form a set N

(⌈
P (i)
m

⌉)
containing P (i).
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Theorem 1. If n = mr in the canonical SP -network and the graph Γ(P ) is
∂-graph of order r, then the substitution (SP )r : Vn → Vn is significant.

2.3. The results of previous sections mean that if we want to measure
diffusion properties of matrices Λ ∈ GL(mκ, 2) by the LMCD of canonical
XSL-ciphers with τ rounds and linear medium Cτ then similarly to (11)
we must consider the LMCD θs(Cτ) corresponding to multidimensional (s-
dimensional) linear cryptanalysis. Definition of θL from section 1.3 must
be modified. The result is a 2-parameter set of branch numbers ρs,τ(Λ) =
θs(Cτ), s > 1, τ > 2.

The substitution matrices are poorly differ with branch numbers ρ1,τ , τ >
2. In the same time according to Theorem 1, permutations P ∈ Sn, n = mr,
whose graph Γ(P ) is a ∂-graph of order r are better with respect to qualitative
idea of diffusion.

In this section numbers i ∈ {0, 1, . . . , n− 1}, n = mr, represented as

i = (i0, i1, . . . , ir−1) = i0 + i1m+ . . .+ ir−1m
r−1,

i0, i1, . . . , ir−1 ∈ {0, 1, . . . ,m − 1}, will be numbers of components of
vectors from Vn. Suppose edges of the de Bruijn graph Γ0 on a set
{0, 1, . . . ,mr − 1} are (i0, i1, . . . , ir−1)→ (i1, . . . , ir−1, j), i0, i1, . . . , ir−1, j ∈
{0, 1, . . . ,m − 1}. Then we get {0, 1, . . . ,mr − 1} =

∐
j∈{0,1,...,mr−1−1}

N(j),

where j = (j0, j1, . . . , jr−2) and N(j) = {jm, jm + 1, . . . , jm + m − 1} =
{(i0, j0, j1, . . . , jr−2)

∣∣ i0 = 0, 1, . . . ,m− 1}. Thus i ∈ N
([

i
m

])
.

Further, in the canonical SP -network we use the permutation P0 ∈ Smr

defined by the equation P0(i) = P0(i0, i1, . . . , ir−1) = (i1, . . . , ir−1, i0). Notice
that Γ(P0) = Γ0.

In this paper we propose a 2-parameter set of branch numbers ρs,τ(Λ), s =
1, . . . ,m, τ = 2, . . . , dlogm ne, as a diffusion characteristic of matrix Λ ∈
GL(mκ, 2) divided into κ strips of m rows in each strip and into κ groups
of m columns in each group. We call this characteristic a the matrix’s linear
characteristic of diffusion (MLCD). Branch numbers corresponding to small
values of s, τ are more important. That is we use branch numbers ρs,τ(Λ1)
and ρs,τ(Λ2) to compare diffusion properties of matrices Λ1, Λ2 ∈ GL(n, 2)
only if we can not do it using ρs′,τ ′(Λ1) and ρs′,τ ′(Λ2), s′ 6 s, τ ′ 6 τ , (s′, τ ′) 6=
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(s, τ), for example, if ρs′,τ ′(Λ1) = ρs′,τ ′(Λ2) for all these s′, τ ′. Authors do
not know which of the two numbers ρs1,τ1(Λ) and ρs2,τ2(Λ), s1 > s2, τ1 < τ2,
is preferable.

A value dlogm ne is the upper bound for τ . This bound is realized for
the special examples of substitutions P ∈ Smr , n = mr, such that (SP )r

(unlike (SP0)
r) is not significant, but ρm,τ(P ) = ρm,τ(P0) for τ < r and

ρm,r(P ) < ρm,r(P0) (see Theorem 2). Authors don’t know such examples
for an upper bound for s. Maybe inequality ρm′,r(P ) < ρm′,r(P0) holds if
m′ < m.

If the set {(s, τ)| 1 6 s 6 m, 2 6 τ 6 dlogm ne} is linearly ordered ((1, 2)
is the first element, (m, dlogm ne) is the last element) with respect to decreas-
ing of priority ρs,τ(Λ) then values ρs,τ(Λ), 1 6 s 6 m, 2 6 τ 6 dlogm ne,
may be interpreted as numbers after comma in decimal representation of real
numbers. Maybe we can use only ρ1,2(Λ) for matrices Λ which is not sparse.
There is need to use other branch numbers for sparse matrices. According to
the Theorem 2 below we must use the "last" branch number ρm,dlogm ne(Λ)
for substitution matrices.

When we determined the MLCD we were limited to consideration of lin-
ear medium Cτ of canonical XSL-ciphers with τ 6 dlogm ne rounds and
values s 6 m. Further, suppose nonzero m× s matrices l′ij, l′′ij, i = 1, . . . , τ,
j = 1, . . . , κ from conformal system L ∈ Ws have a maximal rank equal
to s. Otherwise (according to definitions below) θs(Cτ) = θ1(Cτ), and we
do not get additional opportunities for distinguishing of substitutions and
distinguishing of sparse matrices Λ ∈ GL(n, 2).

Consider the conformal system

L = ((l′i, l
′′
i ), i = 1, . . . , τ) = ((l′ij, l

′′
ij), i = 1, . . . , τ, j = 1, . . . , κ) ∈Ws,

where l′′i = Λl′i+1, i = 1, . . . , τ − 1. This system may be defined by the set
L̂ = (l′1, l

′
2, . . . , l

′
τ−1, l

′
τ ; l
′′
τ ) consisting of n× s matrices.

Similarly to (11) we put

θs(C) = min
L∈W(0)

s \{0}
θL,

where W
(0)
s = {L ∈ Ws

∣∣ l′ij = 0 ⇔ (Λl′i+1)j = 0, i = 1, . . . , τ − 1, j =
1, . . . , κ}, θL =

∣∣{(i, j) ∈ {1, ... , τ} × {1, ... , κ}| l′ij 6= 0
}∣∣.
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Theorem 2. Suppose n = mr, Pj ∈ Smr, j = 0, 1, . . . , r − 2,

Pj(i0, i1, . . . , ir−j−1, ir−j, . . . , ir−1) = (i1, . . . , ir−j−1, i0, ir−j, . . . , ir−1),

i0, i1, . . . , ir−1 ∈ {0, 1, . . . ,m− 1}. Then

ρm,τ(Pj) = τmτ−1 for j + τ ≤ r and ρm,τ(Pj) = τmr−1−j for j + τ > r.

Corresponding to the Theorem 2 we get ρm,r−1(P1) = ρm,r−1(P0), but
ρm,r(P1) < ρm,r(P0). Notice that substitution (SP0)

r is significant, but
(SP1)

r is not significant.
The Theorem 2 holds for an identical permutation Pr−1, that is

ρm,τ(Pr−1) = τ, τ = 2, . . . , r.
Substitutions (SPj)

r−j ∈ SVmr , j = 0, 1, . . . , r − 1, are significant for
blocks of size mr−j. Substitutions (SPj)

τ , τ ∈ Z, act on these mj blocks
independently and identically. Permutations P0, P1, . . . , Pr−1 are ranked
completely with respect to qualitative idea of diffusion (according to the
avalanche effect), and permutations Pj are preferred for small values j. In
the same time

ρm,τ(Pr−1) < ρm,τ(Pr−2) < . . . < ρm,τ(Pr−τ+2) <

< ρm,τ(Pr−τ+1) < ρm,τ(Pr−τ) = ρm,τ(Pr−τ−1) = . . . = ρm,τ(P1) = ρm,τ(P0).

Characteristic ρm,τ does not distinguish permutations P0, P1, . . . , Pr−τ for
τ < r and this fact is a defect of ρm,τ . But values ρm,τ(Pj) = ρm,r(Pj),
j = 0, 1, . . . , r − 2, r − 1 are completely different for τ = r, and the smaller
j the greater the value of this characteristic.
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On construction of correlation-immune functions via
minimal functions

Evgeny Alekseev, Ekaterina Karelina, Oleg Logachev

Abstract

The use of correlation-immune functions in the structure of a cryptographic
primitive can resist some statistical compromising key methods. Designing of the
modern cryptographic primitives poses the challenge of constructing correlation-
immune functions of a relatively large number of arguments. This paper proposes
a method combining the two basic approaches to this problem - iterative and a
direct-search method. This method is based on minimal correlation-immune func-
tions, and the functions built with its help have no obvious structural characteristics
that would distinguish them from a random function. Its first stage is an easily im-
plemented iteration procedure, which allows to build many special functions that
depend on the goal number of variables. The second stage is constructing by means
of these set elements of the functions with the given cryptographic properties. The
paper presents the description of reduction of the problem of constructing at the
second stage of a resilient function with a preassigned order to the problem of solving
a system of linear pseudo-Boolean equations. As well as how to apply some modi-
fication of the method described in order to improve the cryptographic parameters
of the known ”good” functions through small changes in their support. Examples
of successful applications of the methods described are given.

This work was supported by The Russian Foundation for Basic Research, project
16-01-00470-a.

Keywords: boolean functions, correlation-immune functions

1 Introduction

A cryptographic property of the Boolean function is generally referred to
as the one, the possession of which allows it to provide resistance rela-
tive to a method of analysis for a cryptographic primitive, designed with
the help of this function. Most of these properties have been formulated
as a result of the analysis of symmetric cryptographic primitives such as
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stream ciphers, block ciphers and hash functions. Examples of the cryp-
tographic properties of Boolean functions are non-linearity (resistance to
a linear method [13] analysis), correlation immunity (resistance to various
methods of correlation analysis, [10], [11]), nondegeneracy (resistance to a
method of analysis based on algebraically degenerate approximations [3])
and algebraic immunity (resistance to algebraic methods of analysis [12]).
A deep understanding of the specific properties, along with the relations
among them, is especially important by solving problems of synthesis, since
it allows you to build schemes optimal in terms of stability and efficiency.
One of the most complete and profound descriptions of the status of re-
search in this field is contained in the book [7].

There are a number of approaches to the solution of the problem of con-
structing a Boolean function with a given set of cryptographic properties.
The simplest is the brute-force search method that checks all the func-
tions of a sufficiently large suitable set. The advantage of this method is
its simplicity and reliability. However, this method can be used in practice
only with small dimensions (for example, the method is applicable to the
selection of nodes replacement V4 → V4 cipher Magma [8], but is much
less effective when choosing V8 → V8 cipher Kuznechik [8]). The sets from
which the functions are selected are built in such a way that the selected
functions a fortiori possessed a certain set of positive properties. The ex-
amples are the sets of the Maiorana-McFarland classes and PS [7]. The
ability to exercise effective enumeration in sets of these classes is due to the
regularity of their structure — elements of these sets are parameterized by
some algebraic structures which in the aggregate can be informally called
a ”basis”. For the class Maiorana-McFarland such a ”basis” can thus be
considered a direct product of a set of permutations on Vn and sets of
Boolean functions of n variables (the cardinality of the set is respectively
equal to (2n)! · 22n ). Regularity of the function structure of such classes
can lead to the existence of the unremovable weaknesses. It has been shown
in the paper of [6] that the use of the functions of Maiorana-McFarland
class as a function of the complexity of the filter generator can lead to a
considerable reduction in resistance to the threat of key compromise.

Another method is called iterative, which is about selecting some suit-
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able function from a small number of variables (it can be found through a
brute-force search method), after which on its basis the functions are built
of an increasing number of variables with the help of some procedures.
The procedures followed are defined in such a way that the resulting func-
tion with their use is guaranteed to have the necessary properties. The
scheming should be continued until another constructed function depends
on the required number of variables. One of the methods of this type had
been proposed in the paper [9]. This method is to a greater extent not
intended to build functions to be used in primitives, but to get results on
the reachability of some theoretical upper bounds for different parameters.
At each algorithm step associated with the increase in the number of vari-
ables leads to a certain structuredness into a function. The property which
acquired may not always be positive from the perspective of cryptography.
For example, thus a function f 4

10.2 constructed in the paper [9] is alge-
braically degenerate ( that is shown in the paper of the [2]), which can
lead to weakness described in the work [3].

In this paper a method for constructing function with the specified cryp-
tographic properties based on a combination of the above approaches. With
regard to the enumeration part, the guaranteed property is a correlation
immunity of the k -th order, and the set whose elements can be efficiently
searched through is a linear space of a special kind. That is to say, in this
case, the analogue informal ”basis” mentioned above is the basis of the
space, consisting of k -minimal correlation-immune functions. A simple it-
erative method for their construction is proposed in the paper. Meanwhile
the method of building up the number of variables the function depends
upon suggests a significant randomization when choosing parameters at
each step, which leads in the final class to the absence of those structural
properties that would have distinguished the constructed functions from
the random ones and could have lead to security weaknesses. With re-
spect to construction of functions with given characteristics we describes
reduction of the search problem of the resilient (correlation-immune and
balanced) function with given order in the built-up space to the problem
of solving a system of linear pseudo-Boolean equations.

The proposed approach to the building of functions can be modified
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in order to study ”neighbourhoods” of the already known functions. The
subject of the research may be the presence of functions with the better
cryptographic characteristics in the neighborhood under consideration. The
value of the given cryptographic function f is slightly changed so that this
change would guaranteedly not violate a certain part of its properties.
Other characteristics are calculated directly. This change of function f
is about replacing the minimal correlation-immune functions, to which it
can be decomposed, to the minimal functions of the same weight from the
function decomposition f ⊕ 1 .

The examples of successful application of the main method of construc-
tion functions with given properties and of the research method of the
known functions are given in the paper.

2 Basic concepts and notations

Let F2 be the finite field of 2 elements. For any n ∈ N define Vn =
(F2×. . .×F2) = Fn

2 — vector space of a set of length n with the components
from the field F2 , V ∗n = Vn \ {0n}, where 0n = (0, . . . , 0) ∈ Vn . Boolean
functions of n variables is a correspondence from Vn into F2 . Constant
Boolean functions are denoted as 1 and 0 . The set of all Boolean functions
is denoted as Fn . The support supp(f) of a Boolean function f ∈ Fn is
a set supp(f) = {x ∈ Vn | f(x) = 1 } . The weight wt (f) of a Boolean
function f ∈ Fn is a cardinality of the support. The distance dist (f, g)
between f ∈ Fn and g ∈ Fn is value of wt (f ⊕ g) . The ordinate vector
f ∈ Fn is a string (f(x2n−1), . . . , f(x0)) ∈ V2n (arguments lexicographically
ordered from right to left). Algebraic degree deg (f) of a Boolean function
f ∈ Fn of n variables is the number of variables in the longest term
ANF (Zhegalkin polynomial). For u ∈ Vn a Boolean function lu denotes
a linear Boolean function lu(x) = 〈u, x〉 , where 〈u, x〉 =

⊕n
i=1 ui · xi is a

scalar product of vectors u and x . The number of significant variables of
function lu is the weight of vector u . The set {lu(x) ⊕ b|u ∈ Vn, b ∈ F2}
of affine Boolean functions of n variables is denoted as An . Nonlinearity
nl (f) of a Boolean function f ∈ Fn is the Hamming distance to the set
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of all affine functions An : nl (f) = dist (f,An) = min
l∈An

dist (f, l) .

A Boolean function f ∈ Fn is correlation-immune of order m , 1 6
m 6 n (further CI-function), if for any vector u ∈ Vn such that 1 6
wt (u) 6 m the equality wt

(
f

′)
= wt(f)

2m performs for any subfunction f
′

of n − m variables ([9]). Another words a Boolean function f has the
maximal distance from the set of affine functions An , which are essentially
depend on 1, 2, . . . ,m variables. Correlation-immune function of order m
is the correlation-immune of any lower order, so we introduce the notation

cor(f) = max{m ∈ N | f — correlation immune of order m} .

Further we use following notations: CI(n, k) = {f ∈ Fn|cor (f) > k} and
CI(n) = CI(n, 1) . The balanced function f ∈ Fn is k -resilient, if cor (f) >
k .

For analysis of cryptographic properties of Boolean functions the Walsh-
Hadamard transform is often used. The Walsh-Hadamard transform of a
Boolean function f ∈ Fn is an integral function Wf : Vn → Z , which
is defined by an equality Wf(u) =

∑
x∈Vn

(−1)f(x)⊕〈u,x〉 . The value Wf(u)
is the Walsh-Hadamard coefficients (or Walsh coefficients). For example,
there is the following criteria of correlation-immune function: a Boolean
function f ∈ Fn is correlation-immune function of m order, 0 < m 6 n ,
if and only if for any vector u ∈ Vn , such that 1 6 wt (u) 6 m , the
equality Wf(u) = 0 performs.

Let A be (n × k) -matrix over F2 , and f ∈ Fk . Let fA be denoted
as a function from Fn , defined as fA(x) = f(xA) . The order of algebraic
degeneracy AD (f) of a Boolean function f ∈ Fn is the maximum possible
value of n−k , where the integer k , 0 6 k 6 n such that a function g ∈ Fk

and (n × k) -matrix A over F2 exist that there is an equality f = gA .
Functions with AD (f) > 0 are algebraically degenerate. The set of all
degenerate algebraic functions of n variables is denoted as DG(n) = {f ∈
Fn | AD (f) > 0}. Nondegeneracy of a function f ∈ Fn (refer to [2]) is
the following value:

ρ(f) = dist (f,DG(n)) .
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3 Minimal correlation-immune functions

This section explains the meaning of k -minimal correlation-immune func-
tions and provides a short overview of known properties of this object.

Suppose we want to define a sufficiently large set of functions that are
guaranteed to have a cryptographic property such as correlation immunity
of k -th order, k > 1 . One of the simplest algebraic structures that allows
the effective construction of its elements is a linear space. It is easy to
see (for example, [1]) that functions f, g ∈ CI(n, k) such that f · g = 0
(further functions with disjoint supports will be called orthogonal) hold
f⊕g ∈ CI(n, k) . So the linear space L with the basis consisting of orthog-
onal functions f1, . . . , fr ∈ CI(n, k) is a subset of set CI(n, k) . Could this
subspace be embedded in the larger space with the same property? This
basis can be extended by a function g = f1 ⊕ . . .⊕ fr ⊕ 1 that belongs to
a set CI(n, k) at the specified above conditions. Its support doesn’t dis-
joint with supports of other functions from the basis. Therefore, only these
bases, which satisfies the condition f1 ⊕ . . . ⊕ fr = 1 , will be considered
further. The subspace which includes the subspace L and preserves the
property of being the subset of set CI(n, k) can be constructed not only
by adding functions but also due to the decomposition of existing functions
fi into a sum of orthogonal functions f ′i , f

′′
i ∈ CI(n, k) . Then the construc-

tion of superspace for L function fi is excluded from the basis of L and
functions f ′i , f

′′
i are added. The basis of space L for which it is impossible

to construct a superspace by this way consists of functions f ∈ CI(n, k) ,
which could’t be represented as a sum of functions f ′, f ′′ ∈ CI(n, k) such
that f ′ · f ′′ = 0 and f ′⊕ f ′′ = f . Such functions will be called k -minimal
correlation-immune functions (in this paper such functions will be called
k -minimal for short).

The spaces with the basis consisting of mutually orthogonal functions
also useful that the Walsh coefficient (except for the corresponding zero-
argument) of the sum of any basis functions is equal to the sum of Walsh
coefficients of these functions. In the general case it is necessary to calcu-
late the convolution of Walsh coefficients of summand functions (see [7]).
As mentioned above the apparatus of the Walsh coefficients is a powerful
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tool for the study of cryptographic properties of Boolean functions. This
property of the considering spaces is used in Section 4.2 by reducing the
problem of constructing a resilient function of a given order to the problem
of solving a system of linear pseudo boolean equations.

A special case of k -minimal function was first investigated in the work
[1]. In this paper the notion of 1 -minimal function was introduced in order
to investigate the structure of set of correlation-immune functions in gen-
erally that is set CI(n) . In this work the following inequalities have been
proven for 1 -minimal function f : cor (f) 6 2 , where equality is achiev-
able (constructed example of a function of 7 variables), and for n > 4 the
inequality wt (f) < 2n−1 is true. Also the exact formula for the number
of minimal functions of weight 4 has been proven. In the paper [4] the
number of 1 -minimal functions of 4 and 5 variables has been estimated
( 32 and 1240 respectively), and also their classification under the group
Jevons have been composed (see [7]).

4 Construction of resilient functions

This section describes a method of construction the linear space of func-
tions embedded in the set CI(n, k) , and reduction of search problem a
resilient function of a given order in this space.

4.1 Construction of 1 -minimal functions with a given number
of variables.

The obvious method of constructing the above-mentioned space L ⊂
CI(n, k) with basis consisting of k -minimal functions f1, . . . , fr , fi·fj = 0 ,
f1 ⊕ . . .⊕ fr = 1 is decomposition of function 1 into a sum of such func-
tions. Because of cor (1) = n this decomposition exists for any k . Except
in special cases of decomposition on 1 -minimal functions with weight 2
and 4 (all basic functions are algebraically degenerate in this case (see
[1])) the best known method of its construction is a brute force, when
the subset Vn forming k -minimal functions are found. The complexity of
brute force depends essentially on the capacity of the support of function
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for which the decomposition is searched.
This section describes an iterative method of constructing a k -minimal

functions of a given number of variables. The method is especially effec-
tive for the construction of a 1 -minimal functions. But in some cases this
method allows to construct k -minimal functions for k > 1 , however, the
more efficiency decreases, the more the value of k . The minimal functions
constructing by this method allow to discard vectors, which are their sup-
ports, from the support of function 1 . The weight of the function, which
has been composed, is reduced, which leads to the fact that the brute force
method becomes feasible in practice.

Since, as mentioned above, the proposed method is especially effective
for k = 1 , a description of it is given for this case.

In the first step of the proposed method 1 -minimal functions of a small
number of variables are constructed. These functions can be found using a
simple brute force computing or taking from known sets (see, for example,
[4]). In the second step the number of variables of 1 -minimal functions
constructed in the first step increases.

Now describe a method of increasing the number of variables 1 -minimal
functions.

The truth table of function f ∈ Fn is called the matrix Tf of
order wt (f) × n , the rows of this matrix are vectors from supp(f)
lexicographically-ordered. For example, for function f(x1, x2, x3) = x1x2⊕
x3 ∈ F3

Tf =


0 0 1
0 1 1
1 0 1
1 1 0


Let be Fw

n = {f ∈ Fn|wt (f) = w} . For any w ∈ {1, . . . , 2n} define the
map AC(w) :

AC(w) : Fw
n × Vw × {1, . . . , n+ 1} 7→ Fw

n+1.

The function g = AC
(w)
v,i (f) = AC(w)(f, v, i) is defined as follows. The

matrix wt (f)× (n + 1) is formed by adding vector v of dimension w in
the truth table Tf as i -th column. Whereas i -th and following columns Tf

237



are shifted to the right. The rows of formed matrix is support of function
g . If i = n+ 1 , then the column is added to the end of the table.

The following statements, proof of which is given in the Appendix, are
true.

Theorem 1. Let f ∈ CI(n) and w = wt (f) . Then for any v ∈ Vw , such
that wt (v) = w/2 , and for any i ∈ {1, . . . , n + 1} the following is true

g = AC
(w)
v,i (f) ∈ CI(n+ 1) .

Let MCI(n, k) be a set of k -minimal functions of n variables.

Theorem 2. Let f ∈ MCI(n, 1) and w = wt (f) . Then for any v ∈ Vw ,
such that wt (v) = w/2 , and for any i ∈ {1, . . . , n + 1} the following is

true g = AC
(w)
v,i (f) ∈ MCI(n+ 1, 1) .

By Theorem 2 the map AC can be used for increasing the number
of variables of 1 -minimal functions. The presence of variable parameters
v and i allow to get the set of minimal functions of a larger number of
variables using the ”started” function f ∈ MCI(n, 1) .

For construction k -minimal functions, k > 1 , using the map AC , the
condition wt (v) = w/2 is no longer sufficient. The problem of developing
the effective methods for construction k -minimal functions for k > 1 is
not solved at the moment.

In addition to use in the synthesis, Theorems 1 and 2 can be used
for research of the structure of minimal functions. The results of such
researches will be presented in the paper [5].

4.2 Search function with a given order of correlation immunity

This section describes the reduction of search problem of resilient function
with a given order to the problem of solving a system of linear pseudo
boolean equations in the space that are formed mutually orthogonal k -
minimal functions.

Let L ⊂ CI(n, k) be a linear space with basis f1, . . . , fr ∈ CI(n, k) and
fi ·fj = 0 for any i 6= j . Suppose we want to find k+m -resilient function
g in the space L , in other words this function must satisfy the conditions
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wt (g) = 2n−1 and cor (g) > k + m , m > 1 , or prove that this function
doesn’t exist in the space L .

Because of the basis of the space L consists of mutually orthogonal
functions for any u , wt (u) > 0 , and for any g = b1 · f1 ⊕ . . . ⊕ br · fr ,
b1, . . . , br ∈ F2 , the following equation is true:

Wg(u) = b1 ·Wf1(u) + . . .+ br ·Wfr(u).

In order to g be CI-function of k + m -th order it is necessary and
sufficient that for any u , 1 6 wt (u) 6 k + m , the equality Wg(u) = 0 is
true. Since fi ∈ CI(n, k) , so Wfi(u) = 0 for any u such that 1 6 wt (u) 6
k . Consequently similar equations hold for g .

In case to check whether the function g satisfies the condition cor (g) >
k+m , it is sufficient to verify correctness of

(
n

k+1

)
+ . . .+

(
n

k+m

)
equations

b1 ·Wf1(u) + . . .+ br ·Wfr(u) = 0

for all u , k + 1 6 wt (u) 6 k + m . Further, since the supports of the
functions of the basis do not intersect, so condition wt (g) = 2n−1 is true
if the following equality is true

b1 · wt (f1) + . . .+ br · wt (fr) = 2n−1.

Set forth above shows that it is sufficient to find 0, 1 -solutions (b1, . . . , br)
of system of

(
n

k+1

)
+ . . .+

(
n

k+m

)
+ 1 linear equations{

b1 ·Wf1(u) + . . .+ br ·Wfr(u) = 0, for u, such that k + 1 6 wt (u) 6 k +m;

b1 · wt (f1) + . . .+ br · wt (fr) = 2n−1.

in order to find k +m -resilient function g ∈ L .
Since the target solutions are only 0, 1 -solutions so this system is a

pseudo boolean system. This reduction allows to use different methods of
solving such system for construction a k+m -resilient Boolean function. In
particular we can effectively check whether the building space L contains
resilient functions of given order or not by checking the compatibility of
this system of equations over the field of real numbers. The problem of
estimating of probability of passing such checking by system without 0, 1 -
solutions is open.
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5 Using minimal functions for analysis of neighbour-

hoods of known functions

The approach described above can be used not only for the construction
of cryptographic functions ”from scratch”. Suppose that some function
f ∈ Fn , which depends on a given number of arguments, but satisfies only
a part of the necessary requirements, is already known. Such case can arise
due to the appearance of a previously unknown method of cryptanalysis,
in relation to which the function f is not resistance.

The function f , with condition cor (f) > k , can be a base for con-
structing a basis M consisting of k -minimal functions. This basis will be
constructed in such a way that f contains in the space L , forming by func-
tions from M . For this purpose it’s sufficient to create the basis M from
orthogonal k -minimal functions, which are decomposition of functions f

and f ⊕ 1 .
For searching of functions from L , which satisfy the specified require-

ments, the most of the functions are taken from decomposition f , and
a few functions are taken from decomposition f ⊕ 1 , which complement
already taken function to the desired weight. Thus the resulting functions
are a relatively short distance from f , that is, they don’t leave the de-
termined ”neighbourhood” of function f . At the same time the order of
correlation-immunity of resulting functions isn’t less than k .

The effectiveness of the above mentioned approach to construct the basis
from k -minimal functions currently has no rigorous justification, that is,
it is not known whether constructed spaces by this way are guaranteed to
contain a lot of ”good” functions. However the following section describes
the results obtained by this method.

6 The results of applying the proposed methods

This section briefly lists the specific results of the approaches and methods
that have been described above. The missing details, such as, for example,
the vectors of values for considering functions are given in the Appendix.
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Consider the function f 4
10,2 ∈ F10 from the paper [9], which will be

denoted by fT . This function has the following parameters:

wt (fT ) = 512 cor (fT ) = 6 deg (fT ) = 3 nl (fT ) = 384 nd (fT ) = 0

The trouble with this function in terms of the use of cryptographic schemes
is algebraically degenerate of it ( nd (fT ) = 0 ). Using the method described
in the Section 5 (functions fT and fT ⊕ 1 were decomposed on 128 1 -
minimal functions with the weight 4 ), the new function gT is constructed
with the following parameters:

wt (gT ) = 512 cor (gT ) = 2 deg (gT ) = 7 nl (gT ) = 360 nd (gT ) = 8

This function is not algebraically degenerate, and decrease of correlation-
immunity cor (gT ) and nonlinearity nl (gT ) is offset by a significant in-
crease of the parameter deg (gT ) . At the same time dist (fT , gT ) = 40 .

The similar method was applied to the filter function fc ⊕ 1 , where fc
is used in stream cipher LILI128 [14]. This function of 10 variables has
the following parameters:

wt (fc) = 512 cor (fc) = 3 deg (fc) = 6 nl (fc) = 480 nd (fc) = 80

After using the method described in the Section 5 the new function gc is
constructed with the following parameters:

wt (gc) = 512 cor (gc) = 3 deg (gc) = 6 nl (gc) = 480 nd (gc) = 112

The function gc is not worse the function fc on any parameter, and the
value of algebraically degenerate nd (gc) greatly exceeds nd (fc) . At the
same time dist (fc ⊕ 1, gc) = 288 . Thus with the help of the proposed
approaches the function gc is constructed and the using of it instead of
the function fc in the cipher LILI128 allow to improve its cryptographic
properties.

In conclusion it is given an example of constructing of a function without
the use of known ”good” functions. In the space consisting from 1 -minimal
functions of 10 variables with the weight 2 the 7 -resilient function f2 is
found with the following parameters:

wt (f2) = 512 cor (f2) = 7 deg (f2) = 2 nl (f2) = 256 nd (f2) = 0
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This function achieves the upper bound for nonlinearity for 7 -resilient
functions (see, for example, [9]). Functions with the same parameters can
be constructed by the method described in the paper [9].

7 Open problems

The concept of a minimal correlation-immune function has been introduced
recently, so nowadays there are a number of open issues related to the
properties of these functions. The following some problems are the most
important in the context of the main theme of this article in the authors’
opinion.

1. Searching of efficient criteria for approving the k -minimality of this
function.

2. Developing a method of increasing the number of variables k -minimal
functions, k > 1 , is as effective as for the k = 1 .

3. Developing of efficient searching method of balanced functions with
a given values of nonlinaruty/nondegeneracy/ algebraic immunity in
the space generated by k - minimal functions.

8 Conclusion

In this paper the approach to the construction of Boolean functions with
a given cryptographic parameters is given. This method bases on a com-
bination of iterative and exhaustive search methods. On the basis of this
approach a method of synthesis of a given order-resilient functions is de-
veloped, which uses minimal correlation-immune functions. Functions con-
structing by this method have not obvious structural features that dis-
tinguish them from a random function. In this paper the transformations
are proposed, and it is proved that they can be used for realisation of the
first step of the developing method. The reduction of search problem of re-
silient function with a given order on the second step of proposed method
to the problem of solving a system of linear pseudo boolean equations is
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described. Also the method for improving of method’s characteristics with
using known ”good” cryptographic functions is proposed. Examples of the
successful applying of this method are given. In particular the function
is constructed, the use of which instead the filter function in the stream
cipher LILI128 would improve its cryptographic properties.

The authors are grateful to Grigory Anatolyevich Karpunin for his valu-
able comments and constructive criticism.
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9 Appendix

9.1 The vectors’ values of function from Section 6

All vectors’ values are represented in hexadecimal.

fT = c53a5ac33ca5a35ca35c3ca55ac3c53a3ac5a53cc35a5ca35ca3c35aa53c3ac5

a35c3ca55ac3c53a5ca3c35aa53c3ac5c53a5ac33ca5a35c3ac5a53cc35a5ca3

3ac5a53cc35a5ca3c53a5ac33ca5a35c5ca3c35aa53c3ac5a35c3ca55ac3c53a

5ca3c35aa53c3ac53ac5a53cc35a5ca3a35c3ca55ac3c53ac53a5ac33ca5a35c

gT = 3ac596c33ca5a35ca35c3ca55ac3c53a3ac5a53cc35a5ca35ca3c35aa53c3ac5

a35c3ca55ac3c53a5ca3c35aa53c3ac5c53a5ac33ca5a35c3ac5a53cc35a5ca3

3ac5a53cc35a5ca3c53a5ac33ca5a35c5ca3c35aa53c3ac5a35c3ca55ac3c53a

5ca3c35aa53c3ac53ac5a53cc35a5ca3a35c3ca55ac3c53ac53a5ac33c965ca3

fc = 3cc3c33c3cc3c33c3cc3c33cc33c3cc35aa5a55a5aa5a55a5aa5a55aa55a5aa5

669999666699996669699696699669960ff0f00ff00f0ff033cccc33cc3333cc

3c3cc3c3c3c33c3c3cc33cc3c33cc33c55aaaa55aa5555aa5a5aa5a5a5a55a5a

5aa55aa5a55aa55a666699999999666666996699996699666969696996969696

gc = 6969696996969696669966999966996666669999999966665aa55aa5a55aa55a

5a5aa5a5996666999696696996699669f00f0ff00ff0f00fcc3333cc33cccc33

c3c33c3c3c3cc3c3c33cc33c3cc33cc3aa5555aa55aaaa55a5a55a5a66999966

a55a5aa55aa5a55a5aa5a55a5aa5a55ac33c3cc33cc3c33c3cc3c33c3cc3c33c

f2 = 9669699669969669966969966996966969969669966969966996966996696996

9669699669969669699696699669699696696996699696696996966996696996

6996966996696996966969966996966969969669966969969669699669969669

6996966996696996699696699669699696696996699696699669699669969669

9.2 The proof of Theorem 1

Proof. To prove the theorem it suffices to show that cor (g) > 1 . For this
it is necessary and sufficient that Wg(u) = 0 for all u of weight 1 . Let ei
be a vector from Vn of weight 1 , in which the unit is on i -th position. As
for any i , 1 6 i 6 n , and for any f ∈ Fn it is true

Wf(ei) =
∑
x∈Vn

(−1)f(x)⊕xi =
∑
x∈Vn

(−1)xi − 2 ·
∑

x∈supp(f)

(−1)xi,
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so the condition Wf(ei) = 0 for all i is equivalent to that each column of
the truth table is balanced. Therefore the adding a more balanced column
will not lead to a breach of this condition, ie, the resulting function will be
correlation-immune of the first order.

9.3 The proof of Theorem 2

Proof. From Theorem 1 it follows that g ∈ CI(n+ 1) . It remains to prove
that g is 1 -minimal function.

Assume that this is not true. Then from the support of function g the
subset can be selected, which will be a support of function h with cor (h) >
1 . Then the i -th column is deleted from the table Th (it corresponded
to the adding column v to the table Tf ). The result is a matrix with
non-repeated rows, because these rows correspond to certain rows of the
matrix Tf . Arrange these rows lexicographically the new table truth of
some function h′ , where supp(h′) ⊂ supp(f) , is obtained. Further we use
the arguments from the proof of Theorem 1. The columns Th′ are balanced
because they are columns of the table Th , and cor (h) > 1 . So cor (h′) > 1 ,
and this contradicts the minimality of the original function f .
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On the construction of generalized approximations for
one filter generator key recovery method

Evgeny Alekseev, Liudmila Kushchinskaya

Abstract

This paper presents the findings of a study into the possibility of building gen-
eralized approximations that can be used to recover the key of a filter generator.
The study assesses the characteristics of the most general method for building such
approximations for general type filter generators.

The study was carried out with the support of the Russian Foundation for Basic
Research; project 16-01-00470 A.

Keywords: boolean function, filter generator

1 Introduction

One approach often used in cryptographic analysis is the approximation
of Boolean functions (mappings) with special form functions. Prominent
examples based on this approach are the correlation method proposed by
Siegenthaler [1] and the linear method proposed by M. Matsui [2]. Another
example of this approach is the method proposed in [3] based on using al-
gebraically degenerate functions. However, this method has a number of
limitations: for example, it cannot be used when the filter generator key has
a length that is a prime number.

An extension of the approach based on approximating algebraically de-
generate functions is the generalized approximation method proposed in [5].
In this type of approximation the idea is to find a sufficient number of planes
that a specific value of the function is predominant on. This type of ap-
proximation makes it possible to recover the key of the filter generator with
complexity that in some cases may reach the square root of the power of the
set of keys.
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This article considers the possibility of building a generalized approxima-
tion. It presents a brief description of the method, assesses its key charac-
teristics, and looks at possible use cases. The article presents the following
finding. We assess the characteristics of the general method for building gen-
eralized approximations derived from a model with random sets for general
form generators. The article presents numerical experiments to verify the ac-
curacy of the proposed model. The findings presented in this method make
it possible to assess when the method proposed in [5] can be applied.

2 Basic concepts

Let F2 be a field of 2 elements. Let Vn = Fn2 be an affine space of vectors
of length n with components from F2. The Boolean function f of n variables
will then be mapping f : Vn → F2.

Then, we can define a filter generator as a function built on the basis of
linear mapping A : Vn → Vn and the Boolean function f ∈ Fn. Some open
text x = x0, x1, . . . , xn, . . . then gets encrypted on key u∗ ∈ Vn with a stream
cipher built on the basis of the filter generator with the encryption happening
in the following manner. Every bit of the encrypted text c = c0, c1, . . . , cn, . . .
satisfies the ratio ci = xi⊕ zi, i > 0, where zi = f(Aiu∗) — the output bit of
the filter generator at the i-th step.

For a filter generator, the trajectory will refer to the three values Traj =<
m,L,T >, where m ∈ N is the length of the trajectory, L = {Li −
is a plane in Vn|i = 1,m}, T = {ti|ti ∈ N, ti > ti−1, i = 1,m; t1 = 0},
such that

Li = Ati−ti−1(Li−1), ti, ti−1 ∈ T, i = 2,m.

The characteristic of trajectory Traj =< m,L,T > is a pair of sets
(P, C), where P = {pi|pi ∈

(
1
2 ; 1
]
, i = 1,m}, C = {ci|ci ∈ F2, i = 1,m}, pi

is the probability that the value of the filter function f is the same as constant
ci in plane Li, i = 1,m provided that vector v ∈ Li is picked randomly with
each value having the same probability of being selected.

The set of all the trajectories {Traj(i)} will then be referred to as the
generalized approximation of filter function f in the generator with linear
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mapping A.
The starting set Lstart of the generalized approximation is the collection

of sets {L(i)
1 } from each trajectory.

Definition 2.1. [4] Let’s assume we have a sample of n n elements without
a return from the final collection of size N , and let assume that D of these
elements have a given property. We can then say that random value x has a
hyper-geometric distribution with parameters N,D, n (x ∼ HG(D,N, n)) if
the following equation holds true

Pr[x = k] =

(
D
k

)(
N−D
n−k
)(

N
n

) .

3 The key recovering method and its properties

3.1 Description of the method

Let’s assume that for a given generator a generalized approximation for the
filter function has been built {Traj(i), i = 1, s}, and it comprises s different
trajectories (figure 1).
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Figure 1: General case

From now on we’re going to omit the upper indexes when talking about
one specific trajectory. Let’s assume we’ve selected some L ∈ Lstart. Let’s
fix the parameters corresponding to this trajectory: m, L = {Li|Li −
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plane in Vn, i = 1,m}, P = {pi|pi ∈
(

1
2 ; 1
]
, i = 1,m}, C = {ci|ci ∈ F2, i =

1,m}; T = {ti|ti ∈ N, ti > ti−1, i = 1,m; t1 = 0} the numbers of the
steps of the generator during which the constant value predominates in the
corresponding plane Li, i = 1,m. Let’s build a vector

w = (c1 ⊕ z̃1, . . . , cm ⊕ z̃m), z̃i = zti, i = 1,m.

If the original key is u∗ /∈ L, then the weight of the vector w is close to
m/2. However, if u∗ ∈ L, then the vector weight w is different from m/2,
and the degree to which it deviates from m/2 depends on the quality of the
approximation, i.e. on the characteristics of the trajectory. Let’s assume
that in order to differentiate between these two cases there is some deciding
rule of the form F (L) > 0 (maximum likelihood type), that allows us to
accept or reject the trajectory Traj (plane L ∈ Lstart). The deciding rule F
is constructed in accordance with the principle of maximum plausibility.

Let L̂ = Lstart, M = Vn \
(⋃

L∈Lstart L
)
.

Description of the algorithm:

1. Stage one (selecting the «correct» generalized approximation trajecto-
ries). L̃ := ∅.

1.a) If L̂ = ∅, then go to stage two. Otherwise select a random element
Li from the set L̂; L̂ := L̂ \ {Li}.

1.b) Build vector w ∈ Vmi
, as was demonstrated above. If the inequal-

ity F (Li) > 0, holds then assume L̃ = L̃ ∪ {Li}. Go to step 1.a).

2. Stage two (thorough testing of the «correct» trajectories).

2.a) If L̃ = ∅, then go to stage three, else select Y from set L̃; L̃ :=
L̃ \ {Y }.

2.b) If Y = ∅, then go to step 2.a). Otherwise select v ∈ Y ; Y := Y \{v}.
2.c) If f(Aiv) = zi for any i = 0, N − 1, then return v and stop, other-

wise go to step 2.b).

3. Stage three (viewing set M).
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3.a) If M = ∅, then quit without returning anything, otherwise select
u ∈M ; M := M \ {u}.

3.b) If f(Aiu) = zi for any i = 0, N − 1, then return u as the result and
exit, otherwise go to 3.a).

3.2 Characteristics of the method

The general characteristics of the method are proved in [5]. We also
estimate complexity here for the following simple case.

Let’s assume that a generalized approximation has been built for a genera-
tor and that it has the following characteristics. Planes from Lstart do not in-
tersect with each other and

⋃
L∈Lstart L = Vn, while dim(L) = k,∀L ∈ Lstart.

Thus, s = 2n−k и {mi = m, i = 1, s}, {p(i)
j > p, i = 1, s, j = 1,m},

{|L(i)
j | = 2k, i = 1, s, j = 1,m}.
Let α, β be the type I and type II errors for the trajectory. Meaning that

α is the probability that a false trajectory will be selected, the starting set of
which does not contain the key; β is the probability that the true trajectory
will be rejected.

Then the complexity of recovering the key is

D = s+s · |L| ·α+ 2−n ·s · |L|2 · (1−α−β) = 2n−k + 2n ·α+ 2k · (1−α−β).

In the most common case α � β, so α could be neglected in the third
addendum.

Examples of applying the method to the LILI-128 [10] cipher can be found
in [5].

4 A search algorithm for constructing generalised ap-
proximations

In this section, we describe an exhaustive search method for constructing a
generalised approximation of a filter function and offer a model with random
sets to estimate its characteristics. We also offer an experimental proof for
the adequacy of the proposed model.
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Let’s assume we need to construct a generator generalised approximation
such that the key recovery method based on it has a complexity Q and
reliability π0 while requiring the minimal possible amount of the generator’s
output sequence to run. We will construct approximations for which none
of the planes in Lstart mutually intersect and have the same capacity that
significantly exceeds the capacity of set M .

4.1 Description of the method

When constructing our approximation, we assume that for all the planes
that make it up, the following parameters are the same.

• Parameter k ∈ {1, 2, . . . , n − 1} is the number of dimensions for the
plane in the trajectory with the capacity of the plane being designated
as N = 2k.

• Parameter δ ∈ {1, 2, . . . , N} will be responsible for the minimal pre-
dominance of one constant or another in the plan, then T0 = N

2 − δ
2

is the boundary for the number of zero values and T1 = N
2 + δ

2 is the
boundary for ones. In other words, if we use SN to designate the weight
of function f in a plane that is part of our approximation, then either
SN < T0 (the plane has enough zeroes of the function), or SN > T1 (the
plane has enough ones of the function).

The search method for constructing the trajectory for a generalised ap-
proximation that we consider here can be described as follows. We can then
select a random plane L0 with k dimensions, i.e. a plane with a capacity of
N = 2k. Then for each i = 0, 1, 2, . . . we follow the following algorithm:

• If in plane Li filter function f equals 1 a certain number of times different
than N/2 by a large enough value then we add it to the trajectory we’re
constructing.

• Li+1 := A(Li).

• We then repeat the steps above until we’ve achieved the desired length
of the trajectory.
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4.2 Mathematical model

We suggest using the following model to study the characteristics of the
method we just described. Let’s assume that plane L0 is a random sent
while the image of random set Li (resulting from linear transformation A)
is selected randomly and independently from Li. Then the process of con-
structing one trajectory can be modelled as a selection of random sets with
the same capacity 2k from Vn and calculating the weight of function f in
those sets.

Let p(δ, k) be the probability that a random plane gets selected for the
trajectory. Let N1 be the length of the trajectory, N2 = N1

p(δ,k) be the number
of steps in the algorithm that must be completed to construct trajectory
with length N1. It should be noted that N2 equals the volume of the output
sequence of the generator that is needed to recover the key with the given
parameters and that we need to minimise.

Since for any plane in the trajectory some value of the function can be
observed in more than (N/2 + δ/2) points, then to simplify our calculations
we can assume that the predominance in accuracy equals 1/2 + δ/2N . In
this case the values N1 and N2 will be the same for each trajectory.

It should be noted that if parameter k approaches zero it means that
the capacity of N planes in the trajectory diminishes, which means that the
method approaches an exhaustive search of all the vectors in the key space in
the first stage of the algorithm. At the same time, if k → n, then an increase
in the capacity of a plane in the trajectory will mean that the processing
time of the second stage of the key recovery algorithm is going to approach
the processing time of an exhaustive search.

It should also be noted that for a fixed k with δ → 0 the probability of
accepting a random plane increases, but at the same time there is an increase
in value N1 needed to achieve the target reliability of the method. If δ → N ,
the length of trajectory N1 decreases but so does the probability of accepting
the plane because the expected predominance in the plane goes up.

Thus, we end up with the following task on our hands: find such values
for the parameters (δ, k) that minimise value N2 for a given complexity and
reliability of the method.
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4.3 Characteristics of the method

Let L be a random set of vectors from Vn with a capacity of N = 2k.
Selecting a set like this can be modelled as a random sample of capacity N
taken without replacement from a finite population consisting of 2n elements.

Let’s consider random value SN =
∑
v∈L

f(v) — the number of points in

set L for which the function equals one. The value SN has hypergeometric
distribution HG(2n−1, 2n, 2k). Since HG(D,S,m) ≈ Bin(m,D/S) when
S →∞, we can assume that SN ∼ Bin(N, 1

2).
Since Bin(n, p) ≈ N(np, npq) for large values of n where N(np, npq) is a

normal distribution with mathematical expectation np and dispersion npq,
then Bin(N, 1

2) ≈ N(N2 ,
N
4 ), p = q = 1

2 .
Let’s find the probability of first and second type errors arising in the key

recovery for the trajectories. Since the parameters k and δ are the same for
all trajectories, the error probabilities will be the same.

• β = 1− π0 is the probability of second type errors.

• Since Q = 2n−k +α · 2n−k · 2k + (1− β) · 2k, then the probability of first
type error is α = 2−n ·

(
Q− 2n−k − π0 · 2k

)
.

As per method, for each trajectory the following vector must be con-
structed

w = (c1 ⊕ z̃1, . . . , cN1
⊕ z̃N1

), z̃i = zti, i = 1, N1.

Meanwhile, if the key is in the starting set of this trajectory then Pr[wi =
0] > q1 = 1

2 + δ
2N , and otherwise Pr[wi = 0] = q0 = 1

2 . For statistical differ-
entiation between two Bernoulli distributions with success probabilities of q0

and q1 and first and second type error probabilities of α and β respectively,
we’re going to need a trajectory length of [6]

N1 ≈
(uα
√
q0(1− q0) + uβ

√
q1(1− q1))

2

(q1 − q0)2
,

where uα, uβ are the quantiles of a standard normal distribution.
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Let’s derive an expression for the probability that a random set will be
included in the trajectory. The following expression holds

Pr [T0 ≤ SN ≤ T1] = Pr

[
T0 −Np√
Npq

≤ SN −Np√
Npq

≤ T1 −Np√
Npq

]
=

= Pr

[
− δ√

N
≤ SN −Np√

Npq
≤ δ√

N

]
= Φ

(
δ√
N

)
− Φ

(
− δ√

N

)
=

= 2Φ

(
δ√
N

)
− 1,

where Φ(y) = 1√
2π

∫ y
−∞ e

−x2

2 dx is a distribution function for a normally dis-
tributed random value. From this, we can derive the following:

p(δ, k) = 1− Pr[T0 ≤ SN ≤ T1] = 2

(
1− Φ

(
δ√
N

))
.

Then the volume of the output sequence of the generator that we need to
construct the trajectory is:

N2 =
N1

p(δ, k)
≈

(
uα + uβ ·

√
1−

(
δ
N

)2
)2

·
(
N
δ

)2

2
(

1− Φ
(

δ√
N

)) .

Let’s now move to continuous variable t = δ/
√
N, t ∈ (0;

√
N ]. Then

N2 ≈
N

2
·
(
uα + uβ

√
1− t2

N

)2

· 1

t2(1− Φ(t))
.

Let’s consider the most interesting case for the task at hand, namely the
case where Q � 2n, and π0 takes values from a range natural for practical
uses (for instance, π0 = 1/2 or π0 = 1/10). Assuming that α � β and,
consequently, uα � uβ. we have then to assume that N2 ≈ N

2 · u2
α · 1

t2(1−Φ(t)) .
Let’s find the values of variable t for which maximum is achieved for

f(t) = t2(1− Φ(t)), t ∈ (0;
√
N ]. By setting the derivative f ′(t) to zero, we

get the equation

2(1− Φ(t)) = t · 1√
2π
· e− t

2

2 ,
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which is equivalent to
t

2
=

1− Φ(t)

ϕ(t)
,

where ϕ(t) = 1√
2π
e−t

2/2.

The expression R(t) = 1−Φ(t)
ϕ(t) is known as the Mills ratio [7]. Function

R(t) monotonously decreases [8], which means that the equation has just
one solution. Getting a formula for the root of this equation is impossible,
but we can estimate it for any given degree of precision. Here we’re going to
calculate the root to a precision of 0.00001: t0 = 1.19061.

Thus, δ ≈ dt0 ·
√
Ne. Value N2 in the minimum:

N2 ≈
N

2
· u2

α · CΦ,

where CΦ = 1
t20(1−Φ(t0))

≈ 6.03442.
Since for small α uα ≈

√
−ln(2πα2) will hold, uα will vary by no more

than n for valid k. At the same time, N increases exponentially over k. Thus
N2 reaches the minimum at the minimal possible k. Valid k ∈ {1, 2, . . . , n−
1} are those for which α = 2−n ·

(
Q− 2n−k − π0 · 2k

)
> 0. The minimal

possible k can be defined as follows

k =

⌈
log2

(
Q−

√
Q2 − π02n+2

2π0

)⌉
.

The values of the functions in the minimum are as follows:

• N1 = (uα)2 ·
(
N
δ

)2
=
(
uα
t0

)2

·N ,

• N2 = N · u2
α · CΦ

2 ;

The table with parameters k, δ and values of N1, N2 for n = 128, π0 = 1/2
and for different values of complexity is provided below.

Method characteristics
k δ N1 N2

Q = 270 59 230 265 267

Q = 280 49 225 254 256

Q = 290 39 220 225 227256



4.4 Experimental verification of the model’s relevance

To verify he relevance of the mathematical model introduced in Section 4.2
the following experiments were carried out.

Let n = 32 be the dimension of key space Vn, let A linear feedback
shift register which characteristic polynomial is equal to primitive p(x) =
x32 + x7 + x6 + x2 + 1. We consider four Boolean funtions of 32 variables
described below as the filter functions.

Let we need to construct such generalised approximation that key recovery
method based on it has a complexity Q = 224 and reliability π0 = 1/2. As
per relations of Section 4.3 we receive the following values:

k = 9, δ = 27, N1 = 3007, N2 = 12861.

For each of the four generators we conduct an experiment in construction
of one trajectory of N1 length. This experiment was repeated many times
(100 attempts) for different random start planes to calculate average value
of N2.

Let’s describe used filter functions. Let πi : V4 → V4 be permutations
defined in [9]. Let Ψ : V32 → V32 be mapping Ψ(x) = Ψ(x0|| . . . ||x7) =
π0(x0)|| . . . ||π7(x7), where x = x0|| . . . ||x7 ∈ V32, xi ∈ V4, i = 0, 1, . . . , 7.
Also let S(x) : V32 → V32 be circular right shift by 11, let X (x) : V32 → F2

be sum modulo 2 of the vector x bits. The experiment was conducted for
the following functions:

• f1(x) = X (Ψ(S(Ψ(S(Ψ(x))))));

• f2(x) = X (Ψ(x));

• f3(x) = X (x0|| . . . ||x3||π4(x4)|| . . . ||π7(x7));

• f4(x) = X (π0(x0)||π1(x1)||x2|| . . . ||x7).

As a result of experiments the following average values ofN2 were obtained
for functions fi. The average value of N2 for f1 is equal to 12910, for f2 —
14107, f3 — 14036, f4 — 17215.

It’s easy to see that the results obtained by introduced model are closest
to the values obtained experimentally for the function f1. Difference be-
tween predicted and real values of the parameter N2 growing together with
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increasing «structuring» of functions. Informally, this can be explained by
the following fact. Proposed model assumes a relatively random distribution
of the function values on Vn. The functions f3 and f4 depend on a lot of
its variables linearly and function f2 can be decomposed in the sum of 8
functions of 4 variables. The study and evaluation of this dependence is an
open question and the subject of further research.

In general the experimental results confirm the relevance of the proposed
model.

5 Conclusion

In this paper we consider the most simple exhaustive search method for
constructing a generalised approximation of a filter function of some genera-
tor. The property of the key recovery method based on such approximation is
that bits which the decision on key assignment to some plane is based on can
be substantially separated by a generator’s output sequence. This property
produces the task of finding such values for the parameters of approximation
that minimise the length of the output sequence needed key recovery method
to achieve given complexity and reliability. This paper presents a solution to
this problem. Modeling a plane belonging to an approximation by a random
set we obtained the formula for calculating the optimal values of the planes
dimension and the minimum of the number of prevailing function values on
these planes.

This result allows to evaluate the limitations of the method, which can in
some cases reduce the filter generator resistance to the threat of key recovery
to the square root of the key space power.
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On upper bounds for periods of LCG sequences over
Galois rings

Dmitry Ermilov

Abstract

Let R = GR(qn, pn) be a Galois ring of cardinality qn and characteristic pn. The
linear congruential generator (LCG) over R is a machine (see [3]) with the states
sequence {xi} of elements defined by relation xi+1 = axi + b, where a, b and x0 ∈ R.
It is obvious that sequence {xi} is purely periodic with some least period t ≤ qn. In
this paper we present an upper bound for the period of the LCG sequence. Some
examples are given where the bound is achievable.

Keywords: Galois ring, LCG, sequence period.

1 Introduction

A very popular tool for pseudo-random sequence generation is provided by
linear congruential generator. It is known (see [1]), when LCG sequence
over Zm achieves the largest period m. In paper [2] we proved that there is
no full cycle polynomial transformation over Galois ring GR(qn, pn), q 6= p
and n > 1. The aim of this paper is to prove an achievable upper bound
for the period of LCG sequence over the Galois ring.

2 The upper bound of the cycle length in the graph

Gax+b,R

Let R = GR(qn, pn) be a Galois ring of cardinality qn and characteristic pn,
where q = pm, m > 1, and let Gf,R be the graph of bijective transformation
of the ring R assigned by polynomial f(x) ∈ R[x]. By definition J = pR
and Ri = R/J i, i ∈ 1, n.
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Define the polynomial congruential generator (PCG) over the ring R as
a machine with the states sequence {xi}, i = 0, 1, . . . . The elements xi,
i = 0, 1, . . . are defined by conditions:

xi+1 = f(xi), (1)

where x0 ∈ R, and f(x) ∈ R[x].
The maps

φi : R→ Ri, i ∈ 1, n

are rings epimorphisms. There is the induced epimorphism of polynomials
rings

φ̂i : R[x]→ Ri[x].

Let tn(C) be the length of the cycle C of the graph Gf,R. Denote by
ts(C) the length of the cycle φs(C) of the graph Gfs,Rs

. Sometimes we will
write ts instead of ts(C) if the cycle C is known.

By definition, put

f [t] = f ◦ f ◦ · · · ◦ f (t times),

where ◦ – composition polynomials. We say that f [t] is t-composition power
of polynomial f .

It follows from definition that ts(C) is a such minimum
T ∈ N that f [T ](a) ≡ a (mod Js) for all a ∈ C.

Fix the cycle C of the graph Gf,R. By definition, put ds = ts+1

ts
, s =

1, 2, . . . , n − 1, and let F ′(x) be standard derivative of the polynomial
F (x) = f [t1](x) (see [4]), and αC = F ′(a) ∈ R, a ∈ C. It was shown
in [2], that value αC depend only on the cycle C.

By ā denote the image φ1(a) of element a.
Let ord ᾱC be the order of the element ᾱC from the multiplicative group

R̄∗ and

δC =

{
p, if ᾱC = ē,

ord ᾱC − otherwise,
(2)

where e is the unit of the ring R.
We will need some results from the previous paper [2].
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Theorem 1. [2] If f(x) ∈ R[x] is a bijective polynomial, p > 2 and δC = p,
then the sequence d1, d2, . . . , dn−1 has the form a), b) or c):

a) 1, 1, . . . , 1;

b) 1, 1, . . . , 1, p;

c) 1, 1, . . . , 1, p, . . . , p.

The first series of units may be missing.

We give an analogue of theorem 1 for p = 2.

Theorem 2. [2] If f(x) ∈ R[x] is a bijective polynomial, p = 2 and δC = p,
then the sequence d1, d2, . . . , dn−1 has the form a), b), c) or d):

a) 1, 1, . . . , 1;

b) 1, 1, . . . , 2, . . . , 2;

c) 1, 1, . . . , 2, 1, . . . , 1;

d) 1, 1, . . . , 2, 1, . . . , 1, 2, . . . , 2.

The first series of units may be missing. The cases c) and d) are possible
iff αC ≡ 3e (mod J2).

The maps
ϕi : Rs+1 → Rs, s ∈ 1, n− 1

are the rings epimorphisms.

Theorem 3. [2] Let f(x) be polynomial from R[x], C be the cycle of the
graph Gfs,Rs

, and t be length of the cycle C. Then the set of elements
ϕ−1
s (C) ⊂ Rs+1 generates the following cycles of the graph Gfs+1,Rs+1

:

a) one cycle with length t and q−1
δC

cycles with length δCt;

b) q
p cycles with length pt;

c) q cycles with length t,

where δC defined in 2.
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Consider a linear congruential generator (LCG) assigned by the poly-
nomial ax+ b ∈ R[x].

We have got the upper bound of length cycle of the graph Gax+b,R in
the follow statement.

Statement 4. The length of the cycle of the graph Gax+b,R , ax+ b ∈ R[x]
is at most (q − 1)pn−1.

Proof. Let C be the cycle of the graph Gax+b,R, with a length greater
than one. We claim that the parameter δC is equal to p. Indeed, since
f(x) = ax + b, it follows that k−composition power of polynomial f(x)
satisfies the equation:

f [k](x) = akx+ b(1 + · · ·+ ak−1).

We have
f [t1](x) ≡ at1x+ b(1 + · · ·+ at1−1) ≡

≡ at1x+ b(
at1 − e
a− e

) ≡ x (mod J), (3)

for any x ∈ C.
Hence at1 ≡ e (mod J), then using (3) we obtain that φ̂1(f

[t1](x)) = x.
Then αC ≡ (f [t1](x))′ ≡ e (modJ). From definition (2) value δC it

follows that δC = p.
From theorems 1 and 2 it follows that the length of the cycle C of the

graph Gax+b,R is at most value t1p
n−1 when p 6= 2 and does not exceed

value t12
n−1 when p = 2. In both cases t1 ≤ q − 1, and this completes the

proof. B
Suppose that p 6= 2.

Theorem 5. There is a cycle with length (q−1)pn−1 in the graph Gax+b,R,
p 6= 2 iff

1. a ≡ a0 (mod J), where a0 is a primitive element of the field R1;

2. a ∈ R \ Γ(R), where Γ(R) = {r ∈ R| rq = r}.
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Proof. We obviously have

f [k](x0) ≡ akx0 + b
ak − 1

a− 1
≡ 0 (mod J)⇔

⇔ x0 =
b

a− 1
or k = ord ā.

Using condition 1 we obtain ord a = q − 1 and the cyclic structure of the
graph Gax+b,R1

equals [(q − 1)1, 11] and we have t1 = q − 1 for the larger
cycle.

Using condition 2 we get

f [q−1](x0) ≡ aq−1x0 + b
aq−1 − 1

a− 1
6≡ x0 (mod J2)⇔

⇔ aq−1 6≡ e (mod J2)⇔ a ∈ R \ Γ(R).B

Corollary 5.1. Suppose there is a cycle of the length (q − 1)pn−1 in the
graph Gax+b,R then there are (qp)

n−1 cycles with the length (q − 1)pn−1 in
the graph Gax+b,R.

Proof. Combining theorems 1 and 3 we get

(d1, d2, . . . , dn−1) = (p, p, . . . , p)

and the cyclic structure of the graph Gax+b,R contains (qp)
n−1 cycles with

the length(q − 1)pn−1 .B
Now suppose that p = 2. The follow theorem and corollary are proved

similarly to theorem 5 and corollary 5.1.

Theorem 6. There is a cycle with length (2m−1)2n−1 in the graph Gax+b,R,
p = 2 iff

1. a ≡ a0 (mod J), where a0 – primitive element of the field R1;

2. a ∈ R \ Γ(R);

3. αC 6≡ 3e (mod J2) for a cycle C of the graph Gax+b,R.
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Corollary 6.1. Suppose there is a cycle of length (2m−1)2n−1 in the graph
Gax+b,R then there are 2(m−1)(n−1) cycles with the length (2m−1)2n−1 in the
graph Gax+b,R.

The experiments showed, that the bound from theorem 4 is achievable.
Here is an example for the case p 6= 2.

Example 1. Consider the Galois ring R = GR(53∗2, 53) = Z125[y]/y2+y+1.
Denote by (a1, a0) ∈ Z2

125 the element [a1y + a0]y2+y+1 ∈ R
For example, the element

[2y + 1]y2+y+1 ∈ R
is denoted by (2, 1). Consider the polynomial f(x) ∈ R[x]:

f(x) = (6, 2)x+ (3, 4).

The cyclic structure of the graph Gf,R is equal to [60025, 1205, 241, 11] and
the bound from the theorem 4 is achieved.

Here is an example for the case p = 2.

Example 2. Consider the Galois ring R = GR(24∗3, 24) = Z16[y]/y3+y+1.
Denote by (a2, a1, a0) ∈ Z3

16 the element [a2y
2 + a1y + a0]y3+y+1 ∈ R.

For example, the element

[y2 + 2y + 1]y3+y+1 ∈ R
is denoted by (1, 2, 1). Consider the polynomial f(x) ∈ R[x]:

f(x) = (4, 3, 1)x+ (0, 1, 1).

The cyclic structure of the graph Gf,R is equal to [5616, 288, 144, 71, 11] and
the bound from the theorem 4 is achieved.

Now we show that the condition 3 of the theorem 6 is essential.

Example 3. Consider the Galois ring R = GR(23∗3, 23) = Z8[y]/y3+y+1

from the example 2.
Consider the polynomial f(x) ∈ R[x]:

f(x) = (4, 3, 3)x+ (1, 1, 2).

The cyclic structure of Gf,R is equals [1432, 78, 11] and the bound from the
theorem 6 is not achieved.
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3 Conclusion

In this paper we get the upper bound for the length of cycle in the graph of
affine transformation under Galois rings. The result of this paper is the first
step to obtaining a cyclic structure of the graph of affine transformation
under Galois rings. Studying a cyclic structure of graphs of quadratic and
inverse transformations under Galois rings are very interesting and is an
area ripe for further study.
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