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Quantum Security of Feistel Ciphers

Tetsu Iwata

Nagoya University, Nagoya, Japan
tetsu.iwata@nagoya-u.jp

Abstract

It is well known that quantum computers can break a number of public key
cryptosystems. On the other hand, the impact of quantum computers on symmetric
key cryptosystems is largely unexplored. In 2010, Kuwakado and Morii demonstrated
that, based on Simon’s quantum period finding algorithm [Simon, SIAM J. Comput.,
1997], the 3-round Feistel cipher can be broken in polynomial time if an adversary can
make superposition queries [Kuwakado, Morii, ISIT 2010]. Since then, the quantum
security of various symmetric key cryptosystems has been analyzed.

In this talk, we review the developments on the quantum security analysis of Feis-
tel ciphers and their variants, covering both quantum attacks and provable security
results.

Keywords: Quantum Security, symmetric key cryptosystems, Feistel ciphers.
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Some Security Aspects of Contact Tracing
Protocols for COVD-19

Mridul Nandi

Indian Statistical Institute, India
mridul.nandi@gmail.com

Abstract

In this talk I will describe what we mean by contact tracing and what are the
security concerns. In the last few months several such designs were proposed from
several countries. Some of them are centralized and some are decentralized. We
discuss some security concerns and how cryptographic tools such as Private Set
Intersection can help to resolve those issues.

Keywords: cryptography, contact tracing, implementation.
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Elementary quantum cryptography

Igor Arbekov

JSC «InfoTeCS», LLC «SFB Lab», Russia
igor.arbekov@sfblaboratory.ru

Abstract

In the report in an accessible form the mathematical problems of proving the
secrecy of a key in quantum cryptography are formulated. The main stages of the
proof of the secrecy of a quantum key in terms of classical probability theory are
presented.

This proof is given on the example of the well-known BB84 protocol (1984), when
the so-called attack of individual measurements of quantum states, carried out by
the eavesdropping Eve, is considered. This attack is not optimal, but it leads to a
simple and well-known binary symmetric communication channel with distortions
both in the legitimate Alice-Bob channel and in the Alice-Eve interception channel.
Bit errors in these channels are functionally connected. This is all that is needed as a
manifestation of the quantum nature of the transmission of binary information over
an optical channel.

The historical development of the secrecy criterion of a key is considered – from
the rough physical to the entropic one and further to the criterion of the variational
distance.

For the privacy amplification key procedure we consider in detail the Leftover-
Hash Lemma associated with hashing the bit sequences of Alice and Bob into the
final key and giving an estimate of the Eve’s average variational distance between
the a posteriori distribution and ideal key distribution. An example of the used
2nd order of universal hash functions class is given. We show how the estimates of
the variational distance changed in accordance with the use of various conditional
entropies of the hashed sequence – from the 2nd order Renyi entropy to the minimum
entropy, the minimum smooth entropy, and, finally, to the classical binary Shannon
entropy corrected for asymptotics.

A short derivation of the classic leak value associated with the implementation
of the error correction procedure in the bit sequence on Bob’s side is given.

The historical development of the results related to the relationship between the
posterior key distribution and the average complexity of algorithms for finding it,
such as testing the most probable key, total testing, truncated testing with a given
probability of success is presented.

In conclusion, using the uncertainty relation for minimum smooth entropy, it
will be shown how suboptimal the attack of individual measurements is in terms of
estimating the magnitude of the quantum leakage.

Keywords: quantum cryptography, BB84, individual attack, secrecy criterions.
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Constructing Permutations, Involutions and Orthomorphisms
with Almost Optimal Cryptographic Parameters 115

Reynier Antonio de la Cruz Jiménez
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A Natural Approach to the Experimental
Study of Dependence Between Statistical Tests

Andrei Zubkov and Aleksandr Serov

Steklov Mathematical Institute of Russian Academy of Sciences, Russia
{zubkov, serov}@mi-ras.ru

Abstract

We discuss the results of empirical testing the hypothesis on the independence of
tests included in the NIST Statistical Test Suite. To test this hypothesis we consider
sets of binary segments and for each segment compute the number of tests which
reject this segment as not corresponding to the equiprobable Bernoulli sequence. If
the tests were independent, then for segment of equiprobable Bernoulli sequence the
number of rejecting tests should have the binomial distribution. It appears that to
satisfy this condition we have to exclude some tests from the NIST Statistical Test
Suite.

Keywords: NIST Statistical Test Suite, Pseudo Random Number Generators, binary
segment, Bernoulli sequence.

1 Introduction

The problem of testing output binary sequences of Pseudo Random
Number Generators (PRNG) is very important for cryptography (as well
as for other applications of PRNG). The aim of such testing is to decide
whether PRNG generates sequences which may be considered as realizations
of equiprobable Bernoulli sequence and therefore may be used in cryptosys-
tems.

Denote by H0 the statistical hypothesis that elements of binary sequence
are independent and takes values 0 and 1 with probabilities 1

2 . Under this
hypothesis all 2n binary segments of length n have the same probability 2−n.
So, from probabilistic viewpoint there is no reason to consider some n-bit
segments as better corresponding to the hypothesis H0 than other segments.

In fact each test for the hypothesis H0 realizes checking whether there
exists some another hypothesis H∗ such that the probability of appearance
of tested segments under hypothesis H∗ is essentially larger than under H0.
Usually the type of H∗ does not stated explicitly: application of test consists
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in computation of some statistics (function of tested segments) and hypoth-
esis H0 is rejected if the value of this statistics falls into predefined “critical”
set having too small probability under H0.

Different tests use different statistics and different “critical” sets. Usually
testing of segments of binary sequences is based on some well-known batteries
of tests, for example, NIST [1], TestU01 [2] etc. In such case all tests of the
battery are applied to each tested segment of sequence.

Let Vn be the set of all 2n binary segments of length n. If the number of
tests used to check H0 is too large, then almost each segment from Vn may
be rejected by some tests. If the number of tests used is bounded and n is
not small, then large part of segments from Vn will not be rejected and this
part may contain segments having not very complex structure. (We do not
discuss here the approach based on the complexity theory.) For example, in [6]
we have constructed simple combinations of pairs of binary linear recurrent
sequences which were accepted by all tests of the NIST statistical package
with high probability (see below sequences of type MixL).

Nevertheless, despite the shortcomings of statistical testing procedures
such testing of output sequences generated by PRNG’s is necessary: without
testing bad PRNG’s may be included into cryptosystems and destroy their
safety properties.

When a battery of tests is used, some segments may be rejected by several
tests. Does it mean that such segments are very bad and that the PRNG
producing such segments should be considered as non-admissible? Or this
effect may be a consequence of dependencies between tests?

In recent years we have investigated these questions by means of different
methods. Some recent results on dependencies between tests included into
NIST Statistical Test Suite [1] are presented in this note.

2 Short review of NIST Statistical Test Suite

In the complete version of NIST Statistical Test Suite the decision on the
acceptance or rejection of hypothesis on the randomness and uniformity of
tested sequence is based on the results of 15 tests. The values of statistics of
each test are transformed into p-values; the whole number of p-values equals
188 (148 p-values are generated by Non-overlapping Template Matching Test,
8 p-values by Random Excursions Test, 18 p-values by Random Excursions
Variant Test, each of Serial and Cumulative Sums Tests generate 2 p-values).
For the study of dependencies between tests we have not considered the Non-
overlapping Template Matching Test and two tests connected with Random
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Excursions (the reasons will be explained at the end of next section). So, we
have studied 12 tests generating 14 p-values, see Table 1.

Test No. Name of Test and character of statistics used
1 Frequency (normed difference between frequencies

of ones and zeros in the whole segment of the sequence)
2 Block Frequency (relative frequences of ones in adjacent

nonintersecting 128-bit blocks of the segment of the sequence)
3 Runs (the total number of 1-runs and 0-runs

in the whole segment of the sequence)
4 Longest Run (maximal lengths of 1-runs in adjacent

nonintersecting 104-bit blocks of the segment of the sequence)
5 Binary Matrix Rank (ranks of binary 32x32-matrices formed from adjacent

nonintersecting 1024-bit blocks of segments of the sequence)
6 Discrete Fourier Transform (the number of coefficients of discrete

Fourier transform of the n-bit segment exceeding h =
√
n log 1

0.05
in absolute value)

7 Overlapping Template Matching (numbers of 9-bit 1-series in 1032-bit blocks
adjacent intersecting blocks of segment of sequence)

8 Universal (Maurer’s "Universal statistical test") (sum of base 2 logarithms
of distances between equal nonintersecting 7-bit blocks of 220-bit segment)

9 Linear Complexity (lengths of shortest linear shift registers generating
adjacent nonintersecting 500-bit blocks of the segment of the sequence)

10 Serial (frequencies of intersecting 16-, 15- and 14-bit blocks
in the whole segment of the sequence, results in 2 statistics)

11 Approximate Entropy (frequencies of intersecting
10- and 11-bit blocks in the whole segment of the sequence)

12 Cumulative Sums (maximal deviation from 0 for ±1 walk constructed
by a segment of binary sequence, results in 2 statistics

Table 1: List of NIST Statistical Tests considered

In [1, Section 4.4] some notes were made on the results of the study on
the dependencies between tests included in NIST Statistical Test Suite:

a) by the Kolmogorov–Smirnov test the empirical distributions of p-values
were compared with the uniform distribution on [0, 1],

b) factor analysis of p-values was conducted for 161 types of statistics
generated by different tests ,

c) for pseudorandom sequences of length 106 generated by the Blum–
Blum–Shub generator the principal component analysis was conducted for
the set of vectors zj = (z1j, . . . , z161j), 1 ≤ j ≤ m, where zij = Φ−1(pij), pij
is a p-value for statistics of j-th: computed for for j-th m-sequence, and Φ is
the distribution function of the standard normal distribution,

d) correlation matrix for vectors zj, 1 ≤ j ≤ m, was computed.

The results of these investigations was formulated in [1, section 4.4] as
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follows:
1) there is no large redundancy among the tests,
2) the degree of duplication among the tests seems to be very small.

Along with this summary the authors of [1] note that there exist depen-
dencies between some tests.

The existence of dependencies between tests of the NIST package were
studied in [3]. The author had applied all tests of the NIST package (except
Random Excursions and Random Excursions Variant tests) to each of m
segments consisting of n bits each, obtaining 162 p-values for each segment.
Further for each segment he had computed arithmetic mean of these p-values
and had compared the histogram constructed by n arithmetic means with
the normal density approximating the sum of 162 independent random vari-
ables having uniform distribution on the interval (0,1). It appears that the
histogram is wider than normal density; this is interpreted as the existence
of positive correlations between p-values.

Remark. In [1] and [3] the study of dependencies was concentrated on the
global distributions of p-values. But decision made by each test depends on
the closeness of p-value to 0, so it seems more natural to measure the depen-
dence between tests in terms of left tail dependence between their statistics
or p-values, or simply between test decisions. In our paper we use the last
approach, namely, for each of m tested segments we compute the number of
tests rejecting it and compare frequencies of these numbers in the sample of
n segments with probabilities of binomial disribution Bin(m, q), where q is
the rejection probability for the segment of equiprobable Bernoulli sequence.
This binomial distribution corresponds the case when decisions of tests are
independent.

For some simple tests the characteristics of dependence between them
may be computed exactly and studied theoretically. For example, in [5, the-
orems 10.3.3, 10.3.4] it was shown that if s0 = 0, s1, . . . , sn is the walk
on Z with steps ±1, then the number of walks with sn = 2w − n and
zn = max06k6n |sk| 6 u is equal to

L(w, n− w, u) =
∑

k∈Z

(
Cw−2k(u+1)
n − Cw−(2k−1)(u+1)

n

)
. (1)

Analogous combinatorial formula may be found in [4] as a problem to Chap-
ter 3. Since sn and zn correspond the statistics of the Frequency and Cumu-
lative Sums tests, by means of (1) it is possible to compute the correlations
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and joint distributions of these statistics. It was found that for symmetrical
random walk the correlation of |sn| and zn is approximately 0.85 (depending
on n), and

P{|sn| > a, zn > b} ≈ min{P{|sn| > a},P{zn > b}}

if P{|sn| > a} and P{zn > b} are smaller than 0.01.

Our experiments had shown that correlations between statistics of Fre-
quency and Cumulative Sums tests are larger than 0.8.

In [1] it is recommended to discontinue the Random Excursions and Ran-
dom Excursions Variant tests if the trajectory of walk with steps ±1 con-
structed by the tested binary segment have smaller than 500 returns to 0. In
[4][Ch.III, § 7, Theorem 4] it is proved that for simple symmetrical random
walk r-th return to 0 becomes at the moment n with the probability

ϕr,n−r =
r

(n− r)2n−rC
n/2
n−r = r

√
2

πn3
e−r

2/n

(
1 +O

(
r

n
+
r3

n2

))
,

if n→∞, r = const. By means of this formula it is possible to check that for
n = 106 the probability that the number of returns to 0 will be smaller than
500 is larger than 0.3, and for n = 107 it is larger than 0.1. So, tests based
on Random Excursions do not generate any p-value for large part of tested
segments, and it seems unreasonable to use such tests if the probability of
error is chosen to be, for example, 0.01.

Finally, the Non-overlapping Template Matching Test generates 148 p-
values and corresponding decisions. “It is highly likely” that among such
large family of tests there exist dependent ones. For statistics of frequencies
of numbers of tests rejecting the same segment some dependencies between
148 tests may hide dependencies between other tests, so we exclude this
test from experiments described below. Dependencies between components
of Non-overlapping Template Matching Test will be examined separately.

3 Description of our experiments

We have applied 12 tests from Table 1 to pseudorandom sequences of two
types: a) sequences generated by a block cipher, b) sequences obtained from
pairs of binary linear recurrent sequences.

The first type sequences were obtained by means of AES block cipher in
the CFB (Cipher Feedback Block) mode (see Figure 1) with the zero start-
ing plaintext block, IV=0xffffffffffffffffffffffffffffff80, zero key for the sequence

A. Zubkov and A. Serov 16



A Natural Approach to the Experimental Study of Dependence Between Statistical Tests

denoted by AES0, and key 0x2b7e151628aed2a6abf7158809cf4f3c for the se-
quence denoted by AES1.

Figure 1:

The second type sequences were obtained by quasirandom partitioning
two binary linear recurrent sequences into segments and concatenating these
segments in alternating manner. We use linear recurrent sequences over
GF(2) having maximal periods and characteristic polynomials

f(x) =x43 + x27 + x22 + x5 + 1,

g(x) =x63 + x+ 1,

h(x) =x33 + x26 + x22 + x21 + x3 + x+ 1,

m(x) =x33 + x13 + 1,

q(x) =x63 + x60 + x22 + x18 + x8 + x5 + 1,

u(x) =x64 + x61 + x56 + x31 + x28 + x23 + 1.

Initial states of recurrent sequences have only one nonzero element which was
the most significant bit.

The recurrent sequences were divided into adjacent segments of pseudo-
random lengths according to the following rule:

− the first segment (x1, . . . , xL∗1) of the first recurrent sequence {xi}2n1−1
i=0

has length L∗1 = 64,

− the first segment (y1, . . . , yL∗2) of the second recurrent sequence {yi}2n2−1
i=0

has length

L∗2 = L∗1+26xL∗1−6+25xL∗1−5+24xL∗1−4+23xL∗1−3+22xL∗1−2+2xL∗1−1+xL∗1,

− the second segment (xL∗1+1, xL∗1+2, . . . , xL∗1+L∗3) of the first sequence has
length

L∗3 = L∗1 +26yL∗2−6 +25yL∗2−5 +24yL∗2−4 +23yL∗2−3 +22yL∗2−2 +2yL∗2−1 +yL∗2,
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− and so on.

Tested sequences {w1, w2, . . .} of the second type have the form

{x1, . . . , xL∗1, y1, . . . , yL∗2, xL∗1+1, . . . , xL∗1+L∗1, yL∗2+1, . . .}.

Denote tested sequences by corresponding pairs of characteristic polynomials:

MixL1: h(x), m(y),

MixL2: f(x), g(y),

MixL3: f(x), q(y),

MixL4: u(x), q(y).

Each tested sequence was divided into s = 10000 segments of length
l = 220 = 1.048.576 each (this length corresponds the NIST package recom-
mendations). Each segment was tested by all 12 tests from Table 1.

The application of 12 tests to each segment results in 14 different p-values
(each of tests 10 and 12 results in two p-values). The critical level of p-value
was chosen as 0.01: if the p-value does not exceed 0.01, then test rejects the
hypothesis H0 on the randomness and equiprobability of elements of tested
segment. For each segment we compute the number of p-values not exceeding
0.01, and for each tested sequence compute frequencies η0, η1, . . . , η14 of these
numbers over sample of 10000 volume.

Under the hypothesis on the independence of tests for each segment of
“ideal” Bernoulli sequence the number of tests giving p-value not exceeding
0.01 should have the binomial distribution with the parameters (14, 0.01).
Since for each sequence we have considered s = 10000 segments, then for
independent tests

Eηk = 10000Ck
14(0.01)k(0.99)14−k, k = 0, 1, . . . , 14. (2)

To test the hypothesis
H14: (η0, η1, . . . , η14) corresponds the sample of 10000 random variables with
distribution Bin(14,0.01)
we use the Pearson statistics for (η0, η1, η2 + . . .+η14), joining all frequencies
exceeding 1 in one class (to make the mean value of outcomes in each class
at least 5):

Pear =
1∑

k=0

(ηk − Eηk)
2

Eηk
+

(∑14
k=2 ηk −

∑14
k=2 Eηk

)2

∑14
k=2 Eηk

. (3)
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Under hypothesis on the independence of tests the distribution of this statis-
tics should be close to the chi-square distribution with 2 degrees of freedom
having mean 2 and variance 4.

Table 2 contains frequencies η0, η1, . . . , η9 for samples of 10000 segments of
sequences AES0, AES1, MixL1, MixL2, MixL3, MixL4. Last column contains
values Eηk for the binomial distribution with the parameters (14, 0.01) (for
the case of independent tests). Last row contains values of Pearson statistics
(3).

k AES0 AES1 MixL1 MixL2 MixL3 MixL4 Eηk

0 8768 8826 8729 5602 8816 8800 8687.46
1 1012 992 1103 1906 983 1023 1228.53
2 125 100 100 978 128 108 80.66
3 83 71 58 734 63 59 3.26
4 12 9 9 496 9 8 0.09
5 0 1 1 158 1 2 0.018
6 0 1 0 59 0 0 2.7 · 10−5

7 0 0 0 29 0 0 3.2 · 10−7

8 0 0 0 21 0 0 2.8 · 10−9

9 0 0 0 17 0 0 1.9 · 10−11

Total 10000 10000 10000 10000 10000 10000 10000
Pear 259 162 97 70487 214 139

Table 2: Numbers of segments resulting in k (out of 14) p-values smaller than 0.01 and
values of Pearson statistics for truncated binomial distribution

Table 2 shows that the hypothesis on the independence of tests should
be rejected.

Note that frequencies corresponding the sequence MixL2 show that it is
rejected by many tests. It may be a consequence of bad mixing properties of
linear recurrent sequence with the characteristic polynomial g(x).

More detailed analysis of results of experiments have shown that p-values
corresponding the Frequency, the Cumulative Sums and the Serial tests are
simultaneously smaller than 0.01 with probabilities larger than it should be
for independent tests.

If we exclude from the experimental results one of the statistics of the
Serial test (number 10 in Table 1) and both statistics of the Cumulative
Sums test (number 12 in Table 1), then the remaining tests became more
similar to independent ones from the viewpoint of the distribution of the
number of tests simultaneously rejecting the same segments. In this case we
use equations (2) and (3) with 11 instead of 14. Corresponding results are
contained in Table 3.

Note that after exclusion of three p-values the correpondence with hy-
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k AES0 AES1 MixL1 MixL2 MixL3 MixL4 Eηk

0 8878 8920 8835 5650 8919 8905 8953.38
1 1043 1016 1097 2189 1012 1025 994.82
2 78 61 64 1212 66 66 50.24
3 1 2 4 638 3 4 1.52
4 0 1 0 202 0 0 0.03
5 0 0 0 67 0 0 4 · 10−4

6 0 0 0 25 0 0 4.4 · 10−6

7 0 0 0 13 0 0 3.2 · 10−8

8 0 0 0 4 0 0 1.6 · 10−10

9 0 0 0 0 0 0 5.4 · 10−13

Total 10000 10000 10000 10000 10000 10000 10000
Pear 17.25 3.45 17.12 88539 6.14 7.57

Table 3: Numbers of segments resulting in k (out of 11) p-values smaller than 0.01 and
values of Pearson statistics for truncated binomial distribution

pothesis on independence became better, but nevertheless is far from nor-
mal. If χ2

2 denotes random variable having the chi-square distribution with 2
degrees of freedom (i. e. exponential distribution with parameter 1

2 and mean
2), then P{χ2

2 > 17.12} ≈ 0.0002, P{χ2
2 > 3.45} ≈ 0.178, P{χ2

2 > 6.14} ≈
0.046, P{χ2

2 > 7.57} ≈ 0.023. Note also that the sequence AES0 was ob-
tained with zero key, sequence MixL1 was constructed from sequences having
characteristic polynomials of the same degree 33, sequence MixL2 contains
segments of recurrent sequence with three-term characteristic polynomial.
So, sequences of these types may have properties which are reflected by some
tests.

4 Conclusion

The hypothesis on the independence of tests included in the NIST Statis-
tical Test Suite was rejected on the base of computer experiments by means
of statistics of frequencies of segments simultaneously rejected by given num-
ber of tests. It is shown that from the viewpoint of this statistics tests from
some subset of the set of NIST tests look more independent than tests of the
whole set.

It is shown also that pseudorandom sequences constructed by alternating
concatenation of segments of two linear recurrent sequences over GF(2) with
non-regularly varying lengths do not rejected by the NIST tests if these
recurrent sequences are not too simple.
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Abstract

Random number generators and statistical tests for checking them are widely
used in data protection systems and are intensively researched in modern cryptogra-
phy. Nowadays there are hundreds of RNG statistical tests that are often combined
into so-called batteries, each containing from a dozen to more than one hundred
tests. We propose an adaptive way to use batteries (and other sets) of tests, which
requires less time but, in a certain sense, preserves the power of the original battery.
We call this method time-adaptive battery of tests.

Keywords: cryptographic randomness, statistical test, randomness testing, random number
generators, adaptive statistical test, battery of tests.

1 Introduction

Random number generators (RNG) and pseudo-random number genera-
tors (PRNG) as well as statistical tests for checking them are widely used in
data protection systems. RNGs are based on physical sources, while pseudo-
random numbers are generated by computers. The goal of RNG and PRNG
is to generate sequences of binary digits, which are distributed as a result
of throwing an “honest” coin, or, more precisely, obey the Bernoulli distri-
bution with parameters (1/2, 1/2). As a rule, for practically used RNG and
PRNG this property is verified experimentally with the help of statistical
tests developed for this purpose.

Currently, there are more than one hundred applicable statistical tests,
as well as dozens RNGs based on different physical processes, and an even
greater number of PRNGs based on different mathematical algorithms; see
for review [1, 2, 3]. Informally, an ideal RNG should generate sequences that
pass all tests. In practice, especially in cryptographic applications, this re-
quirement is formulated as follows: an RNG must pass a so-called battery of
statistical tests, that is, some fixed set of tests. When a battery is applied,
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each test in the test battery is applied separately to the RNG. Among these
batteries, we mention the National Institute of Standards and Technology
(NIST) battery of 15 tests which designed for data protection systems [4],
several batteries proposed by L’Ecuyer and Simard [2], which contain from
10 to 106 tests and many others (see for review [1, 2, 5]). In addition, these
batteries contain many tests that can be used with different values of the
parameters, potentially increasing the total number of tests in the battery.
Note that practically used RNG should be tested from time to time like any
physical equipment, and therefore these test batteries should be used contin-
uously. It is worth noting that most of the research is related to cryptography
applications, see, for example, [4, 5, 6].

How to evaluate large batteries of tests? On the one hand, the larger the
test battery, the more likely it is to find flaws in the tested RNG. On the other
hand, the larger the battery, the more time is required for testing. (Thus,
L’Ecuyer and Simard [2] remark the need for small batteries to increase
computational efficiency.) Another view is as follows: in reality, the time
available to study any RNG is limited. Given a certain time budget, one can
either use more tests and relatively short sequences generated by the RNG,
or use fewer tests, but longer sequences and, in turn, this gives more chances
to find deviations of randomness of the considered RNG.

In order to reduce this trade-off, we propose a time-adaptive testing of
RNG, in which, informally speaking, first all the tests are executed on rel-
atively short sequences generated by the RNG, and then a few “promising”
tests are applied for the final testing. Of course, the key question here is
which tests are promising. For example, if a battery of two tests is applied to
(relatively short) sequences of the same length, it can be assumed that the
smaller the p-value, the more promising the test. But a more complicated
situation may arise when we have to compare two tests that were applied
to sequences of different lengths (for example, the first test was applied to a
sequence of length l1, and the second to a sequence of length of l2, l1 6= l2).
We show that if our goal is to choose the most powerful test, then a good
strategy is to choose the test i for which the ratio − log πi/li is maximum,
where πi is p-value of the i-th test. This recommendation is based on the fol-
lowing theorem: if an RNG can be modelled by a stationary ergodic source,
the value −log π(x1x2...xn)/n goes to 1 − h, if n grows, where x1x2... is a
generated sequence, π( ) is the p-value of the most powerful test, h is the
limit Shannon entropy of the stationary ergodic source. This theorem plays
an important rule in the suggested time-adaptive scheme and will be de-
scribed in the first part of the paper, whereas the time-adaptive testing will
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be described afterwords. The description will be illustrated by experiments
with the battery Rabbit from [2].

2 Hypothesis testing and properties of pi-values

2.1 Notation

We consider RNG which generates a sequence of letters x = x1x2 ...xn,
n ≥ 1, from a finite alphabet {0, 1}n. Two statistical hypotheses are consid-
ered: H0 = {x obeys the uniform distribution (µU) on {0, 1}n }, and the
alternative hypothesis H1 = H̄0, that is, H1 is the negation of H0. It is a
particular case of the so-called goodness-of-fit problem, and any test for it is
called a test of fit, see [11]. Let t be a test. Then, by definition, the signifi-
cance level α equals the probability of the Type I error, α ∈ (0, 1). Denote
a critical region of the test t for the significance level α by Ct(α) and let
C̄t(α) = {0, 1}n \Ct(α). (Recall that Type I error occurs if H0 is true and is
rejected. Type II error occurs if H1 is true, but H0 is accepted. Besides, for
a certain x = x1x2...xn H0 is rejected if and only if x ∈ Ct(α).)

Suppose that H1 is true, and the investigated sequence x = x1x2...xn is
generated by an (unknown) source ν. By definition, a test t is consistent, if
for any significance level α ∈ (0, 1) the probability of Type II error goes to
0, that is

lim
n→∞

ν(C̄t(α)) = 0 . (1)

Suppose, thatH1 is true and the sequences x ∈ {0, 1}n obey a certain dis-
tribution ν. It is well-known in mathematical statistics that the optimal test
(Neyman-Pearson or NP test) is described by the Neyman-Pearson lemma
and the critical region of this test is defined as follows:

CNP (α) = {x : µU(x)/ν(x) ≤ λα} ,

where α ∈ (0, 1) is the significance level and the constant λα is chosen in such
a way that µU(CNP (α)) = α, see [11]. (We did not take into account that
the set {0, 1}n is finite. Strictly speaking, in such a case a randomized test
should be used, but in what follows we will consider asymptotic behaviour of
tests for large n, and this effect will be negligible). Note that, by definition,
µU(x) = 2−n for any x ∈ {0, 1}n.
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2.2 The p-value and its properties

The notion of the critical region is connected with the so-called p-value,
which we define for the NP-test by the following equation:

πNP (x) = µU{y : ν(y) > ν(x)} = |{y : ν(y) > ν(x)}|/2n . (2)

Informally, πNP (x) is the probability to meet a random point y which is
worse than the observed when considering the null hypothesis.

The NP-test is optimal in the sense that its probability of a Type II
error is minimal, but when testing an RNG the alternative distribution is
unknown, and, hence, different tests are necessary. Let us consider a certain
statistic τ (that is, a function on {0, 1}n), and define the p-value for this τ
and x as follows:

πτ(x) = µU{y : τ(y) > τ(x)} = |{y : τ(y) > τ(x)}|/2n . (3)

(Note, that the definition πNP in (2) corresponds to this equation if the value
ν(x) is considered as a statistic, i.e. τ(x) = ν(x)).

2.3 The p-value and Shannon entropy

It turns out that there exist such tests whose asymptotic behaviour is close
to that of the NP -test for any (unknown) stationary ergodic source ν, see [7].
Those tests are based on so-called universal codes (or data-compressors) and
are described in [8, 9], where it is shown that they are consistent. We describe
those tests in Appendix 1 and show that they are asymptotically optimal.
The following theorem describes the asymptotic behaviour of p-values for
stationary ergodic sources for NP test and the mentioned above tests which
are based on universal codes (see Appendix 1). We use this theorem as the
theoretical basis for adaptive statistical testing developed in this paper.

Theorem 1. i) If ν is a stationary ergodic measure, then, with probability
1,

lim
n→∞
−1

n
log πNP (x) = 1− h(ν) , (4)

where h(ν) is the Shannon entropy of ν, see for definition [10].
ii) There exists such a statistic τ that for any stationary ergodic measure

ν, with probability 1,

lim
n→∞
−1

n
log πτ(x) = 1− h(ν) , (5)

where p-values πNP and πτ are defined in (2) and (3), correspondingly.
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The test of fit τ is described in Appendix 1, the proof of the theorem
is given in Appendix 2, but here we note that this theorem gives some idea
of the relation between the Shannon entropy of the (unknown) process ν
and the required sample size. Indeed, suppose that the NP test is used and
the desired significance level is α. Then, we can see that (asymptotically) α
should be larger than πNP (x) and from (4) we obtain n > − logα/(1−h(ν))
(for the most powerful test). It is known that the Shannon entropy is 1 if
and only if ν is a uniform measure µu. Therefore, in a certain sense, the
difference 1−h(ν) estimates the distance between the distributions, and the
last inequality shows that the sample size becomes infinite if ν approaches a
uniform distribution.

3 Time-adaptive statistical tests and their experimen-
tal investigation

3.1 Batteries of tests

Let us consider a situation where the randomness testing is performed
by conducting a battery of statistical tests for randomness. Suppose that
the battery contains s tests and αi is the significance level of i−th test,
i = 1, ..., s. If the battery is applied in such a way that the hypothesis H0 is
rejected when at least one test in the battery rejects it, then the significance
level α of this battery satisfies the following inequality:

α ≤
s∑

i=1

αi . (6)

If all the tests in the battery are independent, then the following equation is
valid: α = 1 −∏s

i=1(1 − αi) . Clearly, the upper bound (6) is true for this
case and 1−∏s

i=1(1−αi) is close to
∑s

i=1 αi, if each αi is much smaller than
1/s. That is why we will use the estimate (6) below.

We have considered a scenario in which a test is applied to a single se-
quence generated by an RNG, and then the researcher makes a decision on
the RNG based on the test results. Another possibility that has been consid-
ered by several authors, e.g. [2, 4], is to use the following two-step procedure
for testing RNGs. The idea is to generate r sequences x1, x2, ..., xr and apply
one test (say, τ ) to each of them independently. Then apply another test
to the received data τ(x1), τ(x2), ..., τ(xr) (as a rule, those values are con-
verted into a sequence of corresponding p-values, and then the hypothesis of
the uniform distribution of those p-values is tested). Then this procedure is
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repeated for the second test in the battery, and so on. The final decision is
made on the basis of the results obtained. We do not consider this two-step
procedure in detail, but note that time-adaptive testing can be applied in
this situation, too.

3.2 The scheme of the time-adaptive testing

Let there be an RNG which generates binary sequences, and a battery of s
tests with statistics τ1, τ2, ..., τs. In addition, suppose that the total available
testing time is limited to a certain amount T and the level of significance is
α ∈ (0, 1).

When the time-adaptive testing is applied, all the calculations are sepa-
rated into a preliminary stage and a final one. The result of the preliminary
stage is the list of values

γ1 =
− log πτ1(x

1
1x

1
2...x

1
n1

)

n1
, γ2 =

− log πτ2(x
2
1x

2
2...x

2
n2

)

n2

, ..., γs =
− log πτs(x

s
1x

s
2...x

s
ns

)

ns
, (7)

where the sequences x1
1x

1
2...x

1
n1
, ..., xs1xs2...xsns may have common parts (for

example, the first sequence may be the prefix of the second, etc.). Then,
taking into account the values (7), it is possible to choose some tests from
the battery and apply them to the longer sequence, calculate new values γ,
and so on. When the preliminary stage is carried out, several tests from the
battery should be chosen for the next stage.

The final stage is as follows. First, we divide the significance level α
into α1, α2, ..., αk in such a way that

∑k
i=1 αi = α. Then, we obtain new

sequence(s) y1
1y

1
2...y

1
m1
, ..., yk1y

k
2 ...y

k
mk

, which may have common parts, but are
independent of x1

1x
1
2...x

1
n1
, ..., xs1xs2...xsns and calculate

πτi1(y1
1y

1
2...y

1
m1

), ..., πτik (y
k
1y

k
2 ...y

k
mk

) . (8)

The hypothesisH0 will be accepted, if πτij (y
j
1y

j
2...y

j
mj

) > αj for all j = 1, ..., k.
Otherwise, H0 is rejected. The parameters of the test should be chosen in
such a way that the total time of calculation is not grater than the given
limit T .

Claim. The significance level of the described time-adaptive test is not
larger than α.

Indeed, the sequences y1
1y

1
2...y

1
m1
, ..., yk1y

k
2 ...y

k
mk

and x1
1x

1
2...x

1
n1
,

..., xs1x
s
2...x

s
ns

are independent and, hence, the results of the final stage
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does not depend on the preliminary one. When the test battery τi1, τi2, ..., τik
is applied, the significance level of τij equals αj and the significance level of
the battery equals

∑k
i=1 αi. From (6) we can see that the significance level

of the battery (and, hence, of the described testing) is not grater than α.
Comment. The length of the sequences may depend on the speed of tests.

For example, it can be done as follows: let vi be the speed per bit of the test
τi, i = 1, ..., s. One possible way to take into account the speed difference is
to calculate

γ̂i =
− log πτi(x

i
1x

i
2...x

i
ni

)

ni/vi
, i = 1, ..., s,

instead of (7) and similar expressions.

3.3 The experiments

We carried out some experiments with the time-adaptive test basing on
the battery Rabbit from [2], which contains 26 tests. Let us first describe
the choice of the RNG for our experiments. Nowadays there are many “bad”
PRNGs and “good” ones. In other words, the output sequences of some known
PRNGs have some deviations from randomness, which are quite easy to de-
tect with many known tests, while other PRNGs do not have deviations
that can be detected by known tests [2]. So, we need to have some families
of RNGs with such deviations from randomness that they can be detected
only for quite large output sequences. To do this, we take a good generator
MRG32k3a and a bad one LCG from [2], generate sequences g1g2... and b1b2...

by these two generators and then prepared a "mixed" sequence m1m2... in
such a way that

mi =

{
gi if i mod D 6= 0

bi if i mod D = 0
(9)

where D is a parameter.
The time-adaptive testing was organised as follows: during the prelimi-

nary stage we first generated a file m1m2...ml1 with l1 = 2 000 000 bytes,
tested it by 25 tests from the Rabbit battery and calculated the values (7)
with log ≡ log2, see the left part of Table 1. (This battery contains 26 tests,
but one of them cannot be applied to such a short sequence.) Then we chose
5 tests with the biggest value −log πti(m1...mli)/l1 (let they be ti1, ..., ti5 ),
generated a sequencem1...ml2 with l2 = 6 000 000 bytes and applied the tests
ti1, ..., ti5 for testing this sequence (see the example in the right part of Table
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1). After that we found a test tf for which

−logπtf/lf = max
r=1,...,25; j=i1...i5

{−logπr(m1...ml1)/l1,−logπj(m1...ml2)/l2} .

(In other words, for tf the value −logπr(m1...mlk)/lk is maximal for k = 1, 2
and all r (see the Table 1). The preliminary stage was finished. Then, during
the second stage, we generated a 40 000 000 byte sequence, and applied the
test tf to it. If the obtained p-value was less than 0.001, the hypothesisH0 was
rejected. (Note that the sequence length l1 = 2 000 000 and l2 = 6 000 000
are 5% and 15% from the final length of 40 000 000 bytes. So, the total
length of the sequences tested by all the tests during the preliminary stage
is 25× 0.05 + 5× 0.15 = 2 the final length, i.e. 2× 40 000 000. On the other
hand, if one applies the battery Rabbit to the sequence of the same length,
the total length of investigated sequences is 25 × 40 000 000, i.e. 8,33 times
more.

Let us consider one example in detail, taking D = 2 in (9).
Table 1 contains the results of all the calculations carried out during the

preliminary stage. So, we can see that the value − log2 π)/l is maximal for
the test t13. Hence, at the final stage we applied the test t13 to the new
40 000 000-byte sequence. It turned out that πt13 = 2.9 10−26 and, hence, H0

is rejected. Besides, we estimated time of all calculation (during both stages).
After that, we conducted an additional experiment to get the full picture.

Namely, we calculated p-values for all tests and for the same 40 000 000-
byte sequence and the estimated the total time of calculations. It turned
out that the p-values of the two tests were less than 0.001. Namely, πt13 =
2.9 10−26, πt22 = 1.1 10−6. Besides, we estimated time of calculations for
all experiments. So, the described time-adaptive testing revealed one of the
two most powerful tests, and the time used is 8 times less. We carried out
similar experiments 20 times for d = 2, 3, 4 (in (9) ) with different good
and bad generators from [2]. Besides, we investigated several modifications
of the considered scheme. In particular, we considered a case where during
the preliminary stage we, as before, first chose 5 the best tests and them two
of the best tests for the finale stage (instead of one, as in the experiment
above). It turned out, that in all cases considered the battery Rabbit rejects
H0 and the time-adaptive testing rejected H0, too.

4 Conclusion

First of all, we note that the proposed time-adaptive testing does not
suggest exact values of numerous parameters. Among these parameters, we
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test length
(l)
(bytes)

p-
value
(π)

− log2 π/l length
(l)
(bytes)

p-
value

− log2 π/l

t1 2 106 0.42 6.3 10−7

t2 2 106 0.37 7.3 10−7

t3 2 106 0.028 26 10−7 6 106 0,23 3.6 10−7

t4 2 106 0.78 1.8 10−7

t5 2 106 0.4 6.5 10−7

t6 2 106 0.37 7.2 10−7

t7 2 106 0.059 20 10−7

t8 2 106 0.026 26 10−7 6 106 0.0037 26 10−7

t9 2 106 0.72 2.4 10−7

t10 2 106 0.72 2.4 10−7

t11 2 106 0.63 3.3 10−7

t12 2 106 0.74 2.2 10−7

t13 2 106 0.021 28 10−7 6 106 0.0028 14 10−7

t14 2 106 0.42 6.2 10−7

t15 2 106 0.9 0.74 10−7

t16 2 106 0.087 18 10−7

t17 2 106 0.72 2.3 10−7

t18 2 106 0.58 3.9 10−7

t19 2 106 0.89 0.81 10−7

t20 2 106 0.51 4.9 10−7

t21 2 106 0.047 22 10−7 6 106 0.73 0.76 10−7

t22 2 106 0.47 0.47 10−7

t23 2 106 0.18 12 10−7

t24 2 106 0.14 14 10−7

t25 2 106 0.024 27 10−7 6 106 0.05 7.2 10−7

Table 1: Time-adaptive testing. Preliminary stage.

note the number of steps at the preliminary stage (in the considered example
there were two such steps: selecting five tests and then one), the number of
tests compared in one step, the length of the tested sequences, the rule for
choosing tests at different stages, etc. The problem of choosing the param-
eters may be considered a problem of multidimensional optimization. There
are many methods available for solving such problems (for example, neural
networks and other AI algorithms), and some of them can be used along with
the time-adaptive testing.

As far as we know, no one has applied adaptive methods for testing ran-
domness, but there are several well-known approaches that can be considered
as steps in this direction. For example, L’Ecuyer and Simard recommend
several batteries of different sizes that require different times (and the in-
vestigator may use them depending on how much time he has) [2]. Another

B. Ryabko 30



On Time-Adaptive Statistical Testing for Random Number Generators

popular battery recommended for cryptographic applications also has some
parameters that allow one to adjust the testing time [4].

We believe that the proposed approach makes it possible to investigate
and optimize time-adaptive testing.

5 Appendix 1. Consistent tests based on universal
codes

The considered tests are based on so-called universal codes, that is why
we first briefly describe them. For any integer m a code φ is defined as such a
map from the set of m-letter words to the set of all binary words that for any
m-letter u and v φ(u) 6= φ(u). This property gives a possibility to uniquely
decode. (More formally, φ is injective mapping from {0, 1}m to {0, 1}∗, where
{0, 1}∗ =

⋃∞
i=1{0, 1}i.) We will consider so-called universal codes which have

the two following properties:

∀ m > 0
∑

u∈{0,1}m
2−|φ(u)| = 1 (10)

and for any stationary ergodic ν defined on the set of all infinite binary words
x = x1x2..., with probability one

lim
n→∞

1

n
|φ(x1x2...xn)|/n = h(ν) (11)

where h(ν) is the Shannon entropy of ν. Such code exist, see [10]. Note, that
a goal of codes is to " compress " sequences, i.e. make an average length of the
codeword φ(x1x2...xn) as small as possible. The second property (11) shows
that the universal codes are asymptotically optimal, because the Shannon
entropy is a low bound of the length of the compressed sequence (per letter),
see [10].

Let us back to considered problem of hypothesis testing. Suppose, it is
known that a sample sequence x = x1x2... was generated by stationary er-
godic source and, as before, we consider the same H0 against the same H1.
Let φ be a universal code. The following test is suggested in [8]:

If the length |φ(x1...xn) ≤ n − log2 α then H0 is rejected, otherwise ac-
cepted. Here, as before, α is the significance level, |φ(x1...xn)| is the length of
encoded (”compressed") sequence. We denote this test by Tφ and its statistic
by τφ, i.e.

τφ(x1...xn) = n− |φ(x1...xn)| . (12)

The following theorem is proven in [8, 9]:
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Theorem 2. For each stationary ergodic ν, alpha ∈ (0, 1) and a universal
code φ, with probability 1 the Type I error of the described test is not larger
than α and the Type II error goes to 0, when n→∞.

6 Appendix 2. Proofs

Proof of Theorem 1. The known Shannon-McMillan-Breiman (SMB) the-
orem claims that for the stationary ergodic source ν and any ε > 0, δ > 0
there exists such n′ that

ν{x : x ∈ {0, 1}n & h(ν)− ε < −1

n
log ν(x) < h(ν) + ε } > 1− δ (13)

for n > n′, see [10]. From this we obtain

ν{x : x ∈ {0, 1}n & 2−n(h(ν)−ε) > ν(x) > 2−n(h(ν)+ε)} > 1− δ (14)

for n > n′. It will be convenient to define

Φε,δ,n = {x : x ∈ {0, 1}n & h(ν)− ε < −1

n
log ν(x) < h(ν) + ε } (15)

From this definition and (14 ) we obtain

(1− δ) 2n(h(ν)−ε) ≤ |Φε,δ,n| ≤ 2n(h(ν)+ε) . (16)

For any x ∈ Φε,δ,n define

Λx = {y : ν(y) > ν(x) }
⋂

Φε,δ,n . (17)

Note that, by definition, |Λx| ≤ |Φε,δ,n| and from (16) we obtain

|Λx| ≤ 2n(h(ν)+ε) . (18)

For any ρ ∈ (0, 1) we define Ψρ ⊂ Φε,δ,n such that

ν(Ψρ) = ρ & ∀u ∈ Ψρ ∀v ∈ (Φε,δ,n \Ψρ) =⇒ ν(u)) ≥ ν(v) . (19)

(That is, Ψρ contains the most probable words whose total probability equals
ρ.) Let us consider any x ∈ (Φε,δ,n \ Ψρ). Taking into account the definition
(19) and (16) we can see that for this x

|Λx| ≥ ρ|Φε,δ,n| ≥ ρ(1− δ)2n(h(ν)−ε) . (20)

So, from this inequality and (18) we obtain

ρ(1− δ)2n(h(ν)−ε) ≤ |Λx| ≤ 2n(h(ν)+ε) . (21)
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From equation (14), (15) and (19) we can see that ν(Φε,δ,n\Ψρ) ≥ (1−δ)(1−
ρ). Taking into account (21) and this inequality, we can see that

ν{x : x ∈ {0, 1}n&h(ν)− ε− log(ρ(1− δ))/n ≤ log |Λx|/n ≤ h(ν) + ε}

≥ (1− δ)(1− ρ). (22)

From the definition (2) of πNP (x) and the definition (17) of Λx, we can see
that πNP (x) = |Λx|/2n. Taking into account this equation and (22) we obtain
the following:

ν{x : x ∈ {0, 1}n & 1− (h(ν)− ε− log(ρ(1− δ))/n) ≥

− log πNP (x)/n ≥ 1− (h(ν) + ε)} ≥ (1− δ)(1− ρ). (23)

Having taken into account that this inequality is valid for all positive ε, δ and
ρ we obtain the first statement of the theorem.

The proof of the second statement of the theorem is closed to the previous
one. First, from the theorem 2 we see that for any ε > 0, δ > 0 we define

Φ̂ε,δ,n = {x : h(ν)− ε < |φ(x1...xn)|/n < h(ν) + ε } . (24)

Note that from (11 ) we can see that there exists such n′′ that, for n > n′′,

ν(Φ̂ε,δ,n) > 1− δ . (25)

We will use the set Φε,δ,n (see (15) ). Having taken into account the SMB
theorem (13) and (25), we can see that

ν(Φ̂ε,δ,n ∩ Φε,δ,n) > 1− 2δ , (26)

if n > max(n′, n′′).
From this moment, the proof begins to repeat the proof of the first state-

ment if we use the set (Φ̂ε,δ,n ∩Φε,δ,n) instead of Φε,δ,n. The only difference is
in the definitions (17) and (19) which should be changed as follows.

Λx = {y : |φ|(y)| < |φ(x)| } ∩ (Φ̂ε,δ,n ∩ Φε,δ,n)

and Ψρ is such a subset of (Φ̂ε,δ,n ∩ Φε,δ,n) that

ν(Ψρ) = ρ & ∀u ∈ Ψρ ∀v ∈ (Φε,δ,n \Ψρ) =⇒ |φ(u)| ≤ |φ(v)| .

If we replace πNP with πτφ and δ with 2δ, we obtain the proof of the second
statement. Theorem is proven.
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Abstract

Pseudo-random number generators (PRNGs) are widely used in data protection
systems and are intensively researched in modern cryptography. In this report, we
describe a PRNG class, which, firstly, has been successfully tested using the most
powerful modern test batteries, and secondly, it is proved the generators from these
class generate normal sequences, that is, for any generated sequence x1x2... and any
binary word w

lim
t→∞

νt(w)/(t− |w|) = 2−|w|

where νt(w) is the number of occurrences of w in the sequence x1...x|w|, x2...x|w|+1,
..., xt−|w|+1...xt.

Keywords: cryptographic randomness, pseudo-random number generators, normal sequences,
battery of tests.

1 Introduction

Pseudo-random number generators (PRNG) are designed to generate se-
quences of binary digits, which are distributed as a result of throwing an
“honest” coin, or, precisely, obey the Bernoulli distribution with parameters
(1/2, 1/2). Note that quite often this i.i.d. process and the sequences gener-
ated from it are called “truly random” [1].

True random sequences are very desirable in cryptography, simulation,
and modeling applications. Of course, it is practically impossible to gener-
ate them tossing a coin and nowadays there are many so-called generators
of pseudo-random numbers, whose aim is, informally speaking, to calculate
sequences that mimic the truly random (see [1]).

A modern PRNG is a computer program whose input is a short word (a
so-called seed), whereas its output is a long (compared to the input) word.
Having taken into account that the seed is a true random word, the PRNG
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can be considered as an expander of randomness which stretches a short seed
into a long word [1].

The output of a perfect PRNG should look like a truly random sequence.
However, it is impossible. More precisely, a mathematically correct definition
of a random sequence was obtained in a framework of algorithmic informa-
tion theory established by Kolmogorov (see [2, 3, 4, 5, 6]). In particular, it
is shown that any algorithm (i.e., a Turing machine) can neither generate (in-
finite) random sequences nor stretch a short random sequence into a longer
one. It means that PRNGs do not exist. The same is true in the framework
of Shannon’s information theory. Indeed, it is known that the Shannon en-
tropy of the true random process is one bit per letter, whereas for all other
processes the entropy (per letter) is less than one (see [7]). On the other
hand, any PRNG stretches a short true random sequence into a long one.
So, the entropy of the output is not greater then the entropy of the input
and, hence, the per letter entropy of the output is strictly less than 1 bit.
Therefore, the demands of true randomness and low entropy are contradic-
tory. Thus, we see that, in a framework of algorithmic information theory,
as well as in a framework of Shannon information theory, “perfect” PRNGs
do not exist.

In such a situation, researchers suggest and investigate PRNGs which
meet some “probabilistic” properties of truly random sequences [1, 8]. One of
such properties is that a PRNG generates so-called normal (or∞-distributed)
sequences. The following definition of normal sequences belongs to Borel [9]:
A sequence of digits in base 2 is k-distributed if for any k-letter word w over
the alphabet {0, 1}

lim
t→∞

νt(w)/(t− |w|) = 2−|w| (1)

where νt(w) is a number of occurrences of w in the sequence x1...x|w|,
x2...x|w|+1, ..., xt−|w|+1...xt. The sequence is normal (or ∞-distributed) if it
is k-distributed for any k ≥ 1. (Borel called normal a real number from the
interval (0, 1) whose expansion in base 2 is a normal sequence, and showed
that almost all real numbers are normal (with respect to the uniform mea-
sure) [9]. That is why, the property that PRNG generates normal sequences
is very desirable (see [1, 8]).

In [10], the so-called two-faced processes were described which, on the
one hand, generate normal sequences, and on the other hand, their entropy
(per letter) may be close to zero. As shown in [10], they can be a promising
tool for constructing a PRNG. The only problem is that the property of
being a normal sequence is asymptotic, but, informally, real PRNGs must
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generate sequences that are recognized by random modern battery of tests
for any length of the sequence. (In short, we call such PRNGs statistically
acceptable).

This paper aims to suggest such PRNGs that

– generate normal sequences.

– generate statistically acceptable sequences of any length.

The first property was proved mathematically in [10], and the second one
was tested experimentally using batteries of statistical tests [11, 12], which
are currently considered the most powerful.

The rest of the paper is as follows: the next part describes two-faced ran-
dom processes and descriptions of PRNGs that generate normal sequences.
The third part contains results of experiments which show that proposed
PRNGs generate sequences which recognized as truly random by the batter-
ies of tests from [11, 12].

2 Two-faced processes and PRNG generated normal se-
quences

2.1 Two-faced Markov chains

The purpose of this part is an informal explanation of the basic ideas
underlying the proposed PRNG, which are connected with the so-called two-
faced Markov chains.

First we consider several examples of two-faced Markov chains. Let a
matrix of transition probabilities T1 be as follows:

T1 =

0 1
0 ν 1− ν
1 1− ν ν

,

(2)
where ν ∈ (0, 1) (i.e. P{xi+1 = 0|xi = 0} = ν, P{xi+1 = 0|xi = 1} =
1− ν, ...).

For example, let ν = 0.9. Then, a "typical" output sequence can be as
follows:

0000000000 111111111 0000000000 1111111 0 ...

(Here the gaps correspond to state transitions.) If ν = 0.1, then a "typical"
output sequence is

01010101 1010101010 010101010101010101 1010 ... .
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On the one hand, thse sequences are not truly random. On the other
hand, the frequencies of 1’s and 0’s go to 1/2 due to the symmetry of the
matrix (2). Hence, the output is 1-distributed.

Define

T̂1 =

0 1
0 1− ν ν
1 ν 1− ν

(3)

T2 = (T1T̂1) =

00 01 10 11
0 ν 1− ν 1− ν ν
1 1− ν ν ν 1− ν

(Here P{xi+1 = 0|xi = 0, xi−1 = 0} = ν, P{xi+1 = 0|xi = 0, xi−1 = 1} =
1− ν, ... .). For ν = 0.9 the "typical" output sequence can be as follows:

000000000000 110110110110110110110110110 000 ...

It can be easily seen that the frequency of any two-letter word goes to 1/4.
The general definition of a transition matrix two-faced Markov chain is

as follows. The k + 1-order transition matrix Tk+1 = TkT̂k, T̂k+1 = T̂kTk,
k = 2, 3, ..., whereas T1 and T̂1 are defined in (2) and (3). To define the
process x1x2... the initial probability distribution needs to be specified. We
define the initial distribution of the processes Tk and T̄k, k = 1, 2, . . . , to be
uniform on {0, 1}k, i.e. P{x1...xk = u} = 2−k for any u ∈ {0, 1}k.

The following theorem from [10] describes the main properties of the
processes defined above.

Theorem 1. Let a sequence x1x2... be generated by the process Tk (or T̄k),
k ≥ 1 and u be a binary word of length k. Then,

i) if the initial state obeys the uniform distribution over {0, 1}k, then for
any j ≥ 0

P (xj+1...xj+k = u) = 2−|u|. (4)

ii) for any initial state of the Markov chain

lim
j→∞

P (xj+1...xj+k = u) = 2−|u|. (5)

iii) With probability one the Markov chains Tk and T̂k generates k-
distributed sequences.
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iiii) For each ν ∈ (0, 1) the k-order Shannon entropy (hk) of the processes
Tk and T̄k, equals 1 bit per letter whereas the limit Shannon entropy
(h∞) equals −(ν log2 ν + (1− ν) log2(1− ν)).

(Here the Shannon entropy of a stationary process µ of order m, m =
1, 2, ..., is defined by

hm = −
∑

u∈{0,1}m−1

µ(u)
∑

v∈{0,1}
µ(v/u) log µ(v/u)

and the limit Shannon entropy is defined by h∞ = limm→∞ hm, see [7].)
This theorem explains the name "two-faced process." The probability

distribution of k -bit words is uniform, while the distribution of K -bit words
for K > k can be far from uniform.

So, we can see that for any integer k there exist a low-entropy random
processes whose outputs simulate the true random sequences up to the length
of the word k. In the following part we show how to convert them into a
process with an ∞-distributed output.

2.2 ∞-distributed processes and PRNGs generated normal se-
quences

First, we give a formal definition of the two-faced processes.

Definition 1. If the equation (5) is valid for any w ∈ {0, 1}k, the process
is asymptotically two-faced of order k. The process is two-faced of order k if
the equation (4) is true.

The following simple statement from [10] shows that, in a certain sense,
there are many two-faced processes. More precisely, the following theorem
is true.

Theorem 2. Let X = x1x2..., Y = y1y2... be a random processes. We define
the process Z = z1z2... by the following equations z1 = x1 ⊕ y1, z2 = x2 ⊕
y2, ... where a ⊕ b = (a + b)mod 2. If X is a k-order (asymptotically) two-
faced process, then Z is also the k-order (asymptotically) two-faced process
(k ≥ 1).

Now, we describe a family of processes that generate ∞- distributed se-
quences. Suppose thatm∗ = m1,m2, .... is a sequence of integers,m1 < m2 <
m3.... and X1 = x1

1x
1
2..., X2 = x2

1x
2
2..., X3 = x3

1x
3
2..., ... are (asymptotically)
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two-faced processes of order m1,m2, ..., correspondingly. Define a process W
= w1w2 ... by the following equation:

wi =





x1
i i ≤ m1,

x1
i ⊕ x2

i m1 < i ≤ m2,
x1
i ⊕ x2

i ⊕ x3
i m2 < i ≤ m3,

.............................

(6)

and denote it as
∑∞

i=1X
i.

Theorem 3. [10] Let all X i, i = 1, 2, ..., be asymptotically two-faced, then∑∞
i=1X

i is normal.

Note that the proof immediately follows from Theorem 2.
The proposed PRNG construction repeats the process W in (6), but

before describing it, we need to describe how to transform any random process
into k -distributed for any integer k. It can be done as follows:

Theorem 4. [10] Let there be an integer k, a finite word x−k+1x−k+2...x0,
and infinite sequence u1u2..., which is generated by a stationary ergodic
source. Then, u1u2... can be transformed into k-distributed x1x2... as follows:

xr = ur+1 ⊕
r⊕

i=r−k+1

xi, r = 1, 2, ... . (7)

Now we can describe a PRNG which is an implementation of (6).

Input: 1. The desired length of the generating pseudo-random sequence (N).
2. A sequence of integers m1 < m2 < ...ms ≤ N , which are parameters
of the method (to simplify the notation, it will be convenient to assume
that all N/mi are integers).
3. a seed of the PRNG, i.e. a sequence of random bits r1r2...rR, where
R = m1 +

∑s
i=1M/mi.

Algorithm: We generate sequences x0
1x

0
2...x

0
N , x

1
m1+1x

1
m1+2...x

1
N , ..., x

s
ms+1x

s
ms+2...x

s
N

according to (7), where k0 = m1, x0
−m1+1 = r1, x

0
−m1+2 = r2, ..., x

0
0 =

rm1
,

u0
i =

{
0, if i/m1 is not integer
rm1+i/m1

, if i/m1 is integer
,

i = 1, 2, ..., N ,
k1 = m2, x1

−m1+1 = x0
1, x

1
−m1+2 = x0

2, ..., x
1
0 = x0

m1
,

u1
i =

{
0, if i/m is not integer

rm1+N/m1+i/m2
, if i/m2 is integer

,
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i = 1, 2, ..., N , ...,
ks+1 = ms, xs−ms+1 = xs−1

1 , xs−ms+2 = xs−1
2 , ..., xs0 = xs−1

ms−1
,

usi =

{
0, if i/m is not integer

rm1+N/m1+N/m2+N/m2+...+i/ms
, if i/ms is integer

,

Finally, we calculate the output sequence xoutput1 =
⊕s

i=0 x
i
1, ..., x

output
N =⊕s

i=0 x
i
N .

Note that all calculations can be performed in such a way that the sequences
x0
i , x1

i , ..., xsi , i = 1, ..., N, are not stored in memory. The required amount
of memory (in bits) and time (per output letter) are O(sms).

3 Experimental investigation of the proposed PRNG

In this part we describe the results of experiments that were carried out
with the PRNG introduced above. We tested the output of the PRNG by
tests from the well-known test batteries suggested in [11, 12].

In our experiments, we used the PRNG under consideration with three
parameters m1,m2,m3, which were investigated for different values and dif-
ferent lengths of the output sequence. In the experiments described below,
seeds were obtained using MRG32k3a from [11], but some experiments were
performed with other generators from [11]. In all cases, the test results were
independent of seed generators.

When using batteries "Alphabit" and "Rabbit" the length of the output
sequence was 1 GB, while other batteries define their strategy for using out-
put sequences themselves. When using NIST battery [12] the length of the
output sequence was 100 MB (1 GB is impossible for this test). The results
of applying the tests from [11, 12] are presented in Table 1.

The results of these experiments show that there are values of the param-
eters m1,m2 for which the output sequences cannot be distinguished from
truly random ones using the best modern battery tests. Ratio |seed|/|ouput|
may be around 0.001, which is acceptable for many cryptographic applica-
tions. In particular, the PRNG with parameters m1 = 1021, m2 = 1021001,
m1 = 1021, m2 = 102101 and some others can be recommended for practical
use.

We see that statistically acceptable PRNGs can be obtained with m1 and
m2. However, we also performed similar experiments with m3 approximately
equal to m2

2. It turned out that for large m2 (that is, m2 ≥ 907) this does
not affect the test results.
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m1 m2 NIST Alphabit Rabbit SmallCrush Crush BigCrush
31 257 Passed Passed Rejected Passed Rejected Rejected
31 907 Passed Passed Passed Passed Passed Rejected
31 3571 Passed Passed Passed Passed Passed Passed
61 257 Passed Passed Rejected Passed Rejected Rejected
61 907 Passed Passed Passed Passed Passed Passed
61 3571 Passed Passed Passed Passed Passed Passed
127 257 Passed Passed Passed Passed Rejected Rejected
127 907 Passed Passed Passed Passed Passed Passed
127 3571 Passed Passed Passed Passed Passed Passed
127 1277 Passed Passed Passed Passed Passed Passed
127 12703 Passed Passed Passed Passed Passed Passed
127 126997 Passed Passed Passed Passed Passed Passed
257 2579 Passed Passed Passed Passed Passed Passed
257 25703 Passed Passed Passed Passed Passed Passed
257 257003 Passed Passed Passed Passed Passed Passed
509 5087 Passed Passed Passed Passed Passed Passed
509 50893 Passed Passed Passed Passed Passed Passed
509 508987 Passed Passed Passed Passed Passed Passed
1021 10211 Passed Passed Passed Passed Passed Passed
1021 102101 Passed Passed Passed Passed Passed Passed
1021 1021001 Passed Passed Passed Passed Passed Passed

Table 1: Results of experiments.
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4 Conclusion

In this article, we propose PRNGs that generate normal sequences (as
far as the asymptotic properties can be valid for a real computer program).
A series of experiments made it possible to find PRNG parameters for which
the output sequence does not differ from truly random ones if we use the best
batteries of statistical tests. This PRNG may be interesting for practical use.
Thus, the proposed PRNGs combine an acceptable practical behavior with
mathematically proven asymptotic properties.
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Abstract

In this paper we consider a bit-sliced implementation of the GOST R 34-
12.2015 «Kuznyechik» non-linear transformation. We combine analytical and com-
puter methods to get a 235 Boolean operations representation.

Keywords: block cipher, S-box, Kuznyechik, bit-slice, Boolean functions minimization.

1 Introduction

A permutation is a bijective mapping of a non-empty finite set onto itself.
In applications, permutations of Vn, where Vn is an n-dimensional vector
space over Galois field GF (2), are often used. Usually the dimension of the
vector space is not large, most popular versions being n = 4 or n = 8.
Permutation can be implemented as a lookup table and this representation
is often called an S-box.

S-boxes are widely used in the synthesis of block ciphers and hash-
functions. They allow one to combine necessary non-linearity with reason-
able implementation complexity of the overall scheme. At the same time,
cipher strength against known methods of cryptanalysis depends strongly on
certain properties of S-boxes used, and its potential speed and lower resource-
consumption – on the effectiveness of software and hardware implementation
of these elements.

We use the number of Boolean operations as the measure of complexity
of an S-box implementation. In this paper we consider implementations of
the non-linear transformation of «Kuznyechik» GOST R 34-12.2015 [1] in
the basis of AND,OR,NOT and XOR Boolean functions and try to get
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a way to make it as compact as possible. The choice of these four functions
as the basis is justified by the existence of its effective hardware and soft-
ware implementation on different platforms. Inside formulas, we’ll use short
notation: · for AND, + for OR, ¬ for NOT and ⊕ for XOR.

In the classical problem of Boolean functions minimization the basis is
formed by conjunction (AND), disjunction (OR) and negation (NOT ). In
this form the problem is intimately connected with electrical schemas simpli-
fication. Karnaugh charts used to complete the task for electrical schemas are
quite usable for manual optimization of Boolean functions with small number
of variables. Computer analog of this method was developed by W. Quine
and extended by E. McCluskey and is known as Quine-McCluskey algorithm.
The distinctive feature of our situation is the existence of additional XOR
operation, so finding transformation rules for formulae minimization for the
new set of operations is quite a reasonable task.

Composition of the paper is the following. In section 1 we consider the
decomposition of «Kuznyechik» permutation found in Alex Biryukov, Leo
Perrin, and Aleksei Udovenko paper [2], which we call BPU-decomposition.
In section 2 we implement linear and bilinear elements of BPU-decomposition
and eliminate branching. In part 3 we consider ways of computer optimiza-
tion of non-linear elements of the decomposition. In concluding section we
compare the overall complexity of our method with other existing solutions.

2 BPU-decomposition

In «Kuznyechik» algorithm, by GOST R 34-12.2015, a non-linear trans-
formation π of vector space V8 is used. If we try to minimize it directly, using,
for example, Espresso algorithm (in Logic Friday [3] realization), we get 3492
Boolean operations – quite a lot. So some other approach is needed.

The authors of [2] suggested to represent π as a composition of non-linear
transformations ν0, ν1, I, σ, ϕ of V4, linear transformations α and ω of V8

and multiplication } in Galois field GF (24,},⊕) = GF (2)[x]/(f(x)) with
irreducible polynomial f(x) = x4 ⊕ x3 ⊕ 1, where ⊕ is addition and } -
multiplication in the finite field.

Consider the action of π on the set of pairs (l, r), l, r ∈ GF (24). In [2]
the following algorithm to compute π(l ‖ r) is used:

1) (l ‖ r) := α(l ‖ r),
2) if r = 0, then l := ν0(l), else l := ν1(l } I(r));
3) r := σ(r } ϕ(l)),
4) (l ‖ r) := ω(l ‖ r).
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The value of (l ‖ r) after step 4 equals to π(l ‖ r). The non-linear
transformations (not all of them are bijective) ν0, ν1, I, σ, ϕ are given in the
following table (in hexadecimal representation):

I 0, 1, c, 8, 6, f, 4, e, 3, d, b, a, 2, 9, 7, 5

v0 2, 5, 3, b, 6, 9, e, a, 0, 4, f, l, 8, d, c, 7

v1 7, 6, c, 9, 0, f, 8, 1, 4, 5, b, e, d, 2, 3, a

ϕ b, 2, b, 8, c, 4, 1, c, 6, 3, 5, 8, e, 3, 6, b

σ c, d, 0, 4, 8, b, a, e, 3, 9, 5, 2, f, 1, 6, 7

3 Implementation of linear and bilinear elements of de-
composition and branching elimination

3.1 Bit-sliced implementation of multiplication in the finite field

One of important elements of the decomposition is the multiplication
in the finite field GF (24). It is used twice during the algorithm. Let’s find
the Boolean functions representation of this operation. To do it, we regard
GF (24) as a four-dimensional algebra over GF (2). In this case the com-
ponents of binary representation of elements of GF (24) will be simply the
coordinates of these vectors in the standard basis {e1 = (1000) = 8, e2 =
(0100) = 4, e3 = (0010) = 2, e4 = (0001) = 1}. (In this section elements of
GF (24) will be typeset in bold and coordinate indexes will be written above).

By the associative, commutative and distributive laws of GF (24), op-
erations } and ⊕ are commuting, and the distributive law holds. So it is
sufficient to know pair-wise products of basic vectors, and the product of any
two arbitrary vectors can be computed by linearity:

z = (x} y) =

( 4∑

i=1

xiei

)
}
( 4∑

j=1

yjej

)
=
∑

i,j

xi · yj(ei } ej)

in vector form and

zk = (x} y)k =

(( 4∑

i=1

xiei

)
}
( 4∑

j=1

yjej

))k

=

(∑

i,j

xiyj(ei} ej)

)k
=

=
∑

i,j

xi · yj(ei } ej)
k, k = 1, . . . , 4

— in coordinate form.
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Let’s make a table of pair-wise products of basic vectors:
1000 0100 0010 0001

1000 1111 1011 1001 1000

0100 1011 1001 1000 0100

0010 1001 1000 0100 0010

0001 1000 0100 0010 0001

Separating coordinates, we have
C1 C2 C3 C4

1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0

1 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0

1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

and for every coordinate zk (k = 1, . . . , 4) we have

zk = (x1, x2, x3, x4)



ck11 . . . ck14
... . . . ...
ck41 . . . ck44







y1

y2

y3

y4


 .

Now (returning to lower coordinate indexes) we are able to write down for-
mulae for every coordinate:

z1 = (x1 ⊕ x2 ⊕ x3 ⊕ x4) · y1 ⊕ (x1 ⊕ x2 ⊕ x3) · y2 ⊕ (x1 ⊕ x2) · y3 ⊕ x1 · y4,

z2 = x1 · y1 ⊕ x4 · y2 ⊕ x3 · y3 ⊕ x2 · y4,

z3 = (x1 ⊕ x2) · y1 ⊕ x1 · y2 ⊕ x4 · y3 ⊕ x3 · y4,

z4 = (x1 ⊕ x2 ⊕ x3) · y1 ⊕ (x1 ⊕ x2) · y2 ⊕ x1 · y3 ⊕ x4 · y4.

So to compute z1 we need 13 operations, for z2 — 7, for z3 — 8, and
for z4 — 10. Multiplication in our realization of GF (24) requires 38 Boolean
operations if we do not use auxiliary variables to store intermediate results.
If we use intermediate variables (denote them P with indices), the number
of operations can be made even lower. For example, the expression (x1⊕ x2)
appears more than once:

z1 = (P2 ⊕ x4) · y1 ⊕ P2 · y2 ⊕ P1 · y3 ⊕ x1 · y4,

z2 = x1 · y1 ⊕ x4 · y2 ⊕ x3 · y3 ⊕ x2 · y4,

z3 = P1 · y1 ⊕ x1 · y2 ⊕ x4 · y3 ⊕ x3 · y4,

z4 = P2 · y1 ⊕ P1 · y2 ⊕ x1 · y3 ⊕ x4 · y4,

P1 = x1 ⊕ x2,

P2 = x1 ⊕ x2 ⊕ x3 = P1 ⊕ x3.
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The latter realization has complexity 31.

3.2 Implementation of linear mappings

Let’s estimate the complexity of linear transformations α and ω in terms
of Boolean functions. Matrix representations of alpha and omega are the
following:

α =




0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1
1 1 1 0 1 1 1 1
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 0 0 0




, ω =




0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 1 1 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




.

Let l = (l1, l2, l3, l4), r = (r1, r2, r3, r4) be representations of field elements
as vectors. Then α has the following Boolean representation:

α1(l1, l2, l3, l4, r1, r2, r3, r4) = r1,

α2(l1, l2, l3, l4, r1, r2, r3, r4) = l2 ⊕ r4,

α3(l1, l2, l3, l4, r1, r2, r3, r4) = l2 ⊕ r3 ⊕ r4,

α4(l1, l2, l3, l4, r1, r2, r3, r4) = l1 ⊕ l2 ⊕ l3 ⊕ r1 ⊕ r2 ⊕ r3 ⊕ r4,

α5(l1, l2, l3, l4, r1, r2, r3, r4) = l1 ⊕ r1 ⊕ r3,

α6(l1, l2, l3, l4, r1, r2, r3, r4) = l2 ⊕ r2,

α7(l1, l2, l3, l4, r1, r2, r3, r4) = l4 ⊕ r1 ⊕ r3,

α8(l1, l2, l3, l4, r1, r2, r3, r4) = l3.

Overall complexity of α is 14XOR operations. In the same way, the complex-
ity of ω is 6 XOR operations. So we get 20 Boolean operations to represent
two linear mappings.

3.3 Elimination of branching

Let’s return to p.2 of BPU algorithm: «2.If r = 0 then l := ν0(l) else
l := ν1(l} I(r))». Write down a Boolean function which takes the value 1 in
a single point r = (0, 0, 0, 0) and has zero value in all other points [3]:

I0,0,0,0(r) = r̄1 · r̄2 · r̄3 · r̄4 = r1 + r2 + r3 + r4.
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The complexity of this function is 4 Boolean operations, the complexity of its
negation — 3 operations. Now we can express l by a non-branching formula:

li = I0,0,0,0(r) · νi0(l) + I0,0,0,0(r) · νi1(l } I(r)), i = 1, . . . , 4.

It should be stressed that we compute I0,0,0,0(r) only once. To be more precise,
we first calculate its negation (3 operations) and then, by double-negation
law, compute I0,0,0,0(r) itself, which gives one additional operation.

After branching elimination the complexity of our representation has in-
creased by 16 operations. The number of operations of each kind is given in
a table below:

AND OR NOT XOR Total
I0,0,0,0(r) 3 3

I0,0,0,0(r) 1 1

Final glue
by every coordinate 2 1

Final glue
for all coordinaetes 8 4 12

(previous line
multiplied by 4)

Total 16

4 Computer implementation of non-linear elements

4.1 Formulation of the problem

Consider a transformation table 24 → 24 or 28 → 28. The goal is to
represent it as a set of Boolean functions in the basis of logical functions
AND,OR,NOT,XOR with the minimal number of operations. The num-
ber of 1- and 2-input operations (AND, OR, NOT , XOR) required to im-
plement a function will be used as the evaluation criteria.

This estimate coincides with the actual complexity of the circuit when it is
implemented on integrated circuits containing corresponding logic elements.
It also coincides if the FPGA function is used to implement it, since logical
operations in this situation are formed using a matrix of macrocells, and the
operation does not depend on the FPGA choice.

The algorithm is constructed as follows: at the first optimization step, the
Quine-McCluskey algorithm is used, then the steps described below in sec-
tions 3.3.1-3.3.6 are iteratively repeated. After that, rules 3.4-3.7 are applied,
with repetitive calls to procedures 3.3.1-3.3.6 if necessary.
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For an example illustrating the steps of the algorithm we use the table of
values of the ν1 function from BPU-decomposition:

X 0 1 2 3 4 5 6 7 8 9 a b c d e f
Y 7 6 c 9 0 f 8 1 4 5 b e d 2 3 a

Table 1

Each of the Y bits can be represented in the form of PDNF, consisting of
precisely 8 members since it is a coordinate function of a permutation. For
example, for Y0 in this example, this function will have the following form:

Y0 = (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)+

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)+

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3).

The complexity of this representation is 47 operations.
Using the optimization techniques shown below, this function can be sim-

plified to the following form:

Y0 = (X1 +X2)⊕X0 ⊕X3.

The complexity of this representation is 4. Thus, for this particular example,
the complexity decreases by more than 11 times as a result of our optimiza-
tion.

As a second example, consider Y3:

Y3 = (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)+

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)+

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3).

This function representation requires 45 operations.
With the help of optimizations, this function can be simplified to the

following form:
Y3 = ((X0 ⊕X3) ·X2)⊕X1.

The complexity of this representation of the function is 3, which is 15 times
better than the original one.

4.2 Quine–McCluskey algorithm

One of the algorithms for minimizing Boolean functions was proposed
by Willard Quine and improved by Edward McCluskey. Since the algorithm
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is described in sufficient detail in many sources (see, for example, [4]), its
implementation will not be described in this paper.

Consider the simplification of the above examples of functions with this
algorithm. For a formula representing the function Y0 (with initial complexity
of 47 operations)

Y0 = (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)+

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)+

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)

after optimization, we get a formula with complexity 29 (1.5 times less com-
plexity for this example):

Y0 = (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)+

+ (X0 ·X1 ·X3)+

+ (X0 ·X2 ·X3) + (X0 ·X1 ·X3) + (X0 ·X2 ·X3).

For the Y3 function (the initial complexity of the representation is 45 opera-
tions), the Quine–McClusky method gives the result of 22 operations (double
optimization ):

Y0 = (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X3)+

+ (X0 ·X2 ·X3) + (X1 ·X2).

4.3 Further optimization of the results of the Quine–McClaskey
algorithm

As further steps for optimizing Boolean functions, an algorithm consisting
of several steps is proposed. Moreover, each step is performed for all members
of the polynomial inside the brackets. If optimization has been performed at
any of the steps of the algorithm, then the algorithm starts again from the
first step.

4.3.1 Duplicate Elimination

This step removes duplicates that may have appeared in previous itera-
tions:

X1 ·X1 ·X2 = X1 ·X2,

X1 +X1 +X2 = X1 +X2,

X1 ⊕X1 ⊕X2 = X2.
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4.3.2 Removing the common factor from under the logical OR, which is per-
formed on logical AND

(X1 ·X2) + (X1 ·X3) = X1 · (X2 +X3).

For the above example (Y0 function with complexity 47), the representation
after this transformation takes the form:

Y0 =
(
X0 · ((X1 ·X2 ·X3) + (X3 · (X1 +X2)))

)
+

+
(
X0 ·

(
(X1 ·X2 ·X3) + ((X1 +X2) ·X3

))
.

with the complexity value of 20.

4.3.3 Optimization of occurrences of the same term with and without nega-
tion for logical AND and OR, as well as optimization of constant mem-
bers

We use formulas X1 ·X1 = 0, X1 +X1 = 1, X1 · 0 = 0, X1 + 1 = 1.

4.3.4 Optimization of «NOT»

At this step, an attempt is made to reduce the number of NOT operations,
using a single formula

X1 +X2 = X1 ·X2.

For the above example (formula with complexity 47), the representation of
the function after this operation will take the following form:

Y0 =
((
X1 +X2 +X3 + (X1 +X2) ·X3

)
·X0

)
+

+
((

(X1 ·X2 ·X3) + ((X1 +X2) ·X3)
)
·X0

)

with complexity 18.

4.3.5 Search on the table of pattern optimal functions

At this step, a table of optimal functions is used. The construction of the
table is described below. A table of values of the function being optimized (or
its parts) is generated. After that the values from this table are compared with
the reference ones from the table of optimal functions. If they coincide, the
pattern optimal function is used instead of the original one. At the moment,
the table of optimal functions is constructed for functions of up to 4 variables.

To construct the table of optimal functions, the following approach was
used (let us consider the case of compiling a table for three variables). First,
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functions are created within one operation (for each of the AND, OR, XOR
operations) by sequentially arranging the brackets and NOT operations, for
example:

F = X0 +X1 +X2, F = X0 +X1 +X2, F = X0 +X1 +X2,

F = X0 +X1 +X2, F = X0 +X1 +X2, F = X0 +X1 +X2,

F = X0 +X1 +X2, F = X0 +X1 +X2.

and so on.
After that, formulas using combinations of binary operations are added

(OR and XOR, for example), for which all combinations of parentheses and
negation are also sorted out, for example:
F = (X0 +X1)⊕X2, F = X0 + (X1⊕X2), F = (X0 +X1)⊕X2, and so on.

At the next step, functions with the same value tables are removed from
the list of functions, while leaving the function with the minimum number
of operations. The final list of pattern optimal functions is entered into the
program in symbolic form from a file, which allows, on one hand, not to
spend time on calculating the table each time the algorithm is run, and, on
the other hand, it allows to supply the table with functions obtained by other
algorithms or empirically. We consider two examples of optimization of the
components of the function Y0

F = (X1 ·X2 ·X3) + ((X1 +X2) ·X3).

The table of values for this function (the number of operations is 8) is the
following:

X1 0 1 0 1 0 1 0 1
X2 0 0 1 1 0 0 1 1
X3 0 0 0 0 1 1 1 1
F 0 1 1 1 1 0 0 0

In the table of optimal functions there is a function with complexity 2,
the truth table of which is similar to the above:

F = X3 ⊕ (X1 +X2).

Accordingly, part of the polynomial can be replaced with this function.
Consider another example (the initial complexity of the representation is

8):
F = (X1 +X2 +X3 + ((X1 +X2) ·X3)) ·X0.
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Note that in this polynomial there is a common part X1 +X2. Let us denote
it by P1. The function will take form:

F = (P1 +X3 + (P1 ·X3)) ·X0.

According to the truth table, the algorithm finds the following optimal func-
tion:

F = X0 + (X3 ⊕ P1).

Let us return from P back to X1 +X2

F = X0 + (X3 ⊕ (X1 +X2)).

The complexity of the resulting function is 4. As a result of this optimiza-
tion step, the initial function will take the following form (complexity of 8
operations):

Y0 =
(
((X1 +X2)⊕X3) +X0

)
+
(
((X1 +X2)⊕X3) ·X0

)
.

4.3.6 Search for XOR possible usage

This step analyzes the possibility to use XOR, in accordance with the
formulas

X0 ·X1 +X0 ·X1 = X0 ⊕X1

(X0 +X1) + (X0 ·X1) = X0 ⊕X1.

For the above example, the formula for the function Y0 will take the form

Y0 = X0 ⊕ (X1 +X2)⊕X3.

As a result, the complexity of the formula has become 4, which is about 10
times less than the original.

4.4 Additional optimization by combining brackets

In some cases, the above optimizations do not provide the minimal repre-
sentation of the function.Consider an example. After a number of optimiza-
tions Y2 function has become like that:

Y2 = (X1 ·X2 ·X3) + ((X1 +X2) ·X3).

An additional step is provided for handling such cases. If there are more
than two terms under the brackets, then several functions are formed with
different placement of brackets:

Y2 = (X1·(X2·X3))+((X1+X2)·X3), Y2 = (X2·(X1·X3))+((X1+X2)·X3),
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Y2 = (X3 · (X1 ·X2)) + ((X1 +X2) ·X3).

After that every formula from the set is optimized by the algorithm de-
scribed above and the formula with smallest resulting complexity is chosen.
In our case it is the third function. It is transformed like this:

Y2 = (X3·(X1·X2))+((X1+X2)·X3) = (X3·(X1 +X2))+((X1+X2)·X3 =

= (X1 +X2)⊕X3.

4.5 Primary XOR-optimization

In some cases, the optimization techniques discussed above do not lead
to the best representation. Consider bit Y3 of table 2:

Y3 = (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)+

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)+

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3).

The initial number of operations in the representation of this function is 45.
As a result of the above optimizations, one can get a function of the

following form:

Y3 =
(
(X0 ⊕X3) ·X2 ·X1

)
+
(
(X0 ⊕X3) ·X1 ·X2

)
.

The number of operations in this representation is 9, which is 5 times less
than the original.

Nevertheless, for representations of the function with the number of op-
erations greater than 2, the algorithm makes an additional optimization at-
tempt.

4.6 Using the Algebraic Normal Form (ANF)

Further, the program uses the representation of the function in the form
of Zhegalkin polynomial (ANF). First, if one or more variables are found in
the Zhegalkin polynomial in the form of terms of the first degree and are
not found in any monomial anymore, they can be separated as terms modulo
two, immediately reducing the dimension of the problem. If there are no
such variables, in some cases it is still possible to reduce the complexity of
the representation by separating certain variables as modulo two summands.
Let us return to our example from section 3.1 (Table 1). Since the XOR
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function takes the value 1 when arguments are different and 0 when their
values are the same, we can represent the value Y in the following form:

Yi = Xj ⊕ F (X),

where Xj is one of X bits, and F (X) is equal to 0 for all cases where Yi = Xj

and is equal to 1 if Yi <> Xj.
Obviously, one needs to choose the bit X so that as many as possible

Yi = Xj, because in this case F (X) will have less terms. Consider the values
of Y3 in the following table:

X3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
X2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
X1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
X0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Y3 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1

For each of Xi, i = 0, . . . , 3, the number of positions in which the value
of Xi coincides with the value of Y , is calculated. For this example, we get
the following result

X0 X1 X2 X3

8 12 8 8

Accordingly, the function will have the form

Y3 = X1 ⊕ F (X).

We represent F (X) in the form of PDNF with a value of 1 for cases of
mismatch between X and Y (mismatching values are indicated by squares
around them). So we get the function

Y3 = X0 ⊕
(
(X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)+

+ (X0 ·X1 ·X2 ·X3) + (X0 ·X1 ·X2 ·X3)
)
.

The complexity of this representation of the function is 21. However, F (X)
can be optimized by the methods indicated above. After the specified pro-
cessing, the function takes the form

Y3 = X0 ⊕ ((X0 ⊕X3) ·X2).

The complexity of this representation is 3.
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4.7 Merging common parts

As the final step, the algorithm attempts to find common parts both
within one function and among all functions of the set, in order to optimize
their calculation.

For example, for the above table, the algorithm worked out the following
set of functions:

Y0 = X0 ⊕ (X1 +X2)⊕X3,

Y1 = ((X2 +X3)⊕ (X0 ·X2)) +X1 ⊕ (X1 ·X3),

Y2 = ((X1 ⊕X2) · (X0 ⊕X3))⊕X2,

Y3 = X0 ⊕ ((X0 ⊕X3) ·X2).

Total complexity - 19 operations. At the last step, the algorithm explores
what is included in Y0, Y2, and Y3. The algorithm denotes such common parts
by the symbol P. For the given example, the following result is obtained:

Y0 = P0 ⊕ (X1 +X2),

Y1 = ((X2 +X3)⊕ (X0 ·X2)) +X1 ⊕ (X1 ·X3),

Y2 = ((X1 ⊕X2) · P0)⊕X2,

Y3 = X0 ⊕ ((P0 ·X2)),

P0 = (X0 ⊕X3).

As a result of merging the common parts into separate functions, the com-
plexity of our example is reduced from 19 to 17.

4.8 Optimization results

As a result of the above algorithm, the following set of Y functions was
produced for the test data table:

Y0 = P0 ⊕ (X1 +X2),

Y1 = ((X2 +X3)⊕ (X0 ·X2)) +X1 ⊕ (X1 ·X3),

Y2 = ((X1 ⊕X2) · P0)⊕X2,

Y3 = X0 ⊕ ((P0 ·X2)),

P0 = (X0 ⊕X3).

The total complexity of this set of functions is 17, which is approximately 10
times less than the complexity of the set of non-optimized functions, equal to
188. The following are explicit formulas for all nonlinear functions involved
in BPU-decomposition:
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F Presentation Number of
operations

I Y0 =
(
X0 ·X1

)
+
((

(X0 ⊕X1) + P 1

)
·X3

)

Y1 = (X0 ·X2)⊕
(
X1 · P1 · P2

)
⊕X3 26

Y2 = ((X1 ⊕X3) · ((X0 +X2)⊕X1))⊕X2

Y3 =
(
X1 ·X2

)
+ (((X1 ⊕X2) + P2) ·X0)

P1 = X0 ⊕X2

P2 = X2 ⊕X3

v0 Y0 =
(
X1 ·X2

)
+
((

(X1 ⊕X2) +X1 ⊕X3

)
·X0

)

Y1 =
(

(X0 ⊕X2) ·X3 ·X1

)
+ P 1 29

Y2 = (X1 ·X3)⊕
((

(X2 ⊕X3) +X1

)
·X0

)
⊕
(
X2 ·X3

)

Y3 = ((X1 ⊕ P1) ·X2)⊕ ((X0 ⊕X3) ·X1)
P1 = X0 +X3

v1 Y0 = (X1 +X2)⊕ P1

Y1 = ((X2 +X3)⊕ (X0 ·X2)) +X1 ⊕ (X1 ·X3) 29

Y2 = ((X1 ⊕X2) · P1)⊕X2

Y3 = (X2 · P1)⊕X1

P1 = X0 ⊕X3

ϕ Y0 =
((
X0 ·X1

)
+ (X1 ⊕X3) ·X2

)
⊕
(
X1 ·X3

)
⊕X0

Y1 = ((X0 +X3) ·X1) +X2 ⊕ (X2 ·X3) 33

Y2 =
(
X0 ·X3

)
+
(((

X0 +X1

)
⊕ (X0 ·X3)

)
·X2

)

Y3 = (X0 ·X1)⊕
(((

X2 +X3

)
⊕ (X1 ·X2)

)
·X0

)

σ Y0 =
(
X0 ·X1

)
+
(
X1 · P1 ·X3

)

Y1 = (((X2 +X3)⊕ (X1 ·X2)) ·X0)⊕
⊕ ((X2 ⊕X3) ·X1)⊕X3 31

Y2 = (X0 ·X1)⊕
((

(X0 ·X3)⊕X1

)
·X2

)
⊕X1 ⊕X3

Y3 =
(
X2 ·X3

)
+
((
X3 + P1

)
·X1

)

P1 = X0 ⊕X2

Summary

In this paper we consider the possibility of bit-slicing the non-linear bi-
jective mapping of GOST R 34-12.2015 «Kuznyechik» block cipher. The
«Kuznyechik» permutation, when we use BPU-decomposition, program op-
timization of smaller non-linear elements and algebraic features of finite field
multiplication, fits into 235 Boolean operations (Table 2).

It should be noted that in 2016 a method of constructing s-boxes with
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minimal number of logical elements got a patent in Russian Federation [6].
The method protected by this patent allows to realize non-linear mapping
of Kuznyechick cipher with complexity of 681 operations (254 ANDs and
436 XORs).

AND OR NOT XOR Total
I 8 5 4 9 26
v0 9 5 6 9 29
v1 4 3 3 7 17
ϕ 11 6 8 7 32
σ 11 6 7 9 33
α 14 14
ω 6 6

multiplication in GF
(
24
)

16 15 31
multiplication in GF

(
24
)

16 15 31
branchng elimination 8 7 1 16

83 32 29 91 Total: 235

Table 2
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Abstract

The paper describes the Russian cryptographic standard GOST R 34.12-2015 (al-
gorithm Kuznyechik) implementations protected against side-channel attacks. Pro-
tection method is based on decomposition of the S-box (algorithm substitution) and
allows of a gain in performance and required memory in comparison with universal
methods of masking substitution.

Keywords: Side-Channel Attacks, masking S-box, GOST R 34.12-2015

1 Introduction

Attacks using information from side channels (Side Channel Attacks,
SCA) consist in analysing the leakage - physical signals in side channels (for
example, energy consumption, electromagnetic radiation) observed during
the execution of a cryptographic algorithm, and using the statistical depen-
dence of the observed signals on the intermediate values of this algorithm.
Some of these values (sensitive values) are correlated with secret data, and
therefore restoring information about them allows the adversary to effectively
recover keys.

SCA are an important area of research in the last two decades. Starting
with the work of P. Kocher,... [7],[8], intensive research has begun on SCA
with regard to various cryptographic ciphers and its implementation. Simul-
taneously with the investigation of the SCA countermeasures were designed
to resist such attacks, primarily for the widely used ciphers, such as DES,
AES [2], RSA and ECDSA [6].

One of the most popular methods for counteracting side-channel attacks
uses masking for the data being processed. The idea of masking is to random-
ize the intermediate value (the internal state) of the cryptographic algorithm:
transform the intermediate value x with the random mask m and use the
masked value: xm = x ∗m. The each mask is a uniform random value. The
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mask formed inside the encryption processes and changes periodically and
expected unknown to the adversary. As the operation "*" are operations used
in a cryptographic algorithm. Usually these are the "exclusive-or" operation,
addition or multiplication by module.

The complexity of the masking implementation depends from the prop-
erties of maps. Let f be some linear with respect to the operation "*" the
function x – a protected value, then f(xm) = f(x ∗m) = f(x) ∗ f(m). Most
often, an operation "*" is the operation ⊕ Boolean addition of two vectors.
The calculation of the masked function in this case is easily implemented on
any hardware and software platforms. In case f is a non-linear function has
the property: f(xm) 6= f(x ∗m) = f(x) ∗ f(m), the procedure of masking
can be difficult. If a non-linear function has a algebraic structure then it can
be used to simplify calculation. For example, S-boxes of AES based on the
computation of the inversion in the field. The example implementation of
data masking with this representation is in the work [12].

In this paper, we propose a masking method to Russian Federal standard
GOST R 34.12-2015 (Kuznyechik) [1]. This method exploiting the represen-
tation S-boxes of Kuznyechik like decomposition of linear transformations
and substitutions of lower dimension. We examine the single mask protec-
tion algorithm for each step of evaluations. It is sufficient to thwart first order
DPA. The paper is organized as follows. In Section 2, we provide the short
description of Kuznyechik, in Section 3. we give approaches to the masking
of the S-box, in Section 4, we describe our masking method for the S-box of
Kuznyechik, in Section 5, we give some the safety assessments of the proposed
solutions.

2 The short description of Kuznechik

Kuznyechik is XLS block cipher with block length 128 bits. Kuznyechik’s
round function can be represented as a composition of key addition layer,
an S-boxes mapping and a linear transformation layer. The sequence of the
following transformations (the notation according to [1]):

E(a)= X[K10]LSX[K9]...LSX[K1](a),
where
Ki ∈ F n

28, i=1,· · · ,10, n=16 - the sequence of iterative keys
X[K](a)=K ⊕ a
S(y)=S(a15, · · · , a0)=π(a15) ‖ · · · ‖ π(a0),
π - 8-bit substitution,
L(a)=R16(a),
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R(a)=R(a15, · · · , a0)=l(a15, · · · , a0) ‖ a15 · · · ‖ y1,
l - a linear transformation, where the operations of addition and multi-

plication are performed in the field GF (28).
Iterative keys produced by the rule:
K2i+1 ‖ K2i+2,i=1,2,3,4.
K1, K2 - the master key,
Ci = L(i), i=1,2,...,32,
F[k](a1, a0)=(LSX[k](a1)⊕ a0, a1).

3 The approaches to the masking of the S-box

If the function f is non-linear, for example, f is substitution, then de-
signing an implementation has some difficulty. Several kinds of methods have
been proposed before and we recall some of them hereafter. These methods
are used for mapping of masked values of substitution arguments into masked
output values.

Method 1. Re–computation table.
The core idea is to compute new lookup table with masking an input and

an output with random masks. In this case, for the lookup table of S-Box
S(x) : {0, 1}n → {0, 1}n and two random masks is generated new lookup
table Sa,b(x) = S(x⊕a)⊕b, where a is the input mask, b is the output mask,
x denote a sensitive variable. The new lookup table is calculated every time
after a and b masks changing.

ALGORITHM 1.
Input: S(x) - S-box, a, b ∈ V n - mask
Output. (Sa,b(x), b)

1. for x=0 to 2n−1 do

2. Sa,b(x) := S(x⊕ a)⊕ b

3. end

ALGORITHM 1 requires n2n bits RAM, 2 · 2n logical operations, 2 · 2n
memory transfer (read and write) and one operation for call of the S-box.

Method 2. Compression of the lookup Table.
To reduce the RAM requirements was proposed the compression scheme

[11].
ALGORITHM 2.
ALGORITHM 2.1 The lookup table creation.
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Input: S(x) - S-box, where S(x) = S0(x) ‖ S1(x) for all x ∈ {0, 1}n ,
a,b ∈ V n

2 , c ∈ V n - masks.
Output: Sa,b(x) = S0(x⊕ a)⊕ S1(x⊕ b)⊕ c

1. for x=0 to 2n−1 do

2. Sa,b(x) := S0(x⊕ a)⊕ S1(x⊕ b)⊕ c

3. end

ALGORITHM 2.2. Use the lookup table
Input: S(x), Sa,b(x) - S-box (original and from ALGORITHM 2.1), a, b ∈

V n, c ∈ V n
2 - masks, masked input xa,b = x⊕ a⊕ b, the new mask d ∈ V n

2

Output: (a ‖ b, c ‖ (c⊕ d))

1. a := Sa,b(x1 ⊕ b)⊕ S1(xa,b)

2. b := Sa,b(x1 ⊕ a)⊕ S0(xa,b)⊕ d

3. c⊕ d

Output (a|b,C|(C⊕d))
ALGORITHM 2 requires n

2 · 2n bits RAM, 4 · 2n logical operations and
2 · 2n read operation and 2n write operations. For execution of the S-box
requires 4 RAM access and 6 logical operations on binary vectors.

Method 3. Global lookup table method.
In this case, one general look-up table is generated for all possible masks.

That is, the lookup table Sa,b(x)) are formed for all x, a, b according to AL-
GORITHM 1.

In this case, when changing the mask, there is no need to calculate the
masked substitution again.

This algorithm requires n · 23n bits RAM, 2 · 22n logical operations, 2 · 22n

read and write operations for generated lookup table. The cryptoalgorithm
requires one memory access for any pair masks (a, b).

Method 4. A lookup table computed "on-the-fly"
In this case, a lookup is computed on-the-fly by using mathematical rep-

resentation of the substitution. Each time the masked value S(x)⊕ b may be
computed from the tuple (x⊕ a, a, b) and S-boxes representation algorithm.
For this method the complexity of evaluation estimate as 2 · 2n additions of
binary vectors and 2n of memory accesses and 2n records in memory.

Table 1 shows the complexity of evaluation and memory requirements of
masking methods for S-boxes.
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Method RAM Table creation Re-masking The call lookup
table

Method 1 2n 0 2·2n ·An+2n ·Rn+
2n ·Wn

Rn

Method 2 2n−1 0 4 · 2n ·An + 2 · 2n ·
Rn + 2n ·Wn

4 ·Rn + 6 · An

Method 3 23n 2 · 2n(2 · 2n · An +
2n ·Rn + 2n ·Wn)

0 Rn

Method 4 0 0 0 2n ·Rn+2·2n ·An+
2n ·Wn

Table 1:

Here Rn is n-bit operation for reading from RAM, An is ⊕ operation for
binary addition of n-bit vectors, Wn is n-bit operation for writing to RAM.

Obviously, the complexity of masking for all methods depends on S-boxes
dimension. Therefore, if the dimension of S-box used is reduced, it can reduce
the complexity of masking.

4 Masking method for the S-box of Kuznechik

Algorithm Kuznechik includes the S-box defined by a fixed 8-bit substi-
tution π. In papers [3], [4], [9], [10] different ways of representing substitution
π as a composition of linear and non-linear functions were considered. For
our proposal we use a representation of the S-box in compliance with the
work [4]. The substitution of π can be represented as π = ωπ0α, where π0

is a nonlinear transformation, that is a composition of five nonlinear 4-bit
function, and ω and α are the 8-bit linear permutation.

S-box is implemented as follows.
We denote "◦" operation multiplication in finite field GF (24) defined by

the polynomial x4 +x3 + 1, "·" – multiplication of a vector by a matrix. The
algorithm for computing the value of π(a) for a ∈ V 8

2 substitution following.
ALGORITHM 3.

1. (l ‖ r)← α · a

2. ll←
{
ν0(l), if r = 0
ν1(l ◦ χ(r)), otherwise

3. r ← σ(rr ◦ φ(ll))

4. b← ω · (ll ‖ rr)
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In the ALGORITHM 3 l, r, ll, rr ∈ F 4
2 , α, ω are the 8-bit linear permu-

tations, χ, ν0, ν1, ϕ, σ are non-linear 4-bit functions. More details of the
transformations are given in [4]. Thus, we can consider π as a composition
π = ωπ0α, where π0 is a substitution defined by steps 2,3, ω and α is a lin-
ear maps. Consider the implementation of substitution π0 mapping the tuple
(l, r) to the tuple (ll,rr) in a masked form. To mask of execution for the
substitution π0 it is possible to generate masking look-up tables for 4-bits
non-linear function:

χa,b(x) = χ(x⊕ a)⊕ b,
νa,b0 (x) = ν0(x⊕ a)⊕ b,
νa,b1 (x) = ν1(x⊕ a)⊕ b,
φa,b(x) = φ(x⊕ a)⊕ b,
σa,b(x) = σ(x⊕ a)⊕ b.
Masking substitution π0 maps nibbles (l, r)=(l⊕m1, r⊕m0) to nibbles

(ll, rr)=(ll⊕m3, rr⊕m5) and implemented by the following algorithm. The
algorithm uses six random uniform masks (m0, m1, m2, m3, m4, m5) and
intermediate 8 bit z value.

ALGORITHM 4.
Input: masked values: (l ‖ r), random masks: (m0, m1, m2, m3, m4, m5),

lookup tables: χm0,m2(x), νm1,m3

0 (x), νm1◦m2,m3

1 (x), ϕm3,m4(x), σm0◦m4,m5(x)
Output: (llm3 ‖ rrm5)

1. x← νm1,m3

0 (lm1

2. y ← lm1) ◦ ψm0,m2(rm0)

3. y ← y ⊕m1 ◦ ψm0,m2(rm0)

4. y ← y ⊕m2 ◦ lm1

5. y ← num1◦m2,m3

1 (y)

6. z ←MSB4(16− ((rm5 + (¬m0 + 1)) ∨ 0x10))

7. llm3 ← x⊕ x · z ⊕ y · z

8. y ← φm3,m4(llm3) ◦ rm0

9. y ← y ⊕m0 ◦ φm3,m4(llm3)

10. y ← y ⊕m4 ◦ rm0

11. rrm5 ← σm0◦m4,m5
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In the algorithm 4 "+" and "–" are arithmetic addition and subtraction,
the result store in the byte, ∨ is the bitwise "or" of two vectors, · is a bitwise
logical "and" of two vectors, MSBn is the operation of taking senior n bit.

Table 2 shows estimates of complexity of masking for S-boxes when it is
represented as π = ωπ0α for various substitution masking methods.

Method RAM Table creation Re-masking The call lookup
table

1 5n
2
2
n
2 0 5(2 ·2n

2An
2

+2
n
2Rn

2
+

2
n
2Wn

2
)

Rn
2

2 5n
2
2
n
2
−1 0 5(4 · 2

n
2An

2
+ 2 ·

2
n
2Rn

2
+ 2

n
2Wn

2
)

5(4Rn
2

+ 6An
2
)

3 5n
2
23n

2 5(2 · 2
n
2 (2 · 2

n
2An

2
+

2
n
2Rn

2
+ 2

n
2Wn

2
)

0 5 ·Rn/2

4 0 0 0 5 · (2n/2 ·Rn/2 + 2 ·
2n/2 · An/2 + 2n/2 ·
Wn/2)

Table 2:

For approximating complexity our algorithm puttin An = Rn = Wn.
Table 3 shows comparison complexity masking method with (1) and without
(2) our proposal. We can see that we obtain reduces the complexity more
than 3 times for all methods.

Method RAM Table
creation

Re-masking The call
lookup
table

1 2 1 2 1 2 1 2
1 5 · 26 211 0 0 5 · 26A4 210A8 R4 R8

2 5 · 25 210 0 0 5 · 26A4 210A8 50A4 10A8

3 5 · 214 227 5 ·214A4 227A8 0 0 5R4 R8

4 0 0 0 0 0 0 5 · 26A4 210A8

Table 3:

5 Security Analysis

Consider one round of the encryption algorithm. On the each step of the
algorithm the intermediate result computed from the some sensitive variable
and masks. On the each step algorithm the intermediate result computed
from the some sensitive variable and masks (m0, m1, m2, m3, m4, m5). All
masks are independent random values. The observed input and output values
at each step of the algorithm 4 are shown in Table 4.
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Step Intermediate
values

Result Step Intermediate
values

Result

1 lm1 ,
m3

ν0(l)⊕m3 7 ν0(l)⊕m3,
ν1(l ◦χ(r))⊕m3,
z

ll ⊕m3

2 lm1 ,
rm0 ,
m2

l ◦ χ(r) ⊕ m1 ◦
m2 ⊕ m1 ◦
χm0,m2(rm0) ⊕
m2 ◦ lm1

8 m0,
m4,
rm0 ,
llm3 ,

ϕ(ll) ◦ r ⊕ m0 ◦
m4 ⊕ m0 ◦
ϕm3,m4(llm3) ⊕
m4 ◦ rm0

3 l ◦ χ(r) ⊕ m1 ◦
m2 ⊕ m1 ◦
χm0,m2(rm0)⊕,
m2 ◦ lm1 ,
m1◦χm0,m2(rm0)

l ◦ χ(r) ⊕ m1 ◦
m2 ⊕m2 ◦ lm1

9 llm3 ,
m0 ◦
ϕm3,m4(llm3),
ϕ(ll) ◦ r ⊕ m0 ◦
m4 ⊕ m0 ◦
ϕm3,m4(llm3) ⊕
m4 ◦ rm0

ϕ(ll) ◦ r ⊕ m0 ◦
m4 ⊕m4 ◦ rm0

4 l ◦ χ(r) ⊕ m1 ◦
m2 ⊕m2 ◦ lm1 ,
m2 ◦ lm1

l◦χ(r)⊕m1 ◦m2 10 m4,
rm0 ,
ϕ(ll) ◦ r ⊕ m0 ◦
m4 ⊕m4 ◦ rm0

ϕ(ll)◦r⊕m0◦m4

5 l◦χ(r)⊕m1◦m2,
m3

ν1(l ◦ χ(r))⊕m3 11 m5,
ϕ(ll) ◦ r ⊕ m0 ◦
(m4)

σϕ(ll) ◦ r ⊕m5

6 ¬m0,
rm0

z = (0, 0, 0, 0) -
if r = 0,
z = (1, 1, 1, 1) -
otherwise

Table 4:

It is easy to see that the proposed scheme provides protection against
attacks of the first order.

At step 6 of the algorithm is possible to use the "zero value" attack for z
variable. We estimate a possible reduction in the complexity of key recovery
compared to exhaustive search for the first iteration of the algorithm. We
assume that we define the first iterative key with a length of 128 bit.

Consider the following algorithm for the key recovery. For each of the 16
lookup transformation S we independently determine the appearance of zero
values of r on the side channel. If we have defined, r=0, then we will try
all possible values of l. In total s1 = 24 variants. Otherwise, we will try all
possible values of l and all values of r 6= 0. Tatal s2 = 28 − 1 variants. The
probability of an event r = 0 equals p1 = 2−4. The probability of the event
r 6= 0 is p2 = (1− 2−4).

The average complexity of the attack is
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S =
∑16

i=0

(
16
i

)(
si1p

i
1 + s16−i

2 p16−i
2

)

Finally, we obtain S = 2127.994. The complexity for for exhaustive search
is S=2128. We have reducing the complexity of the attack estimate at 1.004
times.

6 Conclusion

In this paper we demonstrate possibility to use a decomposition of the
S-box of Kuznyechik for decrease complexity some of masking methods for
protecting the algorithm from side channel attacks.

It is shown that in comparison with universal methods of masking, one
can get a gain in performance and required memory more than 3 times. At
the same time, the potential threat from implementing a zero-value attack
can reduce the complexity of the key recovering by no more than 1.004 times.

The proposed method uses specific properties of the S-box decomposi-
tion. For future work, we plan to apply another decomposition methods for
Kuznyechik to protect algorithm against side-channel attacks.
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Abstract

XS-circuits describe cryptographic primitives that utilize 2 operations on binary
words of fixed length: X) bitwise modulo 2 addition and S) substitution. The words
are interpreted as elements of a field of characteristic 2. In this paper, we develop a
model of XS-circuits according to which several instances of a simple round circuit
containing only one S operation are linked together and form a compound circuit
called a cascade. S operations of a cascade are interpreted as independent round
oracles. When a cascade processes a pair of different inputs, some round oracles get
different queries, these oracles are activated. The more activations, the higher secu-
rity guarantees against differential cryptanalysis the cascade provides. We introduce
the notion of the guaranteed number of activations, that is, the minimum number
of activations over all choices of the base field, round oracles and pairs of inputs. We
show that the guaranteed number of activations is related to the minimum distance
of the linear code associated with the cascade. It is also related to the minimum
number of occurrences of units in segments of binary linear recurrence sequences
whose characteristic polynomial is determined by the round circuit. We provide an
algorithm for calculating the guaranteed number of activations. This algorithm can
also be used to deal with linear activations related to linear cryptanalysis.

Keywords: circuit, differential cryptanalysis, linear cryptanalysis, linear code, linear
recurrence sequence. .

1 Introduction

XS-circuits describe cryptographic primitives that utilize 2 operations
on binary words of fixed length: X) bitwise modulo 2 addition and S) sub-
stitution. A circuit may describe a block cipher when instantiating S with
key-dependent round functions which usually have a complicated internal
structure being circuits of the same (of smaller word length) or other types.
Or a circuit may describe an encryption or authentication mode when S is a
keyed permutation of a block cipher. One of the directions here is construct-
ing wide-block and variable-input-length ciphers, that is, extending the block
length of the underlying cipher to some fixed or even arbitrary length.
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We interpret binary words that are processed in an XS-circuit as elements
of a field of characteristic 2. A circuit becomes arithmetic if all its operations
S are instantiated using only the addition (actually, X) and multiplication in
the base field. Arithmetic circuits designed for symmetric cryptography are
demanded in universal ZK-proof systems, especially if the circuits have low
multiplicative complexity (an example of the approach can be found in [2]).
We see another area of application of XS-circuits.

In this paper, we follow the model of XS-circuits proposed in [1]. Ac-
cording to this model, several instances of a simple round circuit containing
only one S operation are linked together and form a compound circuit called
a cascade. S operations of a cascade are interpreted as independent round
oracles. We extensively use notions and notation from [1]. In particular, the
notion of regular circuits that are in a sense the best elementary circuits and
the only ones worth considering when constructing cascades.

When a cascade processes a pair of different inputs, some round oracles
get different queries, these oracles are called activated. The more activations,
the higher security guarantees against differential cryptanalysis the cascade
provides.

In Section 2 we introduce the notion of the guaranteed number of acti-
vations, that is, the minimum number of activations over all choices of the
base field, round oracles and pairs of inputs. In Section 3 we show that the
guaranteed number of activations is related to the minimum distance of the
linear code associated with the target cascade. This number is also related
to the minimum number of occurrences of units in segments of binary lin-
ear recurrence sequences whose characteristic polynomial is determined by
the round circuit. This is shown in Section 4. Finally, in Section 5 we pro-
vide an algorithm for calculating the guaranteed number of activations. This
algorithm can also be used to deal with linear activations related to linear
cryptanalysis.

Bringing the problem of lower bounding the number of activations to
the context of coding theory and showing how to solve it algorithmically,
we introduce a systematic approach for constructing sound cryptographic
mappings. Interestingly, another systematic approach of this kind, the so-
called Wide trail strategy, also relates to coding theory. This approach was
proposed in [5, 6] and was implemented in numerous block ciphers including
AES and Kuznyechik (see [3] for a fairly complete list).

The Wide trail strategy allows to achieve a high activation rate, close to
1/2, when MDS (Maximum Distance Separable) codes are used to build a
diffusion layer. The drawback of the strategy is that the layer becomes quite
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complicated and usually has to be implemented through a table lookup. For
comparison, the diffusion layer of an XS-circuit can be made very simple.
However, S operations of the circuit cannot be applied in parallel although
this is allowed by the Wide trail strategy.

2 Preliminaries

Let (a,B, c) be a regular XS-circuit of order n (see [1] for definitions and
further details). We assume that the circuit is in the first canonical form,
that is, a is a nonzero column vector, B is a Frobenius cell, c = (0, . . . , 0, 1).
Denote by b the last column of B. All the vectors a, b, c are binary of
dimension n.

Instantiating the circuit over a field F of characteristic 2 and substituting
an oracle S : F→ F for the operation S, we get the mapping

(a,B, c)[S] : Fn → Fn, (x1, x2, . . . , xn) 7→ (x2, x3, . . . , xn, xn+1),

xn+1 = (x1, x2, . . . , xn)b+ S((x1, x2, . . . , xn)a).

Let (a,B, c)t be the t-round cascade built by connecting t instances
of (a,B, c). The cascade utilizes t operations S. Instantiating these operations
by oracles S1, . . . , St, we obtain the mapping (a,B, c)t[S1, . . . , St]. It may be
described algorithmically as follows: having received an input (x1, x2, . . . , xn),
the sequence

xτ+n = (xτ , . . . , xτ+n−1)b+ Sτ((xτ , . . . , xτ+n−1)a), τ = 1, 2, . . . , t,

is calculated and the vector (xt+1, . . . , xt+n) is returned as the output.

Example 1 (GFN1). The GFN1 family of XS-circuits was introduced in [14].
The circuit of dimension n ≥ 2 has the second canonical form: a =
(1, 0, . . . , 0)T , B is a Frobenius cell with b = a, c = aT . Replacing (a,B, c)
with

(B−1a,B−1BB, cB) = ((0, . . . , 0, 1)T , B, (0, . . . , 0, 1)),

we obtain the first canonical form for which

xτ+n = xτ + Sτ(xτ+n−1), τ = 1, 2, . . . .

Let us suppose now that the cascade processes not one but two inputs si-
multaneously. From there, (x1, x2, . . . , xn) is the X-difference of input vectors
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and (xτ+1, . . . , xτ+n) is the difference of the τ th round outputs. See [1, Sec-
tion 4] for further details. There differences are denoted using the symbol ∆
but here we simplify the notation.

The difference uτ at the input of Sτ has the form (xτ , . . . , xτ+n−1)a. The
corresponding output difference vτ can be written as (xτ , . . . , xτ+n−1)b+xτ+n.
Due to the bijectivity of Sτ , the equality uτ = 0 holds if and only if vτ = 0.
In other words,

(xτ , . . . , xτ+n−1)a = 0⇔ (xτ , . . . , xτ+n−1)b+ xτ+n = 0.

Let us construct a matrix G = G(n, a, b, t) of dimensions (t+n)× 2t. Its
columns go in pairs, the τ th pair has the form:

0 0
... ...
0 0



 τ − 1

a b
0 1

}
n+ 1

0 0
... ...
0 0



 t− τ

With this,

(x1, x2, . . . , xt+n)G = (u1, v1, u2, v2, . . . , ut, vt).

We require that in each pair (uτ , vτ) both elements are either zero or
nonzero together. Denote by W the set of all vectors

w = (u1, v1, . . . , ut, vt) = xG, x ∈ Ft+n,

for which the requirement holds. The setW is completely determined by the
base field F, the vectors a, b and the number of rounds t. The zero vector
obviously belongs to W .

We call the situation when (uτ , vτ) 6= (0, 0) the activation of Sτ .
Let wt2(w) be the total number of activations, that is, nonzero pairs (uτ , vτ),
in the vector w.

For t ≥ n we are interested in the quantity

d(W) = min
w∈W,w 6=0

wt2(w).

It is the minimum number of activations when applying the mappings
(a,B, c)t[S1, . . . , St] to pairs of different vectors from Fn. Note that the min-
imization covers all admissible tuples (S1, . . . , St) and all admissible input
pairs.
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For t < n we set d(W) = 0. This reflects the fact that as long as the
number of rounds is less than the dimension of the circuit, it is possible
to avoid activations by manipulating the initial diffirence (x1, . . . , xn) 6= 0
(see [1, Section 8]).

The quantity d(W) can also be denoted as d(F, n, a, b, t) implying thatW
is uniquely determined by the parameters (F, n, a, b, t). Let

d(n, a, b, t) = min
F
d(F, n, a, b, t),

where the minimum is taken over all fields of characteristic 2. Any such field
is an extension of F2 and therefore

d(n, a, b, t) ≤ d(F, n, a, b, t) ≤ d(F2, n, a, b, t).

The cascade (a,B, c)t guarantees at least d(n, a, b, t) activations regard-
less of the choice of F, round oracles and input pairs. We call d(n, a, b, t) the
guaranteed number of activations.

3 Connection to the linear codes

The set W is a subset of the vector space

C = {xG : x ∈ Ft+n} ⊆ F2t.

The following lemma means that for t ≥ n the space C has dimension t + n

and, therefore, it is a linear code with the parameters [2t, t+ n].

Lemma 1. Let vectors a and b define a regular XS-circuit of the first canon-
ical form of dimension n. If t ≥ n, then the matrix G = G(n, a, b, t) has full
rank: rankG = t+ n.

Proof. Let us associate with the first two columns of G the polynomials
a(λ) =

∑n−1
i=0 aiλ

i and fB(λ) = λn+
∑n−1

i=0 biλ
i. Here ai and bi are coordinates

of a and b respectively. We follow the notation introduced in [1, Section 7].
Note that Theorem 9 of the cited paper states that for a regular XS-circuit
the polynomials a(λ) and fB(λ) are coprime.

The monomial λi in a(λ) marks the position in the first column in which
the coefficient ai is located. The same holds for fB(λ) and the second column.
In general, the τ th pair of columns is described by the polynomials λτ−1a(λ)
and λτ−1fB(λ).

The first 2t columns of G are linearly dependent if there exist nonzero
polynomials p(λ) and q(λ) whose degrees are less than t and which satisfy

p(λ)a(λ) + q(λ)fB(λ) = 0.

S. Agievich 75



On the Guaranteed Number of Activations in XS-circuits

For t = n, since a(λ) and fB(λ) are coprime, there are no suitable poly-
nomials p(λ), q(λ) and the matrix G has full rank.

The first linear dependence appears in G at t = n + 1 when choosing
p(λ) = fB(λ) and q(λ) = a(λ). The penultimate column becomes dependent
on the previous ones. But the last column remains independent, since it is
the only one containing 1 in the last row. Thus, rankG = 2n + 1 = t + n
and G is again full-ranked.

The argument can be repeated: each new pair of columns adds 1 to the
rank of G. Full rank is preserved, which was to be proven.

The minimum distance of C is the quantity

d(C) = min
w∈C,w 6=0

wt(w),

where wt(w) is the Hamming weight of w. According to the Singleton bound
(see, for example, [10]),

d(C) ≤ 2t+ 1− (t+ n) = t− n+ 1.

Since wt(w)/2 ≤ wt2(w) ≤ wt(w) and W ⊆ C, it holds that

d(C)/2 ≤ d(W) ≤ d(C).

In particular, d(W) ≤ t−n+1. This estimate means that over t ≥ n rounds
we cannot guarantee more than t−n+1 activations. Further we are interested
in lower bounds for d(W).

Let t ≥ n and, therefore, rankG = t+n by Lemma 1. Suppose that when
processing a nonzero input difference using some round oracles, activations
occur only in rounds whose numbers belong to a set T ⊆ {1, 2, . . . , t}. We
call T the activation profile. Following this profile, let us divide G into two
parts: G0 and G1. The matrix G1 consists of pairs of columns whose numbers
are in T and G0 consists of the remaining columns. By construction, there
exists a nonzero vector x ∈ Ft+n such that xG0 = 0 and xG1 does not contain
zeros. This means that the partition (G0, G1) is feasible in the sense of the
following definition.

Definition. Let G0 and G1 be matrices composed of different pairs of
columns of G. The partition (G0, G1) is feasible if

1) rankG0 < t+ n;

2) rank(G0 | g) > rankG0 for each column g of G1.
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Indeed, if rankG0 = t + n, then from xG0 = 0 it follows that x = 0
which contradicts the construction. And if rank(G0 | g) = rankG0, then
from xG0 = 0 it follows that xg = 0. The latter means that xG1 contains
zero, again a contradiction.

In the following lemma, we show that feasibility of a partition (G0, G1)
is not only necessary but also a sufficient condition for the feasibility of the
underlying activation profile.

Lemma 2. Let vectors a and b define a regular XS-circuit of the first canon-
ical form of dimension n. Let t ≥ n and k be the maximum number of pairs
of columns in the matrix G0 where the maximum is taken over all feasible
partitions (G0, G1) of G = G(n, a, b, t). Then

d(n, a, b, t) = t− k.

Proof. Let (G0, G1) be a feasible partition of G. It is necessary to prove that
there exists an extension F of the field F2 and a vector x ∈ Ft+n such that
xG0 = 0 and xG1 does not contain zeros.

The set
L = {xG1 : x ∈ Ft+n, xG0 = 0} ⊆ F2(t−k)

is a vector space of dimension r = t+ n− rankG0. It can be written as

L = {yP : y ∈ Fr},

where P is a binary matrix of dimensions r × 2(t − k). The matrix P does
not contain a zero column due to the second restriction on the feasibility of
the partition (G0, G1).

Suppose that L does not contain a vector without zero coordinates. Then
we choose an arbitrary vector yP ∈ L, build an extension F′ of the field F and
extend y to a vector y′ of the same dimension but over F′. We construct y′

in such way that a particular zero coordinate of yP becomes nonzero in y′P
while nonzero coordinates of yP remain nonzero in y′P . After constructing
the pair (F′, y′) we interpret it as (F, y) and repeat the extension until we
get the vector yP without zeros. It remains to show how to extend y to y′.

Define F′ as an extension of F of degree 2. Without loss of generality, let
elements of F′ be (m + 1)-bit words α = α1 . . . αmαm+1 and α ∈ F if and
only if αm+1 = 0. Let the addition in F′ be the usual XOR. The extension
of y consists in setting the last (zero) bits of its coordinates. Let β be a
vector composed of these bits. Since P does not contain zero columns, it
is possible to choose β so that a particular coordinate of βP is nonzero.
The corresponding coordinate of y′P is also nonzero. Moreover, if a certain
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coordinate yP is nonzero, then the corresponding coordinate y′P remains
nonzero. That was to be proven.

Remark 1. The minimum distance of the code C = {xG} can also be defined
as d(C) = t − k, where k is the maximum number of columns in G0 and
the maximum is taken over all feasible partitions (G0, G1) of G (see, for
example, [8, Theorem 1.4.5]). The difference is in changing the partitioning
restrictions. Now Gi not necessarily consists of pairs of related columns, the
requirement rankG0 < t + n is preserved, but the requirement rank(G0 |
g) > rankG0 becomes redundant.

Remark 2. Let rankG0 = t + n − 1. Then in the proof above, the
vector space L has dimension 1 and the matrix P becomes the row vec-
tor (1, 1, . . . , 1). This means that with F = F2 there exists a nonzero x ∈ Ft+n
such that xG0 = 0 and xG1 = (1, 1, . . . , 1). In other words, the activation
profile associated with the partition (G0, G1) is feasible over F2. Moreover, as
we see below, this profile is a segment of a linear recurrence sequence over F2.

4 The case F = F2

In the case F = F2, the condition uτ = 0 ⇔ vτ = 0 is eqiuvalent to
uτ = vτ . With this,

xτ+n = (xτ , . . . , xτ+n−1)(a+ b), τ = 1, 2, . . . , t,

that is, the sequence (x1, . . . , xt+n) is a segment of a nonzero linear recurrence
sequence (LRS) over F2. The characteristic polynomial of the sequence is

f(λ) = λn + fn−1λ
n−1 + . . .+ f1λ+ f0, (f0, f1, . . . , fn−1) = a+ b.

The vectors (xτ , . . . , xτ+n−1), τ = 1, 2, . . ., stand as states of the lin-
ear feedback shift register (LFSR) associated with f(λ). When choosing the
first bits of LFSR states, we get the sequence (xτ), and when choosing the
linear combinations (xτ , . . . , xτ+n−1)a, we get the sequence (uτ). The latter
sequence is also a LRS with the same characteristic polynomial f(λ).

The sequence (uτ) is nonzero. Indeed, the underlying XS-circuit is regular
and for any nonzero input difference (x1, . . . , xn) at least one activation must
occur over the first n rounds (see the discussion before Theorem 10 in [1])
which means that (u1, . . . , un) 6= (0, . . . , 0).

For the same reason, f0 = 1 and the sequences (xτ), (uτ) are purely
periodic. Indeed, otherwise, a nonzero input difference (x1, . . . , xn) =
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(1, 0, . . . , 0) induces a zero difference after n − 1 rounds, which is impos-
sible due to the regularity.

The number of activations over t rounds is the number of nonzero elements
(units) in the segment (u1, . . . , ut). We can use known results on the number
of occurrences of particular elements in segments of LRS. Let r be the least
period of (uτ), R be the order of f (the maximum least period of nonzero
LRS with the characteristic polynomial f). Then according to Theorems 8.82
and 8.85 from [9], the number of activation is at least

t

2
− 2n/2−1

( r
R

)1/2
(
t0 +

2

π
log r +

2

5
+
t1
r

)
.

Here t0 and t1 are respectively the quotient and remainder when dividing t
by r. If t1 = 0, then only the term t0 can be left in the last brackets.

It makes sense to apply the estimate above only for large n, t and r. In
practice, these parameters are small and the minimum number of activations
can be found by exhaustive search over all LRS profiles (u1, . . . , ut) in time
of order 2nt.

Example 2 (SMS4). The SMS4 circuit is used in the block cipher of the
same name (which is often shortened to SM4). See [7] for details of the
cipher and [1] for details of the circuit.

The circuit is already in the first canonical form, its dimension is 4, the
characteristic polynomial f(λ) = λ4 + λ3 + λ2 + λ+ 1. The polynomial f(λ)
is irreducible of order 5. Therefore, the least period of (uτ) equals 5.

The minimum number of activations is achieved on the start segments of
the following LRS:

0, 0, 0, 1, 1, 0, 0, 0, 1, 1, . . .

If t = 5t0 + t1, 0 ≤ t1 < 5, then this number is
{

2t0, t1 = 0, 1, 2, 3,

2t0 + 1, t1 = 4.

Example 3 (GFN1, continued). Let us continue Example 1 and consider
the GFN1 circuit of dimension n in the first canonical form. For this circuit,
a = (0, 0, . . . , 0, 1)T , b = (1, 0, . . . , 0, 0)T and f(λ) = λn + λn−1 + 1.

For n = 2, 3, 4, the polynomial f(λ) is primitive. The least period of (uτ)
equals r = 2n − 1 and every full period (u1, . . . , ur) contains exactly 2n−1

units. Therefore,
d(F2, n, a, b, 2

n − 1) = 2n−1
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and the activation rate over 2n − 1 rounds can potentially achieve the value
2n−1/(2n − 1) > 1/2. This value is indeed achieved for n = 2, 3 but, as we
show later, not for n = 4.

5 The algorithm

The following algorithm summarizes our constructions and reasoning.

Algorithm GNA (the guaranteed number of activations)

Input: (n, a, b, t), where a and b are binary vectors of dimension n that define
a regular XS-circuit in the first canonical form, t is a number of rounds.
Output: d(n, a, b, t), the guaranteed number of activations over t rounds of
the input circuit.
Steps:

1. If t < n, then return 0. If t = n, return 1.

2. Construct the matrix G = G(n, a, b, t) as explained in Section 3. The
dimensions of G are (t+n)× 2t, rankG = t+n. The columns of G are
grouped in pairs.

3. Calculate d(F2, n, a, b, t) as described in Section 4 and set k ← t −
d(F2, n, a, b, t).

4. Make a list of all possible partitions of G into submatrices G0 and G1

such that G0 contains exactly k + 1 pairs of columns of G.

5. For each partition (G0, G1):

(a) if rankG0 ≥ t+ n− 1, then continue (go to the end of the loop);
(b) if there is a column g in G1 such that rank(G0 | g) = rankG0, then

continue;
(c) set k ← k + 1 and go to Step 4.

6. Return t− k.

Theorem. The algorithm GNA is correct.

Proof. A direct consequence of Lemma 2 and Remark 2.
In Step 5a of the algorithm, we skip the case rankG0 = t+n−1 because

in this case the activation profile associated with the partition (G0, G1) is
feasible over F2 and the initial bound d(F2, n, a, b, t) for d(n, a, b, t) cannot
be strengthened.
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The algorithm GNA gives us the guaranteed number of differential ac-
tivations. We can easily adapt the algorithm to deal with linear activa-
tions (see [1, Section 9]). To do this, we pass from (a,B, c) to the dual
circuit (cT , BT , aT ) and determine vectors a′ and b′ that define its first
canonical form (we only need to determine a′, since b′ = b). The quantity
GNA(n, a′, b′, t) is the guaranteed number of linear activations.

Example 4 (SMS4, continued). For SMS4 its dual has the same first canon-
ical form. So the guaranteed numbers of differential and linear activations
are the same. The outputs of GNA against SMS4 for t ≤ 32 coincide with the
estimates of Example 2. Thus, the activation rate close to 2/5 is achieved.
In particular, the guaranteed number of activations over 32 rounds (exactly
the case of the block cipher SMS4/SM4) is 12.

Note that here we are processing the abstract SMS4 circuit, not its in-
stantiation in SMS4/SM4. In this instantiation, S operations are constructed
using round keys, table S-boxes, rotations and XORs of binary words. Lower
bounds on the number of active S-boxes (not activations / active rounds) in
SMS4/SM4 can be found in [11, 12, 13].

Iterating over
(

t
k+1

)
partitions in Step 4 of GNA can be simplified. For

example, in the case of SMS4, if any 4 of 5 consecutive pairs of columns
fall into G0, then the corresponding partition is not feasible and can be im-
mediately rejected. Indeed, the 5 consecutive pairs of columns are linearly
dependent while 4 pairs are not (it follows from the same reasoning as in
the proof of Lemma 1). Therefore, a pair not included in G0 contains a col-
umn g which is linearly expressed through the columns of G0 and, therefore,
the second condition of feasibility is violated.

Example 5 (GFN1, continued). An GFN1 circuit of arbitrary dimension is
self-dual: (a,B, c) = (cT , BT , aT ). Therefore, a bound on differential activa-
tions is also a bound on linear activations.

For the circuit of dimension n = 4, GNA gives 7 activations over 15
rounds. It is one less than estimated in Example 3 through LRS profiles. The
optimal activation profile found by GNA looks as follows:

000111101100100.

It differs from the related LRS profile

000111101011001

starting from the 10th round. The LRS profile gives 3 activations after the
fork while the optimal profile gives only 2 activations.
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Example 6 (activation times). The ith activation time, ρi, is the mini-
mum number of rounds that guarantees i activations (see [1, Section 8]). In
the next table, we present the values ρi for GFN1 of dimension n = 4 and
for SMS4. We calculate ρi using the GNA algorithm.

i 1 2 3 4 5 6 7 8 9 10 11 12
ρi(GFN1) 4 7 8 10 12 13 14 17 20 22 23 25
ρi(SMS4) 4 5 9 10 14 15 19 20 24 25 29 30

The time ρ7(GFN1) = 14 given in the table refines Proposition 5 of [4].

Acknowledgments: The author thanks Egor Lawrenov for fruitful dis-
cussions and computer experiments, the results of which are used in the above
examples. The author also thanks the anonymous referees of CTCRYPT 2020
for their valuable feedback.
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Abstract

Matrices having the Maximum Distance Separable property (MDS matrices) are
a vital component for the design of symmetric-key algorithms to achieve the diffu-
sion property. In recent years, there has been a lot of work on the construction and
characterization of MDS matrices with a low implementation cost in the context of
the so-called lightweight schemes. However, many authors do not pay attention to
the influence of reducibility of the proposed MDS matrices and as a consequence an
adversary can exploit the nontrivial invariant subspaces associated to these map-
pings. In this article, we propose some methods for constructing linear matrices of
size 4×4 and 6×6 with primitive characteristic polynomial that preserves the MDS
property having better resistance against the so-called invariant subspaces attacks.

Keywords: MDS-matrix, recursive matrix, companion matrix, Feistel Network, invariant
subspace, linear orthomorphism.

1 Introduction

Modern block ciphers are often iterations of several rounds. Each round
(which must depend on the key) consists of a confusion layer and a diffusion
layer. The confusion layers are usually formed by local nonlinear mappings
(S-Boxes) while the diffusion layers are formed by global linear mappings
mixing the output of the different S-Boxes. The security of a diffusion layer
is measured by its differential branch number and the linear branch number.
The larger the two branch numbers are, the stronger a diffusion layer is. The
diffusion layers with the optimal branch numbers are called being maximum
distance separable (MDS). But a branch number describes diffusion property
of an MDS matrix with respect to the canonical basis only. There are sev-
eral linear mappings of block ciphers with reducible characteristic polynomial
(see, for example, [6, 9]) and such mappings have nontrivial invariant sub-
spaces, moreover, the group generated by linear mapping and the additive
group of vector space is an imprimitive group. In this situation, if a nonlin-
ear bijective transformation does not diffuse systems of imprimitivity of this
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group, then block cipher may be vulnerable, for example, to homomorphism
attack [7].

From practical point of view, is not only desirable that an MDS matrix
can be implemented efficiently both in software/hardware but also when en-
cryption and decryption implementations are required and the inverse of the
MDS matrix will have to be implemented as well except for Feistel and Lai-
Massey structures, where the inverse of the internal function is not required
for decryption. However, constructing an MDS matrix with low implementa-
tion cost (as to suit lightweight schemes) is a nontrivial task.

Although, several articles published by Burov D. A., Pogorelov B. A. and
Pudovkina M. A. are devoted to the question on the influence of the lin-
ear mapping reducibility on the security of block ciphers [7, 8, 13, 14, 15],
in this work we continued the research topic started in [16], considering the
problem of building an special kind of linear mappings with primitive charac-
teristic polynomial and acceptable implementation cost having the following
advantages, such as no non-zero fixed points and better resistance against
the so-called invariant subspaces attacks.

This article is structured as follows: We begin with preliminaries in Sec-
tion 2, proving some useful results and then we give some basic concepts
about MDS matrices and XOR-count metric. Some methods for construct-
ing orthomorphic MDS matrices with primitive characteristic polynomial are
given in Section 3,4 and 5 respectively, for all these matrices its implemen-
tation cost is analysed in Section 6. Our work is concluded in Section 7.

2 Preliminaries

Let be k > 2,Q =GF(q)=GF(p)[x]/q(x) the finite field of q = pn el-
ements, where q(x) is a es irreducible polynomial of degree n over GF(p)
and p is a prime number, by Q∗ we denote multiplicative group of Q, i.e.,
Q∗ = Q \ {0}. The set of all vectors of dimension k over Q is denoted by
Qk. The set of all matrices of dimension k × k over Q is denoted by Qk,k

and by Q∗k,k we denote the set of all invertible matrices of size k× k over Q.
Throughout the article, we shall use the following operations and notations:

0 - the null element of Q;
e - the neutral element of the multiplicative group Q∗;
wH(~a) - the Hamming weight of a vector ~a ∈ Qk, i.e. the number of its

nonzero coordinates;
Ik×k - the identity matrix of Qk,k;
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Ok×k - the zero matrix of Qk,k;
(~v)> - the transpose of a vector ~v ∈ Qk;
rankA - the rank of the matrix A ∈ Qk,k;
|A| - the determinant of the matrix of A ∈ Qk,k;
a(x) | b(x) - the polynomial a(x) divides the polynomial b(x);
a(x) - b(x) - the polynomial a(x) is not a divisor of the polynomial b(x).

2.1 Linear algebra

Definition 1. [1] Let be f(x) = f0−f1x−f2x
2− . . .−fk−2x

k−2−fk−1x
k−1−

xk ∈ Q[x], the matrix Sf ∈ Qk,k, defined as

Sf =




0 0 · · · 0 0 f0

e 0 · · · 0 0 f1

· · · · · · · · · · · · · · · · · ·
0 0 · · · e 0 fk−2

0 0 · · · 0 e fk−1



k×k

is called companion matrix of the polynomial f(x).

For companion matrices of irreducible polynomials it is known that
GF (qk) is isomorphic to Q(Sf), where Q(Sf) = ((Q,Sf),+, ·) and (Q,Sf) ={
k−1∑
i=0

aiS
i
f : (a0, . . . , ak−1) ∈ Qk

}
(see, for example, [2]).

As we can see in the next definition, the companion matrix is a particular
case of the P - companion matrix− a new concept which is defined as follows.

Definition 2. Let be f(x) = f0−f1x−f2x
2−. . .−fk−2x

k−2−fk−1x
k−1−xk ∈

Q[x], the matrix Sf(P(k−1)×(k−1)) ∈ Qk,k, defined as

Sf(P) =




0 · · · 0 f0

f1
...

P(k−1)×(k−1)
...

fk−2

fk−1



k×k

is called P - companion matrix of the polynomial f(x), where P(k−1)×(k−1) is
a permutation matrix.

In [1], Definition 3, Chapter 11 is defined the order of an element. Analo-
gously, we will define the multiplicative order of matrix of the multiplicative
group Q(Sf)

∗.
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Definition 3. The smallest integer r ∈ {1, . . . , qk − 1} such that Ar = Ik×k
is called multiplicative order of the matrix A ∈ Qk,k in the multiplicative
group Q(Sf)

∗ and denoted by Ord(A).

Definition 4. [1] The characteristic polynomial of the matrix A ∈ Qk,k,
denoted by χA(x), is defined as follows

χA(x) = |x · Ik×k − A|.

Definition 5. [3] Let g(x) be a polynomial over Q of degree deg(g(x)) ≥ 1
and non-zero constant term. The period of g(x) , denoted by T (g), is defined
to be the least positive integer l such that g(x) | (xl − 1).

Definition 6. [1] The polynomial mA(x) ∈ Q[x] is called the minimal poly-
nomial of the matrix A ∈ Qk,k if and only if mA(A) = Ok×k, and for any
g(x) ∈ Q[x] such that g(A) = Ok×k, degmA(x) ≤ deg(g).

It is well known (see [1], Theorem 26, Chapter 25) that χSf (Sf) = Ok×k
and χSf (x) = f(x). This facts can be used to determine the reducibility of
the polynomial χStf (x) for some t ∈ N.

Proposition 1. Let be Q = GF (q) and f(x) ∈ Q[x] an irreducible polyno-
mial of degree k over Q. Then for any integer i ∈ {1, . . . , k−1} the following
equality holds

χ
Sq

i

f

(x) = f(x).

Proof. We have that f(x) is an irreducible polynomial over Q, then
Sf , S

q
f , . . . , S

qk−1

f are its roots in the field Q(Sf) and for any integer i ∈
{1, . . . , k−1} we have that χ

Sq
i

f

(x)|f(x). Now, using the irreducibility of the
polynomial f(x) we conclude that χ

Sq
i

f

(x) = f(x).

Proposition 2. Let be Q = GF (q) and f(x) ∈ Q[x] a primitive polynomial
of degree k over Q. Then for any integer t ∈ {1, . . . , qk − 1} such that
(t, qk − 1) = 1, the polynomial χStf (x) is primitive over Q.

Proof. We have that f(x) is a primitive polynomial over Q, then Sf and Stf
are primitive elements over Q(Sf). We need to prove that χStf (x) is primitive
over Q. If χStf (x) is reducible, then there exist an irreducible divisor g(x) of
the polynomial χStf (x), such that g(Stf) = Ok×k and T (g) | T (χStf ) and this
is a contradiction because T (g) = qk−1 and T (χStf ) < qk−1. Then χStf (x) is
irreducible and because Stf is a primitive element of Q(Sf) we conclude that
the polynomial χStf (x) is primitive (see [1], Theorem 29, Chapter 25).
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Definition 7. Let be f(x) 6= xl ∈ Q[x], l ∈ N an arbitrary polynomial and
{α1, . . . , αs} the set of all nonzero roots of the polynomial f(x) over Q. We
will denote by O(f) the least common multiple of multiplicative orders of the
elements αi:

O(f) = lcm(ordα1, . . . , ordαs).

It is known that if f(x) is an irreducible polynomial of degree k over Q
then for i ∈ 1, k O(f) = ordαi, where αi belongs to some factorization field
of f(x) (see [1]).

Proposition 3. Let be f(x) ∈ Q[x] a primitive polynomial over Q, then for
any integer t < q

k
2 :

1. mStf
(x) is an irreducible polynomial over Q;

2. deg(mStf
(x)) = k.

Proof. We have that f(x) ∈ Q[x] is a primitive polynomial over Q, then
Q(Sf)

∗ = 〈Sf〉 and Ord(Sf) = qk − 1. The first statement is a direct conse-
quence of the lemma 16 given in ([4], p. 41) and to prove the second statement
we observe that

m = deg(mStf
(x)) = min

{
s : Ord(Stf)|(qs − 1)

}
=

= min
{
s :

O(f)

gcd(O(f), t)
|(qs − 1)

}
= min

{
s :

qk − 1

gcd(qk − 1, qs − 1)

∣∣∣t
}

=

= min
{
s :

qk − 1

qgcd(k,s) − 1

∣∣∣t
}
.

If m < k, then (k,m) 6 k
2 , which is equivalent to

qk − 1

qgcd(k,m) − 1
> qk − 1

q
k
2 − 1

> q
k
2 and

qk − 1

qgcd(k,m) − 1
- t.

Notice that the results of propositions 1, 2 and 3 allow us to describe some
integers t, for which the linear mapping L : Qk → Qk, defined as L(~a) =
~a ·Stf , where ~a ∈ Qk, does not have invariant subspaces when f(x) ∈ Q[x] is
a primitive polynomial.

In what follows, we shall consider the field Q of even characteristic, i.e.,
p = 2. In this case we denote by 1 the neutral element of the multiplicative
group Q∗, and by ⊕ the addition in Q.
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Definition 8. The linear mapping L : Qk → Qk, defined as L(~a) = ~a · A,
where ~a ∈ Qk, A ∈ Q∗k,k is called a linear orthomorphism if the matrix
A⊕ Ik×k is invertible over Q.
Proposition 4. For all ~a ∈ Qk and any invertible matrix A ∈ Qk,k the
linear transformation L : Qk → Qk, defined as L(~a) = ~a · A is a linear
orthomorphism if and only if L has no non-zero fixed points.
Proof. It is well known from linear algebra that the number of non-zero
fixed points of L is 2n(k−rank(A⊕Ik,k))− 1. From here we obtain that the linear
transformation L has no non-zero fixed points if and only if when rank(A⊕
Ik,k) = k which means that L is a linear orthomorphism.
Proposition 5. Let be A an invertible matrix of size k × k over Q. Then
for any α ∈ Q∗ the matrix α · Ik×k ⊕ A is invertible over Q if and only if
(x⊕ α) - χA(x).

Proof. It is easy to see that the following holds (x⊕ α)|χA(x) if and only if
α is a root of χA(x), which is equivalent to 0 = χA(α) = |α · Ik×k ⊕ A|.
Corollary 1. If the polynomial χSf (x) ∈ Q[x] is primitive over Q, then for
any α ∈ Q∗ the matrix α · Ik×k ⊕ Stf ∈ Qk,k is invertible for any integer t
such that the following conditions holds:
1. t < 2

k
2 ;

2. t ∈ {1, . . . , 2k − 1} with (t, 2k − 1) = 1.
Proof. The proof follows from the propositions 2, 3 and 5.

2.2 MDS matrices

Definition 9. [5] The branch number ρ of matrix A ∈ Qk,k is defined as

ρ(A) = min
~a6=~0
{wH(~a) + wH(~aA)}.

Definition 10. [5, 10] The matrix A ∈ Qk,k is called MDS if ρ(A) = k + 1
.
Lemma 1. [10] The matrix A ∈ Qk,k is an MDS matrix if and only if all
its quadratic submatrices are invertible over Q.
Lemma 2. [10] The matrix A ∈ Q4,4 with all elements nonzero is an MDS
matrix if and only if it is an invertible matrix with the inverse matrix having
all elements nonzero and all its submatrices of dimension 2×2 are invertible
over Q.
Definition 11. A matrix A ∈ Qk,k is said to be an orthomorphic MDS
matrix if both matrices A and A⊕ Ik×k have the MDS property over Q.
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2.3 XOR-count

In [12] the authors proposed quantify the complexity of implementing
the linear layer of a block cipher by counting the number of bitwise XOR
operations, necessary to implement the multiplication of any vector by the
linear mappings used as building block to achieve the diffusion property.
In this articles we shall use this metric to assess the cost of the proposed
constructions.

Definition 12. [12] The XOR-count of an element α ∈ Q is the number of
XOR operations required to implement the multiplication of α by arbitrary
element β ∈ Q.

Throughout the article we shall denote the XOR-count of an element
α ∈ Q by XOR(α). It’s not difficult to check that XOR(0) = XOR(1) = 0.
The XOR-count of the column j of the matrix M = (mi,j)k×k is calculated
by the following formula given in [12]:

k∑

i=1

XOR(mi,j) + (lj − 1) · n,

where lj is the number of non-zero elements of the j–th column. Then the
XOR-count of matrix M = (mi,j) ∈ Qk,k we can calculate by the formula

XOR(M) =
k∑

j=1

k∑

i=1

XOR(mi,j) + n ·
k∑

j=1

(lj − 1). (1)

Let be f(x) = a0⊕ a1x⊕ a2x
2⊕ ...⊕ ak−1x

k−1⊕ xk and {c1, . . . , cs} the
set of all non-zero different coefficients of polynomial f(x). In [11] is showed
that

XOR(Sf) =
s∑

j=1

XOR(cj) + (lf − 1) · n, XOR(Stf) = t · XOR(Sf), (2)

for all t > 0, where lf is the number of all non-zero different coefficients of
the last column of the matrix Sf .

Is easy to see that

XOR(Sf) = XOR(Sf(P(k−1)×(k−1))), (3)

for any permutations matrix P(k−1)×(k−1).
Choosing the irreducible polynomial x8⊕ x7⊕ x6⊕ x⊕ 1 over GF (2) we

create the field Q = GF (28) = GF (2)[x]/x8⊕x7⊕x6⊕x⊕1 and throughout
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Construction of orthomorphic MDS matrices with primitive characteristic polynomial

the article we shall work only in this field. The values compiled in table 1
correspond to the XOR-count of finite field elements (written in hexadecimal
form). From this table the XOR-count can be calculated as follows, for an
element β = 0x20 ∈ GF (28) we obtaint that XOR(β) = 16.

XOR .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f
0. 0 0 3 9 5 11 10 14 7 11 12 18 14 20 13 21
1. 12 18 11 19 13 17 18 24 17 23 22 26 12 20 23 29
2. 16 22 21 25 11 19 22 28 17 23 16 24 18 22 23 29
3. 20 24 25 31 27 33 26 34 11 19 22 28 24 30 29 33
4. 20 24 23 29 25 31 26 34 11 19 20 26 22 28 29 33
5. 18 24 25 29 15 23 24 30 19 25 20 28 22 26 25 31
6. 24 30 25 33 27 31 30 36 29 35 36 40 26 34 35 41
7. 10 18 19 25 21 27 28 32 25 29 28 34 30 36 31 39
8. 25 21 26 20 24 22 31 27 30 26 33 31 27 21 36 32
9. 11 5 20 16 22 18 25 23 22 20 29 25 31 27 32 26
a. 19 17 26 22 28 24 29 23 14 8 23 19 25 21 28 26
b. 21 17 24 22 18 12 27 23 22 18 23 17 21 19 28 24
c. 27 23 32 30 26 20 33 29 28 24 31 25 29 27 34 30
d. 31 29 36 32 38 34 41 35 26 20 33 29 35 31 40 38
e. 9 3 16 12 18 14 23 21 20 18 25 21 27 23 30 24
f. 25 21 28 22 26 24 31 27 30 26 35 33 29 23 36 32

Table 1: XOR-count of elements of the field Q

3 Constructing orthomorphic MDS matrices from com-
panion matrices

In this section we study the possibility of constructing orthomorphic MDS
matrices from companion matrices.

It is noteworthy that if the polynomial f(x) = f0 ⊕ f1x ⊕ f2x
2 ⊕ ... ⊕

fk−2x
k−2 ⊕ fk−1x

k−1 ⊕ xk ∈ Q[x] has the coefficient f0 = 1 then

Skf =




1 ∗ · · · ∗ ∗
f1 ∗ · · · ∗ ∗
f2 ∗ · · · ∗ ∗
· · · · · · · · · · · · · · ·
fk−2 ∗ · · · ∗ ∗
fk−1 ∗ · · · ∗ ∗




k×k

,

and this mean that

Ik×k ⊕ Skf =




0 ∗ · · · ∗ ∗
f1 ∗ · · · ∗ ∗
f2 ∗ · · · ∗ ∗
· · · · · · · · · · · · · · ·
fk−2 ∗ · · · ∗ ∗
fk−1 ∗ · · · ∗ ∗




k×k

.

Hence, f0 6= 1 is a necessary condition for the matrix Skf to be an orthomor-
phic MDS matrix.

O. C. Puente and R. A. de la Cruz Jiménez 91
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Now we propose a method for constructing 4 × 4 orthomorphic MDS
matrices with primitive characteristic polynomial from the companion matrix
of the polynomial

f(x) = x4 ⊕ γ−1x3 ⊕ γtx2 ⊕ γ−1x⊕ γ ∈ Q[x]. (4)

Proposition 6. Let be Q = GF (28), γ ∈ Q a primitive element, f(x) ∈
Q[x] a polynomial of the form (4). If t ∈ {2, . . . , 254} is a prime number
and f(x) is an irreducible polynomial over Q, then the matrix S4

f is an
orthomorphic MDS matrix.

Proof. By definition 11, it is necessary to show that the matrices S4
f and

I4×4 ⊕ S4
f are MDS matrices. Let’s show that L = S4

f is an MDS matrix.
From lemmas 1 and 2 that is sufficient to check that all elements of the
matrices L = (li,j)4×4 and L−1 = (l′i,j)4×4 are nonzero, and that all minors of
dimension 2× 2 are nonzero too. The matrix L has the following form

L =




γ 1 γt+1 ⊕ γ−1 γ−2 ⊕ 1
γ−1 γ ⊕ γ−2 γt−1 ⊕ γ−3 ⊕ 1 γt+1 ⊕ γ−4 ⊕ γ−2 ⊕ γ−1

γt γt−1 ⊕ γ−1 γ2t ⊕ γt−2 ⊕ γ−2 ⊕ γ γt−3 ⊕ γ−3

γ−1 γt ⊕ γ−2 γ−3 ⊕ γ−1 γ2t ⊕ γt−2 ⊕ γ−4 ⊕ γ


 ,

the matrix L−1 is of the form

L−1 =




γ−8 ⊕ γt−5 ⊕ γ2t−2 ⊕ γ−1 γ−6 ⊕ γ−2 γ−4 ⊕ γt−1 γ−2

γt−7 ⊕ γ−6 ⊕ γ−3 γt−5 ⊕ γ−4 ⊕ γ−1 ⊕ γ2t−2 γ−2 ⊕ γt−3 γt−1

γ−8 ⊕ γ−5 ⊕ γ−4 ⊕ γt−2 γ−6 ⊕ γ−3 ⊕ γt−3 γ−4 ⊕ γ−1 γ−2

γ−7 ⊕ γ−3 γ−5 ⊕ γt−2 γ−3 γ−1


 .

We shall denote by Θ = {θ[i], i ∈ 1, 36} the set of all minors of the matrix
L of dimension 2× 2. Using computer calculations we find that

Θ = { 1, γ, γ2, γ2 ⊕ γ−1, γt−2 ⊕ γ−1 ⊕ γ−2, γt−1 ⊕ 1, γt−1 ⊕ γ−1,
γt−1 ⊕ γ−1 ⊕ 1, γt ⊕ 1, γt ⊕ γ, γt ⊕ γ−3 ⊕ 1, γt ⊕ γ−2 ⊕ γ,
γt+1, γt+1 ⊕ γ−2, γt+2, γt+2 ⊕ 1,
γ2t−2 ⊕ γt−2 ⊕ γt−1 ⊕ γ−4 ⊕ γ−1 ⊕ γ2, γ2t−1 ⊕ γt−1 ⊕ γ−3 ⊕ 1,
γ2t−1 ⊕ γt ⊕ γ−3 ⊕ 1, γ2t−1 ⊕ γt−3 ⊕ γt ⊕ γ−3 ⊕ γ−2 ⊕ 1,
γ2t ⊕ γ−2, γ2t ⊕ γt ⊕ γ−2 ⊕ γ, γ2t ⊕ γt+1 ⊕ γ−2 ⊕ γ,
γ2t ⊕ γt−3 ⊕ γt ⊕ γ−3 ⊕ γ−2 ⊕ γ, γ2t+1 ⊕ γ−1,
γ2t+1 ⊕ γt−2 ⊕ γ2 ⊕ γ−1, γ2t+1 ⊕ γt−1 ⊕ γ2 ⊕ γ−1,
γ2t+1 ⊕ γt−1 ⊕ γt−2 ⊕ γ−4 ⊕ γ−1, γ2t+2 ⊕ 1,
γ3t−1 ⊕ γ2t−1 ⊕ γ−2 ⊕ 1, γ3t−1 ⊕ γ2t ⊕ γ−3 ⊕ γ
γ3t ⊕ γt+1 ⊕ γ−2 ⊕ γ−1, γ3t ⊕ γ2t−2 ⊕ γt+1 ⊕ γ−4 ⊕ γ−1,
γ3t+1 ⊕ γt+2 ⊕ γ−1 ⊕ 1, γ3t+1 ⊕ γ2t−2 ⊕ γt+2 ⊕ γ−4 ⊕ γ−1,
γ4t ⊕ γ2t−2 ⊕ γ−4 ⊕ γ2}.
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By direct computer calculations we have checked that if t ∈ {2, . . . , 254}
is a prime number then all these elements are nonzero. Similarly, we obtain
that the matrix I4×4 ⊕ S4

f is MDS too.

Analogously, to the previous case we propose a construction of orthomor-
phic MDS matrices of size 6×6 with primitive characteristic polynomial from
the companion matrix of the polynomial

g(x) = x6 ⊕ γ1x
5 ⊕ γ2x

4 ⊕ γ3x
3 ⊕ γ2x

2 ⊕ γ1x⊕ γ ∈ Q[x]. (5)

Proposition 7. Let be γ ∈ Q = GF (28) a primitive element and g(x) ∈
Q[x] a polynomial of the form (5). If (γ1, γ2, γ3) ∈ {(γ−3, γ−4, γ4), ((γ ⊕
1)−1, γ3, γ2), ((γ⊕ 1)−1, γ−1⊕ 1, γ), (γ−2⊕ 1, γ−1, γ−1⊕ 1)}, then the matrix
S6
g is an orthomorphic MDS matrix.

Proof. Similarly, to the proof of the proposition 6.

When both characteristic polynomials f(x) and g(x) are primitive, then
from propositions 2, 3 we have that for any ~a ∈ Q4 and ~b ∈ Q6 the following
linear mappings F 4(~a) = ~a · S4

f , G
6(~b) = ~b · S6

g does not have invariant
subspaces (see, for example,[1]).

Let be Q = GF (28). In tables 3 and 4 we compile some matrices of
the form S4

f and S6
g with primitive polynomials f and g from (4) and (5)

respectively.

(γ, t) Sf S4
f

(02, 7)




00 00 00 02
01 00 00 E1
00 01 00 80
00 00 01 E1







02 01 22 90
E1 93 E8 06
80 A1 C4 B8
E1 11 48 E0




(10, 101)




00 00 00 10
01 00 00 B5
00 01 00 71
00 00 01 B5







10 01 A9 2E
B5 3F DD 59
71 07 B8 CC
B5 5E DB 48




(FD, 109)




00 00 00 FD
01 00 00 9F
00 01 00 32
00 00 01 9F







FD 01 BB E0
9F 1C BD CB
32 8D 48 A6
9F D3 31 38




Table 3: Some matrices of the form S4
f and it’s building blocks.
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(γ, γ1, γ2, γ3) Sg S6
g

(02, 90,E1,E0)




00 00 00 00 00 02
01 00 00 00 00 90
00 01 00 00 00 E1
00 00 01 00 00 E0
00 00 00 01 00 E1
00 00 00 00 01 90







02 E3 AA F2 08 FF
90 B6 32 5C F7 50
E1 D8 7D EF 5E B8
E0 39 46 D9 E9 8F
E1 A8 F2 9B DB A6
90 55 79 04 9E 83




(04,B4, 91, 90)




00 00 00 00 00 04
01 00 00 00 00 B4
00 01 00 00 00 91
00 00 01 00 00 90
00 00 00 01 00 91
00 00 00 00 01 B4







04 95 B9 57 40 06
B4 2A 4D FE 46 AE
91 99 75 C5 FA 7E
90 08 79 98 D1 22
91 BD 57 F1 9C E9
B4 BF 65 10 E0 72




(A0, 9E, 27, 26)




00 00 00 00 00 A0
01 00 00 00 00 9E
00 01 00 00 00 27
00 00 01 00 00 26
00 00 00 01 00 27
00 00 00 00 01 9E







A0 87 F1 84 4E 36
9E 40 21 88 78 3B
27 E9 0A 34 28 53
26 CE 64 E8 69 8E
27 51 84 71 48 42
9E C7 F7 FD 8D 3D




Table 4: Some matrices of the form S6
g and it’s building blocks.

4 Constructing orthomorphic MDS matrices from P -
companion matrices

Let be h(x) = xk⊕
k−1⊕
i=0

hix
i, h↓ = (h1, . . . , hk−1)

>, f ↓ = (f1, . . . , fk−1)
> =

P(k−1)×(k−1) · h↓, where P(k−1)×(k−1) = (pij)(k−1)×(k−1) is a permutation ma-
trix. In this section we study the possibility of constructing orthomorphic
MDS matrices from P - companion matrices of the polynomial h(x). Permu-
tations matrices for which χSh(P(k−1)×(k−1))(x) = f(x) are of particular interest,

where f(x) = xk⊕
k−1⊕
i=0

fix
i, and f0 = h0. If f(x) is an irreducible polynomial

over Q, then from proposition 3 follows that for any integer t < q
k
2 the ma-

trix (Sh(P(k−1)×(k−1)))
t has an irreducible characteristic polynomial. In this

case the coefficients of the polynomial h(x) can be defined according to the
following rule

hi =





1, i = k
k−1⊕
j=1

p̂ijfj, i ∈ 1, k − 1

f0, i = 0

,

where P−1 = (p̂ij)(k−1)×(k−1).
For k = 4 we propose a method for constructing 4×4 orthomorphic MDS
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matrices with primitive characteristic polynomial of the form (4) using the
so-called P - companion matrices of the polynomial h, which is defined as

h(x) = x4 ⊕ γ−1x3 ⊕ γ−1x2 ⊕ γtx⊕ γ. (6)

Proposition 8. Let be Q = GF (28), γ ∈ Q a primitive element, f(x) ∈
Q[x] a polynomial of the form (4) and

P3×3 =




0 0 1
1 0 0
0 1 0


 .

If t ∈ {2, . . . , 254} is a prime number and f(x) is an irreducible polynomial
over Q, then the matrix (Sh(P3×3))

4 is an orthomorphic MDS matrix, where
h(x) = x4 ⊕ γ−1x3 ⊕ γ−1x2 ⊕ γtx⊕ γ.
Proof. Similarly, to the proof of the proposition 6.

It is noteworthy that the use of P - companion matrices have some effect
over simple companion matrices when looking for MDS matrices. For exam-
ple, the matrix (Sh(P3×3))

4 have the MDS property over Q = GF (28) =
GF (2)[x]/x8 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ 1 for t = 29, while the matrix S4

h does not
exhibits this useful property.

The high level of view of a round of transformations ~a · S4
h and ~a ·

(Sh(P3×3))
4 is given in Figures 1 and 2 respectively, where ~a ∈ Q4 and

h(x) ∈ Q[x], P3×3 are defined in proposition 8. These tranformations share
the same XOR-count metric (see subsection 2.3).

a0 a1 a2 a3

h0

h1

h2

h3

Fig. 1: High level of view of a round

of transformation ~a · S4
h

a0 a1 a2 a3

h0

h1

h2

h3

Fig. 2: High level of view of a round

of transformation ~a · (Sh(P3×3))4

For k = 6 we have constructed orthomorphic MDS over Q = GF (28)
matrices with primitive characteristic polynomial using the P - companion
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matrix of the polynomial h(x) = x6 ⊕
5⊕
i=0

hix
i , where for the primitive

element γ the coefficients hi ∈ {1, γ, γ−1, γ2, γ−2, γ3}, i ∈ 0, 5 due to the low
XOR-count metric of these elements. In table 5 we compile some instances
of the P - companion matrix defined by the polynomial h(x).

h(x) = x6 ⊕
5⊕
i=0

hix
i P5×5 Sh(P5×5) (Sh(P5×5))6

x6 ⊕ 04x5 ⊕ 04x4 ⊕ 91x3 ⊕ E1x2 ⊕ 91x⊕ 04




0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0







00 00 00 00 00 04
00 00 00 01 00 91
01 00 00 00 00 E1
00 00 00 00 01 91
00 00 01 00 00 04
00 01 00 00 00 04







04 1B 10 C2 41 7E
91 1E 90 E5 B4 51
E1 F9 06 C8 B1 64
91 8F 05 E2 40 0D
04 D3 F1 73 47 87
04 FE 81 76 D1 60




x6 ⊕ 04x5 ⊕ 01x4 ⊕ 08x3 ⊕ 04x2 ⊕ 91x⊕ 04




0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0







00 00 00 00 00 04
00 00 01 00 00 91
00 00 00 00 01 04
01 00 00 00 00 08
00 00 00 01 00 01
00 01 00 00 00 04







04 0F D3 10 41 8F
91 1A 5C 05 A0 BD
04 D9 76 11 4D D8
08 CD 24 24 92 D2
01 57 D6 0C A5 9E
04 53 73 81 44 95




x6 ⊕ E1x5 ⊕ E1x4 ⊕ 08x3 ⊕ 91x2 ⊕ 08x⊕ 04




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0







00 00 00 00 00 04
00 00 01 00 00 08
00 00 00 01 00 91
00 00 00 00 01 08
01 00 00 00 00 E1
00 01 00 00 00 E1







04 7A E0 21 02 BA
08 2D 51 E3 95 54
91 E3 D9 52 A1 8A
08 C9 AC D7 E5 C9
E1 7E 3D AF 95 FC
E1 CF FF 38 99 AB




Table 5: Some matrices of the form (Sh(P5×5))6 and it’s building blocks.

Proposition 9. Let be Q = GF (28). The matrices of the form (Sh(P5×5))
6

from table 5 are orthomorphic MDS matrices.

Proof. Similarly, to the proof of the proposition 6.

5 Constructing orthomorphic MDS matrices of the
form (γ1 · R(1)

k,k ⊕ · · · ⊕ γdk2e · R
(dk2e)
k,k ⊕R

(dk2e+1)

k,k )k

In this section we study how to construct orthomorphic MDS matrices of
the form (

M
( γ1 ... γd k2 e

R(1)
k,k ... R

(d k2 e)
k,k R(d k2 e+1)

k,k

))k
, (7)

with primitive characteristic polynomial, where

M
( γ1 ... γd k2 e

R(1)
k,k ... R

(d k2 e)
k,k R(d k2 e+1)

k,k

)
=
(
γ1 · R(1)

k,k ⊕ · · · ⊕ γdk2 e · R
(dk2 e)
k,k ⊕R

(dk2 e+1)

k,k

)
,

all binay non-zero matricesR(1)
k,k, . . .R

(dk2 e)
k,k ,R(dk2 e+1)

k,k ∈ GF (2)k,k, and in order
to achieve an efficiently implementation the finite fields elements γ1, . . . , γdk2 e
belong to the set {1, α, α−1, α2, α−2, α3, α−3} where α is a primitive element.
The reason behind such modification relies on the fact that if the matrix
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M
( γ1 ... γd k2 e

R(1)
k,k ... R

(d k2 e)
k,k R(d k2 e+1)

k,k

)
is sparse and contain more 1’s than finite field ele-

ments γ1, . . . , γdk2 e then for small values of k if the resulting matrix of the
form (7) have the MDS property we can achieve a low implementation cost.

For k = 4, 6 we have performed a search based on random generation of
matrices R(1)

k,k, . . .R
(dk2 e)
k,k ,R(dk2 e+1)

k,k with few number of 1’s and as a result have
obtained the following matrices given in tables 6 and 7 having an efficient
implementation.

(γ1, γ2)
(
M
(

γ1 γ2

R(1)
4,4 R

(2)
4,4 R

(3)
4,4

))4

R(1)
4,4 R(2)

4,4 R(3)
4,4 M

(
γ1 γ2

R(1)
4,4 R

(2)
4,4 R

(3)
4,4

)

(01,E1)




70 90 E1 01
A9 E1 91 48
90 E1 E1 E1
A9 91 90 70







0 0 0 1
0 0 0 0
1 0 0 0
0 0 0 0







0 0 0 0
0 0 0 1
0 0 0 0
1 0 0 0







0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0







00 01 00 01
00 00 00 E1
01 00 00 00
E1 00 01 00




(01, 91)




24 B4 91 01
BC 91 B5 2D
B4 91 91 91
BC B5 B4 24







0 0 0 1
0 0 0 0
1 0 0 0
0 0 0 0







0 0 0 0
0 0 0 1
0 0 0 0
1 0 0 0







0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0







00 01 00 01
00 00 00 91
01 00 00 00
91 00 01 00




(A9,E1)




5D B4 A9 01
5E E1 B5 5A
B4 A9 E1 A9
5E BC B4 5D







0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0







0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0







0 1 0 1
0 0 0 0
1 0 0 0
0 0 1 0







00 01 00 01
00 00 00 E1
01 00 00 00
A9 00 01 00




Table 6: Some matrices of the form (7) and it’s building blocks for k = 4.

(γ1, γ2, γ3)
(
M
(

γ1 γ2 γ3

R(1)
6,6 R

(2)
6,6 R

(3)
6,6 R

(4)
6,6

))6

R(1)
6,6 R(2)

6,6 R(3)
6,6 R(4)

6,6 M
(

γ1 γ2 γ3

R(1)
6,6 R

(2)
6,6 R

(3)
6,6 R

(4)
6,6

)

(02, 08, 02)




AF 01 10 05 48 05
88 86 8A 90 80 20
F5 4D EB 15 55 82
9A 18 C8 87 41 95
20 10 90 02 86 0A
48 48 44 10 45 AF







0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0







0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0







0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 1 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0







00 00 01 00 00 01
00 00 00 00 00 02
00 00 00 00 01 08
01 01 00 00 00 00
02 00 00 00 00 00
08 00 00 01 00 00




(08, 02, 08)




AF 02 10 05 90 05
44 86 45 48 80 10
F5 9A EB 15 AA 82
9A 30 C8 87 82 95
10 10 48 01 86 05
48 90 44 10 8A AF







0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0







0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







0 0 1 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0







00 00 01 00 00 01
00 00 00 00 00 01
00 00 00 00 02 08
01 02 00 00 00 00
01 00 00 00 00 00
08 00 00 01 00 00




(A9,E1, 91)




F8 49 91 86 09 A8
1C 13 66 09 B5 A9
07 8F E4 01 F7 79
DD 2A 1D B3 8F 69
A9 A9 E5 C5 98 43
A8 09 1C A9 66 73







0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0







0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0







0 0 1 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0







00 00 01 00 00 01
00 00 00 00 00 01
00 00 00 00 01 A9
A9 01 00 00 00 00
E1 00 00 00 00 00
91 00 00 01 00 00




Table 7: Some matrices of the form (7) and it’s building blocks for k = 6.

Proposition 10. Let be Q = GF (28). The matrices of the form(
M
(

γ1 γ2

R(1)
4,4 R

(2)
4,4 R

(3)
4,4

))4

from table 6 are orthomorphic MDS matrices.

Proof. Similarly, to the proof of the proposition 6.

Proposition 11. Let be Q = GF (28). The matrices of the form(
M
(

γ1 γ2 γ3

R(1)
6,6 R

(2)
6,6 R

(3)
6,6 R

(4)
6,6

))6

from table 7 are orthomorphic MDS matrices.

Proof. Similarly, to the proof of the proposition 6.

All characteristic polynomials of the matrices from proposition 10 and 11
are primitive over Q. The high level of view of a round of transformations
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~a ·
(
M
(

01 E1
R(1)

4,4 R
(2)
4,4 R

(3)
4,4

))4

and ~b ·
(
M
(

02 08 02

R(1)
6,6 R

(2)
6,6 R

(3)
6,6 R

(4)
6,6

))6

are given in figures
3 and 4, respectively. As we can see these output are the result of a recursive
transformations, which can be implemented efficiently. The high level of view
of the others matrices displayed in tables 6 and 7 can be represented in a
similar fashion to the previous ones.

a0 a1 a2 a3

E1 E1

Fig. 3: High level of view of a round of transformation ~a ·
(
M
(

01 E1

R(1)
4,4 R

(2)
4,4 R

(3)
4,4

))4
.

b0 b1 b2 b3 b4 b5

02 02

08 08

Fig. 4: High level of view of a round of transformation ~b ·
(
M
(

02 08 02

R(1)
6,6 R

(2)
6,6 R

(3)
6,6 R

(4)
6,6

))6
.

6 XOR-count of some orthomorphic MDS matrices

Let be f(x), g(x) ∈ Q[x] two polynomials of the form (4) and (5),
respectively. From (2) we have that for (γ, t) = (02, 7) and (γ, γ1, γ2, γ3) =
(02, 90,E1,E0), XOR(S4

f) = 220 and XOR(S6
g) = 396, respectively.

From (3) we have that XOR(S4
f) = XOR((Sh(P3×3))

4) = 220, where
t = 2, h(x) ∈ Q[x] is a polynomial of the form (6) for γ = 02 and P3×3

the permutation matrix of the proposition 8. From table 5 we have that
XOR((Sh(P5×5))

6) ∈ {318, 342, 360} for any permutation matrix P5×5, where
h(x) ∈ {x6 ⊕ B4x5 ⊕ 08x4 ⊕ 01x3 ⊕ B4x2 ⊕ 08x⊕ B4, x6 ⊕ 01x5 ⊕ 04x4 ⊕
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02x3 ⊕ 04x2 ⊕ 5Ax ⊕ 04, x6 ⊕ 5Ax5 ⊕ 5Ax4 ⊕ 02x3 ⊕ 04x2 ⊕ 5Ax ⊕ 02},
respectively.

From (1), tables 6 and 7 we have that

XOR

((
M
(

01 E1

R(1)
4,4 R

(2)
4,4 R

(3)
4,4

))4
)

= 88, XOR

((
M
(

02 08 02

R(1)
6,6 R

(2)
6,6 R

(3)
6,6 R

(4)
6,6

))6
)

= 312,

XOR

((
M
(

01 91

R(1)
4,4 R

(2)
4,4 R

(3)
4,4

))4
)

= 104, XOR

((
M
(

08 02 08

R(1)
6,6 R

(2)
6,6 R

(3)
6,6 R

(4)
6,6

))6
)

= 312,

XOR

((
M
(

A9 E1

R(1)
4,4 R

(2)
4,4 R

(3)
4,4

))4
)

= 104, XOR

((
M
(

A9 E1 91

R(1)
6,6 R

(2)
6,6 R

(3)
6,6 R

(4)
6,6

))6
)

= 324.

where the matricesR(1)
4,4,R

(2)
4,4,R

(3)
4,4 andR

(1)
6,6,R

(2)
6,6,R

(3)
6,6,R

(4)
6,6 are given in table

6 and 7, respectively.

7 Conclusion and Future works

In this work we have introduced a new concept of the P - companion
matrix wich not only generalize the notion of companion matrix but also can
be used to extend the class of MDS mappings that can be obtained using this
kind of matrices. Also we have presented some new constructions based on
the use of recursive schemes for generating a special kind of MDS matrices
(here called orthomorphic MDS matrices) of dimension 4 × 4 and 6 × 6,
respectively. The main advantage of ours MDS orthomorphic matrices is the
absence of invariant subspaces, due to the irreducibility of their characteristic
polynomials. It is well known that the presence of such subspaces in block
ciphers can be exploited by an adversary in order to distinguish it from a
random permutation. Finally, for the proposed matrices we have analyzed
the XOR-count metric and the obtained results shows that these matrices
could be attractive for the so-called lightweight schemes offering a good trade
offs between security and implementation. In the future, we aim to further
optimise the search for constructing orthomorphic MDS matrices of size 8×8
using our methods.
Acknowledgements. The authors are very grateful to Oleg V. Kamlovskiy
and the anonymous reviewers of CTCrypt’2020 for their useful comments
and valuable observations, which helped to improve the final version of this
article.
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Abstract

In Cryptography maximum distance separable (MDS) matrices are an important
structural element to provide the diffusion property in the block ciphers, stream ci-
phers and hash functions. To discover new kind of transformations that can generate
a series of new MDS matrices which could be used in practice is not a trivial task.
In this article we propose new methods for constructing MDS matrices of size 4× 4
combining the well-known Feistel, Misty and Lai-Massey structures.

Keywords: Diffusion, Involutory matrix, Almost involutory matrix, MDS matrix .

1 Introduction

In the work [3] Claude Shannon defines confusion and diffusion as two
properties necessary for constructing strong cryptographic functions; these
properties are also required for hash functions. One strategy to obtain maxi-
mum diffusion and avoid linear and differential attacks is to use global linear
mappings with optimal diffusion, combined with the local nonlinear map-
pings (S-Boxes) (see,[8, 9, 10]). The linear transformations choose by design-
ers should be able to spread the internal dependencies as much as possible.
Hence, designers commonly used optimal diffusion matrices called Maximum
Distance Separable (because they are related to a Maximum Distance Sepa-
rable code) matrices to maximise the diffusion ability of the diffusion layer.
Example of their use can be found no only in the design of block ciphers
like AES, TwoFish, KHAZAD, Picaro, etc, but also in the Hash function
PHOTON [13], Whirlpool, Grostl, and even in stream ciphers (MUGI).

From practical point of view, is not only desirable that an MDS matrix
can be implemented efficiently both in software/hardware but also when en-
cryption and decryption implementations are required and the inverse of the
MDS matrix will have to be implemented as well (except for Feistel and Lai-
Massey structures, where the inverse of the internal function is not required
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for decryption). For this reason it is of a great significance that one can use
exactly (or almost exactly) the same linear transformarion for encryption and
decryption. One strategy to achieve this goal is employing involutory MDS
matrices and we can found several ciphers like Anubis, Khazad , Iceberg or
Prince that using this approach have the same implementation for encryption
and decryption.

The construction of MDS matrices, is not an easy problem to solve.
There are several ways for constructing such matrices, for instances: using
the Cauchy and Hadamard matrices [16]. In [1] it is shown that it is possible
to build involutive binary matrices with a high degree of diffusion by exploit-
ing the properties of the Feistel network and in [15] it is shown that using
the general Feistel networks it is possible to build MDS matrices on finite
fields, in this case the authors do not build involutory MDS matrices. The
aim of this article is to build involutory or almost involutory MDS matrices
combining the Feistel, Misty and Lai-Massey schemes.

This article is structured as follows: In Section 1 we give the basic defini-
tions and some results about MDS matrices. Some constructions which can
generate MDS matrices and linear orthomorphisms are presented in Section
2. Some examples of MDS matrices obtained by our approach is given in
Section 3. We provide an implementation of a concrete matrix in Section 4.
A comparison with the state-oh-the-art is performed in Section 5. Our work
is concluded in Section 6.

2 Preliminaries and Basic Definitions

Let be P = GF (2t) = GF (2)[x]/g(x) finite field with 2t elements, for
some irreducible polynomial g(x) of degree t. The vector space of dimension
n over P is denoted by P n. We use the notation Pn,n for the ring of n × n
matrices over finite field P . Throughout the article, we shall use the following
operations and notations:

1 - the neutral element of the multiplicative group P ∗;
⊕ - addition in GF(2t);
wH(~a) - the Hamming weight of a vector ~a ∈ P n, i.e. the number of its

nonzero coordinates;
ω(M) - the number of 1’s in the matrixM;
Ψ−1 - the inverse transformation to some invertible mapping Ψ;
In,n - the identity matrix of Pn,n.
On,n - the zero matrix of Pn,n.
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|A| - the determinant of the matrix of A ∈ Pn,n.

In what follows, for the sake of simplicity, a matrix over finite field P will
be written in hexadecimal notation.

Definition 1. An transformation ϕ : P n → P n is called involutive, if ∀α ∈
P n the following equality hold ϕ(ϕ(α)) = α.

Clearly, if ϕ is an involutive transformation then for any φ : P n → P n

the transformation ϕ̂ = φ ◦ ϕ ◦ φ−1 will be an ivolution too.

Definition 2. An transformation ϕ :Pn → Pn is called linear transforma-
tion, if the following relation holds

∀, ~α, ~β ∈ P n, a1, a2 ∈ P : ϕ(a1~α + a2
~β) = a1ϕ(~α) + a2ϕ(~β), (1)

It is shown in [6] that the composition of linear transformations is again
a linear transformation.

Definition 3. Let be ~α = (α1, . . . , αn) a basis of the vector space P n. The
matrix A~α(ϕ) ∈ Pn,n defined as follows

A~α(ϕ) = (ϕ(α1)
↓
~α, . . . , ϕ(α1)

↓
~α) (2)

is called the matrix associated with the linear transformation ϕ in the basis
~α.

Definition 4. The branch number ρ of matrix A ∈ Pn,n is defined as

ρ(A) = min
~a6=~0
{wH(~a) + wH(~aA)}. (3)

Definition 5. A matrix A ∈ Pn,n is called maximal distance separable (MDS)
matrix if ρ(A) = n+ 1 .

Theorem 1. Matrix A is an MDS matrix if and only if every sub-matrix is
non-singular.

Proposition 1. [11] Any 4 × 4 matrix over P with all entries non zero is
an MDS matrix if and only if it is a full rank matrix with the inverse matrix
having all entries non zero and all of its 4× 4 submatrices are full rank.

For efficient implementation of an MDS matrix in software, it is desirable
to have maximum number of 1’s in the matrix. In [12], authors studied this
property and constructed some matrices achieving the maximum number of
1’s. Here we restate the definition of the number of occurrences of one, which
we will use in our constructions.
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Definition 6. Let be A = (a
ij
)n×n an arbitrary matrix over P. The number

of occurrences of one in A denoted by N1(A) is the the number of (i, j) pairs
such that a

ij
is equal to one.

It is well known from [12] that for any MDS matrix A ∈ P4,4 we have
N1(A) = 9 and N1(A) = 16 when A is an MDS matrix of P6,6.

Definition 7. Let be A = (a
ij
)n×n an arbitrary matrix over P . We say that

A has the almost involutory property if

1. A−1 6= A;

2. All coefficients of A can be found in A−1 too.

For example, let be P = GF (24)/x4⊕x⊕1 andM2×2 = ( 0x1 0xC
0xC 0xE ) ∈ P2,2.

It can be easy checked that M−1
2×2 = ( 0xE 0xC

0xC 0x1 ) ∈ P2,2 and the coefficients
ofM2×2 are present inM−1

2×2 too, so this matrix has the almost involutory
property. Other example of a matrix having the almost involutory property
can be found in the linear layer of the block cipher Kuznyechik which can be
expresed as a power of the companion matrix of the follwowing polynomial
h(y) = y16⊕ 0x94y15⊕ 0x20y14⊕ 0x85y13⊕ 0x10y12⊕ 0xC2y11⊕ 0xC0y10⊕
0x01y9⊕0xFBy8⊕0x01y7⊕0xC0y6⊕0xC2y5⊕0x10y4⊕0x85y3⊕0x20y2⊕
0x94y ⊕ 0x01 over P = GF (28)/x8 ⊕ x7 ⊕ x6 ⊕ x⊕ 1.

We can see that involutory and almost involutory MDS matrices can be
useful when implementing the inverse of an SPN cipher, because the inverse
of these kind of matrices can also be implemented efficiently.

Proposition 2. If A ∈ Pn,n is an involutory MDS matrix and Π ∈ Pn,n is
permutation matrix then the matrix AΠ and ΠA are almost involutory MDS.

Proof. Let be A involutive MDS matrix and Π permutation matrix then Π−1
is permutation matrix. Then we have that (AΠ)(Π−1A) = A(ΠΠ−1)A =
AA = In,n and taking into account that Π is permutation matrix we obtain
that AS is an MDS matrix which has the almost involutory property.

Definition 8. The characteristic polynomial of a linear transformation of a
matrix A ∈ Pn,n, denoted by χA(x), is defined as follow

χA(x) = |In,nx⊕ A|. (4)

In work [4] the authors showed the possibility of invariant attacks on
the cipher type XSL-network (Khazad, Kuznyechik) where (x + 1) divide
the characteristic polynomial of the lineal transformation. For this reason we
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will study the characteristic polynomial of those matrices generate by our
constructions.

Every n × n matrix over P can be written as an (tn) × (tn) matrix
over GF (2). When considering a hardware implementation, it is natural to
consider only matrices over GF (2). Measurements of implementation costs
will then only involve the number of bit-operations (XORs) needed. It is an
interesting question to evaluate the efficiency of a given matrix. The following
metrics are useful for estimating the hardware cost of a linear operation.

1. Direct XOR Count. Given a matrix M ∈ GF (2)
t×n,t×n, the direct

XOR count DXC(M) ofM is ω(M) − nt. This metric corresponds to
counting the number of gates used in a naive implementation of the
linear mappingM.

2. Global Optimization. For a matrix M ∈ GF (2)
t×n,t×n, it is posi-

ble to obtain an estimation of its cost in hardware by finding a good
linear straight-line program corresponding to M with state-of-the-art
automatic tools based on certain SLP1 heuristic [2], and this metric is
denoted as SLP(M).

3 Constructing MDS matrices combining the Feistel,
Misty and Lai-Massey transformations

Let be n = 2k an even number, in what follows ~x = ( ~x1|| ~x2) where
~x1 = (x1, . . . , xk) and ~x2 = (xk+1, . . . , x2k). For any L ∈ Pn,n using the well-
known Lai-Massey and Feistel schemes we define the following transformation
as follows;

Lai-Massey-like transformation:

ϕ1(~x) =
(
~x1 ⊕ L( ~x1 ⊕ ~x2)

)∥∥( ~x2 ⊕ L( ~x1 ⊕ ~x2)
)
. (5)

Feistel-like transformation:

ϕ2(~x) =
(
~x1 ⊕ L( ~x2)

)∥∥ ~x2. (6)

Misty-like transformation:

ϕ3(~x) = L( ~x1 ⊕ ~x2)
∥∥ ~x2. (7)

it is not difficult to see that the transformations given by relations (5)
and (6) are involutions and the inverse of the Misty-like transformation given
by (7) is defined by the following formula: ϕ−1

3 (~x) =
(
L−1( ~x1)⊕ ~x2

)∥∥ ~x2.
1Note that this is so far the most accurate estimation that is practical for 32× 32 binary matrices.
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Using the matrix given by relation (2), canonical basis of P 4

~α4 = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},

and the previous transformations, we construct the following matrices of
dimension n× n, n = 4, as follows

Construction of MΦA
n×n

Let ΦA = ϕ2 ◦ ϕ1 ◦ ϕ2. Then
MΦA

4×4 = A ~α4
(ΦA);

Construction of MΦB
n×n

Let ΦB = ϕ1 ◦ ϕ2 ◦ ϕ1. Then
MΦB

4×4 = A ~α4
(ΦB);

~x
l

~x
r

L

L

L

~y
l

~y
r

Fig. 1: Structure of ΦA.

~x
l

~x
r

L

L

L

~y
l

~y
r

Fig. 2: Structure of ΦB.

Construction of MΦC
n×n

Let ΦC = ϕ3 ◦ ϕ2 ◦ ϕ−1
3 . Then

MΦC
4×4 = A ~α4

(ΦC);

~x
l

~x
r

L

L

L−1

~y
l

~y
r

Fig. 3: Structure of ΦC.
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Let n = 4 and f1(x) = x2 ⊕ x ⊕ 1, f2(x) = x4 ⊕ x3 ⊕ 1, f3(x) =
x4 ⊕ x3 ⊕ x2 ⊕ x ⊕ 1 —some polynomials over P . In what follows, we shall
work over the finite field P = GF (28).

Proposition 3. Let be an element a ∈ P ∗, a 6= 1 for which f1(a) 6= 0.

The matrixMΦA
4×4 of transformation ΦA with L =

(
a 1
1 a

)
is an involutory

MDS matrix.

Proof. The matrixMΦA
n×n ∈ P4,4, for L =

(
a 1
1 a

)
∈ P2,2 , has the following

form

MΦA
4×4 =




a2 ⊕ a 1 a 1
1 a2 ⊕ a 1 a
a3 a2 a2 ⊕ a 1
a2 a3 1 a2 ⊕ a


 (8)

Taking into account thatMΦA
4×4 = (MΦA

4×4)
−1 we only need to check ac-

cording with proposition 1 that all minors of order 2 of MΦA
4×4 are nonzero

over P. These minors are on the following set
{1, a5 ⊕ a4 ⊕ a2, a, a2, a3, a4, a4 ⊕ 1, a2 ⊕ a, a3 ⊕ a2 ⊕ 1, a4 ⊕ a2 ⊕ 1, a6 ⊕

a4, a2 ⊕ 1, a3 ⊕ a2 ⊕ a}
whose factors are
{1, a2 · (a3⊕ a2⊕ 1), a, a2, a3, a4, (a⊕ 1)4, a · (a⊕ 1), (a3⊕ a2⊕ 1), (a2⊕

a⊕ 1)2, (a⊕ 1)2 · a4, (a⊕ 1)2, a · (a2 ⊕ a⊕ 1)}
The polynomial x3⊕ x2⊕ 1 is irreducible over field P . Therefore for any

nonzero a ∈ P such that
α 6= 0,

α⊕ 1 6= 0,
α2 ⊕ α⊕ 1 6= 0,

the matrixMΦA
4×4 is an involutory MDS matrix over P .

Proposition 4. Let be an element a ∈ P ∗, a 6= 1, for which f1(a) 6= 0 then

the matrixMΦB
4×4 of transformation ΦB with L =

(
1 1
a 1

)
is an involutory

MDS.

Proof. The matrixMΦB
n×n ∈ P4,4, for L =

(
1 1
a 1

)
∈ P2,2 , has the following

form
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MΦB
4×4 =




1 a⊕ 1 a⊕ 1 a⊕ 1
a2 ⊕ a 1 a2 ⊕ a a⊕ 1
a a 1 a⊕ 1
a2 a a2 ⊕ a 1


 (9)

So, using the fact that MΦB
4×4 = (MΦB

4×4)
−1 we only need to check in

correspondence with proposition 1 that all minors of order 2 of MΦB
4×4 are

nonzero over P. These minors are on the following set
{1, a3, a, a⊕ 1, a2 ⊕ 1, a3 ⊕ 1, a3 ⊕ a2, a2 ⊕ a, a2 ⊕ a⊕ 1, a3 ⊕ a⊕ 1, a3 ⊕

a2 ⊕ 1, a3 ⊕ a, a2, a3 ⊕ a2 ⊕ a, a3 ⊕ a2 ⊕ a⊕ 1}
whose factors are
{1, a3, a, (a⊕1), (a⊕1)2, (a⊕1) · (a2⊕a⊕1), (a⊕1) ·a2, a · (a⊕1), (a2⊕

a⊕ 1), (a3 ⊕ a⊕ 1), (a3 ⊕ a2 ⊕ 1), a · (a⊕ 1)2, a2, a · (a2 ⊕ a⊕ 1), (a⊕ 1)3}
The polynomials x3 ⊕ x2 ⊕ 1 and x3 ⊕ x⊕ 1 are irreducible over field P .

Therefore for any nonzero a ∈ P such that
α 6= 0,

α⊕ 1 6= 0,
α2 ⊕ α⊕ 1 6= 0,

the matrixMΦB
4×4 is an involutory MDS matrix over P .

Proposition 5. Let be an element a ∈ P ∗, a 6= 1 for which fi(a) 6= 0 where

i = 1, 2, 3 then the matrixMΦC
4×4 of transformation ΦC with L =

(
a 1
a a2

)

is an involutory MDS matrix.

Proof. Similar to the previuos ones.

3.1 Constructing MDS matrices which are linear orthomorphisms

Definition 9. The linear mapping L : P k → P k, defined as L(~a) = ~a · A,
where ~a ∈ P k, A ∈ P ∗k,k is called a linear orthomorphism if the matrix A ⊕
Ik×k is invertible over P .

For the following permutations matrices

Π1 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


, Π2 =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 and Π3 =




0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0


.

The corresponding resulting matricesMΦA
4×4◦Π1,MΦB

4×4◦Π2 andMΦC
4×4◦Π3

are linear orthomorphisms over P , where

MΦ∗
4×4, ∗ ∈ {A,B,C},
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are defined in propositions 3,4, and 5 respectively.
It can be checked that all these otrhomorphic MDS matrices have irre-

ducible characteristic polynomial. So we can conclude that the main advan-
tage of ours MDS orthomorphic matrices is the absence of invariant sub-
spaces, due to the irreducibility of their characteristic polynomials. It is well
known that the presence of such subspaces in block ciphers can be exploited
by an adversary in order to distinguish it from a random permutation.

4 Some examples

In Table 1 we list certain properties of some MDS matrices generated by
ours constructions over the finite field P = GF (28)/x8 ⊕ x7 ⊕ x6 ⊕ x⊕ 1.

Matrix M L Involutory Almost involotory N1(M) χM (x) χM (x) is irreducible over P Factorization of χM (x)

MΦA
4×4 =




0x08 0x04 0x06 0x01
0x04 0x08 0x01 0x06
0x06 0x01 0x02 0x01
0x01 0x06 0x01 0x02




(
0x02 0x01
0x01 0x02

)
No Yes 6 x4 ⊕ 0x0Fx2 ⊕ 0x01 No (x2 ⊕ 0x0Fx⊕ 0x01)2

MΦA
4×4 =




0x06 0x01 0x08 0x04
0x01 0x06 0x04 0x08
0x02 0x01 0x06 0x01
0x01 0x02 0x01 0x06




(
0x02 0x01
0x01 0x02

)
yes no 6 (x⊕ 0x1)4 No (x⊕ 0x1)4

MΦA
4×4 =




0x9B 0x01 0x56 0x43
0x01 0x47 0x43 0x01
0x56 0x43 0x56 0x04
0x43 0x01 0x04 0x01




(
0x04 0x01
0x56 0x04

)
No Yes 5 x4 ⊕ 0x8Bx3 ⊕ 0x1Bx2 ⊕ 0x8Bx⊕ 0x01 Yes −

MΦB
4×4 =




0x01 0x06 0x02 0x04
0x03 0x01 0x02 0x02
0x03 0x06 0x01 0x06
0x03 0x03 0x03 0x01




(
0x01 0x01
0x02 0x01

)
Yes No 4 (x⊕ 0x1)4 No (x⊕ 0x1)4

MΦB
4×4 =




0x06 0x02 0x04 0x01
0x01 0x02 0x02 0x03
0x06 0x01 0x06 0x03
0x03 0x03 0x01 0x03




(
0x01 0x01
0x02 0x01

)
No Yes 4 x4 ⊕ x3 ⊕ 0x0Fx2 ⊕ 0x02x⊕ 0x1 No (x⊕ 0x6f )(x3 ⊕ 0x6Ex2 ⊕ 0xD2x⊕ 0x24)

MΦB
4×4 =




0x01 0x02 0x8F 0x01
0x02 0x08 0x01 0x0C
0x8F 0x01 0x8F 0x03
0x01 0x0C 0x03 0x0C




(
0x01 0x04
0x8E 0x01

)
No Yes 5 x4 ⊕ 0x8Ax3 ⊕ 0xFAx2 ⊕ 0x8Ax⊕ 0x01 Yes −

MΦC
4×4 =




0x05 0x0e 00x7 0x0c
0x07 0x017 0x06 0x13
0x06 0x0c 0x05 0x0e
0x06 0x12 0x07 0x17




(
0x02 0x01
0x02 0x04

)
Yes No 0 (x⊕ 0x1)4 No (x⊕ 0x1)4

MΦC
4×4 =




0x07 0x0e 0x0c 0x05
0x06 0x17 0x13 0x07
0x05 0x0c 0x0e 0x06
0x07 0x12 0x17 0x06




(
0x02 0x01
0x02 0x04

)
No Yes 0 x4 ⊕ 0x18x3 ⊕ 0x1Ax2 ⊕ 0x1Ax⊕ 0x1 No (x⊕ 0x37)(x⊕ 0xCC)(x2 ⊕ 0xE3x⊕ 0xF )

MΦC
4×4 =




0x87 0xCB 0x93 0x17
0x28 0x1D 0x7B 0x36
0xCB 0x87 0x16 0x93
0x1D 0x29 0x36 0x7B



(

0x84 0x4C
0x4D 0x35

)
No Yes 0 x4 ⊕ F7x3 ⊕ 65x2 ⊕ F7x⊕ 1 Yes −

Table 1: Properties of some matrices generated by ours constructions.

As we can see from Table 1, MDS matrices for different linear components
L can be obtained. This Table also shows some information about the invo-
lutory and almost involutory properties, the number of ones of the displayed
matrices and the factorisation of its characteristic polynomials over P .

5 Implementation of concreteMΦA
4×4

In this section we provide both software/hardware implementations for
a candidate matrix which has been found using a search algorithm over the
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structure ofMΦA
4×4 with the following different matrices Li ∈ P2,2, i = 1, 2, 3,

where

L1 =

(
0x02 0x02
0xE1 0x03

)
,L2 =

(
0xE1 0x03
0xE1 0x02

)
,L3 = L1.

Then, the resulting matrixMΦA
4×4 ∈ P4,4, denote byMRR for simplicity,

has the following form

MRR =




0x01 0x07 0xE1 0x03
0xE1 0x04 0xE1 0x02
0x01 0x03 0xE0 0x01
0x01 0xE8 0x90 0xE5


 ∈ P4,4, (10)

where P = GF (28)/x8 ⊕ x7 ⊕ x6 ⊕ x⊕ 1.

5.1 Software implementation

The following code describe a way for implementing the multiplication
by the matrixMRR in C + + program language.

static uint8_t xtime(uint8_t x)
{

return ((x<<1) ^ (((x>>7) & 1) * 0xC3));
}

static uint8_t xtimes(uint8_t x, int ts)
{

while (ts-- > 0) {
x = xtime(x);

}
return x;

}

static uint8_t mult(uint8_t x, uint8_t y)
{

return ((((y >> 0) & 1) * xtimes(x, 0)) ^
(((y >> 1) & 1) * xtimes(x, 1)) ^
(((y >> 2) & 1) * xtimes(x, 2)) ^
(((y >> 3) & 1) * xtimes(x, 3)) ^
(((y >> 4) & 1) * xtimes(x, 4)) ^
(((y >> 5) & 1) * xtimes(x, 5)) ^
(((y >> 6) & 1) * xtimes(x, 6)) ^
(((y >> 7) & 1) * xtimes(x, 7)) );

}

static uint32_t M (uint32_t x){
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uint8_t a = x, b = x>>8, c = x>>16, d = x>>24, e1, e2;

d ^= mult(a, 0xE1) ^ mult(b, 0x2);
c ^= mult((a^b), 0x02) ^ a;
e1 = mult((a^b^c^d), 0xE1);
e2 = mult((a^b^c^d), 0x02) ^ (b^d);
d ^= e1;
c ^= e2;
b ^= e1;
a ^= e2;
d ^= mult(a, 0xE1) ^ mult(b, 0x2);
c ^= mult((a^b), 0x02) ^ a;

return ((((((uint32_t)d<<8)|c)<<8)|b)<<8)|a;
}

As it can be seen from the code, the number of field multiplications is
decreased up to 8 in comparison with the direct multiplication of ~x ∈ P 4 by
MRR. Other matrices generated by our methods can be implemented in a
similar way.

5.2 Hardware implementation

The multiplication operation by the MDS matrix given in (10) has the
following binary representation over GF (2)32,32.

MRR =




1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0




(11)

From this representation we obtain that DXC(MRR) = 199 and using
a linear straight-line program corresponding to MRR with automatic tools
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proposed in [2] we have found an implementation of this matrix (given in
Table 2) which require only 80 bitwise XORs.

# Operation # Operation # Operation # Operation
1 t0 = x14 ⊕ x31 21 y28 = y11 ⊕ t19 41 t40 = x10 ⊕ t37 61 y30 = t58 ⊕ t59

2 t1 = x13 ⊕ x30 22 t21 = x5 ⊕ x21 42 y18 = t39 ⊕ t40 62 t61 = x14 ⊕ t57

3 t2 = x8 ⊕ x15 23 y12 = t4 ⊕ t21 43 t42 = x24 ⊕ t0 63 y29 = y12 ⊕ t61

4 t3 = x9 ⊕ x26 24 y21 = t19 ⊕ t21 44 y9 = t39 ⊕ t42 64 t63 = t0 ⊕ t12

5 t4 = x10 ⊕ x27 25 t24 = x21 ⊕ t5 45 y26 = t35 ⊕ y9 65 y13 = t58 ⊕ t63

6 t5 = x11 ⊕ x28 26 y5 = y21 ⊕ t24 46 t45 = x18 ⊕ t10 66 t65 = t1 ⊕ t40

7 t6 = x17 ⊕ x24 27 t26 = x12 ⊕ t24 47 y2 = y18 ⊕ t45 67 y25 = t55 ⊕ t65

8 t7 = x12 ⊕ x29 28 y20 = t16 ⊕ t26 48 t47 = x1 ⊕ x17 68 t67 = x17 ⊕ y17

9 t8 = x16 ⊕ t7 29 t28 = x20 ⊕ t4 49 t48 = x9 ⊕ t45 69 y1 = t42 ⊕ t67

10 t9 = x0 ⊕ t0 30 y4 = y20 ⊕ t28 50 y17 = t47 ⊕ t48 70 t69 = x15 ⊕ t53

11 t10 = x25 ⊕ t2 31 t30 = x3 ⊕ x19 51 t50 = x15 ⊕ t33 71 y14 = t7 ⊕ t69

12 t11 = x23 ⊕ t1 32 y10 = t10 ⊕ t30 52 y16 = x0 ⊕ t50 72 t71 = t9 ⊕ t59

13 t12 = x16 ⊕ t9 33 y27 = t26 ⊕ y10 53 t52 = x6 ⊕ x22 73 y24 = t48 ⊕ t71

14 y15 = t1 ⊕ t12 34 t33 = x8 ⊕ t6 54 t53 = t11 ⊕ t14 74 y31 = y14 ⊕ t71

15 t14 = x7 ⊕ y15 35 y0 = t12 ⊕ t33 55 y23 = x0 ⊕ t53 75 t74 = y16 ⊕ t52

16 y7 = t9 ⊕ t14 36 t35 = x11 ⊕ t28 56 t55 = x15 ⊕ t47 76 t75 = t63 ⊕ t74

17 t16 = x4 ⊕ x20 37 y19 = t30⊕ t35 57 y8 = t12 ⊕ t55 77 y22 = t61 ⊕ t75

18 y11 = t3 ⊕ t16 38 t37 = x19 ⊕ t3 58 t57 = t11 ⊕ t33 78 t77 = t18 ⊕ t52

19 t18 = x22 ⊕ t8 39 y3 = y19 ⊕ t37 59 t58 = t5 ⊕ t52 79 t78 = t11 ⊕ t77

20 t19 = x13 ⊕ t18 40 t39 = x2 ⊕ x18 60 t59 = t1 ⊕ t50 80 y6 = x31 ⊕ t78

Table 2: An implementation ofMRR with 80 XORs.

6 Comparing our MDS matrices with the state-of-the-
art

In Table 3 we compare our matrices with others by different methods
in the public literature. We can see that the the implementations cost in
hardware of the linear transformations obtained by our approach is com-
parable with state-of-the-art. Moreover, we can obtain a trade offs between
software and hardware implementations for some matrices produced by our
techniques.
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Matrix Involutory Almost involutory SLP

MAES [17] 7 7 97
MKLSW [14] X 7 84
MSSCZL [19] X X 80
MSG [5] 7 7 78
MMM [18] 7 X 83

MRR [this work] X X 80
Table 3: A comparison with the sate-of-the-art.

7 Conclusion and Future Work

In this work we have presented some new schemes based on the well-
known Feistel, Misty and Lai-Massey structures for constructing MDS ma-
trices of size n = 2k, k = 2 over field GF (28). Combining these structures we
provide involutory and almost involutory MDS matrices which can be imple-
mented efficiently. We have found some matrices having the MDS property
which are very actractive for the so-called lightweight schemes. Also, we have
obtained 6x6 MDS matrix combining these structures and we leave such ma-
trices for future work. In the future, we aim to further optimise the search for
constructing MDS matrices of size 2k, k ≥ 4 using our aproach. Our results
can be generalized for any finite field, although it is necessary to say that we
can not construct MDS matrices over GF (22) with the structures presented
in this work.
Acknowledgements. The authors are very grateful to the anonymous re-
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Abstract

Nonlinear bijective transformations (the so-called S-Boxes) are crucial compo-
nents in the design of many symmetric ciphers. To construct permutations having
cryptographic properties close to the optimal ones is not a trivial task. In this work
we propose a new construction based on the well-known Lai-Massey structure for
generating permutations of dimension n = 2k, k ≥ 2. The main cores of our construc-
tions are: the inversion in GF(2k), an arbitrary k-bit non-bijective function (which
has no preimage for 0) and any k-bit permutation. Combining these components
with the finite field multiplication, we provide new 8-bit permutations with high
values of its basic cryptographic parameters. Also, we show that our approach can
be used for constructing involutions and orthomorphisms that have strong crypto-
graphic properties.

Keywords: S-Box, permutation, involution, orthomorphism, Boolean function, nonlinear
multiplications.

1 Introduction

Modern block ciphers are often iterations of several rounds. Each round
(which must depend on the key) consists of a confusion layer and a diffusion
layer. The confusion layers are usually formed by local nonlinear mappings (S-
Boxes) while the diffusion layers are formed by global linear mappings mixing
the output of the different S-Boxes. Block ciphers can be built using a well-
known structure such as a Feistel network (and its variants) (see, e.g. [1]),
a Substitution-Permutation network (SPN) [39], or a Lai-Massey structure
[47]. Cryptographic properties of S-Boxes deal with the application of several
logical attacks on ciphers, namely linear attack [24], the differential attack
[24], the higher order differential attack [27] and algebraic attack [8] (which
is not yet efficient but represents some threat and should keep in mind by
designers of next generation of block ciphers). For this reason S-Boxes must

CTCrypt 2020 115



Constructing permutations, involutions and orthomorphisms with almost optimal
cryptographic parameters

satisfy various criteria for providing high level of protection against such
attacks.

Besides the linear, differential and algebraic attacks, today the most
prominent attacks on the cryptographic algorithms are based on supervi-
sion of physical processes in cryptographic device. In literature, this kind
of attack has received the name of side-channel attacks (SCAs). Examples
of such attacks are: Simple Power Analysis (SPA) [25], Differential Power
Analysis (DPA) [25], Timing Analysis (TA) [26] , Correlation Power Analysis
(CPA) [5], Mutual Information Attack (MIA)[12]. S-Boxes represent the most
vulnerable part in an implementation when considering side-channel adver-
sary and it is not a trivial task to construct S-Boxes having good resistive
properties both towards classical cryptanalysis as well side-channel attacks.

The known methods for constructing S-Boxes can be divided into four
main classes: algebraic constructions, pseudo-random generation, heuristic
techniques and constructions from small to large S-Boxes. Each approach
has its advantages and disadvantages respectively. In this article we propose
(using the last approach) a new construction based on the Lai-Massey struc-
ture for generating ordinary permutations, involutions and orthomorphisms
with strong cryptographic properties and therefore study the resilience of
such construction against side-channel attacks in terms of its masking com-
plexity.

This article is structured as follows: In Section 1 we give the basic defi-
nitions. In Section 2, we present our design criteria. In section 3 we present
a new class of permutations which can be used for constructing ordinary
S-Boxes, involutions and orthomorphisms with high values of its basic cryp-
tographic parameters. In this section, we also derive some properties of the
suggested class of permutations. In Section 4 we give some examples of 8-
bit S-Boxes constructed by our approach. The masking complexity of our
S-Boxes is bounded in Section 5. Our work is concluded in Section 6.

2 Basic definitions and notations

Let Vn be n-dimensional vector space over the field GF(2) and further-
more, we denote V ∗n = Vn \ {0}. By S(Vn) we denote the symmetric group
on set of 2n elements. The finite field of size 2n is denoted by GF(2n), where
GF(2n)=GF(2)[ξ]/g(ξ), for some irreducible polynomial g(ξ) of degree n. We
use the notation Z/2n for the ring of the integers modulo 2n. The set of all
binary bijective linear maps of size n×n is denoted by GLn(GF(2)). Given a
natural number l, throughout the article we shall use the following operations
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and notations:

a‖b - concatenation of the vectors a, b of Vl, i.e., a vector from V2l ;
0 - the null vector of Vl;
⊕ - bitwise eXclusive-OR. Addition in GF(2l);
〈a, b〉 - the scalar product of vectors a = (al−1, . . . , a0), b = (bl−1, . . . , b0)

of Vl and is equal to 〈a, b〉 = al−1bl−1 ⊕ . . .⊕ a0b0;
wH(a) - the Hamming weight of a binary vector a ∈ Vl, i.e., the number

of its nonzero coordinates;
⊗ - finite field multiplication ;
Λ ◦Ψ - a composition of mappings, where Ψ is the first to operate;
Ψ−1 - the inverse transformation to some bijective mapping Ψ
χ(Φ1,Φ2) - the Hamming distance between Φ1,Φ2 ∈ S(Vl);
ord(a) - the multiplicative order of the element a ∈ GF(2l).

There are bijective mappings between Z/2n, Vn and GF(2n) defined by
the correspondences:
[
an−1 · 2n−1 + . . .+ a0

]
↔ (an−1, . . . , a0)↔

[
an−1 ⊗ ξn−1 ⊕ . . .⊕ a0

]
.

Using these mapping in what follows we make no difference between vec-
tors of Vn and the corresponding elements in and Z/2n and GF(2n).

We define the indicator function as follows

Ind(x, y) =





1, если x = y;

0, если x 6= y.

The function Ind(x, y) is a Boolean function, hence by Ind(x, y) we denote
its logical negation, i.e.,

Ind(x, y)





0, если x = y;

1, если x 6= y.

Now, we introduce some basic concepts needed to describe and analyze S-
Boxes with respect to linear, differential, algebraic attacks. For this purpose,
we consider an n-bit S-Box Φ as a vector of Boolean functions:

Φ = (fn−1, . . . , f0), fi : Vn → V1, i = 0, 1, . . . n− 1. (1)

For some fixed i = 0, 1, . . . , n−1, every Boolean function fi can be written as
a sum over V1 of distinct t-order products of its arguments, 0 ≤ t ≤ n−1; this
is called the algebraic normal form of fi. Functions fi are called coordinate
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Boolean functions of the S-Box Φ and it is well known that most of the
desirable cryptographic properties of Φ can be defined in terms of their linear
combinations (also-called S-Box component Boolean functions).

Definition 1. For a, b ∈ Vn the Walsh transformWΦ(a, b) of an n-bit S-Box
Φ is defined as

WΦ(a, b) =
∑

x∈Vn
(−1)〈b,Φ(x)〉⊕〈a,x〉. (2)

Definition 2. The nonlinearity of an n-bit S-Box Φ, denoted by NL(Φ), is
defined as

NL(Φ) = 2n−1 − 1

2
· max
b 6=0,a∈GF(2n)

|WΦ(a, b)|. (3)

From a cryptographic point of view S-Boxes with small values of Walsh
coefficients offer better resistance against linear attacks.

Definition 3. The differential uniformity (also called δ-uniformity) of an
n-bit S-Box Φ, denoted by δΦ, is defined as

δΦ = max
a 6=0,b∈GF(2n)

∆Φ(a, b), (4)

where ∆Φ(a, b) = #{x ∈ GF(2n)|Φ(x⊕ a)⊕Φ(x) = b} =
∑

x∈Vn Ind(Φ(x⊕
a)⊕ Φ(x), b).

The resistance offered by an S-Box against differential attacks is related
by the highest value of δ, for this reason S-Boxes must have a small value of
δ-uniformity for a sufficient level of protection against this type of attacks.

Definition 4. The minimum (maximum) algebraic degree of an S-Box Φ,
denoted by deg(Φ), is the minimum (maximum) among all maximum num-
bers of variables of the terms in the algebraic normal form of (〈a,Φ(x)〉) for
all possible values x and a 6= 0 :

deg(Φ)(min) = min
a6=0∈Vn

deg
(
〈a,Φ(x)〉

)
, (5)

deg(Φ)(max) = max
a6=0∈Vn

deg
(
〈a,Φ(x)〉

)
. (6)

It is well-known that the minimum (maximum) algebraic degree of any
permutation Φ ∈ S(Vn) is upper bounded by n−1. In general, S-Boxes should
have high minimum (maximum) degree because S-Boxes with low degree are
susceptible to algebraic attack, higher-order differential, interpolation, cube
attacks etc.
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Definition 5. The univariate polynomial representation of an n-bit S-Box
Φ over GF(2n), is defined in a unique fashion as

Φ(X) =
2n−1∑

i=0

νiX
i, νi ∈ GF(2n), (7)

where coefficients νi, i = 0, . . . , 2n − 1 can be obtained from the n-bit S-Box
Φ by applying Lagrange’s Interpolation theorem (see, for example, [6]).

Definition 6. Let U be a non-empty subset of GF(22n), then the annihilating
set of U is defined as

{p ∈ GF(2)[z1, . . . , z2n]
∣∣p(U) = 0}.

Definition 7. The algebraic immunity of U is defined as

AI(U) = min
{

deg p
∣∣∣0 6= p ∈ GF(2)[z1, . . . , z2n], p(U) = 0

}
. (8)

Definition 8. The graph algebraic immunity of n-bit S-Box Φ, denoted by
AIgr(Φ), is defined as

AIgr(Φ) = min
{

deg p
∣∣∣0 6= p ∈ GF(2)[z1, . . . , z2n], p(gr(Φ)) = 0

}
, (9)

where gr(Φ) = {(x,Φ(x))|x ∈ GF(2n)} ⊆ GF(22n).
Thus we focus on the graph algebraic immunity of S-Box Φ and also

on the parameter r(AIgr(Φ))
Φ referred to as the number of all the independent

equations in input and output values of the S-Box Φ, i.e., equations of the
form p(x,Φ(x)) = 0, for all x ∈ GF(2n).

Definition 9. An element a ∈ Vn is called a fixed point of an n-bit S-Box
Φ if Φ(a) = a.

Definition 10. Two n-bit S-Boxes Φ1 and Φ2 are linear (resp. affine)
equivalent if there exist linear (resp. affine) mappings A1, A2, such that
Φ2 = A2 ◦ Φ1 ◦ A1.

It is well-known that the following cryptographic parameters: δ-
uniformity, nonlinearity and minimum (maximum) algebraic degree remains
invariant under linear (resp. affine) equivalence.

R. A. de la Cruz Jiménez 119
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3 General S-Box Design Criteria

Our goal, is to find permutations constructed by smaller ones that satisfy
the following criteria (which in what follows are called almost optimal):

1. Maximum value of minimum degree;

2. Maximum graph algebraic immunity with the minimum number of equa-
tions;

3. Minimum value of δ-uniformity limited by parameter listed above;

4. Maximum value of nonlinearity limited by parameter listed above.

For example,when n = 8 an almost optimal nonlinear bijective transfor-
mation Φ should satisfy the following

Set of cryptographic criteria for 8− bit permutations :

• deg(Φ) = 7;

• AIgr(Φ) = 3 with r(3)
Φ = 441;

• δΦ ≤ 8;

• NL(Φ) ≥ 100.

Our design criteria are basically the same as those included in the target
set of criteria for the Gradient descent method [22]. However, we concentrate
on generating 8-bit S-Boxes with almost optimal cryptographic parameters
having good resistive properties both towards classical cryptanalysis as well
side-channel attacks with some given level of masking.

4 Construction of permutations, involutions and ortho-
morphisms

Now, we present an special algorithmic-algebraic scheme based on the
well-known Lai-Massey structure which can be used not only for construct-
ing permutations, but also involutions and orthomorphisms having almost
optimal cryptographic properties.

Let be n = 2k a natural number, where k ≥ 2. Choosing:

– Finite field inversion function I = x−1 over GF(2k);

– Non-bijective k-bit function ψ which has no preimage for 0;

– Arbitrary permutation h ∈ S(Vk);

– Arbitrary binary matrices Li ∈ GL2k(GF(2)), i = 1, 2.
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Constructing permutations, involutions and orthomorphisms with almost optimal
cryptographic parameters

We construct the following 2k-bit class of permutations π from V2k to V2k as
follows

Construction of π
For the input value (l‖r) ∈ V2k we define the
corresponding output value π(l‖r) = (l1‖r1)
as a result of the following computations:

(l1‖r1) := L1(l‖r);
(l1‖r1) := (I(l1)⊗ ψ(l1 ⊗ r1))

∥∥h(r1 ⊗ ψ(l1 ⊗ r1));
(l1‖r1) := L2(l1‖r1).

L1

I ψ

h

L2

Fig. 1: High level structure
of the S-Box π.

Notice, that the finite field multiplication ⊗ in the above construction
correspond to multiplication operation in GF(2k).The binary matrices L1

and L2 were inserted in such a way as to break the cycle structure of π and
also to eliminate existence of fixed points. If define π̂ as L−1

2 ◦π ◦L−1
1 we can

see that π̂ share similarities with 1-round of Lai-Massey structure replacing
in the latter the XORs by finite field multiplications. The non-bijective k-bit
function ψ (which has no preimage for 0) was chosen in such a way to make
all the whole structure invertible. Moreover, from the next construction:

– π̂−1(l1‖r1) = l‖r where l = h−1(l1)⊗I
(
ψ(h−1(l1)⊗I(r1))

)
, r = I

(
r1⊗

I
(
ψ(h−1(l1)⊗ I(r1))

))
;

we can easy derive the bijectivity of the π which is a necessary design criteria
for SPN ciphers and quite useful for Feistel and Lai-Massey ciphers.

In more detail, the nonlinear bijective transformation π̂ can be written
as follows

π̂(l‖r) =





0, if l = r = 0;

0
∥∥∥h(r ⊗ ψ(0)), if l = 0 and r 6= 0;(
I(l)⊗ ψ(0)

)∥∥∥0, if l 6= 0 and r = 0;

(I(l)⊗ ψ(l ⊗ r))
∥∥∥h(r ⊗ ψ(l ⊗ r)), if l 6= 0 and r 6= 0.

(10)

In what follows, for simplicity we restricted ourselves to the case when
h = I. The next well-known result is useful when studying some properties
of the suggested class of permutations.
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Lemma 1. [3, 28] For any b ∈ Vk \ {0}, a ∈ Vk , the following inequality
holds ∣∣∣∣∣

∑

x∈Vk
(−1)〈b,I(x)〉⊕〈a,x〉

∣∣∣∣∣ ≤ b2
k
2 +1c. (11)

Proposition 1. Let h = I аnd ψ— non-bijective k-bit function ψ which has
no preimage for 0. Then

NL(π) ≥ 2k − b2k
2 +1c − 1. (12)

Proof. It is not difficult to see that permutations π, π̂ are linear/affine equiv-
alent, hence NL(π) = NL(π̂). Let us calculate the Walsh transform of the
nonlinear bijective transformation π̂

Wπ̂(a1‖a2, b1‖b2) =
∑

l‖r∈V2k

(−1)〈b1‖b2,π̂(l‖r)〉⊕〈a1‖a2,l‖r〉

= −1 +
∑

r∈Vk
(−1)〈b2,I(r⊗ψ(0))〉⊕〈a2,r〉 +

∑

l∈Vk
(−1)〈b1,I(l)⊗ψ(0)〉⊕〈a1,l〉

+
∑

l∈V ∗k

∑

r∈V ∗k

(−1)〈b1,I(l)⊗ψ(l⊗r)〉⊕〈b2,I(r⊗ψ(l⊗r))〉⊕〈a1,l〉⊕〈a2,r〉.

Let us now estimate the Walsh transform |Wπ̂(a1‖a2, b1‖b2)|. Directly
from lemma 1 we can derive the following inequalities

•
∣∣∣∣∣
∑

r∈Vk
(−1)〈b2,I(r⊗ψ(0))〉⊕〈a2,r〉

∣∣∣∣∣ ≤ b2
k
2 +1c;

•
∣∣∣∣∣
∑

l∈Vk
(−1)〈b1,I(l)⊗ψ(0)〉⊕〈a1,l〉

∣∣∣∣∣ ≤ b2
k
2 +1c.

The module of sum
∑

l∈V ∗k

∑

r∈V ∗k

(−1)〈b1,I(l)⊗ψ(l⊗r)〉⊕〈b2,I(r⊗ψ(l⊗r))〉⊕〈a1,l〉⊕〈a2,r〉 is

upper bounded by (2k − 1) · (2k − 1), i.e.,
∣∣∣∣∣∣
∑

l∈V ∗k

∑

r∈V ∗k

(−1)〈b1,I(l)⊗ψ(l⊗r)〉⊕〈b2,I(r⊗ψ(l⊗r))〉⊕〈a1,l〉⊕〈a2,r〉

∣∣∣∣∣∣
≤ (2k − 1) · (2k − 1).

Hence,

|Wπ̂(a1‖a2, b1‖b2)| ≤ 22k − 2k+1 + 2 · b2k
2 +1c+ 2. (13)
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Thus, from (13) we obtain

NL(π) = 22k−1 − 1

2
· max
b6=0,a∈V2k

|Wπ(a1‖a2, b1‖b2)| ≥ 2k − b2k
2 +1c − 1.

Proposition 2. Let ψ : Vk → Vk be an arbitrary non-bijective function
which has no preimage for 0. Then for the permutation π, when h = I the
following inequalities holds

k − 1 ≤ deg(π)(max) ≤ 2k − 1. (14)

Proof. It is not difficult to see that permutations π, π̂ are linear/affine equiv-
alent, hence, deg(π)(max) = deg(π̂)(max). From definition 4 we have

deg(π̂)(max) = max
(a1‖a2)6=0∈V2k

deg
(
〈a1‖a2, π̂(l‖r)〉

)
.

According to the equality (10), the function 〈a1‖a2, π̂(l‖r)〉 can be decom-
posed as

〈a1‖a2, π̂(l‖r)〉 = 〈a2, I(r ⊗ ψ(0))〉 · Ind(l, 0) · Ind(r, 0)

+〈a1, I(l)⊗ ψ(0)〉 · Ind(r, 0) · Ind(l, 0)

+〈a2, I(r ⊗ ψ(l ⊗ r))〉 · Ind(l, 0) · Ind(r, 0)

+〈a1, I(l)⊗ ψ(l ⊗ r)〉 · Ind(l, 0) · Ind(r, 0).

If degψ(max) = 0, then without loss of generality we can assume that for
any z ∈ Vk, ψ(z) = c, where c is some nonzero element of GF(2k). Now
taking into account that deg I(max) = k− 1 we obtain deg(π̂)(max) = k− 1. If
0 < degψ(max) ≤ k, then due to the fact that π̂ is a permutation on V2k we
conclude that its maximum algebraic degree is upper bounded by 2k − 1.

4.1 The Hamming distance between two instances of π̂

In this section we are interested by the hamming distance between two
instance of π̂ having the following the non-bijective function ψ, ψ̂ which are
related as follows, ψ(i) 6= ψ̂(i), for some i ∈ {0, 1, . . . , 2k−1} , ψ(j) = ψ̂(j),
when j ∈ {0, 1, . . . , 2k− 1} \ {i}. In other words, the lookup-tables of ψ and
ψ̂ differs only in one position.
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Proposition 3. If the lookup-tables of non-bijective k-bit functions ψ =(
. . . i . . .
. . . ψ(i) . . .

)
and ψ̂ =

(
. . . i . . .

. . . ψ̂(i) . . .

)
differs from each other exactly

in one output value, then for permutations π̂ψ, π̂ψ̂ the following relation holds:

χ(π̂ψ, π̂ψ̂) =





2 · (2k − 1), if i = 0;

2k − 1, if i 6= 0.
(15)

Proof. Consider the following possible cases:

1. i = 0. In this case we have the following relations l ⊗ r = 0, which
holds when l = 0 and r 6= 0 and when r = 0 and l 6= 0. It is easy
to check that for l = 0 the next inequality, π̂ψ(0‖r) 6= π̂ψ̂(0‖r) holds
for all r ∈ Vk \ {0}. Analogously, for r = 0, l 6= 0 ∈ Vk the output
π̂ψ(l‖0) 6= π̂ψ̂(l‖0). So we have exaclty 2 · (2k − 1) values in which the
look-up-tables of π̂ψ and π̂ψ̂ will be differs;

2. i 6= 0. In this case for each fixed l ∈ GF(2k)\{0} there exist a unique
r ∈ GF(2k)\{0} such that l ⊗ r = i, therefore there are exactly 2k − 1
values of the form (l‖r) ∈ V2k such that π̂ψ(l‖r) 6= π̂ψ̂(l‖r).

Notice that we have exclude the case when l = r = 0 because in
this situation we always have π̂ψ(0) = π̂ψ̂(0). So, we can conclude that
χ(π̂ψ, π̂ψ̂) ∈ {2k − 1, 2 · (2k − 1)}.

4.2 Bounds on nonlinearity and δ-uniformity between two in-
stances of π̂

In this section, we study the nonlinearity and δ-uniformity parameter
between two instances of π̂ described in the previous section.

Proposition 4. If the lookup-tables of non-bijective k-bit functions ψ =(
. . . i . . .
. . . ψ(i) . . .

)
and ψ̂ =

(
. . . i . . .

. . . ψ̂(i) . . .

)
differs from each other exactly

in one output value, then for permutations π̂ψ, π̂ψ̂ the following inequalities
holds:

1. NL(π̂ψ)− 2 · b2k
2 +1c ≤ NL(π̂ψ̂) ≤ NL(π̂ψ) + 2 · b2k

2 +1c, when i = 0;

2. NL(π̂ψ)− (2k − 1) ≤ NL(π̂ψ̂) ≤ NL(π̂ψ) + (2k − 1), when i 6= 0.
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Proof. Denote by ρ(Wπ̂ψ ,Wπ̂ψ̂
) =Wπ̂ψ(a1‖a2, b1‖b2)−Wπ̂ψ̂

(a1‖a2, b1‖b2) and
ρ(Wπ̂ψ̂

,Wπ̂ψ) = Wπ̂ψ̂
(a1‖a2, b1‖b2) −Wπ̂ψ(a1‖a2, b1‖b2) the difference of the

Walsh transforms between functions π̂ψ and π̂ψ̂. To prove the proposition is
sufficient to upper bound the following values

1.
∣∣∣ρ(Wπ̂ψ ,Wπψ̂

)
∣∣∣;

2.
∣∣∣ρ(Wπ̂ψ̂

,Wπψ)
∣∣∣.

We shall prove the first item of the proposition. Let us calculate the Walsh
transform of permutations π̂ψ and π̂ψ̂ respectively

Wπ̂ψ(a1‖a2, b1‖b2) =
∑

l‖r∈V2k

(−1)〈b1‖b2,π̂ψ(l‖r)〉⊕〈a1‖a2,l‖r〉

= −1 +
∑

r∈Vk
(−1)〈b2,I(r⊗ψ(0))〉⊕〈a2,r〉 +

∑

l∈Vk
(−1)〈b1,I(l)⊗ψ(0)〉⊕〈a1,l〉

+
∑

l∈V ∗k

∑

r∈V ∗k

(−1)〈b1,I(l)⊗ψ(l⊗r)〉⊕〈b2,I(r⊗ψ(l⊗r))〉⊕〈a1,l〉⊕〈a2,r〉,

From relations ψ(0) 6= ψ̂(0), and ψ(j) = ψ̂(j) for j ∈ {1, . . . , 2k − 1} we
obtain

Wπ̂ψ̂
(a1‖a2, b1‖b2) =

∑

l‖r∈V2k

(−1)〈b1‖b2,π̂ψ̂(l‖r)〉⊕〈a1‖a2,l‖r〉

= −1 +
∑

r∈Vk
(−1)〈b2,I(r⊗ψ̂(0))〉⊕〈a2,r〉 +

∑

l∈Vk
(−1)〈b1,I(l)⊗ψ̂(0)〉⊕〈a1,l〉

+
∑

l∈V ∗k

∑

r∈V ∗k

(−1)〈b1,I(l)⊗ψ(l⊗r)〉⊕〈b2,I(r⊗ψ(l⊗r))〉⊕〈a1,l〉⊕〈a2,r〉.

Then,

ρ(Wπ̂ψ ,Wπ̂ψ̂
) =

(∑

r∈Vk
(−1)〈b2,I(r⊗ψ(0))〉⊕〈a2,r〉 +

∑

l∈Vk
(−1)〈b1,I(l)⊗ψ(0)〉⊕〈a1,l〉

)

−
(∑

r∈Vk
(−1)〈b2,I(r⊗ψ̂(0))〉⊕〈a2,r〉 +

∑

l∈Vk
(−1)〈b1,I(l)⊗ψ̂(0)〉⊕〈a1,l〉

)
,

ρ(Wπ̂ψ̂
,Wπ̂ψ) =

(∑

r∈Vk
(−1)〈b2,I(r⊗ψ̂(0))〉⊕〈a2,r〉 +

∑

l∈Vk
(−1)〈b1,I(l)⊗ψ̂(0)〉⊕〈a1,l〉

)

−
(∑

r∈Vk
(−1)〈b2,I(r⊗ψ(0))〉⊕〈a2,r〉 +

∑

l∈Vk
(−1)〈b1,I(l)⊗ψ(0)〉⊕〈a1,l〉

)
.
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Using lemma 1 we derive the following bounds∣∣∣ρ(Wπ̂ψ ,Wπ̂ψ̂
)
∣∣∣ ≤ 4 · b2k

2 +1c, (16)

∣∣∣ρ(Wπ̂ψ̂
,Wπ̂ψ)

∣∣∣ ≤ 4 · b2k
2 +1c. (17)

From which we deduce that

NL(π̂ψ)− 2 · b2k
2 +1c ≤ NL(π̂ψ̂) ≤ NL(π̂ψ) + 2 · b2k

2 +1c.
Now, we prove the second item of the proposition. For each element l ∈
{1, 2, . . . , 2k − 1} there exist a unique element r ∈ {1, 2, . . . , 2k − 1} such
that l ⊗ r = i, where i ∈ {1, 2, . . . , 2k − 1}. Then, the Walsh transforms for
permutations π̂ψ and π̂ψ̂ can be written as follows

Wπ̂ψ(a1‖a2, b1‖b2) =
∑

l‖r∈V2k

(−1)〈b1‖b2,π̂ψ(l‖r)〉⊕〈a1‖a2,l‖r〉

= 1 +
∑

r∈V ∗k

(−1)〈b2,I(r⊗ψ(0))〉⊕〈a2,r〉 +
∑

l∈V ∗k

(−1)〈b1,I(l)⊗ψ(0)〉⊕〈a1,l〉

+
∑

l∈V ∗k

∑

r∈V ∗k

(−1)〈b1,I(l)⊗ψ(l⊗r)〉⊕〈b2,I(r⊗ψ(l⊗r))〉⊕〈a1,l〉⊕〈a2,r〉.

Denote Ŝ(l, r) =
∑

l∈V ∗k

∑

r∈V ∗k

(−1)〈b1,I(l)⊗ψ(l⊗r)〉⊕〈b2,I(r⊗ψ(l⊗r))〉⊕〈a1,l〉⊕〈a2,r〉.

Then
Ŝ(l, r) =

∑

l∈V ∗k

S(l, r), (18)

where S(l, r) =
∑

r∈V ∗k

(−1)〈b1,I(l)⊗ψ(l⊗r)〉⊕〈b2,I(r⊗ψ(l⊗r))〉⊕〈a1,l〉⊕〈a2,r〉.

For each fixed l ∈ {1, 2, . . . , 2k − 1}, the term S(l, r) can be rewritten as

S(l, r) =
∑

r∈V ∗k \{i⊗l−1}
(−1)〈b1,I(l)⊗ψ(l⊗r)〉⊕〈b2,I(r⊗ψ(l⊗r))〉⊕〈a1,l〉⊕〈a2,r〉

+(−1)〈b1,I(l)⊗ψ(i)〉⊕〈b2,I((i⊗l−1)⊗ψ(i))〉⊕〈a1,l〉⊕〈a2,i⊗l−1〉.
Substituting S(l, r) in (18) we obtain

Ŝ(l, r) =
∑

l∈V ∗k

∑

r∈V ∗k \{i⊗l−1}
(−1)〈b1,I(l)⊗ψ(l⊗r)〉⊕〈b2,I(r⊗ψ(l⊗r))〉⊕〈a1,l〉⊕〈a2,r〉

+
∑

l∈V ∗k

(−1)〈b1,I(l)⊗ψ(i)〉⊕〈b2,I((i⊗l−1)⊗ψ(i))〉⊕〈a1,l〉⊕〈a2,(i⊗l−1)〉.
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Hence,

Wπ̂ψ(a1‖a2, b1‖b2) =
∑

l‖r∈V2k

(−1)〈b1‖b2,π̂ψ(l‖r)〉⊕〈a1‖a2,l‖r〉

= 1 +
∑

r∈V ∗k

(−1)〈b2,I(r⊗ψ(0))〉⊕〈a2,r〉 +
∑

l∈V ∗k

(−1)〈b1,I(l)⊗ψ(0)〉⊕〈a1,l〉

+
∑

l∈V ∗k

∑

r∈V ∗k \{i⊗l−1}
(−1)〈b1,I(l)⊗ψ(l⊗r)〉⊕〈b2,I(r⊗ψ(l⊗r))〉⊕〈a1,l〉⊕〈a2,r〉

+
∑

l∈V ∗k

(−1)〈b1,I(l)⊗ψ(i)〉⊕〈b2,I((i⊗l−1)⊗ψ(i))〉⊕〈a1,l〉⊕〈a2,(i⊗l−1)〉.

Now, taking into account that ψ(i) 6= ψ̂(i), for some i ∈ {1, . . . , 2k − 1},
and ψ(j) = ψ̂(j) for any j ∈ {0, 1, . . . , 2k − 1} \ {i} we obtain

Wπ̂ψ̂
(a1‖a2, b1‖b2) =

∑

l‖r∈V2k

(−1)〈b1‖b2,π̂ψ(l‖r)〉⊕〈a1‖a2,l‖r〉

= 1 +
∑

r∈V ∗k

(−1)〈b2,I(r⊗ψ(0))〉⊕〈a2,r〉 +
∑

l∈V ∗k

(−1)〈b1,I(l)⊗ψ(0)〉⊕〈a1,l〉

+
∑

l∈V ∗k

∑

r∈V ∗k \{i⊗l−1}
(−1)〈b1,I(l)⊗ψ(l⊗r)〉⊕〈b2,I(r⊗ψ(l⊗r))〉⊕〈a1,l〉⊕〈a2,r〉

+
∑

l∈V ∗k

(−1)〈b1,I(l)⊗ψ̂(i)〉⊕〈b2,I((i⊗l−1)⊗ψ̂(i))〉⊕〈a1,l〉⊕〈a2,(i⊗l−1)〉.

Then,

ρ(Wπ̂ψ ,Wπ̂ψ̂
) =

∑

l∈V ∗k

(−1)〈b1,I(l)⊗ψ(i)〉⊕〈b2,I((i⊗l−1)⊗ψ(i))〉⊕〈a1,l〉⊕〈a2,(i⊗l−1)〉

−
∑

l∈V ∗k

(−1)〈b1,I(l)⊗ψ̂(i)〉⊕〈b2,I((i⊗l−1)⊗ψ̂(i))〉⊕〈a1,l〉⊕〈a2,(i⊗l−1)〉,

ρ(Wπ̂ψ̂
,Wπ̂ψ) =

∑

l∈V ∗k

(−1)〈b1,I(l)⊗ψ̂(i)〉⊕〈b2,I((i⊗l−1)⊗ψ̂(i))〉⊕〈a1,l〉⊕〈a2,(i⊗l−1)〉

−
∑

l∈V ∗k

(−1)〈b1,I(l)⊗ψ(i)〉⊕〈b2,I((i⊗l−1)⊗ψ(i))〉⊕〈a1,l〉⊕〈a2,(i⊗l−1)〉.

From here we obtain
∣∣∣ρ(Wπ̂ψ ,Wπ̂ψ̂

)
∣∣∣ ≤ 2 · (2k − 1), (19)
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∣∣∣ρ(Wπ̂ψ̂
,Wπ̂ψ)

∣∣∣ ≤ 2 · (2k − 1). (20)

So, we conclude

NL(π̂ψ)− 2k + 1 ≤ NL(π̂ψ̂) ≤ NL(π̂ψ) + 2k − 1.

Proposition 4 can be used to increase the nonlinearity of permutation π
when h = I, which is very useful for searching nonlinear bijective transfor-
mations having good values of its basic cryptographic parameters using the
construction of π.

The following proposition shows the behavior of the δ-uniformity param-
eter of permutations π̂ψ, π̂ψ̂ when the lookup-tables of ψ and ψ̂ differs only
in one output value.

Proposition 5. If the lookup-tables of non-bijective k-bit functions ψ =(
. . . i . . .

. . . ψ(i) . . .

)
and ψ̂ =

(
. . . i . . .

. . . ψ̂(i) . . .

)
differs from each other exactly

in one output value, then for permutations π̂ψ, π̂ψ̂ the following relations
holds:

1. δπ̂ψ − 4 · (2k − 1) ≤ δπ̂ψ̂ ≤ δπψ + 4 · (2k − 1), when i = 0;

2. δπ̂ψ − 2 · (2k − 1) ≤ δπ̂ψ̂ ≤ δπ̂ψ + 2 · (2k − 1), when i 6= 0.

Proof. To prove the proposition is sufficient to bound the following sums

∆π̂ψ(a, b) =
∑

x∈Vn
Ind(π̂ψ(x⊕ a)⊕ π̂ψ(x), b),

∆π̂ψ̂
(a, b) =

∑

x∈Vn
Ind(π̂ψ̂(x⊕ a)⊕ π̂ψ̂(x), b).

1. Denote by ωt, t = 1 . . . , 2 · (2k − 1) those points of V2k for which
π̂ψ(ωt) 6= π̂ψ̂(ωt). In other points, the output values of permutations π̂ψ, π̂ψ̂
are equals, i.e., for any x ∈ V2k \ {ωt|t = 1, . . . , 2 · (2k − 1)} the following
relation holds π̂ψ(x) = π̂ψ̂(x).

It is well-known that if x = ωt, ωt⊕ a, t = 1, . . . , 2 · (2k− 1) are solutions
of the equation π̂ψ(x⊕ a)⊕ π̂ψ(x) = b, then




π̂ψ(ωt ⊕ a) = π̂ψ(ωt)⊕ b;

t = 1, . . . , 2 · (2k − 1).
(21)
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It is not difficult to see that for a 6= 0 the following relations holds
ωt 6= ωt ⊕ a, where t = 1, . . . , 2 · (2k − 1). Then, the next equalities are true

π̂ψ(ωt ⊕ a) = π̂ψ̂(ωt ⊕ a), t = 1, . . . , 2 · (2k − 1). (22)

When t = 1, . . . , 2 · (2k − 1), the conditions π̂ψ(ωt) 6= π̂ψ̂(ωt) are equiva-
lents to the following

π̂ψ(ωt)⊕ b 6= π̂ψ̂(ωt)⊕ b, (23)

where b ∈ V2k. Then from (21),(22) and (23) under the condition that x =
ωt, ωt ⊕ a are solutions of the equation π̂ψ(x⊕ a)⊕ π̂ψ(x) = b we obtain

π̂ψ̂(ωt ⊕ a) 6= π̂ψ̂(ωt)⊕ b, t = 1, . . . , 2 · (2k − 1). (24)

This means that if x = ωt, ωt ⊕ a where t = 1, . . . , 2 · (2k − 1), are solutions
of the equation π̂ψ(x⊕ a)⊕ π̂ψ(x) = b, then they can not be solutions of the
equation π̂ψ̂(x⊕ a) = π̂ψ̂(x)⊕ b.

Now, we shall prove that {ωt, ωt ⊕ a} ∩ {ωs, ωs ⊕ a} = ∅ for any t, s ∈
{1, . . . , 2 · (2k − 1)}, where t 6= s. It is sufficient to consider the following
cases:

ωt = ωs. According to proposition 3 when i = 0, we have χ(π̂ψ, π̂ψ̂) =

#{x ∈ V2k| π̂ψ(x) 6= π̂ψ̂(x)} = 2 · (2k − 1). In this case, if ωt = ωs,

where t, s ∈ {1, . . . , 2 · (2k − 1)}, and t 6= s, then χ(π̂ψ, π̂ψ̂) = #{x ∈
V2k| π̂ψ(x) 6= π̂ψ̂(x)} < 2 · (2k − 1), which yields a contradiction;

ωt = ωs ⊕ a. In this case, by using relations (22) we obtain π̂ψ(ωt) =
π̂ψ(ωs⊕ a) = π̂ψ̂(ωs⊕ a) = π̂ψ̂(ωt) which yields a contradiction because
π̂ψ(ωt) 6= π̂ψ̂(ωt) for t = 1, . . . , 2 · (2k − 1).

So, the sum ∆π̂ψ(a, b) can be decomposed as follows

∆π̂ψ(a, b) =
∑

x∈⊔2·(2k−1)
t=1 {ωt,ωt⊕a}

Ind(π̂ψ(x⊕ a)⊕ π̂ψ(x), b)

+
∑

x∈V2k\
⊔2·(2k−1)
t=1 {ωt,ωt⊕a}

Ind(π̂ψ̂(x⊕ a)⊕ π̂ψ̂(x), b).

As for any t = 1, 2, . . . , 2 · (2k − 1), the following relations holds
∑

x∈Vn\
⊔2·(2k−1)
t=1 {ωt,ωt⊕a}

Ind(π̂ψ̂(x⊕ a)⊕ π̂ψ̂(x), b) ≤
∑

x∈Vn
Ind(π̂ψ̂(x⊕ a)⊕ π̂ψ̂(x), b), (25)
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and
∑

x∈⊔2·(2k−1)
t=1 {ωt,ωt⊕a}

Ind(π̂ψ(x⊕ a)⊕ π̂ψ(x), b) ≤ 2 · (2 · (2k − 1)), (26)

then from (25), (26) we obtain

δπ̂ψ(a, b) ≤ δπ̂ψ̂(a, b) + 4 · (2k − 1) (27)

Analogously, we can derive that for δπ̂ψ̂(a, b) the following inequality holds

δπ̂ψ̂(a, b) ≤ δπ̂ψ(a, b) + 4 · (2k − 1) (28)

Hence, from relations (27), (28) we conclude

δπ̂ψ − 4 · (2k − 1) ≤ δπ̂ψ̂ ≤ δπ̂ψ + 4 · (2k − 1).

2. The proof is quite similar to the proof of the item 1.

Proposition 5, tell us that changing only one output value of the non-
bijective k-bit function ψ (which has no preimage for 0) the δ-uniformity
of π may decrease, which is quite useful when searching nonlinear bijective
transformations having good values of its basic cryptographic parameters
using the construction of π.

When n = 8, in correspondence with the suggested constructions of π, we
need to construct; the 4-bit non-bijective function ψ , the 4-bit permutation
I(x) = x14 over GF(24). In what follows, we shall work over the finite field
GF(24)=GF(2)[ξ]/g(ξ), constructing the latter with the irreducible polyno-
mial g(ξ) = ξ4 + ξ + 1.

By using propositions 4 and 5 we have conducted two search algorithms
(implemented in SAGE [44]) for finding ordinary 8-bit S-Boxes having the
following cryptographic parameters

• minimum algebraic degree equal to 7;

• graph algebraic immunity equal to 3
(with 441 equations);

• δ-uniformity equal to 6 or 8;

• nonlinearity in range of 100 up to a
value of 104.

The algorithms are modified versions of algorithms for implementing the
spectral-linear and spectral-differential methods presented in [31] and both
of them operates with the following objects: (a, b, c) ∈ Ξ0(Vk)× S(V2k)×Z,
where by Ξ0(Vk) is denoted the set of all non-bijective functions ψ : Vk → Vk
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which have preimage for 0 . We define on the set of these objects the next
order relation as follows

(ã, b̃, c̃) ≤ (a, b, c), if b̃ < b or b̃ = b. (29)

Let ` ∈ N be the size of some list L, which should be chosen according to
available computing resources, then the algorithm for improving the dif-
ferential proprieties in correspondence with our design criteria is presented
bellow.

Algorithm 1: Optimizing differential properties of π̂
Input: Permutation I = x−1 over GF(2k), parameter ` ∈ N.

1 Generate randomly a non-bijective k-bit function ψ and construct
π̂ψ = (I(l)⊗ ψ(l ⊗ r))

∥∥I(r ⊗ ψ(l ⊗ r)) ∈ S(V2k).
2 For permutation π̂ψ ∈ S(V2k) calculate the value δπ̂ψ .
3 Initialize the list L:

L = {(ψ, π̂ψ, δπ̂ψ)},where #L = 1.

4 Using the list L = {(ψ(i), π̂ψ(i) , δπ̂
ψ(i)

)|i = 0, . . . ,#L− 1} construct the new list

L̃ = {(ψ̂(i)
j,t , π̂ψ̂(i)

j,t
, δπ̂

ψ̂
(i)
j,t

)},where #L̃ ≤ #L · 2k · (2k − 2),

and for each i = 0, . . . ,#L− 1, δπ̂
ψ̂
(i)
j,t

≤ δπ̂
ψ(i)

, the non-bijective k-bit functions

ψ̂
(i)
j,t , j = 0, . . . , 2k − 1, t = 0, . . . 2k − 3, differs from ψ(i) exactly in one output

value.
5 For the list L̃ do the following:

(I) Calculate the size #L̃.
(II) Sort the elements of L̃ in the ascending order according to relation (29).
(III) Numerate the sorted list element by indexes i = 0, . . . ,#L̃− 1.
(IV) Calculate values m1 = min{#L− 1,#L̃− 1},m2 = min{`− 1,#L̃− 1}.

6 Compare the first elements of list L and L̃:

– If
∑m1

i=0 δπ̂ψ̂(i)
<
∑m1

i=0 δπ̂ψ(i)
, then

(I) Clean the list L.
(II) Copy the elements from the list L̃ with indexes i = 0, . . . ,m2 to L.
(III) Assign #L = m2 + 1.
(IV) Go to step 4.

– Otherwise, the algorithm stops.

Output: The list L̃ = {(ψ(i), π̂ψ(i) , δπ̂
ψ(i)

)|i = 0, . . . ,#L̃− 1}, #L̃ ≤ `.

Replacing in algorithm 1 the δ-uniformity parameter by the nonlinearity
and making the appropriate changes in steps 4,6 we can easy obtain the
algorithm for optimizing the (non)linear properties of π̂, which is omitted
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due to space limitations. The best results of this work have been achieved
by using both algorithms.

4.3 Invariant subspaces with respect to the action of π̂

In this section, we study the question about the existence of subspaces W
of the vector space Vn such that π̂(W ⊕ a) = W ⊕ b for some fixed elements
a, b ∈ Vn. Such subspaces are called invariant subspaces and are used in
recent cryptanalytic approaches when mounting structural attacks on block
ciphers (for example, in the so-called invariant subspaces attacks [29]). The
existence of such structures can significantly decrease the cryptographic secu-
rity of block ciphers. In [2, 43] were described some approaches for designing
cryptographic primitives having a structure, knowledge of which allows to
find the encryption key with a time complexity, significantly lower than the
brute force method. Such structure is called a backdoor, and the whole en-
cryption algorithm —backdoored encryption algorithm.

Another fundamental cryptanalytic method for block ciphers is the ho-
momorphism attack. The effectiveness of this approach highly dependent
on how close the encryption function can be approximated by permutations
having the partition-preserving property. The authors of [41] studied the
possibility to approximate permutations by permutations from the wreath
product of symmetric groups in an imprimitive action, where the so-called
W-intersection matrix was proposed as a parameter characterizing the ap-
proximability of permutations by permutations from the wreath group. The
W-intersection matrix for a permutation Φ of S(Vn) is defined as follows

MW(Φ) =
∥∥∥cWα,β(Φ)

∥∥∥
α,β∈RW

,

where cWα,β(Φ) = #
{
x ∈ W ⊕ α

∣∣∣Φ(x) ∈ W ⊕ β
}
, W < Vn, dimW = d ∈

{1, 2, . . . , n− 1} and RW is the set of coset representatives for the subspace
W < Vn.

The W-intersection matrix is a very useful tool to automatically verify
the invariance of a fixed subspace W with respect to the action of some given
nonlinear bijective transformation.

Proposition 6. Let W1 = {(l‖0)|l ∈ Vk},W2 = {(0‖r)|r ∈ Vk} be two
k-dimensional subspaces of the vector space V2k . Then

cW1
0,0 (π̂) = cW2

0,0 (π̂) = 2k. (30)

Proof. The relations written in (30) are a direct consequence of the equal-
ity (10), for h = I.
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Corollary 1. The following k-dimensional subspaces W1⊕(α1‖0) and W2⊕
(0‖α2) are invariant with respect to the action of π̂ for any α1, α2 ∈ Vk.

Example 1. Let n = 2k = 2 ·4 and GF(24) = GF[2][ξ] /ξ4⊕ ξ⊕1, the 4-bit
components ψ1, I are given as follows

ψ =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7 12 3 12 12 9 13 13 8 2 2 11 9 15 2 3

)
,

I =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 9 14 13 11 7 6 15 2 12 5 10 4 3 8

)
.

Then, the resulting permutation π̂(l‖r) = (I(l)⊗ ψ(l⊗ r))
∥∥I(r⊗ ψ(l⊗

r)) ∈ S(V8) and its cryptographic parameters are compiled in the following
table.

S-Box π̂
NL(π̂) = 104, δπ̂ = 6, deg(π̂)(min) = 7,AIgr(π̂) = 3, r

(3)
π̂ = 441.

0x0 0x6 0x3 0x2 0x8 0xf 0x1 0x7 0x4 0xc 0xe 0xd 0x9 0xb 0xa 0x5
0x70 0xca 0x37 0xc6 0xcb 0x95 0xdf 0xdb 0x8a 0x21 0x26 0xb2 0x97 0xf6 0x28 0x39
0xa0 0x8e 0x65 0xfd 0x47 0x1c 0xde 0x13 0x6c 0x67 0xf5 0xda 0xc4 0x12 0x81 0xec
0xc0 0x4a 0xa2 0x7f 0x79 0x18 0xfa 0xf3 0x86 0x9d 0x5a 0xfb 0xae 0x4e 0x4d 0x19
0x50 0x3a 0x2e 0xff 0x3b 0xea 0x68 0x42 0xe9 0x4f 0x96 0x9b 0xf7 0x3e 0x7b 0x94
0x40 0xc2 0x5d 0xeb 0x61 0xe8 0x3d 0x74 0x5e 0x9a 0xd1 0xd4 0x55 0xc8 0xdd 0x66
0x60 0x54 0xa1 0xe7 0x4c 0xb7 0x5f 0x29 0xad 0x27 0xe6 0x93 0xe5 0xd9 0x91 0x2f
0x10 0x84 0xcd 0xc7 0xaa 0x53 0xe3 0x8b 0x41 0xc1 0xe1 0xe4 0xa6 0x38 0x36 0xfe
0xb0 0x1f 0x85 0x33 0x71 0xdc 0xee 0xa5 0xed 0x87 0x24 0x77 0xd5 0x2d 0xd8 0x8f
0xe0 0x49 0xb5 0x35 0x6a 0x51 0xb3 0x43 0xbc 0xd3 0x1b 0x1a 0x9e 0x6d 0x9c 0x44
0x20 0xb9 0x32 0x89 0xbf 0xf2 0xba 0xf9 0x75 0x64 0xa8 0x73 0xf8 0xd7 0x3c 0x63
0x80 0x15 0xb1 0xa7 0xaf 0x92 0xfc 0x99 0xc9 0xb4 0xf4 0xab 0x6f 0xc3 0xe2 0x9f
0x30 0x52 0x2b 0xbd 0x59 0x7c 0x7a 0xd2 0x7e 0xb8 0x11 0xce 0xd6 0x1e 0x1d 0xf1
0xf0 0x98 0x8d 0x56 0x5b 0x25 0x6b 0x2c 0xc5 0xcf 0xa9 0x17 0x58 0x82 0x88 0x16
0x90 0x69 0x57 0x76 0x22 0x72 0x5c 0x8c 0x6e 0x48 0x45 0xb6 0x78 0x62 0xef 0x83
0xd0 0xbe 0x14 0xbb 0x3f 0x2a 0xa3 0x7d 0xac 0x31 0x4b 0xa4 0xcc 0x23 0x46 0x34

Table 1: The constructed permutation π̂ ∈ S(V8).

From Table 1, we can see that the nonlinear bijective transformation
π̂ ∈ S(V8) exhibit high values of its basic cryptographic parameters and it
does not have polynomial relations of low degree.

Let us now verify the existence of some invariant subspaces with respect
to the action of the constructed permutation π̂ ∈ S(V8). The W-intersection
matrices MWi

(π̂) =
∥∥∥cWi

α,β(π̂)
∥∥∥
α,β∈RWi

given by (31), for subspaces W1 =

{(l‖0)|l ∈ V4}, W2 = {(0‖r)|r ∈ V4} of the vector space V8 were found by
computer calculations using SAGE [44].

1This component has been found using the algoritmhs described in Section 3.2.
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From matricesMWi
(π̂), i = 1, 2, we can see that cW1

0,0 (π̂) = cW2
0,0 (π̂) = 16,

which means that π̂(Wi) = Wi. Hence the subspacesW1 andW2 are invariant
under the action of the constructed permutation π̂ ∈ S(V8).

MW1
(π̂) =




16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 2 1 1 0 1 3 3 0 0 0 2 1
0 2 2 1 1 3 0 2 0 0 0 1 0 3 1 0
0 0 1 1 0 1 3 3 0 1 0 2 0 2 0 2
0 2 1 0 0 0 0 1 1 2 2 3 1 0 0 3
0 1 3 1 0 2 0 1 2 0 2 0 3 0 0 1
0 1 0 3 0 0 0 0 1 0 3 1 2 1 2 2
0 0 2 3 1 1 0 1 0 3 0 2 2 1 0 0
0 1 0 0 1 2 1 0 0 2 1 0 3 2 3 0
0 3 0 1 2 0 0 3 2 0 1 0 1 1 0 2
0 3 0 0 2 2 3 0 1 1 1 2 0 0 1 0
0 0 1 2 3 0 1 2 0 0 2 3 0 1 1 0
0 0 0 0 1 3 2 2 3 1 0 0 1 0 2 1
0 0 3 2 0 0 1 1 2 1 0 1 0 2 3 0
0 2 1 0 0 0 2 0 3 0 1 1 2 3 0 1
0 1 0 2 3 1 2 0 0 2 0 0 1 0 1 3




,MW2
(π̂) =




16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 3 2 0 0 0 1 1 2 0 1 3 2 0 1
0 3 0 0 1 0 3 0 2 0 1 0 1 2 1 2
0 2 0 0 3 1 0 2 1 1 2 0 1 0 0 3
0 0 1 3 2 1 1 1 0 3 0 0 0 0 2 2
0 0 0 1 1 3 2 1 0 1 0 0 2 3 2 0
0 0 3 0 1 2 1 0 0 2 2 1 0 1 3 0
0 1 0 2 1 1 0 0 2 0 2 0 3 0 3 1
0 1 2 1 0 0 0 2 3 0 1 1 0 3 2 0
0 2 0 1 3 1 2 0 0 2 0 3 0 1 1 0
0 0 1 2 0 0 2 2 1 0 1 3 0 1 0 3
0 1 0 0 0 0 1 0 1 3 3 2 2 0 1 2
0 3 1 1 0 2 0 3 0 0 0 2 1 2 0 1
0 2 2 0 0 3 1 0 3 1 1 0 2 0 0 1
0 0 1 0 2 2 3 3 2 1 0 1 0 0 1 0
0 1 2 3 2 0 0 1 0 0 3 2 1 1 0 0




. (31)

So, despite the fact that permutation π̂ ∈ S(V8) exhibit a low value
of δ-uniformity, high nonlinearity and can be described by a system of 441
polynomials equations of degree 3, it has a weakness: the existence of some
structures (subspaces W1 and W2) which are invariant with respect to the
action of this nonlinear bijective transformation. If using this permutation as
nonlinear layer in a XSL-network, then these structures should be taken into
account when designing the linear layer and the key-expansion algorithm,
to avoid the existence of a large number of weak-keys for the encryption
function. However, this weakness can be eliminated by choosing appropriate
linear (resp. affine) layers L1 and L2 from GL8(GF(2)).

When looking at the TU-decomposition (see e.g., [4]) of the 8-bit S-Box
used in the block cipher Kuznyechik [13], denoted here by πKuz = α ◦ π̂Kuz ◦
ω, where α, ω ∈ GL8(GF(2)) and π̂Kuz is a permutation based on Feistel-
like structure, we have found by using the W-intersection matrix that the
subspace W1 = {(l‖0)|l ∈ V4} is invariant with respect to the action of the
nonlinear bijective transformation π̂Kuz = ω−1 ◦ πKuz ◦ α−1, i.e., π̂Kuz(W1 ⊕
0xc) = W1. However, by computing MWi

(πKuz), i = 1, 2, we have checked
the absence of invariant subspaces such as W1 and W2 in the permutation
πKuz.

In the above cases, we have seen the important role played by the linear
layers used in those constructions, which also explain why we have inserted
these matrices in the original construction of π. Its purposes are not only to
break the cycle structure and eliminate the existence of fixed points but also
circumvent the presence of invariant subspaces such as W1 and W2.
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4.4 Constructing highly-nonlinear involutions

In this section we will study how to build involutive S-Boxes with strong
cryptographic properties using constructions presented in the previous sec-
tion. Involutions, have an particular interest in Cryptography because in the
case of lightweight block ciphers, these components are used to decrease the
cost of the implementation of decryption process.

Definition 11. Let ε be the identity permutation of S(Vn). A permutation
Φ ∈ S(Vn) is called an involution if Φ ◦ Φ = ε.

Even when the function I is an involution on S(Vk) and the permuttaion
h ∈ S(Vk) can be chosen to be involution too, the permuations generated by π̂
are not always involutions. Taking h = I, in order to achieve the property π̂◦
π̂ = ε we have performed a search algorithm . The algorithm take as input a
randomly generated non-bijective 4-bit function ψ and for this ψ the resulting
permutation π̂ is constructed. Then, the Hamming distance χ(ε, π̂ ◦ π̂) is
calculated. If χ(ε, π̂ ◦ π̂) = 0 and π̂ satisfy the set of cryptographic criteria
(listed in Section 2), the algorithm stops and as output we get an nonlinear
involution. Otherwise, in an iterative process ψ is changed randomly (in
a arbitrary number of positions) until χ(ε, π̂ ◦ π̂) is equal to zero, which
means that a involution is founded. We repeat the above procedure until an
involution π̂ with the properties listed in the set of cryptographic criteria has
been founded.

We have implemented this algorithm in SAGE [44] obtaining some invo-
lutions having few fixed points with the following cryptografic properties

• minimum algebraic degree — 7;

• graph algebraic immunity — 3 (with
441 equations);

• δ-uniformity equal to 6 or 8;

• nonlinearity in range of 100 up to a
value of 104.

Also, we have tried to design directly involutions using ours scheme as
building block. To achieve the fulfillment of condition Φ ◦ Φ(x) = x, our
strategy was to combine our constructions into two or more rounds. Choosing
two arbitrary k-bit involutions h

1
, h

2
, the following constructions is able to

produce 2k-bit involutions.

R. A. de la Cruz Jiménez 135
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Construction of π̂(invol)

For the input value (l‖r) ∈ V2k we define
the corresponding output value as follows

π̂(invol)(l‖r) =
(
π̂

3
◦ π̂

2
◦ π̂

1

)
(l‖r) = l1‖r1 where,

π̂
1
(l‖r) = (l ⊗ I(ψ(l ⊗ r)))

∥∥∥(r ⊗ ψ(l ⊗ r));
π̂

2
(l‖r) = h

1
(l)
∥∥∥h2

(r);

π̂
3
(l‖r) =

(
l ⊗ ψ(l ⊗ r)

)∥∥∥
(
r ⊗ I(ψ(l ⊗ r))

)
.

l r

ψ

I

h
1

h
2

ψ

I

l
1

r
1

Fig 2: Structure of π̂(invol).

As we can see from Figure 2, the construction of π̂(invol) represent a com-
position of three functions π̂

3
, π̂

2
and π̂

1
, where π̂

3
and π̂

1
have similarities

with 1-round of Lai-Massey scheme. The involution property of the whole
construction can be derived from the well-known fact, that if M is an in-
volution over Vn, then for any permutation G ∈ Vn, the resulting trans-
formation F = G−1 ◦ M ◦ G is an involution over Vn. Here F (l‖r) =

π̂invol, G(l‖r) =
(
l ⊗ I(ψ(l ⊗ r)))

∥∥∥(l ⊗ ψ(l ⊗ r))
)
,M(l‖r) = h1(l)‖h2(r)

and G−1(l‖r) =
(

(l ⊗ ψ(l ⊗ r))‖(l ⊗ I(ψ(l ⊗ r))
)
.

Using the previous construction we have performed a search based on
random generation of 4-bit involutions and non-bijective 4-bit function ψ

(which has no preimage for 0) for finding almost optimal involutions without
fixed points (in contrast to those generated by the construction of π̂) with
the following parameters
• minimum algebraic degree equal to 7;

• graph algebraic immunity equal to 3
(with 441 equations);

• δ-uniformity equal to 8;

• nonlinearity in range of 100 up to a
value of 102.

The possibility of having no fixed points in those involutions constructed
under the π̂(invol). scheme has some significances. In fact, the involutions
produced by this construction have more finite field multiplications which
have an impact on the masking complexity of these kind of permutations
in comparison with those involutions generated by π̂ (Section 4). Moreover,
the cryptographic properties related to linear and differential cryptanalysis
of involutions based on π̂(invol) -construction slightly decrease in comparison
with those generated by π̂.
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4.5 Searching of highly-nonlinear orthomorphisms

In this section we will study the possibility of using our algorithmic-
algebraic scheme to find a special kind of the so-called complete mappings.
Complete mapping were first introduced by Mann [30] and the term ortho-
morphisms was first used by Johnson, Dulmage and Mendelsohn [21] and
were also studied in the following articles [10, 11, 37, 38, 31, 32, 33, 34, 48].
Orthomorphisms are pertinent to the construction of mutually orthogonal
Latin squares and can be used to design check digit systems.

In Cryptography, applications of orthomorphisms of the group (Vn,⊕) are
found in the construction of block ciphers, stream ciphers and hash functions
(in the Lai-Massey scheme most famously in well-known FOX [46] family of
block ciphers, chinese stream cipher LOISS [19] and hash function EDON-
R [17]). More recently, orthomorphisms have been used to strengthen the
Even-Mansour block cipher against some cryptographic attacks [16].

Definition 12. A permutation Φ ∈ S(Vn) is called ortomorphism on Vn, if
the mapping Φ̂ : Vn → Vn, defined as Φ̂(x) = x ⊕ Φ(x) is a permutation of
S(Vn).

The set of all ortomorphisms of the additive group Vn is denoted by
Orth(Vn). For any permutation Φ ∈ S(Vn) we define the following sets as
follows

DΦ =
{

Φ̂(x)
∣∣∣x ∈ Vn

}
=
{

Φ(x)⊕ x
∣∣∣x ∈ Vn

}
, D̃Φ = Vn \ DΦ. (32)

Definition 13. For any Φ ∈ S(Vn) the deficit of Φ, denoted by dΦ, is defined
as

dΦ = #D̃Φ = 2n −#DΦ. (33)

From the above definition we have that Φ ∈ Orth(Vn) if and only if
dΦ = 0, i.е., when #DΦ = 2n.

Proposition 7. For any Φ ∈ Orth(Vn) the following relations holds
WΦ(a, b) =WΦ̂(a⊕ b, b) and ∆Φ(a, b) = ∆Φ̂(a, a⊕ b).
Proof. If the permutation Φ ∈ S(Vn) is an ortomorphism on Vn, then for all
a, b ∈ Vn, WΦ(a, b) =

∑
x∈Vn(−1)〈b,Φ(x)〉⊕〈a,x〉 =

∑
x∈Vn(−1)〈b,Φ̂(x)〉⊕〈a⊕b,x〉 =

WΦ̂(a⊕ b, b). Analogously, we can easy obtain that ∆Φ(a, b) = ∆Φ̂(a, a⊕ b)
holds for all a, b ∈ Vn.

The next proposition shows that regardless the choice of the function ψ
we can not construct orthomorphisms over Vn using the construction of π̂ψ.
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Proposition 8. Let ψ : Vk → Vk be an arbitrary non-bijective function
which has no preimage for 0. Then, for the permutation π̂ψ : V2k → V2k,
defined as π̂ψ = (I(l) ⊗ ψ(l ⊗ r))‖I(r ⊗ ψ(l ⊗ r)), the following inequality
holds

#Dπ̂ψ < 22k (34)

Proof. Let us fix an arbitrary non-bijective k-bit function ψ which has no
preimage for 0 and construct the permutation π̂ψ = (I(l)⊗ψ(l⊗ r))‖I(r⊗
ψ(l⊗r)). As for any a, b ∈ GF(2k)\{0} the equation a⊗x = b has a unique
solution, then for some primitive element c ∈ GF(2k), from relations c−i =
ci⊗ c−2i, where i = 0, . . . , 2k − 2, we have that for l = 0, r = ci, ψ(0) = c−2i

the following equalities holds

π̂ψ(0‖r)⊕ (0‖r) = (0‖I(r ⊗ ψ(0)))⊕ (0‖r) = (0‖ci)⊕ (0‖ci) = 0‖0 = 0.

Now, taking into account that ord(c−2) = 2k − 1, we obtain {c−2i|i =
0, . . . , 2k− 2} = GF(2k) \ {0}. So, independently of the choice of the output
value ψ(0), the following relations are always true

0 = π̂ψ(0‖0)⊕ (0‖0) = π̂ψ(0‖ci)⊕ (0‖ci), i = 0, . . . , 2k − 2. (35)

This means, that for any non-bijective k-bit function ψ which has no preimage
for 0, #Dπ̂ψ = #

{
π̂ψ(l‖r)⊕ (l‖r)

∣∣∣(l‖r) ∈ V2k

}
< 22k.

So, in order to construct orthomorphisms over V2k it is therefore appro-
priate to consider the following class of permutations π̇ψ = I(r ⊗ ψ(l ⊗
r))‖(I(l)⊗ ψ(l ⊗ r)). In this case

Dπ̇ψ =
{

0
}⋃{

I(r ⊗ ψ(0))‖r)
∣∣∣r ∈ V ∗k

}⋃{
(l‖(I(l)⊗ ψ(0))

∣∣∣ l ∈ V ∗k
}

⋃{
(I(r ⊗ ψ(l ⊗ r))‖(I(l)⊗ ψ(l ⊗ r))⊕ (l‖r)

∣∣∣ l, r ∈ V ∗k
}

= U0

⋃
U1

⋃
U2

⋃
U3,

where U0 =
{

0
}
,U1 =

{
I(r⊗ψ(0))‖r)

∣∣∣r ∈ V ∗k
}
,U2 =

{
(l‖(I(l)⊗ψ(0))

∣∣∣ l ∈
V ∗k

}
,U3 =

{
(I(r ⊗ ψ(l ⊗ r))‖(I(l)⊗ ψ(l ⊗ r))⊕ (l‖r)

∣∣∣ l, r ∈ V ∗k
}
.

According to the principle of inclusion/exlusion we have

#Dπ̇ψ =
3∑

t=0

#Ut −
∑

0≤t1<t2≤3

#(Ut1 ∩ Ut2) +
∑

0≤t1<t2<t3≤3

#(Ut1 ∩ Ut2 ∩ Ut3)

−#(U0 ∩ U1 ∩ U2 ∩ U3).
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Hence, in order to achieve #Dπ̇ψ = 22k it is necessary and sufficient to
have the fulfillment of the next conditions

1. #U1 = #U2 = 2k − 1, #U3 = (2k − 1) · (2k − 1);

2. #(Ut1 ∩ Ut2) = ∅, where 0 ≤ t1 < t2 ≤ 3.

However, the problem of describing all k-bit non-bijective functions ψ
which have no preimage for 0 that satisfy simultaneously conditions 1,2 is a
difficult task.

In the following proposition the deficit between two instances of π̇ is
bounded.

Proposition 9. If the lookup-tables of non-bijective k-bit functions ψ =(
. . . i . . .
. . . ψ(i) . . .

)
, ψ̂ =

(
. . . i . . .

. . . ψ̂(i) . . .

)
, differs from each other exactly in

one output value, then for permutations π̇ψ, π̇ψ̂ the following relations holds:

1. dπ̇ψ − 2 · (2k − 1) ≤ dπ̇ψ̂ ≤ dπ̇ψ + 2 · (2k − 1), when i = 0;

2. dπ̇ψ − 2k + 1 ≤ dπ̇ψ̂ ≤ dπ̇ψ + 2k − 1, when i 6= 0.

Proof. Let prove the first item of the proposition. The set Dπ̇ψ̂ can be written
as

Dπ̇ψ̂ =
{

0
}⋃{

I(r ⊗ ψ̂(0))‖r)
∣∣∣r ∈ V ∗k

}⋃{
(l‖(I(l)⊗ ψ̂(0))

∣∣∣ l ∈ V ∗k
}

⋃{
(I(r ⊗ ψ̂(l ⊗ r))‖(I(l)⊗ ψ̂(l ⊗ r))⊕ (l‖r)

∣∣∣ l, r ∈ V ∗k
}
,

From conditions of the proposition, when i = 0 we have that ψ(0) 6= ψ̂(0),
and ψ(j) = ψ̂(j) for any j ∈ {1, . . . , 2k − 1}. Then

Dπ̇ψ̂ =
{

0
}⋃{

I(r ⊗ ψ̂(0))‖r)
∣∣∣r ∈ V ∗k

}⋃{
(l‖(I(l)⊗ ψ̂(0))

∣∣∣ l ∈ V ∗k
}

⋃{
(I(r ⊗ ψ(l ⊗ r))‖(I(l)⊗ ψ(l ⊗ r))⊕ (l‖r)

∣∣∣ l, r ∈ V ∗k
}
,

where obviously #
{
I(r ⊗ ψ̂(0))‖r)

∣∣∣r ∈ V ∗k
}

= #
{

(l‖(I(l)⊗ ψ̂(0))
∣∣∣ l ∈

V ∗k

}
= 2k − 1.

As for the set Dπ̇ψ the next inclusion is true,

Dπ̇ψ ⊇
{

0
}⋃{

(I(r ⊗ ψ(l ⊗ r))‖(I(l)⊗ ψ(l ⊗ r))⊕ (l‖r)
∣∣∣ l ∈ V ∗k , r ∈ V ∗k

}
,

then

Dπ̇ψ̂ ⊆ Dπ̇ψ
⋃{
I(r ⊗ ψ̂(0))‖r)

∣∣∣r ∈ V ∗k
}⋃{

(l‖(I(l)⊗ ψ̂(0))
∣∣∣ l ∈ V ∗k

}
.
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Hence
#Dπ̇ψ̂ ≤ #Dπ̇ψ + 2 · (2k − 1). (36)

Analogously for Dπ̇ψ the following inequality holds

#Dπ̇ψ ≤ #Dπ̇ψ̂ + 2 · (2k − 1). (37)

So, from (36),(37) we deduce that

dπ̇ψ − 2 · (2k − 1) ≤ dπ̇ψ̂ ≤ dπ̇ψ + 2 · (2k − 1).

Let now prove the second item of the proposition. The set Dπ̇ψ̂ can be
decomposed into subsets as follows

Dπ̇ψ̂ =
{

0
}⋃{

I(r ⊗ ψ̂(0))‖r)
∣∣∣r ∈ V ∗k

}⋃{
(l‖(I(l)⊗ ψ̂(0))

∣∣∣ l ∈ V ∗k
}

⋃{
(I(r ⊗ ψ̂(l ⊗ r))‖(I(l)⊗ ψ̂(l ⊗ r))⊕ (l‖r)

∣∣∣ l, r ∈ V ∗k
}

From conditions of the proposition, when i 6= 0 we have ψ(i) 6= ψ̂(i), for
some i ∈ {1, . . . , 2k−1} and ψ(j) = ψ̂(j) for any j ∈ {0, 1, . . . , 2k−1}\{i}.
Then

Dπ̇ψ̂ =
{

0
}⋃{

I(r ⊗ ψ(0))‖r)
∣∣∣r ∈ V ∗k

}⋃{
(l‖(I(l)⊗ ψ(0))

∣∣∣ l ∈ V ∗k
}

⋃{
(I(r ⊗ ψ(l ⊗ r))‖(I(l)⊗ ψ(l ⊗ r))⊕ (l‖r)

∣∣∣ l ∈ V ∗k , r 6= i⊗ l−1 ∈ V ∗k
}

⋃{
(I(r ⊗ ψ̂(l ⊗ r))‖(I(l)⊗ ψ̂(l ⊗ r))⊕ (l‖r)

∣∣∣ l ∈ V ∗k , r = i⊗ l−1
}
,

and it is not difficult to see that #
{

(I(r⊗ ψ̂(l⊗ r))‖(I(l)⊗ ψ̂(l⊗ r))⊕
(l‖r)

∣∣∣ l ∈ V ∗k , r = i⊗ l−1
}
≤ 2k − 1.

Taking into account that for Dπ̇ψ the following relation is true,

Dπ̇ψ ⊇
{

0
}⋃{

I(r ⊗ ψ(0))‖r)
∣∣∣r ∈ V ∗k

}⋃{
(l‖(I(l)⊗ ψ(0))

∣∣∣ l ∈ V ∗k
}

⋃{
(I(r ⊗ ψ(l ⊗ r))‖(I(l)⊗ ψ(l ⊗ r))⊕ (l‖r)

∣∣∣ l ∈ V ∗k , r 6= i⊗ l−1 ∈ V ∗k
}
,

then

Dπ̇ψ̂ ⊆ Dπ̇ψ
⋃{

(I(r ⊗ ψ̂(l ⊗ r))‖(I(l)⊗ ψ̂(l ⊗ r))⊕ (l‖r)
∣∣∣ l ∈ V ∗k , r = i⊗ l−1

}
,

which means
#Dπ̇ψ̂ ≤ #Dπ̇ψ + 2k − 1. (38)

Analogously for Dπ̇ψ the following inequality holds

#Dπ̇ψ ≤ #Dπ̇ψ̂ + 2k − 1, (39)
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and thus from relations (38),(39) we obtain

dπ̇ψ − 2k + 1 ≤ dπ̇ψ̂ ≤ dπ̇ψ + 2k − 1.

Proposition 9 can be used for searching highly-nonlinear orthomorphisms.
In order to achieve the property Dπ̇ψ = 22k we have performed a search algo-
rithm similar to algorithm 1. The main task of this algorithm is to decrease
the values of the deficit of π̇ up to zero, which means that an nonlinear or-
thomorphism is founded. At the same time, according to propositions 4 and
5, it is not difficult to see that the algorithm for searching highly-nonlinear
orthomorphisms can also optimize the differential and (non)linear properties
of the initial permutation π̇ψ. So, we have we have implemented this algo-
rithm (which is omitted due to space limitations) in SAGE [44] obtaining
some affine nonequivalent 8-bit orthomorphisms having the following cryp-
tographic parameters

• minimum algebraic degree equal to 7;

• graph algebraic immunity equal to 3
(with 441 equations);

• δ-uniformity equal to 8;

• nonlinearity in range of 100 up to a
value of 104.

5 Some concrete S-Boxes, its Pollock representations,
column frequency tables and W-intersection matrices

We include in Table 1 some permuations generated by our method, one
ordinary permutation with the best founded cryptographic parameters, two
involutions and one of the best founded orthomophism.

Recall, that the Linear Approximation Table of an n-bit S-Box Φ, denoted
by LATΦ, is an matrix over Z which coefficients are defined as LATΦ(a, b) =
1
2WΦ(a, b).

In [4] the authors suggested looking at the visual representation of the
LAT of an S-Box with the goal of finding some unexpected patterns, which
can be used in some sense to distinguish it from a random one. The suggested
representation is a heatmap of the LAT matrix and was named "a Jackson
Pollock representation" of the LAT.

Similarly to [4], in [45] the author illustrate the usefulness of the "Jackson
Pollock representation" of the LAT of an S-Box, defining the so-called column
frequency table, a tool which can be used to strengthen the effect of some
unexpected patterns of a given S-Box.
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Definition 14. Let A be an n × m matrix over Z. The column frequency
table of A, denoted by CF(A), is defined as

A[y, x] = #
{
ŷ ∈ Z

∣∣A[ŷ, x] = A[y, x]
}
. (40)

S-Box π1 Involution π2
NL(π1) = 104, δ(π1) = 6, deg(π1) = 7,AIgr(π1) = 3, r

π
(3)
1

= 441. NL(π2) = 104, δ(π2) = 6, deg(π2) = 7,AIgr(π2) = 3, r
(3)
π2 = 441.

0x6e 0xe8 0x5f 0xa8 0x32 0x24 0xa7 0xe 0x1d 0x64 0x87 0x14 0xc3 0x6f 0x95 0x92
0xfb 0x4c 0x82 0x99 0x3d 0x19 0xac 0x45 0x9f 0xfe 0xde 0x15 0xb9 0xf9 0xe2 0x8a
0xec 0xf5 0xd 0xea 0x3a 0x77 0x47 0x12 0x11 0x1 0x97 0xc5 0x13 0x10 0x81 0x9d
0xed 0x75 0x88 0x68 0xfa 0xa4 0xc0 0xca 0xba 0xb2 0x3b 0x61 0xae 0xa 0x6c 0x65
0xd5 0x42 0x5d 0xdc 0xf2 0x85 0x9b 0xa6 0x67 0x50 0x63 0x91 0xc7 0x34 0x80 0xd7
0x96 0x1b 0x8e 0x5e 0x94 0x2f 0xb1 0xad 0xa0 0x93 0x2c 0x52 0xd0 0x29 0x7 0xc8
0x8d 0x7f 0x49 0x6b 0x36 0x2e 0xd9 0xe0 0x37 0xcd 0x83 0xaf 0x6d 0x57 0xce 0xb3
0x5c 0xc6 0x60 0xd8 0x3f 0xe4 0x4f 0xab 0x56 0xa1 0x72 0xe7 0x69 0xf1 0xdd 0x9c
0x84 0x90 0x25 0x4b 0x76 0x5a 0x6a 0xda 0xf0 0xe5 0x53 0x5b 0x7e 0x2a 0x2b 0xd3
0x35 0xa3 0x1c 0xa2 0x28 0x9e 0x30 0xa9 0xb4 0x6 0xb 0xef 0xaa 0x43 0xe9 0x7d
0xe1 0x3e 0x31 0x44 0x54 0xdb 0x79 0xc9 0x41 0xfc 0xf7 0x66 0x7a 0xb7 0x51 0x38
0xdf 0x62 0x40 0xbb 0x26 0x9 0xf3 0xcf 0xd2 0x1a 0x20 0xc 0x4 0x16 0x33 0x22
0x4e 0xa5 0x58 0x9a 0xd6 0x2 0xe6 0xcb 0xbe 0xeb 0x86 0x7b 0xbd 0xd1 0x3 0xf6
0xee 0x8f 0xf 0x55 0x8b 0x4a 0x7c 0x23 0x2d 0xb6 0x1f 0xc2 0x17 0xbf 0x73 0x8
0xcc 0x70 0x1e 0x59 0x46 0xe3 0x27 0xff 0x78 0xb8 0x18 0x21 0xd4 0xbc 0x98 0xf4
0xc1 0xc4 0x74 0x39 0x89 0xf8 0xfd 0x48 0x71 0x4d 0xb0 0x3c 0x0 0x8c 0xb5 0x5

0x0 0x10 0x90 0xe0 0xd0 0xb0 0x70 0x60 0xf0 0x20 0xc0 0x50 0xa0 0x40 0x30 0x80
0x1 0x11 0x19 0x85 0x2f 0x2c 0x8b 0xf5 0x2e 0x12 0xfa 0x9a 0x8c 0x98 0xfb 0x93
0x9 0x2d 0x4e 0x3c 0x47 0xd5 0x36 0xdc 0x3b 0x29 0xdb 0x46 0x15 0x21 0x18 0x14
0xe 0xb3 0xb8 0x64 0xb4 0x81 0x26 0x3f 0x86 0x6b 0x89 0x28 0x23 0x65 0x3e 0x37
0xd 0x87 0x8a 0x63 0x6c 0x9c 0x2b 0x24 0x66 0x4f 0x96 0x9b 0x83 0x4d 0x22 0x49
0xb 0xad 0x62 0xbe 0x61 0x5c 0xb7 0xa8 0x69 0xb2 0xa3 0x5b 0x55 0xed 0xe1 0xe9
0x7 0x54 0x52 0x43 0x33 0x3d 0x48 0x67 0xc2 0x58 0x6e 0x39 0x44 0xcc 0x6a 0xcb
0x6 0xbd 0xbf 0x7c 0xaa 0xe2 0x76 0xdf 0xa5 0xb9 0xdd 0xe4 0x73 0xee 0xde 0xa9
0xf 0x35 0xc6 0x4c 0xc3 0x13 0x38 0x41 0xc8 0x3a 0x42 0x16 0x1c 0x8e 0x8d 0x8f
0x2 0x94 0x92 0x1f 0x91 0xd7 0x4a 0xe7 0x1d 0xd3 0x1b 0x4b 0x45 0xd6 0xea 0xe5
0xc 0xc1 0xc9 0x5a 0xcd 0x78 0xab 0xf9 0x57 0x7f 0x74 0xa6 0xac 0x51 0xfd 0xff
0x5 0xc4 0x59 0x31 0x34 0xb5 0xcf 0x56 0x32 0x79 0xbb 0xba 0xce 0x71 0x53 0x72
0xa 0xa1 0x68 0x84 0xb1 0xc7 0x82 0xc5 0x88 0xa2 0xca 0x6f 0x6d 0xa4 0xbc 0xb6
0x4 0xf6 0xd8 0x99 0xd4 0x25 0x9d 0x95 0xd2 0xfc 0xfe 0x2a 0x27 0x7a 0x7e 0x77
0x3 0x5e 0x75 0xe3 0x7b 0x9f 0xe8 0x97 0xe6 0x5f 0x9e 0xf1 0xf2 0x5d 0x7d 0xf7
0x8 0xeb 0xec 0xf4 0xf3 0x17 0xd1 0xef 0xf8 0xa7 0x1a 0x1e 0xd9 0xae 0xda 0xaf

Involution π(invol)
3 Orthomorphism π4

NL(π
(invol)
3 ) = 100, δ(π

(invol)
3 ) = 8, deg(π

(invol)
3 ) = 7,AIgr(π(invol)

3 ) = 3, r
(3)

π
(invol)
3

= 441. NL(π4) = 104, δ(π4) = 8, deg(π4) = 7,AIgr(π4) = 3, r
(3)
π4 = 441.

0xa8 0x5b 0x13 0x39 0x56 0x1b 0x66 0x86 0xff 0x1a 0x74 0x3f 0x96 0x2c 0x9f 0x8e
0x17 0x19 0xe6 0x2 0xab 0xbf 0xfb 0x10 0x4c 0x11 0x9 0x5 0x71 0x64 0x59 0xc7
0x67 0x25 0x49 0xbc 0xfc 0x21 0x31 0x9d 0x58 0x45 0xa0 0x8d 0xd 0x9e 0x6e 0xf8
0x93 0x26 0x69 0x5d 0xbb 0x6d 0xa1 0xf9 0x62 0x3 0x3b 0x3a 0xac 0x7b 0x82 0xb
0x54 0x98 0xea 0xaf 0x88 0x29 0x60 0xb3 0xb1 0x22 0xd9 0xcf 0x18 0xa9 0xd8 0x53
0x81 0x76 0xc9 0x4f 0x40 0x8a 0x4 0x89 0x28 0x1e 0x92 0x1 0xb6 0x33 0x7a 0xd7
0x46 0xca 0x38 0xe5 0x1d 0xcd 0x6 0x20 0x90 0x32 0xc0 0xfd 0xb0 0x35 0x2e 0xa4
0xd1 0x1c 0x83 0xf7 0xa 0x91 0x51 0x85 0xd2 0xec 0x5e 0x3d 0x99 0xa7 0xc1 0xa3
0xc5 0x50 0x3e 0x72 0xce 0x77 0x7 0xc3 0x44 0x57 0x55 0xe8 0xb7 0x2b 0xf 0xdd
0x68 0x75 0x5a 0x30 0xe9 0xc8 0xc 0xeb 0x41 0x7c 0xe1 0xc4 0xdf 0x27 0x2d 0xe
0x2a 0x36 0xed 0x7f 0x6f 0xd0 0xd5 0x7d 0x0 0x4d 0xde 0x14 0x3c 0xef 0xb8 0x43
0x6c 0x48 0xf3 0x47 0xfe 0xda 0x5c 0x8c 0xae 0xf2 0xdb 0x34 0x23 0xbe 0xbd 0x15
0x6a 0x7e 0xe0 0x87 0x9b 0x80 0xd3 0x1f 0x95 0x52 0x61 0xd4 0xe4 0x65 0x84 0x4b
0xa5 0x70 0x78 0xc6 0xcb 0xa6 0xfa 0x5f 0x4e 0x4a 0xb5 0xba 0xe7 0x8f 0xaa 0x9c
0xc2 0x9a 0xf6 0xf5 0xcc 0x63 0x12 0xdc 0x8b 0x94 0x42 0x97 0x79 0xa2 0xf0 0xad
0xee 0xf4 0xb9 0xb2 0xf1 0xe3 0xe2 0x73 0x2f 0x37 0xd6 0x16 0x24 0x6b 0xb4 0x8

0xe1 0x3d 0x2d 0x17 0x51 0x71 0x9b 0x1a 0x96 0xfa 0x64 0x46 0x2f 0x1b 0xe3 0x40
0x1f 0xea 0x12 0xd1 0xa2 0x11 0x5d 0x44 0xb 0xa0 0xaa 0xc9 0x5f 0x58 0xf 0x15
0x5b 0xce 0x49 0x5c 0x7d 0x8a 0xb1 0x2 0x8c 0xcc 0xc8 0xaf 0x56 0xf7 0x4b 0x95
0xa3 0xab 0xcf 0x6f 0xeb 0xd9 0x37 0xdf 0xa8 0x3c 0xbd 0xa4 0x10 0xd7 0xed 0x24
0x29 0x7b 0xe9 0x27 0x22 0x57 0xb6 0xf6 0x79 0x45 0x55 0x82 0xb4 0xc5 0x97 0x69
0x48 0xda 0x2a 0x8f 0x6 0xe2 0x80 0xfe 0xc1 0xf5 0xff 0x3b 0x8d 0x6b 0x85 0xc3
0xdc 0x23 0xca 0x1e 0x5a 0xd 0xf3 0x0 0x81 0xe5 0xc4 0x52 0x32 0x3a 0x1d 0x6d
0x6a 0x77 0x75 0xbe 0xbb 0xb0 0xfc 0xc2 0xf8 0xb2 0x4a 0x9d 0x86 0x4 0x39 0x20
0xd4 0x8 0x4c 0x42 0x94 0xad 0x70 0xa5 0xd5 0x90 0xa7 0xe4 0x3f 0x53 0xde 0x9a
0x54 0xfd 0x2c 0x7 0x5 0x76 0xb8 0xdd 0x7f 0x87 0xa1 0x16 0xd2 0x3e 0xec 0x6e
0x63 0xc 0x50 0x3 0xe8 0x4e 0x73 0x26 0x13 0x4d 0x60 0xa6 0x2e 0xdb 0x8e 0x34
0x5e 0xe7 0xb9 0x1 0xf0 0x72 0xbf 0x25 0x93 0xae 0x62 0x83 0xf4 0xe6 0x47 0x19
0x89 0x7c 0x35 0xa9 0xb5 0x7a 0xf1 0x38 0xef 0x14 0xee 0x1c 0x74 0x31 0xe 0xfb
0xf9 0x91 0x78 0x33 0x18 0xd6 0xd8 0x41 0x9e 0x7e 0xa 0xd3 0x28 0xe0 0xb3 0x21
0x66 0x9f 0xba 0x2b 0x30 0x92 0xbc 0xc6 0x8b 0x6c 0x65 0x68 0x9c 0x4f 0xf2 0x61
0x36 0x84 0xcd 0xc0 0x88 0xc7 0xb7 0x43 0x59 0x98 0xd0 0x99 0x9 0xac 0xcb 0x67

Table 2: Some constructed 8-bit S-Boxes

Fig. 3: Pollock representation of the LAT of S-Boxes π1, π2, π̂
(invol)
3 and π4.

Fig. 4: Column Frequency Tables of the LAT of S-Boxes π1, π2, π̂
(invol)
3 and π4.
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The Pollock representation and column frequency tables of the LAT of
S-Boxes π1,π2,π̂

(invol)
3 and π4 listed in Table 1 are shown in Fig. 3 and 4

respectively.
As we can from Fig. 3 and 4 the existence of some visual patterns can

not be detected for the S-Box π1, which is due to the use of some binary
linear layers in construction of π1. If we remove these binary matrices, the
S-Box π1 has some patterns similar to those detected for involutions π2 and
π̂

(invol)
3 (second and third images displayed in Fig. 3 and 4 respectively). The

diagonal lines observed in Fig. 3 and 4 respectively for the orthomorphism
π4 is due to the fact that for any orthomorphism Φ ∈ Orth(Vn) the following
relation WΦ(a, a) =WΦ̂(0, a) = 0 holds for all a ∈ Vn.

The W-intersection matrices (see, Section 3.3) of nonlinear bijective
transformations π1,π2,π̂

(invol)
3 and π4 for subspaces W1 = {(l‖0)|l ∈ V4},

W2 = {(0‖r)|r ∈ V4} of the vector space V8 have the following form

MW1
(π1) =




1 2 1 1 0 1 3 0 1 2 2 0 1 0 1 0
0 2 0 1 2 0 0 0 2 2 1 1 0 1 1 3
2 4 0 1 1 0 0 1 1 2 0 0 1 0 2 1
1 0 0 1 0 0 4 1 1 0 2 2 2 0 1 1
0 0 0 1 1 2 2 0 2 2 1 0 1 3 0 1
1 1 3 0 0 2 0 0 1 3 2 1 1 1 0 0
0 0 1 2 1 1 2 1 2 0 1 1 2 1 1 0
0 0 0 1 1 2 2 1 0 1 2 0 1 2 2 1
0 0 3 0 1 3 1 2 1 1 0 0 0 2 1 1
2 1 1 2 1 0 0 1 0 1 4 1 0 0 2 0
0 0 0 3 2 2 1 2 0 0 0 1 1 1 1 2
3 2 3 1 1 0 1 0 0 0 0 1 1 2 0 1
2 0 0 0 1 1 0 1 1 1 1 2 1 2 2 1
2 2 2 0 1 1 0 2 2 0 0 2 1 0 1 0
0 2 2 0 1 1 0 2 0 1 0 2 1 1 1 2
2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2




,MW2
(π1) =




0 2 0 0 1 2 1 0 0 0 0 1 3 2 3 1
2 0 2 1 1 3 1 0 1 0 0 1 1 0 1 2
2 1 1 0 1 1 0 0 2 1 0 0 1 2 2 2
0 0 1 0 1 1 0 0 3 3 2 3 1 0 1 0
0 0 2 0 2 0 5 0 1 1 2 1 0 1 0 1
0 0 1 1 3 1 0 1 1 2 2 1 0 0 2 1
2 1 0 1 0 0 1 3 0 2 1 1 2 1 0 1
1 0 1 1 0 1 1 0 1 2 2 2 0 1 1 2
2 3 1 0 1 0 1 2 1 0 1 0 0 2 1 1
1 2 1 1 1 1 2 0 1 0 1 1 1 2 1 0
2 0 1 3 0 0 1 3 1 0 0 2 1 0 1 1
0 3 2 0 1 2 1 1 0 0 0 2 2 0 0 2
2 0 0 2 2 0 0 2 0 2 2 0 0 2 2 0
1 2 0 1 1 0 1 2 0 2 2 0 2 0 0 2
1 2 1 3 0 2 0 1 1 1 0 1 1 1 1 0
0 0 2 2 1 2 1 1 3 0 1 0 1 2 0 0




,MW1
(π2) =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 3 0 0 0 0 0 3 3 0 0 0 0 0 3
1 3 3 3 3 0 0 0 0 0 0 0 0 3 0 0
1 0 3 3 0 0 3 0 3 0 0 3 0 0 0 0
1 0 3 0 3 0 3 0 3 3 0 0 0 0 0 0
1 0 0 0 0 3 3 0 0 0 3 3 0 0 3 0
1 0 0 3 3 3 3 0 0 0 0 0 3 0 0 0
1 0 0 0 0 0 0 3 0 0 3 3 0 3 3 0
1 3 0 3 3 0 0 0 3 0 0 0 3 0 0 0
1 3 0 0 3 0 0 0 0 3 0 0 0 3 3 0
1 0 0 0 0 3 0 3 0 0 3 0 3 0 0 3
1 0 0 3 0 3 0 3 0 0 0 3 3 0 0 0
1 0 0 0 0 0 3 0 3 0 3 3 3 0 0 0
1 0 3 0 0 0 0 3 0 3 0 0 0 3 0 3
1 0 0 0 0 3 0 3 0 3 0 0 0 0 3 3
1 3 0 0 0 0 0 0 0 0 3 0 0 3 3 3




,MW2
(π2) =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 0 1 3 1 1 1 0 0 0 1 0 3 1 0
1 0 3 0 0 1 1 0 3 3 1 0 1 0 1 1
1 1 0 3 3 1 0 0 0 1 1 0 3 0 1 1
1 3 0 3 3 0 0 1 0 0 1 1 1 1 0 1
1 1 1 1 0 3 0 3 1 0 0 0 3 1 0 1
1 1 1 0 0 0 3 1 3 0 1 3 0 1 0 1
1 1 0 0 1 3 1 3 1 1 0 0 1 0 0 3
1 0 3 0 0 1 3 1 3 1 0 1 0 1 1 0
1 0 3 1 0 0 0 1 1 3 1 1 1 0 0 3
1 0 1 1 1 0 1 0 0 1 3 3 0 1 3 0
1 1 0 0 1 0 3 0 1 1 3 3 0 0 1 1
1 0 1 3 1 3 0 1 0 1 0 0 3 1 1 0
1 3 0 0 1 1 1 0 1 0 1 0 1 3 3 0
1 1 1 1 0 0 0 0 1 0 3 1 1 3 3 0
1 0 1 1 1 1 1 3 0 3 0 1 0 0 0 3




MW1
(π̂

(invol)
3 ) =




0 3 1 2 0 2 1 1 2 2 1 0 0 0 0 1
3 4 0 0 1 1 1 1 0 0 1 1 1 0 1 1
1 0 2 1 2 1 2 0 1 2 1 1 0 0 0 2
2 0 1 2 0 1 3 1 1 1 2 1 0 0 0 1
0 1 2 0 0 2 1 0 1 1 2 2 1 2 1 0
2 1 1 1 2 0 0 2 3 1 0 1 1 1 0 0
1 1 2 3 1 0 0 0 0 1 1 1 3 0 1 1
1 1 0 1 0 2 0 0 2 2 2 0 1 2 1 1
2 0 1 1 1 3 0 2 0 0 0 1 3 1 1 0
2 0 2 1 1 1 1 2 0 0 0 0 2 1 3 0
1 1 1 2 2 0 1 2 0 0 0 1 0 3 2 0
0 1 1 1 2 1 1 0 1 0 1 2 0 2 0 3
0 1 0 0 1 1 3 1 3 2 0 0 0 2 2 0
0 0 0 0 2 1 0 2 1 1 3 2 2 0 1 1
0 1 0 0 1 0 1 1 1 3 2 0 2 1 0 3
1 1 2 1 0 0 1 1 0 0 0 3 0 1 3 2




,MW2
(π̂

(invol)
3 ) =




0 2 1 1 1 2 1 2 2 0 2 0 1 0 1 0
2 0 0 0 1 2 3 0 2 1 2 1 1 0 1 0
1 0 0 3 0 0 2 0 2 4 2 0 0 1 1 0
1 0 3 0 0 2 1 3 0 1 0 0 1 1 0 3
1 1 0 0 0 0 1 0 1 1 1 4 2 1 2 1
2 2 0 2 0 0 1 1 1 1 2 1 0 2 0 1
1 3 2 1 1 1 2 1 0 0 1 1 2 0 0 0
2 0 0 3 0 1 1 0 0 2 0 1 2 2 0 2
2 2 2 0 1 1 0 0 2 0 0 1 1 0 2 2
0 1 4 1 1 1 0 2 0 0 2 0 2 1 1 0
2 2 2 0 1 2 1 0 0 2 0 2 0 0 2 0
0 1 0 0 4 1 1 1 1 0 2 0 0 3 0 2
1 1 0 1 2 0 2 2 1 2 0 0 2 1 0 1
0 0 1 1 1 2 0 2 0 1 0 3 1 0 2 2
1 1 1 0 2 0 0 0 2 1 2 0 0 2 2 2
0 0 0 3 1 1 0 2 2 0 0 2 1 2 2 0




,MW1
(π4) =




0 3 2 1 2 1 1 1 0 2 0 0 0 0 2 1
2 4 0 0 1 3 0 0 0 0 3 0 1 1 1 0
1 0 0 0 2 3 0 1 2 1 1 1 3 0 0 1
0 1 1 2 0 0 1 0 0 0 4 1 1 3 2 0
0 0 3 0 1 2 1 2 1 1 0 2 1 0 1 1
1 0 1 1 1 0 1 0 4 0 0 0 2 1 1 3
2 2 1 2 0 2 1 0 1 0 0 0 2 1 1 1
1 0 1 1 1 0 1 2 1 1 0 4 1 0 0 2
1 0 0 1 2 1 0 1 0 3 3 0 0 3 1 0
2 1 1 1 0 1 1 2 1 0 1 1 0 2 1 1
2 1 2 1 2 1 2 1 1 0 1 0 0 1 1 0
1 1 1 0 1 1 1 1 1 1 1 2 0 0 2 2
1 2 0 3 0 0 0 3 1 0 1 1 0 0 2 2
1 1 2 1 1 0 0 2 0 2 0 1 0 3 1 1
0 0 1 1 1 0 5 0 1 3 0 2 1 0 0 1
1 0 0 1 1 1 1 0 2 2 1 1 4 1 0 0




,MW2
(π4) =




0 1 0 2 2 0 2 0 1 3 1 1 1 0 1 1
0 1 0 1 1 0 0 2 1 0 2 2 2 2 1 1
1 0 1 0 0 2 0 0 1 3 3 0 2 2 0 1
1 2 1 2 0 0 0 3 0 1 0 1 1 0 2 2
2 1 2 0 1 2 1 0 3 0 1 2 0 1 0 0
1 2 3 0 0 0 2 2 0 1 2 0 0 2 1 0
2 2 0 2 0 0 1 2 2 0 0 1 2 1 0 1
1 1 2 1 1 2 3 0 1 0 1 0 0 1 1 1
0 2 0 2 0 1 1 0 2 2 0 2 1 0 1 2
2 0 1 0 1 3 0 1 1 0 1 0 3 1 2 0
2 1 1 0 2 2 0 1 1 0 3 0 0 1 1 1
0 0 2 2 2 0 3 0 1 2 0 1 1 1 0 1
1 0 2 0 3 0 2 0 1 1 0 0 1 1 1 3
1 1 0 1 1 1 1 2 1 0 1 3 1 0 1 1
0 0 1 2 0 1 0 2 0 1 0 2 1 2 3 1
2 2 0 1 2 2 0 1 0 2 1 1 0 1 1 0




.

As it can be seen, the matrices MWi
(s), i = 1, 2, where s ∈

{π1, π2, π̂
(invol)
3 , π4} does not have any element equal to 16, which confirms

that subspaces W1 = {(l‖0)|l ∈ V4}, W2 = {(0‖r)|r ∈ V4} of the vec-
tor space V8 are not invariant with respect to the action of these nonlinear
bijective transformations.
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6 Masking complexity of 8-bit S-Boxes obtained by
the scheme of π̂

In this section we study the possibility of combine ours 8-bit S-Boxes with
the classical masking countermeasure against SCAs in terms of its masking
complexity. The polynomial representation of an S-Box defined by relation
(7) is based on four kinds of operations over GF(2n): additions, multiplica-
tions by constants (scalar multiplications), squares, and nonlinear multipli-
cations (i.e. multiplications of two different variables). Except for the latter,
all these operations are linear (resp. affine) over Vn. The processing of any S-
Box can then be performed as a sequence of functions which are linear (resp.
affine) over Vn (themselves composed of additions, squares and scalar mul-
tiplications) and of nonlinear multiplications. Masking an S-Box processing
can hence be done by masking every operation mentioned above indepen-
dently. We recall hereafter the concept of masking complexity introduced in
[7] and defined as follows.

Definition 15. The masking complexity of any n-bit S-Box Φ, denoted by
MC(Φ), is the minimal number of nonlinear multiplications required to eval-
uate its polynomial representation over GF(2n).

Denoting byMn
k as the class of exponents α such that Xα has a masking

complexity equal to k we summarizes in Table 3 the results (obtained in [7])
for the cyclotomic classes Cα = {α · 2j mod (15) |j = 0, 1, 2, 3.} inM4

k.

k Cyclotomic classes inM4
k

0 C0 = {0}, C1 = {1, 2, 4, 8}
1 C3 = {3, 6, 12, 9}, C5 = {5, 10}
2 C7 = {7, 11, 13, 14}

Table 3: Cyclotomic classes for n = 4 w.r.t. the masking complexity k.

Taking into account that the number of field multiplications for any 4-bit
permutation and any 4-bit non-bijective function is lower bounded by 0 and
upper bounded by 3,4 respectively (see, [7]), we obtain the following bounds
for 8-bit S-Boxes produced by our construction:

5 ≤ # nonl. mult. of π̂ ≤ 12. (41)

As we can see from (15), 8-bit S-Boxes with only 5 nonlinear multiplications
over GF(24) can be constructed using the proposed scheme.

The number of field of multiplications for those involutions ob-
tained by the π̂(invol) scheme is given by the following bound 10 ≤
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# nonl. mult. of π̂(invol) ≤ 24. As we can see, masking these involutions is
more expensive than ordinary S-Boxes produced by the construction of π̂.

S-Box class # nonl. multiplications
AES’s S-Box [15] 4 (GF(28))
AES’s S-Box [23] 5 (GF(24))
Clefia S-Box [15] 10 (GF(28))
Iceberg S-Box [15] 18 (GF(24))
Khazad S-Box [15] 18 (GF(24))
Picaro S-Box [40] 4 (GF(24))
Zorro S-Box [15] 4 (GF(24))

S-Boxes based on π̂ scheme [this work] 5 ≤ # nonl. multiplications ≤ 10

S-Boxes based on π̂(invol) scheme [this work] 10 ≤ # nonl. multiplications ≤ 24

Table 4: Comparison of 8-bit S-Boxes w.r.t. # nonl. multiplications.

Finally, in Table 3 we compare our results with some candidates having
a given level of masking. As we can see our S-Boxes based on π̂ scheme
exhibits better values of fields multiplications than S-Boxes of Clefia, Iceberg
and Khazad respectively, having at the same time stronger cryptographic
properties but at the cost of a worse number of nonlinear multiplications
compared with the AES [23], Picaro [40] and Zorro S-Boxes [15].

7 Conclusion and Future Work

In this work we have presented a new algorithmic-algebraic scheme based
on the Lai-Massey structure for constructing permutations of dimension
n = 2k, k ≥ 2. Compared to the best nonlinearity (108, for k = 4) offered by
the construction presented in [9] and latter generalized in [14], the nonlinear-
ity for the permutations obtained by our scheme slightly decrease up to 104,
but to the best of our knowledge the schemes presented in [9, 14] can not
produce involutions and orthomorphisms with cryptographic properties close
to the optimal ones, so we can conclude that the new structure presented in
this work is more powerful and attractive due to the diversity of permutations
that can be constructed. Interestingly, the involutions and orthomorphisms
founded in this work have comparable classical cryptographic properties as
those constructed by using spectral-linear and spectral-differential methods
[31] and the limited deficit’s method [33]. The main advantage of our 8-bit
permutations is that they can be constructed using smaller 4-bit compo-
nents which could be useful for the implementation of the S-Box in hardware
or using a bit-sliced approach. The aim of this work was to present a new
scheme that can help to find permutations, involutions and orthomophisms
with rather good cryptographic properties. There are several questions (more
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theoretical results, hardware and bit-sliced implementations, more efficient
methods of masking) about the class of permutations suggested in this work
which are left as future work.
Acknowledgements. The author is very grateful to Oleg V. Kamlovskiy
and the anonymous reviewers of CTCrypt’2020 for their useful comments
and valuable observations, which helped to improve the final version of this
article.
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Abstract

In this work1 we give a review of metrical properties of the entire set of bent
functions and its significant subclasses of self-dual and anti-self-dual bent functions.
We give results for iterative contruction of bent functions in n+2 variables based on
the concatention of four bent functions and consider related open problem proposed
by the second author. Criterion of self-duality for bent iterative functions and corol-
laries on sign functions and constructions of self-dual bent functions are discussed.
It is explored that the pair of sets of bent functions and affine functions as well as
a pair of sets of self-dual and anti-self-dual bent functions in n > 4 variables is a
pair of mutually maximally distant sets that implies metrical duality. The solution
to the problems of preserving bentness and anti-self-duality within automorphisms
of the set of all Boolean functions is considered.

Keywords: Boolean bent function, self-dual bent function, Hamming distance, metrical
regularity, automorphism group, iterative construction

1 Introduction

How much do we know about some cryptographic objects? One way to
measure it is to describe what we can do with them. Otherwise to characterize
groups of automorphisms of these objects — separately for each object or
together while they form some special class. The question about the group of
automorphisms of a set in the Boolean cube necessarily leads us to metrical
properties of this set. That is why we are very interested inmetrical properties
of distinct cryptographic Boolean functions.

The term “bent function” was introduced by Oscar Rothaus in
the 1960s [28]. It is known [36], that at the same time Boolean functions
with maximal nonlinearity were also studied in the Soviet Union. The term

1The work is supported by Mathematical Center in Akademgorodok under agreement No. 075-15-2019-
1613 with the Ministry of Science and Higher Education of the Russian Federation and Laboratory of
Cryptography JetBrains Research.
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minimal function, which is actually a counterpart of a bent function, was
proposed by the Soviet scientists Eliseev and Stepchenkov in 1962. Bent
functions have connections with such combinatorial objects as Hadamard
matrices and difference sets. Since bent functions have maximum Hamming
distance to linear structures and affine functions they deserve attention for
practical applications in symmetric cryptography, in particular, for block and
stream ciphers. We refer to the survey [5] and monographies of Mesnager [25]
and Tokareva [36] for more information concerning known results and open
problems related to bent functions. Results regarding the study of metrical
properties of the set of bent functions one can find in article [16].

In this paper we give a review on metrical properties of the entire class
of bent function Bn and its important subclasses — self-dual bent functions
SB+(n) (i.e. functions such that f = f̃) and anti-self-dual bent functions
SB−(n) (i.e. functions such that f ⊕ 1 = f̃), where f̃ is the dual of f . We
suppose that the keys to the nontrivial and important properties of the class
of bent functions are in understanding how does the duality mapping f → f̃

operate with bent functions. Recall that ˜̃f = f for every bent function f . It
is important to note that the duality mapping is the unique known isometric
mapping of the bent functions into themselves that can not be extended to a
typical isometry of the whole set of all Boolean functions that preserves bent
functions.

On other hand, the essence of bent functions is expressed in their met-
rical properties, namely in maximizing distances between them and affine
functions. Note that this very idea in more general form is realized in the
concept of metrical complement and metrically regular sets. Recall that X̂ is
the metrical complement of the set of functions X if it contains all Boolean
functions that are on the maximal possible distance from X. The set is met-
rically regular, if ̂̂X = X. There is a some similarity to the self-duality of
bent functions, is not it?

Our attention is drawn to automorphism groups of the sets Bn, An,
SB+(n), SB−(n) and their metrical properties. Previously, we established
that the set of all bent functions Bn and the set of all affine functions
An form a pair of metrically regular sets, i.e. ̂̂Bn = Ân = Bn. Now we
prove the same fact for the classes of self-dual and anti-self-dual func-
tions: they form another such pair of metrically complement functions,

i.e.
̂̂

SB+(n) = ŜB−(n) = SB+(n). In both cases for elements in a pair of met-
rically regular sets we prove the coincidence of automorphism groups. Thus,
Aut (Bn) = Aut (An) and Aut

(
SB+(n)

)
= Aut

(
SB−(n)

)
. Some other cu-

A. Kutsenko and N. Tokareva 150



Metrical Properties of the Set of Bent Functions in View of Duality

rious properties of bent functions related to their special constructions are
discussed in the paper.

The work has the following structure: notation and definitions are in the
Section 2. In Section 3 the duality of a bent function is described, including
some its important properties and relevant hypothesis (Section 3.1). Some
general and metrical properties of the set of bent functions which coincide
with their duals, namely self-dual bent functions, are given in Section 3.2.
In Section 4 we discuss the iterative construction of bent function in n + 2
variables based on the concatenation of four bent functions in n variables.
The lower bounds on its cardinality and open problem relevant for the set
of bent function are in Section 4.1. Criterion of self-duality for bent iterative
functions and its corollaries for sign functions together with constructions of
self-dual bent functions are discussed in Sections 4.2 and 4.3. In Section 5 the
metrical complement of the set of bent functions is studied (Section 5.2) and
the results regarding metrical regularity of the set of bent functions and the
set of affine functions are given. Metrical complement of the set of (anti-)self-
dual bent functions is in Section 5.3. In Section 6 groups of automorphisms
of considered sets are studied. The group of automorphisms of the set of bent
functions is characterized in Section 6.3 while the (anti-)self-dual case is in
Section 6.5. In Section 6.4 we discuss automorphisms of the set of all Boolean
functions in n variables which define bijections between sets of self-dual and
anti-self-dual bent functions. In Section 6.6 we state the relation between the
results from Section 6.5 and preserving of the Rayleigh quotient of a Boolean
function.

2 Notation

Let Fn2 be a space of binary vectors of length n. Denote, following [12],
the orthogonal group of index n over the field F2 as

On =
{
L ∈ GL (n,F2) |LLT = In

}
,

where LT denotes the transpose of L and In is an identical matrix of order
n over the field F2.

A Boolean function f in n variables is a map from Fn2 to F2. Its sign
function is F (x) = (−1)f(x), x ∈ Fn2 . We will also refer to a sign function as
to a vector from the set {±1}2n:

F = (−1)f =
(
(−1)f0, (−1)f1, ..., (−1)f2n−1

)
∈ {±1}2n ,
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where (f0, f1, ..., f2n−1) ∈ F2n
2 is a truth-table representation of f with ar-

guments given in the lexicographic order. The set of Boolean functions in n
variables is denoted by Fn.

The algebraic normal form (ANF, Zhegalkin polynomial) of a Boolean
function f ∈ Fn is defined to be

f (x1, x2, ..., xn) =
⊕

(i1,i2,...,in)∈Fn2

ai1i2...inx
i1
1 x

i2
2 ...x

in
n ,

where az ∈ F2 for any z ∈ Fn2 (with the convention 00 = 1). The algebraic
degree deg(f) of a Boolean function f is the maximal degree of monomials
which occur in its algebraic normal form with nonzero coefficients.

The Hamming weight wt(x) of the vector x ∈ Fn2 is the number of nonzero
coordinates of x. The Hamming weight wt(f) of the function f ∈ Fn is
the Hamming weight of its vector of values. The sign ⊕ denotes a sum
modulo 2. The Hamming distance dist(f, g) between Boolean functions f, g
in n variables is a cardinality of the set {x ∈ Fn2 : f(x)⊕ g(x) = 1}. For

x, y ∈ Fn2 denote 〈x, y〉 =
n⊕
i=1

xiyi. Boolean functions in n variables of the

form f(x) = 〈a, x〉 ⊕ a0, x ∈ Fn2 , where a0 ∈ F2, a ∈ Fn2 , are called affine
functions. The set of affine functions in n variables is denoted by An.

A mapping ϕ of the set of all Boolean functions in n variables to itself
is called isometric if it preserves the Hamming distance between functions,
that is

dist(ϕ(f), ϕ(g)) = dist(f, g),

for any f, g ∈ Fn.
The Walsh–Hadamard transform (WHT) of a Boolean function f in n

variables is an integer valued function Wf : Fn2 → Z, defined as

Wf(y) =
∑

x∈Fn2

(−1)f(x)⊕〈x,y〉, y ∈ Fn2 .

A Boolean function f in an even number n of variables is called bent if

|Wf(y)| = 2n/2,

for all y ∈ Fn2 . The set of all bent functions in n variables is denoted by Bn.

3 The dual of a bent function

From the definition of a bent function it follows that for any y ∈ Fn2 we
have

Wf(y) = (−1)f̃(y)2n/2,
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for some f̃ ∈ Fn. The Boolean function f̃ defined above is called the dual
function of the bent function f . Thus, for any bent function in n variables
its dual Boolean function is uniquely defined. The duality of bent functions
was introduced by Dillon [10].

3.1 Properties

Some basic known properties of dual functions are the following [5]:

– Every dual function is a bent function;

– If f̃ is dual to f and ˜̃f is dual to f̃ , then ˜̃f = f ;

– The mapping f → f̃ which acts on the set of bent functions, preserves
the Hamming distance.

There is the following connection between the algebraic degrees of a bent
function and its dual [13]:

n/2− deg(f) >
n/2− deg

(
f̃
)

deg
(
f̃
)
− 1

.

Some results obtained for dual functions can be used in proving the results
concerning bent functions, in particular, the connection between algebraic
normal form (ANF) coefficients of a bent function and its dual, see [7]:

∑

x4y
f(x) = 2wt(y) − 2n/2−1 + 2wt(y)−n/2 ∑

x4y⊕1

f̃(x).

One of the most important problem in bent functions is to find the num-
ber of them. A new approach to this problem was introduced in [32], see
Section 4.1, and the following hypothesis was formulated.

Hypothesis (Tokareva, 2011): any Boolean function in n variables of
degree not more than n/2 can be represented as the sum of two bent functions
in n variables, where n > 2 is an even number.

The review of partial results regarding this problem and also in favour of
the Hypothesis one can find in [34]. It was also proved in [35] that

Theorem 1. A bent function in n > 4 variables can be represented as the
sum of two bent functions in n variables if and only if its dual bent function
does.
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So, it follows that the mentioned Hypothesis with the decomposition
problem, see Section 4.1, can not be considered separately for a bent function
and its dual.

It is worth noting that this hypothesis is a counterpart of the Goldbach’s
conjecture in number theory unsolved since 1742: any even number n > 4
can be represented as the sum of two prime numbers.

Isometric mappings of the set of all Boolean functions in n variables to
itself which preserve bentness and the Hamming distance between every bent
function and its dual were characterized in [19], namely it was proved that

Theorem 2. An isometric mapping ϕ of the set of all Boolean functions in
n variables into itself preserves bentness and the Hamming distance between
every bent function and its dual if and only if ϕ has form

f(x) −→ f (L (x⊕ c))⊕ 〈c, x〉 ⊕ d, x ∈ Fn2 ,

for some L ∈ On, c ∈ Fn2 , wt(c) is even, d ∈ F2.

3.2 Self-duality

If a bent function f coincides with its dual it is said to be self-dual, that
is f = f̃ . A bent function which coincides with the negation of its dual is
called an anti-self-dual, that is f = f̃ ⊕ 1. The set of (anti-)self-dual bent
functions in n variables, according to [14], is denoted by SB+(n)

(
SB−(n)

)
.

Self-dual bent functions were explored in paper of Carlet et. al. [4] in 2010,
where some important properties and constructions were given. All equiv-
alence classes of self-dual bent functions in 2, 4, and 6 variables and all
quadratic self-dual bent functions in 8 variables with respect to a restricted
form of an affine transformation

f(x) −→ f (L (x⊕ c))⊕ 〈c, x〉 ⊕ d, x ∈ Fn2 ,

where L ∈ On, c ∈ Fn2 , wt(c) is even, d ∈ F2, which preserves self-duality were
also presented. Further, equivalence classes of cubic self-dual bent functions
in 8 variables with respect to the mentioned above restricted form of affine
transformation one can find in [11]. In [14] a classification of quadratic self-
dual bent functions was obtained. The upper bound for the cardinality of the
set of self-dual bent functions was given in [15]. In [20, 24] one can find new
constructions of self-dual bent functions. A connection of quaternary self-
dual bent functions and self-dual bent Boolean functions was shown in [29].
In [18] it was proved that for any d ∈ {2, 3, ..., n/2} there exists a self-dual
bent function of algebraic degree d.
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In papers [17, 18, 19] metrical properties of the sets of (anti-)self-dual
bent functions in n variables were studied. Below we briefly discuss some of
them.

Recall that bent functions in 2k variables which have a representation

f(x, y) = 〈x, π(y)〉 ⊕ g(y), x, y ∈ Fk2,

where π : Fk2 → Fk2 is a permutation and g is a Boolean function in k variables,
form the well known Maiorana–McFarland class of bent functions [23]. Let
the denotion SB+

M(n) stands for the set of self-dual Maiorana–McFarland
bent functions and SB−M(n) for the set of anti-self-dual ones. Necessary and
sufficient conditions of (anti-)self-duality of bent functions from Maiorana–
McFarland class are known from [4]. Regarding the spectrum of Hamming
distances in [17] the following result was proved.

Theorem 3. Let f, g ∈ SB+
M(n) ∪ SB−M(n), then

dist(f, g) ∈
{

2n−1, 2n−1

(
1± 1

2r

)
, r = 0, 1, ..., n/2− 1

}
,

Moreover, if either f, g ∈ SB+
M(n) or f, g ∈ SB−M(n), then all distances

except 2n−1 are attainable, and for any pair f ∈ SB+
M(n) and g ∈ SB−M(n)

it holds dist(f, g) = 2n−1.

By analysis of the set of distances from Theorem 3 the minimal Hamming
distance between considered functions can be obtained:

Corollary 1. Let n > 4, then the minimal Hamming distance between (anti-
)self-dual Maiorana–McFarland bent functions is equal to 2n−2.

Moreover, since the minimal Hamming distance between quadratic
Boolean functions in n variables (which correspond to codewords of
the RM(2, n) code) is at least 2n−2 [21], the following fact holds

Corollary 2. Let n > 4, then the minimal Hamming distance between
quadratic bent functions can be attained on (anti-)self-dual Maiorana–
McFarland bent functions.

It is well known that the minimal Hamming distance between bent func-
tions in n variables is equal to 2n/2, see [16] for instance. In [18] it was proved
that this extremal value can be attained on (anti-)self-dual bent functions.

Theorem 4. Let n > 4, then the minimal Hamming distance between dis-
tinct (anti-)self-dual bent functions in n variables is equal to 2n/2.
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4 Iterative construction BI
Let f0, f1, f2, f3 be Boolean functions in n variables. Consider a Boolean

function g in n+ 2 variables which is defined as

g(00, x) = f0(x), g(01, x) = f1(x),

g(10, x) = f2(x), g(11, x) = f3(x),

where x ∈ Fn2 .
It is known (Preneel et. al., 1991; see also [1, 32]) that under condition

f0, f1, f2, f3 ∈ Bn the mentioned function g is a bent function in n + 2
variables if and only if

f̃0 ⊕ f̃1 ⊕ f̃2 ⊕ f̃3 = 1,

that gives the construction of a bent function in n+ 2 variables through the
concatenation of vectors of values of four bent functions in n variables [27].

Bent functions which are obtained by this construction, in accordance
with [32], are called bent iterative functions (BI) and the set of such bent
functions in n variables is denoted by BIn.

In the article [6] the comparison of cardinalities of different known iter-
ative constructions of bent functions in n 6 10 variables was presented and
the class BI had the biggest cardinality among them.

According to [1] there exist bent functions from Maiorana–McFarland
class [23] and from the class PS (Partial Spreads) [10] that can not be rep-
resented as bent iterative functions. Also from paper [2] on nonnormal bent
functions it follows that there exist bent functions in BIn that are nonequiv-
alent to Maiorana–McFarland bent functions.

4.1 Lower bounds on the cardinality and related open problem

In paper [32] some possible ways of how to calculate the number of bent
iterative functions were shown.

Theorem 5. For any even n > 4

|BIn| =
∑

f ′∈Bn−2

∑

f ′′∈Bn−2

|(Bn−2 ⊕ f ′) ∩ (Bn−2 ⊕ f ′′)| .

Denote Xn = {f ⊕ h|f, h ∈ Bn} and consider the system {Cf : f ∈ Bn}
of its subsets defined as Cf = Bn ⊕ f . So,

Xn =
⋃

f∈Bn
Cf .
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Let ψ be an element ofXn. The number of subsets Cf that cover ψ, according
to [32], is called multiplicity of ψ and is denoted by m (ψ). One can notice
that if ψ is covered by Cf then it is covered by any set Cf ′, where f ′ is
obtained from f by adding an affine function.

In [32] the exact number of bent iterative functions through the multi-
plicities was obtained.

Theorem 6. For any even n > 2

|BIn+2| =
∑

ψ∈Cf
m2 (ψ) .

So, in order to evaluate |BIn+2| (and then |Bn+2|) we have to study the
set Xn and the distribution of multiplicities for its elements. Such analysis,
as shown in [32], gives the following lower bound.

Theorem 7. For any even n > 2

|Bn+2|4
|Xn|

6 |BIn+2| 6 |Bn+2| .

Thus for calculating the exact number of bent iterative functions one has
to study the structure of the setXn. So, we come to a new problem statement.

Open problem: bent sum decomposition (Tokareva, 2011). What
Boolean functions can be represented as the sum of two bent functions in n
variables? How many such representations does a Boolean function admit?

The related Hypothesis was previuosly mentioned in the Section 3.1.

4.2 Self-dual bent iterative functions

The set of (anti-)self-dual bent functions from BIn is further denoted by
SB+
BI(n)

(
SB−BI(n)

)
.

In paper [18] the necessary and sufficient conditions of self-duality of bent
iterative functions were studied, namely the following result was obtained.

Theorem 8. Let g ∈ BIn+2 then g is self-dual if and only if there exists
such pair of functions g1, g2 ∈ Bn and a function h ∈ Fn that:

f0 = (g1 ⊕ g2)h⊕ g1 = g̃2,

f1 = (g1 ⊕ g2)h⊕ g2 = g̃1 ⊕ h,
f2 = (g1 ⊕ g2)h⊕ g2 ⊕ h = g̃1,

f3 = (g1 ⊕ g2)h⊕ g1 ⊕ h⊕ 1 = g̃2 ⊕ h⊕ 1.
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Remark 1. It can be proved that the function h is uniquely defined by a pair
of bent functions g1, g2, namely: h = g1 ⊕ g̃1 ⊕ g2 ⊕ g̃2.

By considering constant function h one can immediately obtain two con-
structions of self-dual bent iterative functions.

Corollary 3. Functions

f ′ (y1, y2, x) = (y1 ⊕ y2)
(
f(x)⊕ f̃(x)

)
⊕ f(x)⊕ y1y2,

f ′′ (y1, y2, x) = (y1 ⊕ y2) (ϕ(x)⊕ ω(x))⊕ ϕ(x)⊕ α1y1 ⊕ α2y2 ⊕ y1y2,

where
y1, y2, α1, α2 ∈ F2, α1 ⊕ α2 = 1, x ∈ Fn2 ,
f ∈ Bn, ϕ ∈ SB+(n), ω ∈ SB−(n),

are self-dual bent functions in n+ 2 variables.

Remark 2. The first construction from those listed above (for f ′) was pre-
sented in [4] as an example of the construction which uses the indirect sum of
bent functions, see [3]. It is worth noting that the second construction (for f ′′)
can also be obtained from indirect sum of bent functions.

Since these constructions do not intersect, the sum of their cardinalities
is a lower bound for the cardinality of the set of self-dual bent iterative
functions.

Corollary 4. It holds

|Bn−2|+
∣∣SB+(n− 2)

∣∣2 6
∣∣SB+

BI(n)
∣∣ 6 |Bn−2|2 .

4.3 The dimension of linear span of sign functions of self-dual
bent functions

Let In be an identity matrix of size n and Hn = H⊗n1 be the n-fold tensor
product of the matrix H1 with itself, where

H1 =

(
1 1
1 −1

)
.

It is known the Hadamard property of this matrix

HnH
T
n = 2nI2n.

Denote Hn = 2−n/2Hn. In terms of sign functions the function f ∈ Fn is
bent if for its sign function F it holds HnF ∈ {±1}2n.
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Recall that a non-zero vector v ∈ Cn is called an eigenvector of a square
n×n matrix A attached to the eigenvalue λ ∈ C if Av = λv. A linear span of
eigenvectors attached to the eigenvalue λ is called an eigenspace associated
with λ. Consider a linear mapping ψ : Cn → Cn represented by a n × n
complex matrix A. A kernel of ψ is the set

Ker (ψ) = {x ∈ Cn|Ax = 0 ∈ Cn} ,
where 0 is a zero element of the space Cn.

From the definition of self-duality it follows that sign function of any
self-dual bent function is the eigenvector of Hn attached to the eigenvalue 1,
that is an element from the subspace Ker (Hn − I2n) = Ker

(
Hn − 2n/2I2n

)
.

The same holds for a sign function of any anti-self-dual bent function, which
obviously is an eigenvector of Hn attached to the eigenvalue (−1), that is an
element from the subspace Ker (Hn + I2n) = Ker

(
Hn + 2n/2I2n

)
.

In [4] an orthogonal decomposition of R2n in eigenspaces of Hn was given:

R2n = Ker
(
Hn + 2n/2I2n

)
⊕ Ker

(
Hn − 2n/2I2n

)
, (1)

where the symbol ⊕ denotes a direct sum of subspaces.
It is known that

dim
(
Ker

(
Hn + 2n/2I2n

))
= dim

(
Ker

(
Hn − 2n/2I2n

))
= 2n−1,

where dim(V ) is the dimension of the subspace V ⊆ R2n. Moreover, from
symmetricity of Hn it follows that the subspaces Ker

(
Hn − 2n/2I2n

)
and

Ker
(
Hn + 2n/2I2n

)
are mutually orthogonal.

In [18] it was proved that within the set of sign functions of self-dual
and anti-self-dual bent functions in n > 4 variables there exist basises of
the eigenspaces of the matrix Hn attached to the eigenvalues 1 and (−1)
correspondingly.

Theorem 9. The linear span of sign functions of (anti-)self-dual bent func-
tions in n > 4 variables has dimension 2n−1.

It is worth notice that the desired basises consist of sign functions of
(anti-)self-dual bent iterative functions provided by two constructions from
Corollary 3.

5 Metrical complement and regularity

In this section we give results regarding notable metrical property of a
subset of Boolean cube called metrical regularity. The sets of affine Boolean
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functions and bent functions possess it. The sets of self-dual and anti-self-
dual bent functions in n > 4 variables are also mutually maximaly distant.
That implies metrical duality, in some sence, between the considered pairs of
subsets of Boolean functions.

Regarding that some essential and intriguing questions arise: for instance,
are there any pairs of metrically regular subsets inside the metrically regular
set of bent functions in n variables? If additionally, in order to exclude some
trivial cases we consider only the subsets which include functions together
with their negations, the maximal Hamming distance from the considered
sets is at most 2n−1. Are there any pairs of metrically regular subsets with
additional mentioned requirement such that the distance between them is
exactly 2n−1, that is to say they are extremal in a manner?

5.1 Definitions

Let X ⊆ Fn2 be an arbitrary set and let y ∈ Fn2 be an arbitrary vector.
Define the distance between y and X as dist(y,X) = min

x∈X
dist(y, x). The

maximal distance from the set X is

d(X) = max
y∈Fn2

dist(y,X).

In coding theory this number is also known as the covering radius of
the set X. A vector z ∈ Fn2 is called maximally distant from a set X if
dist(z,X) = d(X). The set of all maximally distant vectors from the set
X is called the metrical complement of the set X and denoted by X̂. A set
X is said to be metrically regular if ̂̂X = X. Define, a subset of Boolean
functions to be metrically regular if the set of corresponding vectors of values
is metrically regular [36].

Sets of functions which have maximum distance from partition set func-
tions were studied in [30], it was shown that partition set functions defined by
some partition are mutually maximally distant sets. Lower bound on size of
the largest metrically regular subset of the Boolean cube was studied in [26].

5.2 The set of bent functions

Further the symbol GA(n) stands for the affine group. It is well-known
that

Proposition 1. Any isometric mapping of the form

f(x) −→ f (Ax⊕ b)⊕ 〈c, x〉 ⊕ d,
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where A ∈ GL(n), b, c ∈ Fn2 , d ∈ F2, preserves bentness.

In [33] the following theorem was proved:

Theorem 10. For each non-affine Boolean function h ∈ Fn there exists a
bent function f ∈ Bn such that f ⊕ h is not bent.

From Proposition 1 and Theorem 10 it follows that the set of bent func-
tions is closed under addition of affine Boolean functions only. This fact
implies that the affine functions are precisely all Boolean functions which are
at the maximum distance from the class of bent functions. Namely, in [33] it
was shown that

Theorem 11. A Boolean function in n variables is

— a bent function if and only if it has the maximal possible distance 2n−1−
2n/2−1 to the set of all affine functions, that is it is an element of Ân;

— an affine function if and only if it has the maximal possible distance
2n−1 − 2n/2−1 to the set of all bent functions, that is it is an element
of B̂n.

Thus, from the results given in [33] it follows that there exists a duality,
in some sense, between the definitions of bent functions and affine functions.
In particular, we obtain metrical regularity of the sets of affine functions and
bent functions.

Corollary 5. It holds:

— the set An of all affine Boolean functions in n variables is metrically
regular;

— the set Bn of all bent functions in n variables is metrically regular.

5.3 The set of (anti-)self-dual bent functions

Since for any self-dual Boolean function f ∈ SB+(n) its negation f ⊕ 1
is also self-dual, the maximal Hamming distance from the set SB+(n) is at
most 2n−1. It was proved by Carlet et. al. in [4] that the Hamming distance
between any pair of self-dual and anti-self-dual bent functions, both in n
variables, is equal to 2n−1. From that it follows that

d
(
SB+(n)

)
= 2n−1,

and all anti-self-dual bent functions in n variables belong to the metrical
complement of the set of self-dual bent functions in n variables.
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In paper [18] the metrical complement of the set of (anti-)self-dual bent
functions in n > 4 variables was completely characterized by using the or-
thogonal decomposition (1) and the existence of the basis provided by the
Theorem 9, namely it was proven that

Theorem 12. Let n > 4, then the following statements hold:

— The metrical complement of the set of self-dual bent functions coincides
with the set of anti-self-dual bent functions;

— The metrical complement of the set of anti-self-dual bent functions co-
incides with the set of self-dual bent functions.

As for the pair of the sets of bent functions and affine functions, it follows
that there exists a duality, in some sense, between the sets of self-dual and
anti-self-dual bent functions in n > 4 variables.

The case n = 2 was considered explicitely and it appeared that both
SB+(2) and SB−(2) are metrically regular sets. From that and the Theo-
rem 12 it follows

Theorem 13. The sets SB+(n), SB−(n) are metrically regular sets, both
with covering radius 2n−1.

6 The group of automorphisms

Study of automorphism groups of mathematical objects deserves atten-
tion since these groups are closely connected with the structure of the objects.
There exists a natural question: how groups of automorphisms of two math-
ematical objects, one of which is embedded to another one, are related.

An example of such a problem statement is the set of bent functions in
n variables and one of its significant subclasses which consisits of self-dual
bent functions in n variables.

It is also worth mentioning that the complexity of classification of com-
binatorial objects depends on generality of the approach. Consequently, the
question ’if the common approach to classify (self-dual) bent functions is the
most general within automorphisms of the set of Boolean functions’, arises
naturally.

6.1 Isometric mappings and automorphism groups

Recall that a mapping ϕ of the set of all Boolean functions in n variables
to itself is called isometric if it preserves the Hamming distance between
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functions, that is
dist(ϕ(f), ϕ(g)) = dist(f, g),

for any f, g ∈ Fn. Following [19] denote the set of all isometric mappings of
the set of all Boolean functions in n variables to itself by In.

It is known (A. A. Markov, 1956) that every isometric mapping of all
Boolean functions in n variables to itself has the unique representation of the
form

f(x) −→ f(π(x))⊕ g(x), (2)
where π is a permutation on the set Fn2 and g ∈ Fn [22]. The mapping of
this form is denoted by ϕπ,g ∈ In.

The group of automorphisms of a fixed subset M ⊆ Fn is the group of
isometric mappings of the set of all Boolean functions in n variables to itself
preserving the set M . It is denoted by Aut (M).

6.2 Matrix representation

For a number k ∈ {0, 1, ..., 2n − 1} denote by vk ∈ Fn2 its binary repre-
sentation.

Recall that a square matrix is called monomial (or generalized permuta-
tion matrix) if it has exactly one nonzero entry in each row and each column.

There is an one-to-one correspondence between the set In and the set of
monomial matrices of order 2n×2n with nonzero elements from the set {±1}.
Indeed, consider an arbitrary mapping ϕπ,g ∈ In. Then for any f ∈ Fn and
its sign function

F =
(

(−1)f(v0), (−1)f(v1), ..., (−1)f(v2n−1)
)
∈ {±1}2n ,

the sign function

F ′ =
(

(−1)f
′(v0), (−1)f

′(v1), ..., (−1)f
′(v2n−1)

)
∈ {±1}2n ,

of f ′ = ϕπ,g (f) ∈ Fn can be expressed as F ′ = AF , where A is a 2n × 2n

monomial matrix, constructed by the permutation π and the function g:




j
...
0
...

i . . . 0 . . . (−1)g(vi−1) . . . 0 . . .
...
0
...




,
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in which in the i-th row a nonzero element (−1)g(vi−1) is in the j-th column,
where (j − 1) is a number with binary representation π (vi−1). So the i-th
component of F ′ = AF is equal to

(−1)f
′(vi−1) = (−1)f(π(vi−1)) · (−1)g(vi−1) = (−1)f(π(vi−1))⊕g(vi−1),

for any i ∈ {1, 2, ..., 2n}, that is equivalent to

f ′ (x) = f (π (x))⊕ g (x) , x ∈ Fn2 .

6.3 The group of automorphisms of the set of bent functions

Some attempts to determine the automorphism group of a given bent
function were undertaken by Dempwolff [9] in 2006. Results were presented
in terms of elementary Abelian Hadamard difference sets (equivalently, bent
functions).

A natural question whether there exist isometric mappings of Boolean
functions into itself, distinct from those mentioned in Proposition 1, which
preserve the class of bent function was completely solved in paper [31], where
it was proved that there were no other mappings possessing such a property.
Namely by using the Theorem 11 in view of the duality the following coinci-
dence was shown.

Theorem 14.
Aut (Bn) = Aut (An) .

Note that the set of all affine functions in n variables forms a group
isomorphic to Fn+1

2 . The group of automorphisms of the set of all affine
functions in n variables consists, as it is well known, of mappings of the
form (2) with affine permutation π and affine shift g, see, for example, [21].
So, the result is formulated as follows.

Theorem 15. It holds

Aut (Bn) = GA(n) n Fn+1
2 ,

where the symbol n for semidirect product.

These results imply the non-existence of a more general approach to
equivalence of bent functions than that on the base of isometric mappings.
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6.4 Isometric bijections between self-dual and anti-self-dual bent
functions

It is known [4] that there exists a bijection between SB+(n) and SB−(n),
based on the decomposition of sign functions of (anti-)self-dual bent func-
tions. Also note that from the existence of such bijection it follows that∣∣SB+(n)

∣∣ =
∣∣SB−(n)

∣∣.
Namely, let (Y, Z) ∈ {±1}2n, where Y, Z ∈ {±1}2n−1

, be a sign function
for some f ∈ SB+(n). Then a vector (Z,−Y ) ∈ {±1}2n is a sign function for
some function from SB−(n). In terms of isometric mappings the mentioned
transformation can be represented as

f(x) −→ f (x⊕ c)⊕ 〈c, x〉 ,

where c = (1, 0, 0, ..., 0) ∈ Fn2 .
In paper [14] it was mentioned that the more general form of this mapping

f(x) −→ f (x⊕ c)⊕ 〈c, x〉 ,

where c ∈ Fn2 , wt(c) is odd, is a bijection between SB+(n) and SB−(n). It is
obvious that this mapping is an element from In.

In paper [19] these results were generalized within isometric mappings
from the set In for n > 4.

The criterion of bijectivity between self-dual and anti-self-dual bent func-
tions was obtained in [19] with a use of the orthogonal decomposition (1) and
the basis from the Theorem 9.

Theorem 16. Let n > 4, then isometric mapping ϕπ,g ∈ In with matrix A
is a bijection between SB+(n) and SB−(n) if and only if AHn = −HnA.

By using this criterion in [19] the general form of considered isometric
bijections was found.

Theorem 17. For n > 4 isometric mapping ϕπ,g ∈ In is a bijection between
SB+(n) and SB−(n) if and only if

π(x) = L (x⊕ c) , x ∈ Fn2 ,

and
g(x) = 〈c, x〉 ⊕ d, x ∈ Fn2 ,

where L ∈ On, c ∈ Fn2 , wt(c) is odd, d ∈ F2.
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6.5 The group of automorphisms of the set of (anti-)self-dual bent
functions

In [4] the followng problem was pointed:
Open question (Carlet, Danielson, Parker, Solé, 2010): to find

mappings preserving self-duality, distinct from the known ones, or give a
proof that there are no more.

In paper [19] this question was resolved within isometric mappings of the
set of all Boolean functions in n > 4 variables into itself.

At first the problem of how the sets of isometric mapping preserving self-
duality and anti-self-duality or, in other words, groups of automorphisms of
the sets SB+(n) and SB−(n) are related. This problem was solved in [19],
where with a use of the orthogonal decomposition (1) and the basis from
the Theorem 9, the criterion of preserving self-duality was given.

Theorem 18. Let n > 4, then for isometric mapping ϕπ,g ∈ In with matrix
A the following conditions are equivalent:

1) ϕπ,g preserves self-duality;

2) ϕπ,g preserves anti-self-duality;

3) AHn = HnA.

From this result it follows that

Corollary 6. For n > 4 it holds Aut
(
SB+(n)

)
= Aut

(
SB−(n)

)
.

The problem of characterizing mappings which preserve self-duality was
studied by Carlet et. al. in [4] and Feulner et. al. in [11], where it was shown
that the mapping

f(x) −→ f (L (x⊕ c))⊕ 〈c, x〉 ⊕ d,

where L ∈ On, c ∈ Fn2 , wt(c) is even, d ∈ F2, preserves self-duality of a
bent function. It is obvious that this mapping is isometric and corresponds
to ϕπ,g ∈ In with

π(x) = L (x⊕ c) , x ∈ Fn2 ,

and
g(x) = 〈c, x〉 ⊕ d, x ∈ Fn2 ,

where L ∈ On, c ∈ Fn2 , wt(c) is even, d ∈ F2. The group which consists of
mappings of such form is called an extended orthogonal group and denoted
by On [8, 11]. It is known that this group is a subgroup of GL (n+ 2,F2) [11].
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In paper [19] known results were generalized within isometric mappings
from the set In for n > 4. Namely by using the criterion from Theorem 18
and the matrix representation of isometric mappings it was obtained that
the desired group of automorphisms coincides with the extended orthogonal
group.

Theorem 19. For n > 4 it holds

Aut
(
SB+(n)

)
= Aut

(
SB−(n)

)
= On.

In view of Theorems 17 and 19 it appeares that bijections and mappings
which preserve self-duality are quite similar except the parity of the vector
c ∈ Fn2 , which ’switches’ them in some sence.

It follows that the classification of self-dual bent functions in n > 4
variables based on the restricted form of affine equivalence proposed in ar-
ticles [4, 11] is the most general within isometric mappings of the set of all
Boolean functions in n variables into itself.

6.6 Isometric mappings and the Rayleigh quotient

In [4] the Rayleigh quotient Sf of a Boolean function f ∈ Fn was defined
as

Sf =
∑

x,y∈Fn2

(−1)f(x)⊕f(y)⊕〈x,y〉 =
∑

y∈Fn2

(−1)f(y)Wf(y).

In a scope of bent functions the Rayleigh quotient characterizes the Ham-
ming distance between a bent function and its dual. Indeed, let f ∈ Bn, then

dist(f, f̃) = 2n−1 − 1

2n/2+1
Sf = 2n−1 − 1

2
Nf .

In [4] it was proved that for any f ∈ Fn the absolute value of Sf is at
most 23n/2 with equality if and only if f is self-dual

(
+23n/2

)
and anti-self-

dual
(
−23n/2

)
bent function. That is the maximum (minimum) value of the

Rayleigh quotient of a Boolean function in an even number of variables is
attainable on self-dual (anti-self-dual) bent functions and only them, thus
providing a criterion for (anti-)self-duality in terms of the Rayleigh quotient
values.

In article [8] the operations on Boolean functions that preserve bentness
and the Rayleigh quotient were given. Namely, it was proved that for any
f ∈ Bn, L ∈ On, c ∈ Fn2 , d ∈ F2 the functions g, h ∈ Bn defined as g(x) =
f (Lx) ⊕ d and h(x) = f (x⊕ c) ⊕ 〈c, x〉 provide Ng = Nf and Nh =
(−1)〈c,c〉Nf .
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The mentioned operations are isometric mappings from In. The complete
characterization of isometric mappings that preserve the Rayleigh quotient
as well as change it was given in [19].

Theorem 20. If n > 4 then isometric mapping ϕπ,g ∈ In preserves the
Rayleigh quotient if and only if it preserves self-duality.

Theorem 21. If n > 4 then isometric mapping ϕπ,g ∈ In changes the sign
of the Rayleigh quotient if and only if it is a bijection between SB+(n) and
SB−(n).

7 Conclusion

In this work, we have given a review of metrical properties of the set
of bent functions and its subset of functions which coincide with their du-
als. The group of automorphisms and metrical complements of these sets
are described. We also reviewed some general metrical properties of the set
of self-dual bent functions and considered an iterative construction of bent
functions. Some relevant open problems and hypothesis on bent functions
weere discussed.

An interesting question is the characterization of isometric mappings pre-
serving bentness and self-duality, that are beyond the automorphisms of the
set of all Boolean functions.

The solution of the problems, that were considered in this review, with
regard to different generalizations of bent functions that is study of metrical
properties and the duality as well as self-duality in this scope is a goal worth
pursuing.
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Abstract

Alred is a kind of construction for Message Authentication Codes based on a
block cipher, and one specific instance of the same one, with AES as underlying
primitive, result in the MAC function alpha-MAC. In this work we compute the
successful probability of one of the applied attacks against alpha-MAC, when the
transformation ShiftRows is replaced by a random diffusion optimal permutation.

Keywords: Alpha-MAC, dynamic AES, random ShiftRows.

1 Introduction

MAC functions are symmetric primitives, used to ensure authenticity of
messages, taking as input a secret key and the message and producing as
output a short tag. The MAC function alpha-MAC (an specific instance of
the alred construction) is presented in [1] with AES as underlying primitive,
because this block cipher is efficient in hardware and software, and also it has
been proved strong since its publication as Rijndael [2]. A better description
of alpha-MAC will be presented in section 2.

In this paper we will study the attack against alpha-MAC presented in [3]
where the internal structure of this MAC function is analyzed, and based on
the algebraic properties of the algorithm AES, internal collisions are obtained.
The reason we choose this attack is its simplicity and effectiveness against
alpha-MAC, once we know an internal state. In another attacks performed
against alpha-MAC the recovery of the internal state has been successful
[4, 5, 6, 7]. A better description of this attack will be presented in section 3.

On the other hand, in recent papers [8, 9, 10, 11, 12, 13, 14, 15, 16] new
MAC functions are designed and existed MAC functions are improved, or
new attacks for MAC functions are proposed [17, 18, 19, 20, 21], showing
that the study of these symmetric primitives is an important subject today.

Our contribution is to show in section 4 how the function alpha-MAC
can be improved replacing the transformation ShiftRows in every round for a
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random diffusion optimal permutation. We evaluate the practical significance
of the mentioned attack with the new transformations, and also give our
considerations about the replace of the MDS matrix of the transformation
MixColumns by another MDS matrix randomly generated.

2 Description of alpha-MAC

Alpha-MAC is an iterative function based on the round transformations
of AES. The secret key is used only twice in AES like a block cipher, and
the state is changed by consecutive injections of the message blocks. The
main advantage of alpha-MAC over another MAC constructions based in a
block cipher, such as CBC-MAC, is that per 128 bits of message this one only
process four round functions of AES, reducing in 2.5 the runtime respect to
CBC-MAC, which is significant for long messages.

The structure of alpha-MAC is presented in the next figure.

Here k is the secret key (128, 192 or 256 bits) at the input of the function
and x1, x2, · · · , xq are the message blocks, each one of 32 bits (assuming that
32q is the length of the message, in other case the message is padded). The
injection layout consist in the matrix

x1
i 0 x3

i 0

0 0 0 0
x2
i 0 x4

i 0
0 0 0 0

A. A. Peñate and P. F. Arrozarena 172



Extending AES Improvements: A Proposal for Alpha-MAC in View of Collision Resistance

used in the step AddRoundKey for the unkeyed round functions, where
x1
ix

2
ix

3
ix

4
i is a 32-bit message block for all 1 ≤ i ≤ q. The truncation is

not significant in the attack presented, and so we assume a 128-bits Tag.
The alpha-MAC algorithm is presented next.

Algorithm 2:
Input: message x = x1x2 · · ·xq and secret key k

1 begin
2 z0 = AESk(0)
3 for i from 1 to q do
4 zi = f(zi−1, I(xi)) f = AES round function, I = injection
5 Tag = T (AESk(zq)) T = truncation
Output: message tag MAC(x, k) = Tag
Daemen and Rijmen also present another MAC function based in the

Alred construction with Rijndael as underlying primitive [22]. This another
MAC function, named Pelican, can be seen as a simplified and optimized
version of alpha-MAC where the injection layout is omitted and the round
function of Rijndael is applied four times on each occasion, instead of one.
In 2014 they presented an update, Pelican 2.0, with only change a different
initial value [23].

3 The proposed attack

Basically the attack consists in a method to find second preimages, based
on the assumption that the key (or an intermediate value) is known, exploit-
ing the algebraic properties of the AES round function. One internal collision
is a fact if we know only five blocks of the message using this attack.

The second preimage search algorithm is performed in two stages: the
Backwards-aNd-Forwards search and the Backwards-aNd-Backwards search,
solving each one four groups of two linear equations.
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Algorithm 3:
Input: five message blocks (xy−3, xy−2, xy−1, xy, xy+1) and the

intermediate value at the input of the round y − 3
1 begin
2 generate a second preimage (xy−3, xy−2, xy−1, xy, xy+1) randomly,

guaranteeing that xy−3 6= xy−3

3 perform Backwards-aNd-Backwards search to generate a 32-bit
collision, modifying the message block xy−2

4 perform Backwards-aNd-Forwards search to extend 32 bits to
128-bit collision, modifying the message blocks xy−1, xy and xy+1

Output: second preimage (xy−3, xy−2, xy−1, xy, xy+1) of the five
message blocks (xy−3, xy−2, xy−1, xy, xy+1)

The result of the previous algorithm is that the two five message blocks
(xy−3, xy−2, xy−1, xy, xy+1) and (xy−3, xy−2, xy−1, xy, xy+1) generate the same
128 bit value at the output of the round y+1 (an internal collision), knowing
the intermediate value at the input of the round y − 3.

3.1 Backwards-aNd-Forwards

In the Backwards-aNd-Forwards search it is assumed that we were able
to find two messages x and x which collide in the bytes of the positions [0,1],
[0,3], [2,1] and [2,3] at the output of the transformation MixColumns in round
y (blocks in red).

Step 1: Assume that the bytes of the positions [1,0], [1,2], [3,0] and [3,2]
at the output of the transformation MixColumns in round y collide (blocks
in gray), then solving two equation systems the bytes of the positions [0,0],
[0,2], [2,0] and [2,2] at the input of the transformation MixColumns in round y
turn collision-dependent. Performing the inverses of ShiftRows and SubBytes
it is possible replace the message block xy−1 making the same one collision-
dependent. At this point we has been extend a 32-bit collision to a 64-bit
collision in round y after MixColumns.

Step 2: Repeat Step 1 in the round y+ 1 (blocks in blue) to replace the
message block xy making the same one collision-dependent. At this point we
has been extend a 64-bit collision to a 96-bit collision in round y + 1 after
MixColumns.

Step 3: Get the message block xy+1 directly canceling the differences
between the byte of the positions [0,0], [0,2], [2,0] and [2,2] (blocks in green).
At this point the five message blocks (xy−3, xy−2, xy−1, xy, xy+1) collide on
128 bits at the output of the round y + 1.
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3.2 Backwards-aNd-Backwards

The Backwards-aNd-Backwards search is performed to find a message
x such that the 32-bit collision requested for the Backwards-aNd-Forwards
search is done. The five message blocks xy−3, xy−2, xy−1, xy and xy+1 are
randomly generated.

Step 1: Assume that the bytes of the positions [0,1], [0,3], [2,1] and [2,3]
at the output of the transformation MixColumns in round y collide (blocks in
red), then solving two equation systems the bytes in the positions [1,1], [1,3],
[3,1] and [3,3] at the input of the transformation MixColumns in round y turn
collision-dependent. Performing the inverses of ShiftRows and SubBytes the
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four collision-dependent bytes are shift to the positions [1,0], [1,2], [3,0] and
[3,2] at the output of the transformation AddRoundKey in round y − 1.

Step 2: As the injection layout do not affect the bytes in the previous
positions, then the bytes of the positions [1,0], [1,2], [3,0] and [3,2] at the
output of MixColumns in round y − 1 are collision-dependent, and another
two equation systems are solved making collision-dependent too the bytes of
the positions [0,0], [0,2], [2,0] and [2,2] at the input of MixColumns in round
y−1. Performing the inverses of ShiftRows and SubBytes it is possible replace
the message block xy−2 making the same one collision-dependent.
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4 The proposal for alpha-MAC

In this section we present an improvement of alpha-MAC consisting in the
replace of the fixed transformation ShiftRows for a random diffusion optimal
permutation [2, 24] in every round. We will prove that this construction turns
alpha-MAC in a resistant function to the internal collisions found in [3] and
detailed in the previous section.

Exactly, we propose replace the transformation ShiftRows of the round
function of AES and alpha-MAC for another one which acts randomly over
the state, then we compute the success probability of the presented attack
[3] using this transformation, and finally we give our considerations on the
use of the same one. We also give an extra judgment about the replacing of
the MDS matrix of the transformation MixColumns by another MDS matrix
randomly generated.

The new transformation to replace ShiftRows consist in swap the bytes
of every column of the state according to random permutations, transpose
the resultant state, and swap again the bytes of every column according to
random permutations [24]. It give us a set of 248 ' 236.6 transformations
that act like ShiftRows, such that the bytes inside every column of the state
are placed into different columns after that. Also each of these possibilities is
optimal for the minimal rounds claims to reach full diffusion [29], satisfying
the design principles of AES [2, section 9.4].

4.1 Success probability of the attack

First we estimate the probability that four bytes of the state be located
through the proposed transformation (or their inverse) at the intersections
of any two rows and any two columns of the next state. The order of that
bytes are not significant.

Let p be the previous probability, then we can prove the following results.

1. Assuming that the four bytes are located two of them in two different
columns (like in the attack), thus only two permutations acts on this
bytes before the transposition and only two permutations acts on this
bytes after the transposition. Considering the positions of the bytes
around the transposition, only four of the possible permutations give us
this swaps by columns, and then

p =
44

244
= 6−4
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2. Assuming that the four bytes are located two in one column and the
others in one column each, thus only three permutations acts on this
bytes before the transposition and only two permutations acts on this
bytes after the transposition. Considering the positions of the bytes
around the transposition, with a similar analysis we have

p =
43 · 12 · 6

245
=

3

4
· 6−4

3. Assuming that the four bytes are located in one column each, thus all
the four permutations acts on this bytes before the transposition and
only two permutations acts on this bytes after the transposition. Consid-
ering the positions of the bytes around the transposition, with a similar
analysis we have

p =
42 · 12 · 18 · 62

246
=

2

3
· 4−5

Note that there are not more possibilities (three bytes located in one
column or the four bytes located in one column) since the four bytes of the
state before the proposed transformation are located to the intersections of
two specific rows and two specific columns of the state after that, so an upper
bound for p can be 2−8.96.

4.1.1 Developing the Backwards-aNd-Backwards search

This step allows to find the message block xy−2 such that the four bytes
of the positions [0,1], [0,3], [2,1] and [2,3] at the output of the transformation
MixColumns in round y collide. Even if one adversary is able to adapt the
equation systems of the round y − 1, finding four bytes collision-dependent
at the input of MixColumns in one of the three possible scenarios studied
above, still there is a probability lower than 2−8.96 such that these solutions
are moved to the positions [0,0], [0,2], [2,0] and [2,2] at the output of the round
y − 2 when the transformation used to replace ShiftRows are unknown.

4.1.2 Developing the Backwards-aNd-Forwards search

Here we assume that the Backwards-aNd-Backwards search was successful
and the adversary has the possibility to adapt the equation systems of the
round y, finding four bytes collision-dependent at the input of MixColumns
in one of the three possible scenarios, still there is a probability lower than
2−8.96 such that these solutions are moved to the positions [0,0], [0,2], [2,0]
and [2,2] at the output of the round y − 1.
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Consequently if the adversary has the possibility to adapt the equation
systems of the round y + 1, finding four bytes collision-dependent at the
input of MixColumns in one of the three possible scenarios, still there is
a probability lower than 2−8.96 such that these solutions are moved to the
same positions at the output of the round y. Here it is also assumed that the
transformations used to replace ShiftRows in rounds y and y+1 respectively
are unknown.

4.2 Final considerations

Assuming that the adversary knows the intermediate value at the input
of the round y−3 and the message blocks (xy−3, xy−2, xy−1, xy, xy+1), still the
transformations used to swap the bytes of the state in the place of ShiftRows
remains unknown. Our purpose is to keep hide these transformations under
the previous assumption, pretending that the same ones can be randomly
generated from some seed, possibly the secret key. Note that an attacker have
not possibilities to replace these transformations without the knowledge of
the receiver, on the contrary the true message and the corresponding tag do
not correspond.

Under these terms, if the adversary is able to modify the attack taking
in mind the three possible scenarios, the success probability of the com-
plete attack is smaller than 2−26.88 when the transformations used to replace
ShiftRows remains unknown. If the solutions of the equation systems are not
moved to the positions of the injection when it is required, then the message
blocks do not affect these bytes, producing an intermediate value collision-
dependent at the input of the round y− 3 different to the intermediate value
known for the receiver.

Furthermore we consider another improvement of alpha-MAC consisting
in the replace of the fixed MDS matrix of the transformation MixColumns
by another MDS matrix randomly generated, such that the same one can
be applied in all rounds of the algorithm AES as well as in the intermediate
rounds of alpha-MAC. Although in the public literature exists many reports
on the random generation of MDS matrices and so in their applications on
the block cipher AES, we use the random MDS matrices proposed in [25]
motived in the cardinality of the possible generated ones.

Taking in mind this change, if the resulting MDS matrix is known there is
not extra security provided, but on the contrary if the MDS matrix remains
unknown the complexity of the equation systems increase by the secrecy of
the MDS matrix, providing more security against the attack proposed in [3].
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5 Conclusion

Combining the Backwards-aNd-Backwards search and the Backwards-
aNd-Forwards search is very simple to find a second preimage of alpha-MAC
thanks to the algebraic properties of the underlying block cipher AES [3]. In
this paper we present an improvement of alpha-MAC based on the replace
of the fixed transformation ShiftRows for another one which is generated
randomly from one set of 248 possibilities, give us a probability lower than
2−26.88 to make this attack effective when the random transformations used
in every round are unknown.

In the studied attack it is assumed that one internal state (or the key)
is known, being possible in other attacks like in [4] combining side channel
collisions with Differential Power Analysis, and for this reason, side channel
countermeasures for AES must be taken into account [4, 23, 26]. Although the
collision attack of Biryukov et al [4] is effective on alpha-MAC, the presented
construction has been offer resistance against Differential Power Analysis [27]
and Differential Fault Analysis [28]. Further studies on the implementation
or the security of this construction against other kinds of side channel attacks
should still be done.

Finally, as the security analysis of the function alpha-MAC was incom-
plete and the efforts of the designers were directed to Pelican [26], we propose
the same improvement for the MAC function Pelican 2.0, taking into account
the generation of random diffusion optimal permutations for the block cipher
Rijndael [29].
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A. A. Peñate and P. F. Arrozarena 180



Extending AES Improvements: A Proposal for Alpha-MAC in View of Collision Resistance

[9] Mennink, B. and Neves, S., “Encrypted Davies-Meyer and Its Dual: Towards Optimal Se-
curity Using Mirror Theory”, Annual International Cryptology Conference, Springer-Cham,
2017, 556 — 583.

[10] Datta, N. et all., “Single Key Variant of PMAC-Plus”, IACR Transactions on Symmetric
Cryptology, 2017, 268 — 305.

[11] Naito, Y., “Blockcipher-based MACs: Beyond the Birthday Bound without Message Length”,
International Conference on the Theory and Application of Cryptology and Information
Security, Springer-Cham, 2017, 446 — 470.

[12] Quang, T., “Considering Two MAC under SIG Variants of the Basic SIGMA Protocol”, 7th
Workshop on Current Trends in Cryptology (CTCrypt 2018), 2018, 232 — 249.

[13] Khoureich, A., “R-MAC - A lightweight authentication protocol for RFID Tags”, Cryptology
ePrint Archive, 2018.

[14] Ankele, R., Bohl, F. and Friedberger, S., “MergeMAC: A MAC for Authentication with
Strict Time Constraints and Limited Bandwidth”, Cryptology ePrint Archive, 2018.

[15] Datta, N. et all., “Encrypt or Decrypt? To Make a Single-Key Beyond Birthday Secure
Nonce-Based MAC”, Annual International Cryptology Conference, 2018, 631 — 661.

[16] Zoltak, B., “Message Authentication (MAC) Algorithm For The VMPC-R (RC4-like)
Stream Cipher”, Cryptology ePrint Archive, 2019.

[17] Ye, C. and Tian, T., “New Insights into Divide-and-Conquer Attacks on the Round-Reduced
Keccak-MAC”, Cryptology ePrint Archive, 2018.

[18] Luykx, A. and Preneel, B., “Optimal Forgeries Against Polynomial-Based MACs and GCM”,
Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Springer-Cham, 2018, 445 — 467.

[19] Leurent, G., Nandi, M. and Sibleyras, F., “Generic Attacks against Beyond-Birthday-Bound
MACs”, Annual International Cryptology Conference, Springer-Cham, 2018, 306 — 336.

[20] Iwata, T. et all., “Universal Forgery and Multiple Forgeries of MergeMAC and Generalized
Constructions”, Cryptology ePrint Archive, 2018.

[21] Liu, F., Cao, Z. and Wang, G., “Finding Ordinary Cube Variables for Keccak-MAC with
Greedy Algorithm”, Cryptology ePrint Archive, 2018.

[22] Daemen, J. and Rijmen, V., “The Pelican MAC Function”, 2005.
[23] Daemen, J. and Rijmen, V., “The MAC Function Pelican 2.0”, 2014.

[24] Alfonso, A., “Generación Aleatoria de Permutaciones con Óptima Difusión”, III Seminario
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Appendix

A Example in the first possible case

Let Π be the diffusion optimal permutation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5 2 10 15 3 7 16 9 12 4 6 13 14 11 8 1

constructed using the random permutations

τ1 = [2, 3, 4, 1]

τ2 = [1, 3, 2, 4]

τ3 = [2, 1, 4, 3]

τ4 = [3, 4, 1, 2]

τ5 = [2, 1, 3, 4]

τ6 = [1, 2, 4, 3]

τ7 = [3, 1, 2, 4]

τ8 = [4, 3, 2, 1]

such that τ1, τ2, τ3 and τ4 are applied on the columns of the state before the
transposition and τ5, τ6, τ7 and τ8 are applied on the columns of the state
after that, as shown below in the following steps

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

2 5 10 15

3 7 9 16

4 6 12 13

1 8 11 14

2 3 4 1

5 7 6 8

10 9 12 11

15 16 13 14

5 3 12 14

2 7 4 11

10 16 6 8

15 9 13 1

then the collision-dependent solutions of the equation systems must come
from the positions [0,1], [3,1], [1,3] and [3,3] of the state after Π to be located
in the positions of the injection layout.

B Example in the second possible case

Let Π be the diffusion optimal permutation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12 5 15 4 7 10 14 3 1 16 11 8 6 2 9 13

constructed using the random permutations

τ1 = [4, 3, 1, 2]

τ2 = [1, 3, 4, 2]

τ3 = [4, 2, 3, 1]

τ4 = [3, 2, 4, 1]

τ5 = [3, 2, 4, 1]

τ6 = [2, 3, 4, 1]

τ7 = [1, 4, 3, 2]

τ8 = [2, 1, 3, 4]
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such that τ1, τ2, τ3 and τ4 are applied on the columns of the state before the
transposition and τ5, τ6, τ7 and τ8 are applied on the columns of the state
after that, as shown below in the following steps

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

4 5 12 15

3 7 10 14

1 8 11 16

2 6 9 13

4 3 1 2

5 7 8 6

12 10 11 9

15 14 16 13

12 7 1 6

5 10 16 2

15 14 11 9

4 3 8 13

then the collision-dependent solutions of the equation systems must come
from the positions [3,1], [0,2], [2,2] and [2,3] of the state after Π to be located
in the positions of the injection layout.

C Example in the third possible case

Let Π be the diffusion optimal permutation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 15 5 10 7 3 12 14 2 8 9 16 13 6 4 11

constructed using the random permutations

τ1 = [1, 3, 2, 4]

τ2 = [1, 3, 4, 2]

τ3 = [2, 4, 1, 3]

τ4 = [3, 2, 4, 1]

τ5 = [1, 4, 2, 3]

τ6 = [2, 1, 3, 4]

τ7 = [1, 2, 3, 4]

τ8 = [4, 2, 1, 3]

such that τ1, τ2, τ3 and τ4 are applied on the columns of the state before the
transposition and τ5, τ6, τ7 and τ8 are applied on the columns of the state
after that, as shown below in the following steps

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1 5 10 15

3 7 12 14

2 8 9 16

4 6 11 13

1 3 2 4

5 7 8 6

10 12 9 11

15 14 16 13

1 7 2 13

15 3 8 6

5 12 9 4

10 14 16 11

then the collision-dependent solutions of the equation systems must come
from the positions [0,0], [1,1], [2,2] and [3,3] of the state after Π to be located
in the positions of the injection layout.
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Abstract

Streebog is a family of hash functions defined in the Russian cryptographic stan-
dard GOST R 34.11–2012. HMAC–Streebog, which is defined in RFC 7836, is a
Streebog based message authentication code. It supports keys of size ranging from
256 bits to 512 bits. In this paper, we present fault–assisted side channel attacks on
HMAC–Streebog–256 and HMAC–Streebog–512 that can recover the keys in real-
time with 212.98 and 214.97 average number of fault injections, respectively, to ensure
95% success. The attacker is assumed to be able to simultaneously flip at the most
181 chosen bits of the inner hash if it is a 256–bit variant, and 361 chosen bits of
the hash otherwise. In comparison to existing fault attacks on HMAC–Streebog, our
attacks have a larger temporal window for fault injection, target a more accessible
location and cannot be mitigated with output redundancy countermeasures. Some
of the latest hardware vulnerabilities make the HMAC–Streebog implementations
vulnerable to our attacks.

Keywords: Streebog, HMAC–Streebog, carry flag, side channel, fault analysis.

1 Introduction

HMAC–Streebog. Streebog is a family of hash functions developed by
the Center for Information Protection and Special Communications of the
Federal Security Service of the Russian Federation with the participation of
the open joint-stock company Information Technologies and Communication
Systems (InfoTeCS JSC) [8]. It is defined in the Russian cryptographic stan-
dard GOST R 34.11–2012 [8]. Streebog is comprised of two hash functions,
Streebog–256 and Streebog–512, which generate 256–bit and 512–bit message
digests, respectively.

HMAC is an algorithm to calculate a message authentication code
(MAC), based on a hash function [15]. In its first phase, an inner hash is
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derived from the message and the inner key. Later, it generates the outer
hash from the inner hash and the outer key, and outputs it as the MAC. The
specifications of the HMAC algorithms based on Streebog has been defined
in RFC 7836 [22]. Corresponding to Streebog–256 and Streebog–512, two
HMAC algorithms exist which we call HMAC–Streebog–256 and HMAC–
Streebog–512, respectively. The recommended key sizes of HMAC–Streebog–
256 and HMAC–Streebog–512 are at least 256 bits and 512 bits, respectively,
and not more than 512 bits [15].

Considering its significance, Streebog was well studied over a period of
time [1, 3, 4, 19, 20, 2, 21]. Except for the side channel attack by Sekar [21]
and the differential fault attack by AlTawy et al. [2], attacks on Streebog
are on its reduced–round variants. In [7], Dinur et al. presented the first key
recovery attack on HMAC–Streebog–512 with a complexity of 2410. Later,
AlTawy et al. presented differential fault attacks [2] on HMAC–Streebog–512
and HMAC–Streebog–256 which can recover the key by injecting single–bit
faults into the last two intermediate states of all the compression functions
of the outer hash function. The authors claimed that the average number of
faults required to recover the input of each compression function of Streebog
vary between 338 and 1640.

Contributions of this paper. In this paper, we present side channel
attacks on HMAC–Streebog. Carry flag is a bit of the status register,
present in nearly every modern microprocessor, that indicate carry overflow
in unsigned integer arithmetic. In [21], Sekar conjectured that the carry
flag based side channel attack could speed up the key recovery of HMAC–
Streebog–256 and HMAC–Streebog–512 by a factor of 2, in certain cases.
Our investigation of this conjecture resulted in passive side channel attacks
on HMAC–Streebog–256 and HMAC–Streebog–512 which can recover one
bit of the respective key with a success rate of 75%. The attacks work under
the assumption that the inner hash of the HMAC and the carry flag at
the end of MAC generation are known to the attacker. We find that the
attacks can be further improved by injecting faults into the output of the
inner hash function and propose active attacks on HMAC–Streebog–256
and HMAC–Streebog–512 which can recover the keys with 212.98 and 214.97

average number of fault injections, respectively, for 95% success rate. We
assume that the attacker is able to flip at the most 181 and 361 chosen bits
at a time, respectively, for HMAC–Streebog–256 and HMAC–Streebog–512.

To the best of our knowledge, our passive attack is the best non-fault
attack on HMAC–Streebog–256. Compared to the attack in [2], our attacks
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have a longer temporal window for fault injection and cannot be mitigated
using output redundancy countermeasures as we rely on the carry flag side
channel.1,2 Also, it is reasonable to assume that the inner hash being an
intermediate output is more accessible than the internal state of Streebog. If
the intermediate carries generated by the ripple carry adder implementation
of the targeted addition are known, complexities of our passive attacks
and fault requirements of our active attacks reduce as each adder can be
attacked separately. When implemented in systems which are vulnerable
to attacks like Rowhammer [13], Meltdown [17], Spectre [14], SplitSpectre
[18], RAMBleed [16] and Cold Boot [12], HMAC–Streebog will be highly
vulnerable to our attacks.

Organisation of the paper. The remaining paper is organised as
follows. Section 2 describes Streebog and HMAC–Streebog. We present our
motivational observations in Sect. 3. Our attacks on HMAC–Streebog–512
and HMAC–Streebog–256 are presented in Sect. 4. The validity of our
assumptions is discussed in Sect. 5 and we conclude in Sect. 6.

2 Specification of HMAC–Streebog

Table 1 lists the notation and convention that we follow.

2.1 Description of Streebog

Streebog accepts any messageM of length less than 2512 bits and returns
a 256– or 512–bit digest. If the message length |M | is not a multiple of 512,
M is prefixed with a bit string pad := {0}511−(|M | mod 512) ‖ 1. The padded
message is then partitioned into k + 1 512–bit blocks Mk, Mk−1, . . . , M0

such that pad ‖M = Mk ‖Mk−1 ‖ . . . ‖M0.
The compression function G has 13 iterations out of which 12 involve a

substitution-permutation layer which consists of the following components:
a substitution function Γ, a permutation function F , a linear transformation
L and a function X [·]. The substitution function substitutes each byte of
its 512–bit input by a byte from a permuted set of {0, 1, . . . , 255} and the
permutation function shuffles the position of each byte in its 512–bit input.
The linear transformation of a 512–bit input W is performed as follows:

1The data to be altered is available for more than 2t time, where t is the time taken by the compression
function of Streebog, as the targeted modular addition is executed after two compression operations.

2In output redundancy countermeasures, data is processed via redundant channels and the output will
not be generated unless all of them agree to it. Still, the carry flag side channel remains unaffected.
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Symbol/notation Meaning
x(j) (j + 1)th bit of x (j = 0 denotes the least significant bit)
⊕ Exclusive OR
In,j n–bit binary string such that In,j(i) = 1 ⇐⇒ i = j
‖ Concatenation of two binary strings
� i Right shift by i bits
|X| Length of X in bits
bk (k · |b|)–bit binary string bbb · · · b

Ψi(Y ) ith 64–bit word of Y (i = 0 denotes the least significant word)
F1F2(x), where F1 and F2 are functions F1 (F2(x))

Table 1: Notation and convention

L(W ) = l(Ψ7(W )) ‖ l(Ψ6(W )) ‖ . . . ‖ l(Ψ0(W )), where l outputs the right
multiplication of its input with a constant matrix A over GF (2) (see (1)).
If a and b are 512–bit strings, X [a](b) = a ⊕ b. The compression function
G that processes the message block Mi takes as additional inputs the 512–
bit chaining value πi and a length counter ni, and outputs πi+1 (see (3)).
The initial value π0 is a 512–bit IV which is different for Streebog–256 and
Streebog–512. Algorithm 1 describes the working of Streebog.

l(ζ) =
63⊕

i=0

ζ(63−i) �A[i] , (1)

where

ζ(63−i) �A[i] =

{
{0}64, if ζ(63−i) = 0 ;

A[i], if ζ(63−i) = 1 .
(2)

πi+1 := G(πi,Mi, ni) = E(L(F(Γ(πi ⊕ ni))),Mi)⊕ πi ⊕Mi , (3)

where

E(L(F(Γ(πi⊕ni))),Mi) = X [ν13]LFΓX [ν12]LFΓX [ν11] . . .LFΓX [ν1](Mi) ,
(4)

and ν1, ν2, . . . , ν13 are derived as,

ν0 = LFΓ(πi ⊕ ni) , (5)

νj+1 = LFΓ(νj ⊕ Cj) , for j = 0, 1, . . . , 12, and constants Cj. (6)

2.2 Description of HMAC–Streebog

A HMAC algorithm employs a hash function h in conjunction with a
secret key K and generates a MAC value as follows:

HMAC(K,M) = h((K0 ⊕ opad), h((K0 ⊕ ipad),M)) , (7)
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Algorithm 1 The Streebog algorithm
Require: The message M , |M | < 2512

Ensure: A 256–bit or a 512–bit digest

1. M → pad ‖M →Mk ‖Mk−1 ‖ . . . ‖M0;
2. π0 = IV ; n0 = 0; S = 0;
3. for i = 0 to (k − 1) do
4. πi+1 = G(πi,Mi, ni);
5. ni+1 = ni + 512 mod 2512;
6. S = S +Mi mod 2512;
7. endfor
8. πk+1 = G(πk,Mk, nk);
9. nk+1 = nk + 512−|pad| mod 2512;
10. S = S +Mk mod 2512;
11. πk+2 = G(πk+1, nk+1, 0);
12. H = G(πk+2, S, 0);
13. Output H if Streebog–512, else output H � 256;

Algorithm 2 The HMAC–Streebog algorithm
Require: The message M and secret key K in big-endian format
Ensure: A 256–bit or a 512–bit digest

1. K0 = {0}512−|k| ‖ K;
2. ipad = {00110110}64;
3. opad = {01011100}64;
4. Hin = h(M ‖ (K0 ⊕ ipad)));
5. Hout = h(Hin ‖ (K0 ⊕ opad)));
6. Output Hout;

where M is the message, opad and ipad are public constants, and K0 is the
secret key if |K| equals the block size of h, or a function of K otherwise.
HMAC–Streebog will use either Streebog–512 or Streebog–256 as the under-
lying hash function. According to RFC 2104 [15], the recommended length
of the secret key for a secure HMAC is equal to the digest length of h, and it
cannot be more than the block size of h. Therefore the key size of HMAC–
Streebog has to be at least 256 or 512 bits depending on whether Streebog–
256 or Streebog–512 is used as the hash function. If K is shorter than the
block size, it is padded with {0}512−|K| to get K0. Algorithm 2 describes the
working of HMAC–Streebog, where h is Streebog–256 or Streebog–512.
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Table 2: Table showing the allowed values of the Boolean variables x(i−1), y(i−1), c(i−1), c(i)

and c′(i), and the probability of each event where pi = Pr(c(i) = 0), for i > 1

x(i−1) y(i−1) c(i−1) c(i) c′(i) Probability

0 0 0 0 0 1
4
pi−1

0 0 1 0 1 1
4
(1− pi−1)

0 1 0 0 1 1
4
pi−1

0 1 1 1 1 1
4
(1− pi−1)

1 0 0 0 0 1
4
pi−1

1 0 1 1 0 1
4
(1− pi−1)

1 1 0 1 0 1
4
pi−1

1 1 1 1 1 1
4
(1− pi−1)

3 Motivational Observations

3.1 On Carry in Modular Addition

Let x and y, which are distributed uniformly at random, be the inputs to
an n–bit modular addition, c(i) be the carry generated at the ith bit position
of the addition, where 1 ≤ i ≤ n (for instance, outgoing carry at the LSB
position is denoted by c(1)), and cout be the final carry which equals c(n).
The carries generated at the ith bit position when input x is replaced with
x ⊕ In,i−1 is denoted by c′(i). The allowed values of the Boolean variables
x(i−1), y(i−1), c(i−1), c(i) and c′(i), for i > 1 and the probability of each event
(each possibility is considered an event) are tabulated in Table 2.3 Let us
consider two cases.

Case 1: The ith bit of x and c(i) for any i ∈ {n, n− 1, . . . , 1} are known.
From Table 2, we can deduce the following.
If x(i−1) ⊕ c(i) = 1,

y(i−1) = c(i), n ≥ i ≥ 2 , (8)

c(i−1) = c(i), n ≥ i ≥ 2 . (9)

Else, assuming the events given in Table 2 are mutually exclusive,

Pr(y(i−1) = c(i)) =
2

3
, n ≥ i ≥ 2 . (10)

3We assume that x(i−1), y(i−1) and c(i−1) are independent, and Pr(x(i−1) = 0) = Pr(y(i−1) = 0) = 0.5.
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Since c(0) = 0,

y(0) = c(1) ⇐⇒ x(0) ⊕ c(1) = 1 , (11)

y(0) = 1 ⇐⇒ x(0) = c(1) = 1 . (12)

Case 2: The ith bit of x, c(i) and c′(i) for any i ∈ {n, n − 1, . . . , 1} are
known.
As in Case 1, equations (8), (9), (11) and (12) hold, if the respective condi-
tions are satisfied. In addition to them, we get the following.
If x(i−1) ⊕ c(i) = 0 and c(i) = c′(i),

y(i−1) = c(i), n ≥ i ≥ 1 , (13)

c(i−1) = c(i), n ≥ i ≥ 2 . (14)

If x(i−1) ⊕ c(i) = 0 and c(i) 6= c′(i),

y(i−1) = c(i−1) ⊕ 1, n ≥ i ≥ 2 , (15)

y(i−1) = 1, for i = 1 . (16)

3.2 On the Recovery of an Unknown Operand

Let fny (x) be a function which takes an n–bit secret input y, which is
distributed uniformly at random, and an n–bit known input x, which is
generated by a random oracle, and outputs z := (x + y) mod 2n. If the
carry cout is known, based on the observations given in Sect. 3.1, the secret
input y can be recovered quicker than exhaustive search. We describe two
methods to recover y, one each for the Cases of Sect. 3.1.

Passive analysis. Based on Case 1, a passive analysis can be performed to
recover the k most significant bits of y using (8)–(12), if cout and the k most
significant bits of x are known.

Active analysis. From Case 2, Algorithm 3 has been derived and it addi-
tionally requires the carries generated when a set of chosen x’s are given as
inputs to fny (x). Chosen x’s are used in steps 19 and 21.4

4Since x and y are independent and distributed uniformly at random, y′u ‖ x′l and x′, which constitute
the chosen x’s, are also uniformly distributed. The definitions of y′u, x′l and x

′ are given in Algorithm 3.
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Algorithm 3 Recovering the secret input y of fny (x) using active analysis
Require: Known input x, carry cout and carries generated when x is modified
Ensure: n–bit y

1. Y = {0}; C = {cout};
2. for i = n to 1 do
3. Y new = {}; Cnew = {}; cnt = 0;
4. for j = 0 to sizeof(Y )− 1 do
5. y ← Y [j]; c(i) ← C[j];
6. if x(i−1) ⊕ c(i) = 1
7. y(i−1) = c(i);
8. if i 6= 1
9. c(i−1) = c(i);
10. endif
11. else if i = 1 & c(1) = 1
12. y(0) = 1;
13. else
14. x′ = x⊕ In,i−1;
15. if i 6= n
16. x′l = x′(i−1) ‖ x′(i−2) . . . ‖ x′(0);
17. yu = y(n−1) ‖ y(n−2) . . . ‖ y(i);
18. y′u = yu ⊕ (2n−i − 1);
19. c′(i) = carry generated after executing fny (y′u ‖ x′l);a
20. else
21. c′(i) = carry generated after executing fny (x′);
22. endif
23. if c′(i) = c(i)

24. y(i−1) = c(i);
25. if i 6= 1
26. c(i−1) = c(i);
27. endif
28. else
29. y(i−1) = 1;
30. if i 6= 1
31. Y new[cnt] = y; Y new[cnt](i−1) = 0; Cnew[cnt] = 1;
32. c(i−1) = 0;
33. cnt = cnt+ 1;
34. endif
35. endif
36. endif
37. Y [j]← y; C[j]← c(i−1);
38. endfor
39. for j = 0 to cnt− 1 do
40. Y [j+sizeof(Y )] = Y new[j]; C[j+sizeof(Y )] = Cnew[j];
41. endfor
42. endfor
43. Choose y from Y using exhaustive search
44. Output y
aSince y′u + yu = {1}n−i, carry generated at the ith bit position of (y′u ‖ x′l) + y will be

equal to that at the MSB.
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Figure 1: Probability distributions of the size of Algorithm 3’s solution space for n = 4,
8, 12 and 16

3.3 Passive Analysis vs Active Analysis

According to Case 1 of Sect. 3.1, x(i−1)⊕ c(i) and x(i−2)⊕ c(i−1) equal 1, if
and only if x(i−1) and x(i−2) are equal, for i > 1. Hence, to recover the k most
significant bits of y, where k 6= n, with 100% success rate, either cout must
be 1 and the corresponding bits of x must be 0 or vice versa; probability of
this event turns out to be 2−2k. Therefore, only a few bits can be recovered
with this method. Nevertheless, the most significant bit of y can be recovered
with 75% success rate using passive analysis as it can be recovered with 2

3

probability when x(n−1) ⊕ cout equals 0.5
Compared to passive analysis, active analysis can recover more number

of bits with a better success rate. At steps 29, 31 and 32, (y(i−1), c(i−1)) takes
the values (0, 1) and (1, 0), following (15), due to which a set of possible
solutions of y gets generated. Instead of performing an exhaustive search
over the entire space, our search is limited to this set of solutions. In order
to analyse the size of this solution space, the algorithm was tested with all
possible values of x and y for n = 4, 8, 12 and 16. The results show that
for any n, at the most n, and on an average n

2 or n
2 + 1, solutions will be

generated. The probability distributions of the size of solution space for n =
4, 8, 12 and 16 are shown in Figure 1.

The other factors affecting the active analysis are the maximum number
of modifications of x required and the maximum number of simultaneous
bit-flips needed at any instance of modification. Knowing x(i−1) and c(i),
probabilities of passively recovering y(i−1) with 100% success rate for i 6= 1

5Success probability := 1
4 · 1 + 3

4 · 2
3 = 0.75.
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Figure 2: Minimum number of simultaneous bit-flips (l) required to recover the k most
significant bits for each of the success probabilities 0.6, 0.7, 0.8, 0.9 and 0.95.

and i = 1 are 0.25 and 0.5, respectively. Hence, to recover k most signifi-
cant bits of y, x has to be modified at the least 0.75k times. When multiple
solutions of y are generated, the number of modifications of x will be more
than 0.75k as it depends on the existing solutions of y (see step 19 of Algo-
rithm 3). The average number of modifications of x required to recover the

ith bit of y was experimentally computed to be equal to 3
4 + 1

4

n−i∑
j=0

(1− 2−j)

where i ∈ {n, n− 1, . . . , 1}. In order to understand the effect of the num-
ber of simultaneous bit-flips on the number of bits recovered, we performed
another test using all possible inputs for n = 20. The minimum number
of simultaneous bit-flips l required to recover the k most significant bits of
y for each of the success probabilities 0.6, 0.7, 0.8, 0.9 and 0.95 where ex-
perimentally computed, and the results are plotted in Figure 2. The linear
equations 0.6k− l+ 0.5 = 0, 0.626k− l+ 0.574 = 0, 0.636k− l+ 0.821 = 0,
0.677k − l + 0.837 = 0 and 0.716k − l + 0.884 = 0, which were inferred
using curve fitting techniques, define the relationship between l and k for the
success probabilities 0.6, 0.7, 0.8, 0.9 and 0.95, respectively.

4 Key Recovery Attacks on HMAC–Streebog

We shall now discuss how an attacker, who has access to the authentica-
tion device of HMAC–Streebog–512, can recover K with a complexity lesser
than that of exhaustive key search. We make the following assumptions:

1. The attacker knows the inner hash Hin mentioned in Algorithm 2.
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2. The attacker is able to detect the carry flag at the end of message
authentication code generation.

3. The attacker is able to alter chosen bits of Hin on demand.

From step 5 of Algorithm 2 and step 10 of Algorithm 1, we see that
the final operation of HMAC–Streebog–512 that affects the carry flag is
Hin + K ′ mod 512, where K ′ = K0 ⊕ opad. This is because the functions
Γ, F , X [·] and L do not affect the carry flag. Consequently, the compres-
sion function G does not affect the carry flag. We assume that the machine
code generated from the reference C implementation of Streebog [6] does not
contain any additional operation that affects the carry flag after the final
modular addition.

If Hin and K ′ are considered to be x and y, respectively, then Hin +
K ′ mod 512 equals f 512

y (x), where fny (x) is the function defined in Sect. 3.2.
Since Hin and the carry generated by f 512

y (x) are known to the attacker, he
may be able to recover some of the most significant bits of K ′ using passive
analysis. The strength of the attacker to alter the chosen bits of Hin enables
him to perform active analysis to recover the entire K ′ and, in turn, the
knowledge of K ′ leads to the recovery of entire K.

4.1 Complexities of the Attacks

Knowing Hin and carry flag, the most significant bit of K can be recov-
ered using passive analysis with 75% success rate. In other words, the time
complexity of the key recovery attack using passive analysis for 75% success
rate will be O(2511). The complexity of recovering K using active analysis
varies depending on the strength of the attacker. In Sect. 3.3, we have already
discussed the average number of modifications and simultaneous bit-flips re-
quired to recover the bits of the unknown variable y. In order to recover the
k most significant bits of K, Hin has to be modified τk times on an average,
where τk can be calculated as:

τk =
512−k+1∑

i=512

(
3

4
+

1

4

512−i∑

j=0

(1− 2−j)

)
. (17)

At least 0.716k simultaneous bit-flips are required for each modification to
ensure a 95% success. Therefore, if the attacker has enough resources to flip
l chosen bits of Hin simultaneously, 1.4l most significant bits of K can be
recovered using Algorithm 3 with 0.95 success probability and, he can recover
the remaining bits through brute force. The time complexity to recoverK us-
ing active analysis will be χ(l)+O(2(512−1.4l)) for a success rate of 95%, where
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Table 3: Variation of the number of key bits recovered (i · l) using Algorithm 3 and the
required number of modifications of Hin in logarithmic scale (log2 τi·l) with the possible
number of chosen bit-flips (l) where i = 1.4, 1.48, 1.57, 1.6, 1.67 and i · l≤ 512.
l 1.4l log2 τ1.4l 1.48l log2 τ1.48l 1.57l log2 τ1.57l 1.6l log2 τ1.6l 1.67l log2 τ1.67l

1 1 -0.42 1 -0.42 1 -0.42 1 -0.42 1 -0.42
31 43 7.95 45 8.08 48 8.26 49 8.32 51 8.43
61 85 9.87 90 10.03 95 10.19 97 10.24 101 10.36
91 127 11.01 134 11.16 142 11.33 145 11.39 151 11.51
121 169 11.83 179 11.99 189 12.15 193 12.21 202 12.34
151 211 12.46 223 12.62 237 12.80 241 12.84 252 12.97
181 253 12.98 267 13.14 284 13.31 289 13.36 302 13.49
211 295 13.42 312 13.58 331 13.75 337 13.81 352 13.93
241 337 13.81 356 13.96 378 14.14 385 14.19 402 14.31
271 379 14.14 401 14.31 425 14.47 433 14.53 452 14.65
301 421 14.45 445 14.61 472 14.77 481 14.83 502 14.95
331 463 14.72 489 14.88 - - - - -
361 505 14.97 - - - - - - - -

χ(l) is the time required for τ1.4l modifications of Hin. Assuming that each
modification takes O(α) time, χ(l) = O(α · τ1.4l). Therefore the complexity
of our active attack for a success rate of 95% will be O(α · τ1.4l + 2(512−1.4l)),
which equalsO(2(512−1.4l)) if log2 α·τ1.4l � 512−1.4l. Similarly, the respective
complexities of our attacks for the success rates of 90%, 80%, 70% and 60%
will be O(α·τ1.48l+2(512−1.48l)), O(α·τ1.57l+2(512−1.57l)),O(α·τ1.6l+2(512−1.6l))
and O(α · τ1.67l + 2(512−1.67l)). The variation of i · l and log τi·l with l, where
i = 1.4, 1.48, 1.57, 1.6, 1.67, is listed in Table 3.

For HMAC–Streebog–256, if |K| = 256, the 256 most significant bits of
K ′ and pad ‖ Hin will be known to the attacker as they are the padding
bits. Therefore, he will be able to compute c(256) from c(512), where c(512)

is the carry flag. Hence the attack on 512–bit addition reduces to that on
256–bit addition, which will, in turn, result in the reduction of the attack
complexity. For instance, the complexities of our passive attack with success
rate of 75% and active attack with success rate of 95% will reduce to O(2255)
and O(α · τ1.4l + 2(256−1.4l)), respectively.

If the attacker is able to flip at the most 181 and 361 chosen bits of Hin

then he will be able to recover the keys of HMAC–Streebog–256 and HMAC–
Streebog–512, respectively, with negligible complexity. The average number
of modifications of Hin required for the attacks on HMAC–Streebog–256 and
HMAC–Streebog–512 are 212.98 and 214.97, respectively.
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5 Validity of the Assumptions

Our passive attack ceases to exist if any of the first two assumptions
made in Sect. 4 is invalid. Similarly, key recovery using active analysis will
be possible only if the three associated assumptions of Sect. 4 are valid.
Therefore, it is necessary to examine the possibility of our assumptions in a
real-world context.

5.1 Extraction of the Inner Hash Hin

In [17] and [14], Lipp et al. and Kocher et al. have respectively presented
two attacks, the Meltdown attack and the Spectre attack, which enable a
malicious application to access the memory space of a different application
and read its secrets by exploiting critical vulnerabilities in modern processors.
SplitSpectre [18], another speculative execution attack, is a recent variant of
Spectre attack proposed by Mambretti et al. which requires a smaller piece
of vulnerable code available in the victim’s attack surface compared to the
original attack. RAMBleed attack [16] by Kwong et al. is a more recent
attack which exploits the Rowhammer vulnerability [13] in DRAM cells to
read some of the bits in any DDR3 and DDR4 DRAM memories without
accessing them. If the attacker has physical access to the hardware, Cold
Boot attack [12] is yet another method to extract data from the RAM. The
above mentioned attacks target a wide variety of platforms such as personal
computers, mobile devices, embedded systems and even cloud environment.
Since these attacks are based on hardware-related vulnerabilities, mitigating
them without upgrading the hardware cannot be fully ensured. Moreover,
efficient variants of the known attacks or even new line of attacks unveil in
the course of time.

In order to extract Hin from the authentication device, the attacker can
use an unprivileged spy software within the same device which utilises one of
the above mentioned attacks to read the memory. Being a message digest, it
is reasonable to assume that the extraction of Hin from memory will not be
as difficult as that of a secret key.

5.2 Detection of Carry

The 512–bit addition in Streebog will be mostly implemented as a ripple
carry adder where the word size of the full adders will be equal to or less
than that of the accumulator of the underlying processor as in [6]. If they
are equal, carry flag will be set when a carry is generated. An attacker who
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has the necessary privileges to execute any code of his choice in the authen-
tication device will be able to detect the carry flag by executing the add
with carry (ADC) assembly instruction. If this method is not feasible, he can
use techniques similar to those explained by Fouque et al. which will either
exploit the electromagnetic side channel of the device [11] or inject a fault
during the computation of the carry [10] to get the carry information. It is
easier to detect the carry flag soon after the MAC generation rather than
while it is under generation. But, if the above mentioned techniques are per-
formed in synchronisation with the intermediate additions which implement
the targeted addition, the attacker will be able to detect all the intermediate
carries which, in turn, will reduce the complexities of our attacks as each
intermediate addition can be attacked separately.

If the word size of the adder is less than that of the accumulator, carry flag
or overflow flag will never be affected. Nevertheless, the intermediate carries
will be stored in the buffer as in [6] to forward them to the adjacent adders.
The attacker can extract them from the buffer using one of the methods
mentioned in Sect. 5.1.

5.3 Chosen Bit Modification of Inner Hash Hin

In [13], Kim et al. showed the Rowhammer vulnerability that causes bits
in the rows adjacent to the frequently activated rows of a DRAM memory to
flip without access. Cojocar et al. [5] demonstrated that multiple bits could
be flipped in a chosen manner exploiting this vulnerability and the bits tend
to flip to the same value of the bits of the corresponding column in adjacent
rows. Very recently, Kwong et al. [16] described and demonstrated the steps
to be followed to flip the bits of a target data in the DRAM memory. An
unprivileged spy software, similar to that used for the extraction of Hin, can
be used for its modification too, using the Rowhammer attack.

Another method to flip the bits of Hin is by injecting multiple single–
bit faults using multi–spot lasers, as mentioned in [9]. But the number of
simultaneous bit-flips induced utilising this method will be lesser compared
to the earlier one, which leads to an increased attack complexity. Still, if the
word size of the adders used in the ripple carry adder is small, which will
be the case when HMAC–Streebog is implemented in an embedded system,
and the intermediate carries are known, the complexity of our attack can be
reduced by applying Algorithm 3 on each adder seperately instead of 512–bit
ripple carry adder.
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6 Conclusion

In this paper, we have shown side channel attacks on HMAC–Streebog
which is a HMAC algorithm based on the Russian standard Streebog and de-
fined in RFC 7836. Our attacks use carry flag as the side channel to recover
the keys with complexities lesser than that of exhaustive search. Under the
assumption that the output of the inner hash function of HMAC–Streebog is
known to the attacker, our passive side channel attacks on HMAC–Streebog–
256 and HMAC–Streebog–512 can recover one bit of the respective key with
75% success rate. We have also presented fault–assisted side channel attacks
on HMAC–Streebog–256 and HMAC–Streebog–512 which can recover the
keys with 212.98 and 214.97 average number of fault injections, respectively, for
95% success rate under the assumption that the attacker is able to simulta-
neously flip at the most 181 chosen bits for HMAC–Streebog–256 and 361
chosen bits for HMAC–Streebog–512. We have highlighted some of the latest
hardware vulnerabilities which make the HMAC–Streebog implementations
vulnerable to our attacks. To the best of our knowledge, our passive attack
is the best non-fault attack on HMAC–Streebog–256. Compared to the other
fault attacks on HMAC–Streebog, our attacks have a larger temporal window
for fault injection, target a more accessible location and cannot be mitigated
with output redundancy countermeasures. The attacks presented here em-
phasises the importance of preventing the side channel leakage of carry bits.
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Abstract

In this paper we study Feistel network based ciphers with XSL-like round function
and provide sufficient conditions for such ciphers to generate alternating group. We
extend results obtained by A.S. Maslov [1] for XSL ciphers (SA-substitutions).

Keywords: Feistel network, alternating group, XSL, block cipher.

1 Introduction and preliminaries

Feistel network is one of the most popular approaches to construction of
block ciphers. The particular Feistel network based cipher is determined by
the round function. It this paper we study one type of round functions and
provide sufficient conditions for ciphers with such round function to generate
alternating group. Motivation for the investigation is the fact that the group
generated by round function of block cipher contains as a subset the set of
transformations performed by the actual cipher. Although it’s preferably to
study the set itself, in most cases it’s a difficult problem, but some undesirable
properties of the set, like imprimitivity or small size, can be determined the
corresponding properties of the group generated by round functions.

Denote a, b = {a, a+ 1, ..., b} for positive integer a ≤ b. Let Vt be vector
space of dimension t over GF (2). For m,n > 1 we consider Vmn = V n

m and
if α ∈ Vmn, then α = (α1, . . . , αn) , αi ∈ Vm, i ∈ 1, n. Define by πc (x) a
permutation πc : x → x ⊕ c of Vmn, c ∈ Vmn; s (x) , s′ (x) – permutations
of Vm; S (α) = (s (α1) , . . . , s (αn)), S ′ (α) = (s′ (α1) , . . . , s

′ (αn)), α ∈ Vmn;
L(x), L′ (x) non-singular linear transformations of Vmn.

For simplicity we consider that permutations in each S and S ′ are all
identical, but the following results are correct for different permutations in
S and S ′ as well.

We write an application of a function f to an argument x as f (x) or xf

depending on the situation. In the latter case xf1f2 means f2 (f1 (x)).
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Let gFk be one round of Feistel network based cipher with round function
Fk(x) : Vmn × X → Vmn, where X is a set of round keys. We will write
function F for fixed k ∈ X as Fk. The result of gFk applied to block (a, b) ∈
V 2
mn is

gFk (a, b) =
(
aFk ⊕ b, a

)
.

Define by RF the group generated by gFk with different k:

RF = 〈gFk |k ∈ X〉.

We fix integer l > 1 and define X = V l
mn, k ∈ V l

mn, k = (k1, . . . kl). Let’s
consider round function Fk of the following form

Fk(x) = xQπk1
SL,

where Q : Vmn × V l−1
mn → Vmn. Define Qk1...,kl−1

(x) = Q(x, k1, . . . , kl−1). Our
goal is to show that

R = A22mn,

where A2mn = A(V2mn) – alternating group of permutations of V2mn.
Let matrix L be constructed of (m×m) blocks Lij ∈ GLn (2):

L = ‖Lij‖ ∈ GLmn (2) .

If x = (x1, . . . , xn) , y = (y1, . . . , yn) , xi, yi ∈ Vm, i ∈ 1, n, and y = L (x),

then coordinate function yj can be written as yj =
n∑

t=1

xtLtj.

For transformation L we construct directed "diffusion graph" ΓL with set
of nodes V = {1, . . . , n} and set of edges XL. Edge (i, j) ∈ XL iif coordinate
function yj depends substantially on xi, or, in other words, if matrix Lij is
non-null.

For α = (α1, . . . , αn) ∈ V n
m we define the set of non-zero coordinates

N (α) =
{
i|αi 6= ~0

}
. If I ⊆ V , then we define NI (α) = N(α)∩ I. Define by

L(I) the set of tails of edges of directed graph ΓL with heads in set I.
We impose the following conditions on linear transformation L and per-

mutation S.
Condition FSA1. Directed graph ΓL is strongly connected and greatest

common divisor of its cycles’ length is equal to 1.
For given a1, a2 ∈ Vm, a1 6= a2, we construct vector spaces V (a1,a2) ⊆ V2m

generated by all vectors of the form
(
a
πk1

s
1 ⊕ aπk2

s
1 , a

πk1
s

2 ⊕ aπk2
s

2

)
, k1, k2 ∈ Vm
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Condition FSA2. For any a1, a2 ∈ Vm, a1 6= a2, V (a1,a2) = V2m.
Condition FSA2 means that dimension of V (a1,a2) equals to 2m.
Define

Mi(L) =
{
j ∈ 1, n|Lij is non-singular matrix

}
, i ∈ 1, n

Condition FSA3. In matrix L for any i, j ∈ 1, n block Lij is either
non-singular matrix or null matrix, besides for any t ∈ 1, n− 1 and pairwise
different i1 . . . , it ∈ 1, n inequality

∣∣∣
⋃t
j=1Mij(L)

∣∣∣ > t holds.
Condition FSA4. min

α∈Vm\{0}
|{s(x⊕ α)⊕ s(x)|x ∈ Vm}| > max

i∈1,n
|Mi(L)|.

Condition FSA4 for permutation s is bound to the following

ps = max
a,b∈Vm\{0}

|{x ∈ Vm|s(x⊕ a)⊕ s(x) = b}| · 2−m.

For any a ∈ Vm \ {0} the following inequality holds

2m =
∑

(∗)
|{x ∈ Vm|s(x⊕ a)⊕ s(x) = b}| ,

summing up for all b ∈ Vm, such that for certain x ∈ Vm the equality
s(x ⊕ a) ⊕ s(x) = b holds. Since value in sum is less or equal to 2mps,
then

p−1
s ≤

∑

(∗)
1 = |{x ∈ Vm|s(x⊕ a)⊕ s(x) = b}|

and condition FSA4 on permutation s follows from condition max
i∈1,n
|Mi(L)| <

p−1
s

Note. If S includes different permutations s1, . . . , sn, then condition
FSA4 transforms into the following: for any i ∈ 1, n the inequality

min
α∈Vm\{0}

|{s(x⊕ α)⊕ s(x)|x ∈ Vm}| > |Mi(L)| ,

or |Mi(L)| < p−1
si
, holds.

First we prove a number of subsidiary statements.

Theorem 1. For any m > 2, set I ⊆ V and vector β ∈ Vmn the following
inequality holds

max
α:N(α)⊆I

∣∣NL(I)

(
αL ⊕ β

)∣∣ ≥ |I|.

This inequality is strict if |L(I)| > |I|.
For proof see appendix A. It’s similar to the proof of theorem 2 in [1]
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Corollary 1. Let α ∈ Vmn be the vector that gives maximum
max

α:N(α)⊆I
|NL(I)

(
αL ⊕ β

)
|. Then

∣∣N
(
αL ⊕ β

)∣∣ ≥ |I|.

Proof. From theorem 1 we have max
α:N(α)⊆I

∣∣NL(I)

(
αL ⊕ β

)∣∣ ≥ |I|. By defi-

nition NL(I)

(
αL ⊕ β

)
= N

(
αL ⊕ β

)
∩ L(I), hence

∣∣N
(
αL ⊕ β

)∣∣ ≥ |I|. �
Note that if |L(I)| < |I|, then theorem 1 is wrong. However, the following

statement holds.

Statement 1. Let L be non-singular linear transformation of space Vmn.
Then for any subset I ⊆ V the following inequality holds

|L(I)| ≥ |I|
Proof. Let a ∈ Vmn and L(a) = (l1(a), . . . , ln(a)), where lj are linear

mappings from Vmn to Vm, j ∈ 1, n. For certain I ⊆ V define by WI a
subspace of Vmn such that N(w) ⊆ I for any w ∈ WI , and WL(I) = L(WI).
Since L is non-singular, then dimWI = dimWL(I).

On the other hand, for any w ∈ WI and j ∈ 1, n\L(I) equality lj(w) = 0
holds, because lj depends only on zero subvectors of w. So if |L(I)| < |I|,
then

∣∣1, n \ L(I)
∣∣ >

∣∣1, n \ I
∣∣, that is max

w∈WL(I)

|N(w)| < max
w∈WI

|N(w)|, and
dimWL(I) < dimWI – contradiction. Hence |L(I)| ≥ |I|. �
Lemma 1. Let hk1,...,k2t

(x) = xπk1
S ⊕ xπk2

S ⊕ · · · ⊕ xπk2t
S for an arbi-

trary natural t > 0, k1, . . . k2t ∈ Vmn,and components of transformation
S satisfy the condition FSA2. Then for any α, β, γ1, γ2 ∈ Vmn, such that
N (γ1 ⊕ γ2) ⊆ N (α⊕ β), there are t, k1, . . . , k2t that{

hk1,...,k2t
(α) = γ1,

hk1,...,k2t
(β) = γ2.

Proof. Since S acts independently on subvectors of dimension m, then
transformation hk1,...,k2t

(x) can be considered acting on subvectors of dimen-
sion m independently, that is

hk1,...,k2t
(x) = (h1(x1), h2(x2), . . . , hn(xn))

for certain hi. If we denote kj =
(
k

(1)
j , . . . , k

(n)
j

)
, then

hi(xi) = (xi)
π
k
(i)
1

s ⊕ (xi)
π
k
(i)
2

s ⊕ · · · ⊕ (xi)
π
k
(i)
2t

s
.

Let αi, βi ∈ Vm,, αi 6= βi, i ∈ 1, n. Then
(
hi(αi)
hi(βi)

)
=


α

π
k
(i)
1

s

i ⊕ · · · ⊕ α
π
k
(i)
2t

s

i

β
π
k
(i)
1

s

i ⊕ · · · ⊕ β
π
k
(i)
2t

s

i


 =


α

π
k
(i)
1

s

i

β
π
k
(i)
1

s

i


⊕


α

π
k
(i)
2

s

i

β
π
k
(i)
2

s

i


⊕· · ·⊕


α

π
k
(i)
2t

s

i

β
π
k
(i)
2t

s

i .



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For different t and every possible k(i)
1 , . . . , k

(i)
2t the right part of the latter

formula takes every possible value from the space V (αi,βi). By the condition
of lemma, permutation s satisfies the condition FSA2, that is V (αi,βi) = V2m.
It means that whatever αi, βi ∈ Vm, αi 6= βi, i ∈ 1, n, γ(i)

1 , γ
(i)
2 ∈ Vm, we

take, we can find t, k(i)
1 , . . . , k

(i)
2t such that hi(αi) = γ

(i)
1 , hi(βi) = γ

(i)
2 . �

2 Main result

Theorem 2. Let permutation s satisfies the condition FSA2 and one of the
following conditions holds:

1) for any a1, a2 ∈ Vmn there are k1, . . . , kl−1 ∈ Vmn such that

|N (a1 ⊕ a2)| <
∣∣∣N
(
a
Q(k1,...,kl−1)

1 ⊕ aQ(k1,...,kl−1)

2

)∣∣∣

if N (a1 ⊕ a2) < n and

|N (a1 ⊕ a2)| =
∣∣∣N
(
a
Q(k1,...,kl−1)

1 ⊕ aQ(k1,...,kl−1)

2

)∣∣∣

if N (a1 ⊕ a2) = n
2) for any a1, a2 ∈ Vmn there are k1, . . . , kl−1 ∈ Vmn such that

N(a1 ⊕ a2) ⊆ N(a
Q(k1,...,kl−1)

1 ⊕ aQ(k1,...,kl−1)

2 )

and transformation L satisfies the condition FSA1

Then group RF equals to alternating group A22mn

Proof. First we prove that group RF is 2-transitive. To do this we show
that an arbitrary distinct pair of blocks (a1, b1), (a2, b2) can be transformed
into an arbitrary distinct pair of blocks (c1, d1), (c2, d2) under certain per-
mutations from R. We make this transformation in three steps:

1. Transform (a1, b1), (a2, b2) transforms into a certain pair (a′1, b
′
1), (a′2, b

′
2)

such that N(a′1 ⊕ a′2) = N(b′1 ⊕ b′2) = V ;

2. Transform (c1, d1), (c2, c2) transforms into a certain pair (c′1, d
′
1), (c′2, d

′
2)

such that N(c′1 ⊕ c′2) = N(d′1 ⊕ d′2) = V ;

3. Transform (a′1, b
′
1), (a′2, b

′
2) transforms into (c′1, d

′
1), (c′2, d

′
2).

First we show that we can perform steps 1 and 2, that is we can always
transform an arbitrary distinct pair into a pair of blocks which differ in every
subvector.
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Consider an action of permutation

gFk(1)

(
gFk(2)

)−1
= gk(1)g−1

k(2),

where k(1), k(2) ∈ V l
mn, k(i) =

(
k

(i)
1 , . . . , k

(i)
l

)
, k

(i)
j ∈ Vmn, on a pair of blocks

(a1, b1) , (a2, b2) , a1 6= a2:





(a1, b1)
g
k(1)g

−1

k(2) =


a1,

(
a
Q

(k(1)
1 ,...,k

(1)
l−1)

π
k
(1)
l

S

1 ⊕ a
Q

(k(2)
1 ,...,k

(2)
l−1)

π
k
(2)
l

S

1

)L

⊕ b1


 ,

(a2, b2)
g
k(1)g

−1

k(2) =


a2,

(
a
Q

(k(1)
1 ,...,k

(1)
l−1)

π
k
(1)
l

S

2 ⊕ a
Q

(k(2)
1 ,...,k

(2)
l−1)

π
k
(2)
l

S

2

)L

⊕ b2




Let keys of transformation Q be equal, that is
(
k

(1)
1 , . . . , k

(1)
l−1

)
=

(
k

(2)
1 , . . . , k

(2)
l−1

)
, and denote ai = a

Q
(k(1)

1 ,...,k
(1)
l−1), i = 1, 2. Then





(a1, b1)
g
k(1)g

−1

k(2) =

(
a1,

(
a
π
k
(1)
l

S

1 ⊕ a
π
k
(2)
l

S

1

)L
⊕ b1

)
,

(a2, b2)
g
k(1)g

−1

k(2) =

(
a2,

(
a
π
k
(1)
l

S

2 ⊕ a
π
k
(2)
l

S

2

)L
⊕ b2

)

In case 2 of theorem by theorem’s condition we can choose(
k

(1)
1 , . . . , k

(1)
l−1

)
=
(
k̃

(1)
1 , . . . , k̃

(1)
l−1

)
such that |N (a1 ⊕ a2)| < |N (a1 ⊕ a2)|.

In case 1 of theorem we can choose
(
k̃

(1)
1 , . . . , k̃

(1)
l−1

)
such that N (a1 ⊕ a2) ⊆

N (a1 ⊕ a2).
Now we take 2t keys k(1), . . . , k(2t), t ≥ 1, such that(

k
(i)
1 , . . . , k

(i)
l−1

)
=
(
k̃

(1)
1 , . . . , k̃

(1)
l−1

)
for any i ∈ 1, 2t and apply permu-

tation gk(1)g−1
k(2) . . . gk(2t−1)g−1

k(2t) to a pair of blocks (a1, b1) , (a2, b2):




(a1, b1)
g
k(1)g

−1

k(2) ...gk(2t−1)g
−1

k(2t) =

(
a1,

(
2t⊕
i=1

a
π
k
(i)
l

S

1

)L
⊕ b1

)
,

(a2, b2)
g
k(1)g

−1

k(2) ...gk(2t−1)g
−1

k(2t) =

(
a2,

(
2t⊕
i=1

a
π
k
(i)
l

S

2

)L
⊕ b2

)

Transformation h
k

(1)
l ,...,k

(2t)
l

(x) = x
π
k
(1)
l

S
⊕ x

π
k
(2)
l

S
⊕ · · · ⊕ x

π
k
(2t)
l

S
satisfies

the condition of lemma 1, so for any γ1, γ2 ∈ Vmn, suchthatN (γ1 ⊕ γ2) ⊆
N (a1 ⊕ a2) there are t, k(1)

l , . . . , k
(2t)
l such that
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{
h
k

(1)
l ,...,k

(2t)
l

(a1) = γ1,

h
k

(1)
l ,...,k

(2t)
l

(a2) = γ2

and hence {
(a1, b1)

g
k(1)g

−1

k(2) ...gk(2t−1)g
−1

k(2t) =
(
a1, γ

L
1 ⊕ b1

)
,

(a2, b2)
g
k(1)g

−1

k(2) ...gk(2t−1)g
−1

k(2t) =
(
a2, γ

L
2 ⊕ b2

) (1)

Now apply g(0,...,0):




(
a1, γ

L
1 ⊕ b1

)g(0,...,0) =
(
γL1 ⊕ a

Q(0,...,0)SL
1 ⊕ b1, a1

)
,

(
a2, γ

L
2 ⊕ b2

)g(0,...,0) =
(
γL2 ⊕ a

Q(0,...,0)SL
2 ⊕ b2, a2

) (2)

By theorem 1 for any N0 ⊆ N (a1 ⊕ a2) the following inequality holds

max
γ:N(γ)⊆N0

∣∣NL(N0)

(
γL ⊕ β

)∣∣ ≥ |N0| ,

where γ = γ1 ⊕ γ2, β = a
Q(0,...,0)SL
1 ⊕ a

Q(0,...,0)SL
2 ⊕ b1 ⊕ b2. In particular, by

corollary 2, there is γ ∈ Vmn, N(γ) ⊆ N0, such that
∣∣N
(
γL ⊕ β

)∣∣ ≥ |N0|.
In case 1 of the theorem denote N0 = N (a1 ⊕ a2). Then

∣∣N
(
γL ⊕ β

)∣∣ ≥
|N0| > |N(a1 ⊕ a2)|, that is we’ve got a new pair (δ1, a1) , (δ2, a2) such that
|N (δ1 ⊕ δ2)| > |N (a1 ⊕ a2)|. Repeating the described procedure eventually
we obtain a new pair (a′1, b

′
1) , (a

′
2, b
′
2) such that N (a′1,⊕a′2) = N (b′1,⊕b′2) =

1, n.
In case 2 of theorem denote N0 = N (a1 ⊕ a2). Then

∣∣NL(N0)

(
γL ⊕ β

)∣∣ ≥
|N0|. DenoteN1 = NL(N0)

(
γL ⊕ β

)
and repeat the described procedure using

set N1 instead of N0, so we obtain set N2. Repeating it for N2, N3 and so
on, we obtain the sequence of sets of non-decreasing power. Since power of
this sets is bounded by n, then there are numbers t, r such that Nr+t = Nr.
From the construction of sets we have |Nr| ≤ |Nr+1| ≤ . . . |Nr+t|. From this
and from equality Nr+t = Nr we get

|Nr| = |Nr+1| = . . . |Nr+t|

If for some l ∈ 1, t the inequality |L(Nr+l−1)| > |Nr+l−1| does hold, then
from theorem 1 we have |Nr+l−1| < |Nr+l|, which is wrong. So |L(Nr+l−1)| =
|Nr+l−1| = |Nr+l|. By definition, L(Nr+l−1) ⊇ Nr+l and L(Nr+l−1) = Nr+l.
From this we have

Nr+l = L(Nr+l−1) = · · · = Ll(Nr), l ∈ 1, t.
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Since Nr+t = Lt(Nr) = Nr, then
∣∣Ll(Nr)

∣∣ = |Nr| for any l ≥ 0. Set Ll(Nr)
is the set of tails of paths in graph ΓL of length l = 1, 2 . . . with heads in set
Nr. Condition FSA1 is equivalent to the following: for certain natural d there
is a path of length d between any pair of nodes in graph ΓL. Then Ld(Nr) =
{1, 2, . . . , n} and we obtain a pair (a′1, b

′
1) , (a

′
2, b
′
2) such that N (a′1 ⊕ a′2) =

N (b′1 ⊕ b′2) = V as well.
Transitions between pairs (a′1, b

′
1) , (a

′
2, b
′
2) and (c′1, d

′
1) , (c

′
2, d
′
2) for

N (a′1,⊕a′2) = N (b′1,⊕b′2) = N (c′1,⊕c′2) = N (d′1,⊕d′2) = 1, n can be
performed using formulas 1 and 2 since then we can get an arbitrary pair
γ1, γ2 ∈ Vmn by choosing the appropriate keys.

If initial blocks have equal first subblocks, then we apply one-round trans-
formation with an arbitrary key and get new blocks with distinct first sub-
blocks.

We have shown that group RF is 2-transitive. In order to show that it
equals to alternating group we need the following lemma.

Lemma 2 ([1]). Let R be 2-transitive group of even permutations of vector
space Vl. The either R = A(Vl), or R is conjugate to a subgroup of gen-
eral affine group AGL(Vl), or q = 2l − 1 is prime and R is similar to the
certain subgroup of normalizer N(H) of group H = PSL(2, q) in symmet-
ric group S(M) of permutations of set M of one-dimensional subspaces of
two-dimensional vector space over Fq.

Ciphers we are looking at are based on Feistel network, therefore per-
mutations generated by one-round transformations are even. In our case
l = 2mn, 22mn − 1 is not prime and third option of lemma is impossible.
Let’s have a look at the second option. It’s easy to verify that permutation
g(0,0,...,0,k1)g

−1
(0,0,...,0,k2) with k1 6= k2, k1, k2 ∈ Vmn, has no fixed points. Indeed,

for any a, b ∈ Vmn:

(a, b)g(0,0,...,0,k1)g
−1
(0,0,...,0,k2) =

(
a, aQ(0,0,...,0)πk1

SL ⊕ aQ(0,0,...,0)πk2
SL ⊕ b

)

If (a, b) is a fixed point of g(0,0,...,0,k1)g
−1
(0,0,...,0,k2), then

b = aQ(0,0,...,0)πk1
SL ⊕ aQ(0,0,...,0)πk2

SL ⊕ b.
And since Q, πki, S and L are permutations, then we have k1 = k2.

Let’s find transformation A ∈ AGL(V2mn) without fixed points. Per-
mutation A performs transformation x 7→ Cx ⊕ β of space V2mn , where
C ∈ GL(V2mn), β ∈ V2mn. All fixed points satisfy the equation (C⊕E)x = β.
This equation doesn’t have solutions if C = E, β 6= 0, that is if A performs
mapping x 7→ x⊕ β.
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Let’s estimate the order of group RF . We have G =
〈gk(1)g−1

k(2), k
(1)|k(1), k(2) ∈ V l

mn〉 ⊆ RF . It’s obvious that |G| ≥
∣∣V (a1,a2)

∣∣n, and
from FSA2 we have

|G| ≥
∣∣∣V (a1,a2)

∣∣∣ = 22mn.

Permutation g−1
(0,...,0,k1)g(0,...,0,k1) ∈ R performs transformation of vector

(a, b) ∈ V2mn into
(
bQ(0,...,0)πk1

SL ⊕ bQ(0,...,0)πk2
SL ⊕ a, b

)
, so g−1

(0,...,0,k1)g(0,...,0,k2) ∈
R with k1 6= k2, therefore |RF | ≥ |G|+ 1 > 22mn = |〈x 7→ x⊕ β|β ∈ V2mn〉|,
and group G = 〈gk(1)g−1

k(2), k
(1)|k(1), k(2) ∈ V l

mn〉 doesn’t conjugate to a sub-
group of translation group 〈x 7→ x ⊕ β|β ∈ V2mn〉. Hence second option of
lemma 2 is impossible as well and group RF equals to the alternating group
of degree 22mn. �

Now we provide an example of case 1 of theorem 2.

Statement 2. Let function Q(k1,...,kl−1) can be represented in the following
form

Q(k1,...,kl−1) = Q′(k1,...,kl−2)πkl−1
S ′L′

where Q′ : Vmn × V l−2
mn → Vmn, Q

′
(k1,...,kl−2) (x) = Q′ (x, k1, . . . , kl−2) and the

following conditions are satisfied:
1) for any a1, a2 ∈ Vmn, a1 6= a2 there are k1, . . . , kl−2 ∈ Vmn such that

∣∣∣∣N
(
a
Q′(k1,...,kl−2)

1 ⊕ aQ
′
(k1,...,kl−2)

2

)∣∣∣∣ ≥ N (a1 ⊕ a2) ;

2) L′ satisfies the condition FSA3;
3) S ′ satisfies the condition FSA4.
Then Q(k1,...,kl−1) satisfies case 1 of theorem 2.

Proof. Let’s take an arbitrary a1, a2 ∈ Vmn, a1 6= a2. Choose k1, . . . , kl−2

such that
∣∣∣∣N
(
a
Q′(k1,...,kl−2)

1 ⊕ aQ
′
(k1,...,kl−2)

2

)∣∣∣∣ ≥ |N (a1 ⊕ a2)| ,

and define a1 = a
Q′(k1,...,kl−2)

1 , a2 = a
Q′(k1,...,kl−2)

2 , ai = (ai,1, . . . , ai,n) , ai,j ∈ Vm,
i ∈ {1, 2},j ∈ 1, n. We show that we can choose kl−1 such that

∣∣∣N
(
a
πkl−1

S′L′

1 ⊕ aπkl−1
S′L′

2

)∣∣∣ > |N (a1 ⊕ a2)|

if |N (a1 ⊕ a2)| < n, and
∣∣∣N
(
a
πkl−1

S′L′

1 ⊕ aπkl−1
S′L′

2

)∣∣∣ = |N (a1 ⊕ a2)|
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if |N (a1 ⊕ a2)| = n.
Let u = |N (a1 ⊕ a2)|. Without loss of generality we assume that

N (a1 ⊕ a2) = {1, . . . , u} and
u⋃
j=1

Mj (L′) = {1, . . . , t (u)} for certain t (u) ∈

1, n.
By the condition of statement we have t (u) > u if u < n and t (u) = n

if u = n. For any c = (c1, . . . , cn) ∈ Vmn define (δ1 (c1) , . . . , δn (cn)) =
aπcS

′

1 ⊕ aπcS
′

2 , where δi (ci) = s (a1,i ⊕ ci) ⊕ s (a2,i ⊕ ci) ∈ Vm, i ∈ 1, n and
∆i (ci) = (0, . . . , 0, δi (ci) , 0 . . . , 0). For j ∈Mi (L

′) j-th coordinate of vector
∆i (ci)

L′ equals to δi (ci)
L′ij . Since matrix Lij is non-singular, then for any

e ∈ Vm there is a single δi (ci) such that δi (ci)
L′ij = e. It means that for any

vector E ∈ Vmn there are no more than |Mi (L
′)| values of δi (ci) such that

for at least one j ∈ Mi (L
′) j-th coordinates of vectors ∆i (ci)

L′ and E are
equal. By condition, the number of distinct δi (ci) are greater then |Mi (L

′)|
and so there are δi (ci) such that vectors ∆i (ci)

L′ and E are not equal in
every coordinate with index from the set Mi (L

′).
Since

(δ1(c1) , . . . , δu(cu) , 0, . . . , 0)L
′
=

u∑

i=1

∆ (ci)
L′=

=
(
. . .
((

∆1(c1)
L′
)
⊕∆2(c2)

L′
)
⊕. . .

)
⊕∆u(cu)

L′

then we can successively choose values δ1 (c1) , . . . , δu (cu) such that vector

(δ1 (c1) , . . . , δu (cu))
L′ has exactly t (u) =

∣∣∣∣∣
u⋃
j=1

Mj (L′)

∣∣∣∣∣ non-zero coordinates.

Now we only need to set kl−1 = (c1 . . . , cu, 0, . . . , 0) �

3 Examples: MIBS, E2 and Camelia ciphers

As an example let’s look at MIBS, E2 and Camelia ciphers and show that
their one-round functions generate alternating groups.

MIBS cipher [2] has 64-bit block, parameters n = 8, m = 4, and round
function Fk (x) = xπkSL. Permutation s is the following permutation of V4:
(4, 15, 3, 8, 13, 10, 12, 0, 11, 5, 7, 14, 2, 6, 1, 9). Linear transformation L con-
sists of two parts – multiplication by matrix and permutation of 4-bit blocks.
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Matrix L of compositions of this parts has the following form



E O E O E E E E
E E E E O E E E
O E E E E O E E
E E O E E E O O
E E E O E E O O
O E E O O E E E
E E O E O O E E
E O E E E O O E




where E is identity matrix 4× 4, O is null matrix 4× 4.
In order to check the condition FSA2 for permutation s

we ran through values k1, . . . , k4 ∈ V4 and computed vectors(
0πk1

s ⊕ 0πk2
s ⊕ 0πk3

s ⊕ 0πk4
s, a

πk1
s

2 ⊕ aπk2
s

2 ⊕ aπk3
s

2 ⊕ aπk4
s

2

)
for every a2 ∈ V4.

It was determined that for every a2 ∈ V4 the derived set of vectors equals
to V8. In order to check the condition FSA1 for matrix L we constructed
the part of graph ΓL, it is shown in fig. 1. Since graph ΓL has loops and is

Figure 1: Fragment of graph ΓL for MIBS

strongly connected, then matrix L satisfies the condition FSA1. So round
function of MIBS satisfies case 2 of theorem 2 with Q(k1,...,kl−1) (x) = x and
the corresponding group equals to A264.

E2 cipher [3] has block size 120 bit, parameters n = 8, m = 8, and
round function Fk (x) = xπk1

S′L′πk2
SL, k = (k1, k2) ∈ V128. Permutations
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s and s′ of transformations S and S ′ respectively are equal and perform
transformation x→ s (x), s (x) = 97 · x127 + 225, where the exponentiation
is performed in GF (256), and summing and multiplication – modulo 256.
Linear transformation L′ represents multiplication of vector from Vmn by the
following matrix

L′ =




O E E E E E E O
E O E E O E E E
E E O E E O E E
E E E O E E O E
E E O E E E O O
E E E O O E E O
O E E E O O E E
E O E E E O O E




where E is identity matrix 8 × 8, O is null matrix 8 × 8. Besides, there is
transformations IT before the first round and transformation FL after the
last round, which we ignore.

It’s obvious that matrix L′ satisfies the condition FSA3.
In order to check the condition FSA2 for permutation s we
ran through values k1, . . . , k4 ∈ V8 and computed vectors(
0πk1

s ⊕ 0πk2
s ⊕ 0πk3

s ⊕ 0πk4
s, a

πk1
s

2 ⊕ aπk2
s

2 ⊕ aπk3
s

2 ⊕ aπk4
s

2

)
for every a2 ∈ V8.

It was determined that for every a2 ∈ V8 the derived set of vectors equals
to V16. The differential characteristic ps of permutation s equals to 10

256 , so
25.6 = p−1 > max

i∈1,n
|Mi (L)| = 6 and condition FSA4 is satisfied as well.

Summarizing, round of E2 cipher satisfies the conditions of statement 2 for
Q′(k1,...,kl−2) (x) = x and case 1 of theorem 2 and the corresponding group
equals to A2128

Camelia cipher [4] was created using the ideas of E2. It also has param-
eters n = 8, m = 8, and round function Fk (x) = xπkSL, k ∈ V64. After
every six iterations left subblock is being transformed with FL operation,
and right subblock - by FR operation. Matrix L is tensor product of nonsin-
gular (0, 1)-matrix of order 8 and identity matrix of order 8. The diffusion
graph of (0, 1)-matrix if strongly connected and has a loop, so it satisfies the
condition FSA1. The S transformation uses 4 different permutations of V8.
The experiment showed that they satisfy the condition FSA2. Hence, itera-
tion transformation of Camelia satisfies the conditions of case 2 of theorem
2 for Q(k1,...,kl−1)(x) = x and the corresponding group equals to A2128.

In conclusion we underscore that the above conditions are not necessary
for round function to generate alternating group. For example, the round
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function of DES does generate alternatig group [5], but its non-linear part
are not permutations, which is suffictient for our proof.
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Appendix A. Proof of Theorem 1

Theorem 1 For any m > 2, set I ⊆ V and vector β ∈ Vmn the following
inequality holds

max
α:N(α)⊆I

∣∣NL(I)

(
αL ⊕ β

)∣∣ ≥ |I|.

This inequality is strict if |L(I)| > |I|.
Proof. We start from the second part. Let |L(I)| > |I|. Denote

Γ1 = {γ ∈ Vmn \ {0}|N(γ) ⊆ I} ,

Γ2 =
{
γ ∈ Vmn \ {0}|N(γ) ⊆ I,

∣∣NL(I)

(
γL ⊕ β

)∣∣ ≤ |I|
}
,

ni = |Γi| .
We need to show that n2 < n1, then Γ1 \ Γ2 6= ∅ and for any γ ∈ Γ1 \ Γ2

inequality
∣∣NL(I)

(
γL ⊕ β

)∣∣ > |I| holds.
We have n1 = 2m|I| − 1. Without loss of generality we assume that I =

{1, . . . , |I|}, L(I) = {1, . . . , |L(I)|}. Let c be (m|I| × mn)-submatrix of
matrix L constructed from rows with numbers 1, . . . ,m|I|. Divide matrix c
into n fragments with m consecutive columns in each one. Since rang c =
m|I|, then we can pick m|I| linearly independent columns of matrix c.

Let’s show that these columns can be picked from |I| + 1 fragments at
least. Assume that we have picked columns from |I| fragments. Denote by c↓j
the jth columns of matrix c, by T – the set of numbers of picked columns.
Since I = {1, . . . , |I|} and N(γ) ⊆ I, we need to consider only first m|I|
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columns of matrix L to describe the action of transformation L on γ, that
is, matrix c. At the same time, an image of every vector γ is fully defined
by projection of vector γL on coordinates from T . Let cT be the respective
linear transformation.

Since n ≥ |L(I)| > |I| then there is at least one non-zero column c↓j ,
j 6∈ T , such that

c↓j =
∑

i∈T
αic
↓
i

where coefficients αi ∈ GF (2) are not all zeroes at the same time. Let αi 6= 0
for certain i. We replace column c↓i with c

↓
j (and i with j in set T respectively).

Since m ≥ 2, then we obtain a set of m|I| linearly independent columns from
at least |I|+ 1 fragments.

Denote by mi the number of columns of matrix c picked from ith frag-
ment, mi ≤ m, i ∈ 1, n. For simplicity we assume that mi > 0 for
i ∈ 1, t and mi = 0 for i ∈ t+ 1, n. Inequality t < 2 corresponds to the
trivial case I = ∅, which obviously satisfies the theorem, so we assume
t ≥ 2. We have m1 + · · · + mt = m|I|. Denote by β̄ the projection of
vector β on coordinates T and by β̄i the projection of β on coordinates
{(i− 1)m+ 1, . . . , (i− 1)m+m} ∩ T .

Mapping cT is injective on set Γ2 and different images correspond to
different elements of set

Λ(m1, . . . ,mn) = {(λ1, . . . , λt)|λi ∈ Vmi
, w(λ1) + · · ·+ w(λt) ≤ |I|} ⊆ Vm|I|,

where w(λi) is the indicator of the event (λi 6= β̄i). It means that n2 ≤
|ΛI(m1, . . . ,mn)|. Number of elements of set Λ(m1, . . . ,mn) is fully defined
by values m1, . . . ,mn and |I|. Denote

n2(m1, . . . ,mn) = |ΛI(m1, . . . ,mn)| .

Our goal is to show that

n2(m1, . . . ,mn) ≤ n2(m, . . . ,m︸ ︷︷ ︸
|I|−1

,m− 1, 1, 0, . . . , 0). (3)

In this case

n2(m, . . . ,m︸ ︷︷ ︸
|I|−1

,m− 1, 1, 0, . . . , 0) ≤ |Vm||I|−1|Vm−1||V1|−

− (|Vm| − 1)|I|−1 (|Vm−1 − 1|) (|V1| − 1) = 2m|I| − (2m − 1)|I|−1(2m−1 − 1).
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And so we obtain the upper bound for any T with condition t ≥ |I| + 1.
Assume that m > mi ≥ mj > 0 for certain i, j, for example, i = 1, j = 2.
Let’s show that then

n2(m1, . . . ,mn) ≤ n2(m1 + 1,m2 − 1,m3, . . .mn). (4)

Let λ = (λ1, . . . , λt) ∈ Vm|I|, λi ∈ Vmi
.

Case 1: m2 = 1, t > 2. Vectors λ and β̄ can be written as λ =
(λ∗1, λ3, . . . , λt), β̄ =

(
β̄∗1 , β̄3, . . . , β̄t

)
, where λ∗t = (λ1, λ2), β̄∗t =

(
β̄1, β̄2

)
.

Then

Λ∗ {(λ∗1, λ3, . . . , λt)|w(λ∗1) + w(λ3) + · · ·+ w(λt) ≤ |I|} ⊇ ΛI(m1, . . . ,mn),

since w(λ1) + w(λ2) ≥ (λ∗1). Therefore,

n2(m1, . . . ,mn) ≤ |Λ∗| = n2(m1 + 1,m2 − 1,m3, . . . ,mn).

Case 2: m2 = 1, t = 2. This case is possible if only |I| = 1. But then
inequality (3) turns into equality since both of its parts has the same value.

Case 3: m2 > 1, t > 2. If α is the first coordinate of vector λ2, then we re-
move it from λ2 and add it to λ1. We do the same with vector β̄2. Then vectors
λ and β̄ will be written as λ = (λ∗1, λ

∗
2, λ3, . . . , λt), β̄ = (β̄∗1 , β̄

∗
2 , β̄3, . . . , β̄t),

where λ∗1, β̄∗1 ∈ Vm1+1, λ∗2, β̄∗2 ∈ Vm2−1. Let

Λ∗ = {(λ∗1, λ∗2, λ3, . . . , λt)|w(λ∗1) + w(λ∗2) + w(λ3) + · · ·+ w(λt) ≤ |I|} .

At the same time |Λ∗| = n2(m1 + 1,m2 − 1,m3, . . . ,mn).
Note that containment λ ∈ Λ∗ \ ΛI(m1, . . . ,mn) is equivalent to the

following: α doesn’t equal to the first coordinate of β̄2, λ1 6= β̄1, λ∗2 = β̄∗2 and
w(λ3) + · · ·+w(λt) = |I|− 1. There are |Λ∗ \ ΛI(m1, . . . ,mn)| = (2m1− 1)d
vectors λ with this restriction, where

d = |{(λ3, . . . , λt)|λ3 ∈ Vm3
, . . . , λt ∈ Vmt

, w(λ3) + · · ·+ w(λt) = |I| − 1|} .

Similarly to this, λ ∈ ΛI(m1, . . . ,mn) \ Λ∗ iif α doesn’t equal to the first
coordinate of β̄2, λ1 = β̄∗1 , λ∗2 6= β̄∗2 and w(λ3) + · · ·+ w(λt) = |I| − 1, and

|ΛI(m1, . . . ,mn) \ Λ∗| = (2m2−1 − 1)d ≤ |Λ∗ \ ΛI(m1, . . . ,mn)| .

Hence moving a coordinate in vector from ΛI(m1, . . . ,mn) doesn’t decrease
the number of proper vectors and (3) holds.

Case 4: m1 > 1, t = 2. Proving the inequality (3) is similar to proving it
in case m2 > 1, t > 2. Sets ΛI(m1,m2) and Λ∗ are

ΛI(m1,m2) = {(λ1, λ2)|w(λ1) + w(λ2) ≤ |I|}
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Λ∗ = {(λ∗1, λ∗2)|w(λ∗1) + w(λ∗2) ≤ |I|}
Using (4) we obtain the required estimation (3). So we have the inequality

n2 ≤ n2(m1, . . . ,mn) ≤ 2m|I| − (2m − 1)|I|−1(2m−1 − 1).

The right part of it is less then n1 = 2m|I| − 1 when m ≥ 3, so the proof of
the second part of the theorem is done.

To prove the first part we need only to show that

n3 =
∣∣{γ|N(γ) ⊆ I,

∣∣NL(I)

(
γL ⊕ β

)∣∣ < |I|
}∣∣ < n1.

Indeed, we have
n3 = 2m|I| − (2m − 1)|I| < n1.�
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Abstract

This article describes some approaches to bounding non-minimum weight differ-
entials (EDP) and linear hulls (ELP) in 2-round LSX-cipher. We propose a dynamic
programming algorithm to solve this problem. For 2-round Kuznyechik the nontriv-
ial upper bounds on all differentials (linear hulls) with 18 and 19 active Sboxes was
obtained. These estimates are also holds for other differentials (linear hulls) with
a larger number of active Sboxes. We obtain a similar result for 2-round Khazad.
As a consequence, the exact value of the maximum expected differential (linear)
probability (MEDP/MELP) was computed for this cipher.

Keywords: Kuznyechik, Khazad, SPN, LSX, differential cryptanalysis, linear cryptanalysis,
MEDP, MELP

1 Introduction

Differential [2] and linear [3] cryptanalysis are the two most known sta-
tistical attacks applicable to block ciphers. In this paper we will focus on the
first method. The analogous results for linear cryptanalysis will be obtained
in a similar way, due to the existing well-known duality [4].

There are several approaches to estimating the security of ciphers against
differential attacks. Many papers are devoted to the differential characteris-
tics. The maximal probability of such characteristics (EDCP) decreases when
the number of active Sboxes within R rounds increases. The upper bound
on such probability can be analytically obtained for many LSX-ciphers (AES
[11], Khazad [12], Kuznyechik [1], etc.). In particular, these results are pre-
sented in [11, 17].

However, many researchers note that differential cryptanalysis exploits
differentials and not characteristics (see for example [16, 14, 5]). The proba-
bility (EDP) of a differential (∆x,∆y) corresponds to the sum of the prob-
abilities of all characteristics with input difference ∆x and output difference
∆y [8]. So from this point of view security of a cipher against differential
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attacks is based on the maximum expected differential probability (MEDP)
over R ≥ 2 rounds.

Related works. For 2-round LSX-ciphers, some approaches to comput-
ing upper bounds on the MEDP are known [13, 14, 15].

An algorithm for computing the exact MEDP of 2-round AES was pro-
posed in [5]. Article [10] describes upper bounds on the MEDP for so-called
«nested» LSX-ciphers (e.g. 4-round AES).

In [16] was shown that for some 2-round LSX-ciphers the MEDP is
achieved by differentials involving a number of active Sboxes which exceeds
the branch number of the linear layer (non-minimum weight differentials).

Some results about differential properties of 2-round Kuznyechik was ob-
tained in [18]. The cited paper contains an algorithm for constructing the best
minimum weight differentials and a proof that all other differentials have a
lower EDP. Thanks to these two results, the exact value of the 2-round MEDP
was computed.

Our contribution. We propose a dynamic programming algorithm
designed for bounding non-minimum-weight differentials in 2-round LSX-
ciphers. It uses only the difference distribution table and the differential
branch number of the linear layer. The algorithm minimizes the number of
high probability differential trails and does not try to minimize the total
number of trails. Because of this reason, the algorithm is not effective for
ciphers with small block size (for example, 32-bit 2-round AES).

We applied the developed algorithm to the 2-round Kuznyechik (Section 4
and Appendix B): the probability of any 2-round differential (linear hull) with
n + 3 = 19 active Sboxes is bounded by 2−88.34 (2−79.63... correspondingly).
These bounds also holds for any differential (linear hull) with a ≥ n+3 active
Sboxes. Similar results were obtained for 2-round Khazad (Appendix C), and
as a result, the exact values of MEDP = 2−45 + 2−60 and MELP = 2−37.80...

are also proved.
The set of estimates obtained by us can be used in further researches to

calculate the bounds on the MEDP (MELP) for more rounds. We plan to
use our new results together with a modified KMT2-DC (KMT2) algorithm
[6, 7]. The approach [7] allows to incorporate other upper bounds when those
bounds are superior to the values determined directly by the original algo-
rithm [6]. In this way, we hope to prove the greater security of Kuznyechik
to differential and linear cryptanalysis.
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2 Notations and definitions

An LSX cipher E consists of sequence of rounds. Each of them contains
three operations: X – modulo 2 addition of an input block with an iterative
key; S – parallel application of a fixed bijective substitution; L – linear trans-
formation which can be represented as multiplication by the binary matrix.

To simplify the text and notations, we consider only byte-oriented LSX-
ciphers.

Denote: n – block size in bytes; ⊕ – bitwise XOR operation; x[i] – i-th ele-
ment of a vector or a sequence x, 1 ≤ i ≤ l, where l is size of the x; Supp(x) =
{i : x[i] 6= 0} – the support of a vector x; wt(x) = # {i : x[i] 6= 0} – the
weight of a vector x;

Fq – finite field of q elements; F∗q – all nonzero elements of a field Fq; Fl
q

– vector of l elements over Fq. Depending on the context, we will interpret a
value x ∈ 0, 2l − 1 as element of F2l or Fl

2 or as integer.

Definition 1. Let f : Fl
2 → Fl

2, let ∆x, ∆y ∈ Fl
2 be fixed, and let x ∈ Fl

2

be a uniformly distributed random variable. The differential probability is

DP (∆x,∆y) = Pr (f(x)⊕ f(x⊕∆x) = ∆y) . (1)

Definition 2. Let E be a cipher with key-size κ. Then, the expected proba-
bility of differential (∆x,∆y) is

EDP (∆x,∆y) = 2−κ
∑

K∈Fκ2

Pr (EK(x)⊕ EK(x⊕∆x) = ∆y) ,

where EK is a cipher with fixed key K. We futher assume that all round keys
are independent and uniformly distributed.

Definition 3. The maximum expected differential probability is

MEDP = max
∆x 6=0,∆y

EDP (∆x,∆y)

Definition 4. Let s be a function from F8
2 → F8

2,

δ (a, b) = #
{
x ∈ F8

2, s (x)⊕ s (x⊕ a) = b
}
, ∀a, b ∈ F8

2.

δmax = max
a6=0,b

δ (a, b) is the differential uniformity of s, pmax = 2−8 · δmax. The

differential distribution table is a 28 × 28 matrix of transition probabilities
such that

DDT[a][b] =
δs (a, b)

28
= DP (a, b) , a, b ∈ F8

2.
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Definition 5. Let L-transformation (from Fn
28 to Fn

28) be a F28-linear. We
associate with L the code CL of length 2n over F28 defined by

CL = {(c, L(c)) , c ∈ Fn
28} .

The differential branch number BL of the linear transformation L is the min-
imum distance of the code CL

BL = min
c 6=0

wt (c, L(c)) .

Further, to simplify the text, we assume that CL is an MDS code and
B = BL = n+ 1.

2-round LSX-cipher can be represented as a sequence of the operations

y = K3 ⊕ S (K2 ⊕ LS (K1 ⊕ x)) ,

where x, y ∈ Fn
28 are the plaintext and the ciphertext, K1, K2, K3 ∈ Fn

28 are
round keys derived from masterkey K. The linear transformation on the last
round was omitted without loss of generality.

A differential trail Ω = (∆x,∆1,∆2,∆y) in 2-round LSX is a collection
of four differences, where ∆x = x ⊕ x′, ∆1 is the difference after the first
nonlinear transformation, ∆2 = L (∆1), ∆y = y ⊕ y′, x and x′ are plaintext
blocks, y and y′ are the corresponding ciphertext blocks.

Definition 6. The expected probability of the 2-round trail Ω is defined as

EDCP (Ω) = 2−κ
∑

K∈Fκ2

Pr (∆1=x1⊕x
′
1 and ∆2=x2⊕x

′
2 and ∆y=y⊕y′ if x′=∆x⊕x) ,

where x is a uniformly distributed random variable; x1, x
′
1 are states after the

first S-transformation; x2, x
′
2 are states before the second S-transformation;

κ is a size of the masterkey K.

According to the assumption about round keys

EDCP (∆x,∆1,∆2,∆y) =

(
n∏

j=1

DP(∆x[j],∆1[j])

)(
n∏

j=1

DP(∆2[j],∆y[j])

)
.

Note, that if EDCP (∆x,∆1,∆2,∆y) 6= 0, then Supp (∆x) = Supp (∆1),
Supp (∆2) = Supp (∆y) and (∆1,∆2) is a codeword of the code CL. Therefore
EDP (∆x,∆y) =

=
∑

(∆1,∆2)∈CL,
Supp(∆x)=Supp(∆1),
Supp(∆2)=Supp(∆y)

∏

j∈Supp(∆x)

DP (∆x[j],∆1[j])
∏

j∈Supp(∆y)

DP (∆2[j],∆y[j]) .
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The equality between the above formula of EDP (∆x,∆y) and the defi-
nition 2 was proved in [8].

We define the weight (in bytes) of the differential (∆x,∆y) or the differ-
ential trail (∆x,∆1,∆2,∆y) as wt(∆x) + wt(∆y). Denote

MEDPw = max
∆x6=0,∆y,wt(∆x)+wt(∆y)=w

EDP (∆x,∆y) ,

MEDP+
w = max

∆x 6=0,∆y,wt(∆x)+wt(∆y)≥w
EDP (∆x,∆y) , B ≤ w ≤ 2 · n.

Note that all mentioned definitions EDP, EDCP, MEDP are 2-round, unless
otherwise stated.

Our main goal is to compute the nontrivial upper bound on MEDP+
B+1,

MEDP+
B+2 and others.

3 Upper bound on non-minimum weight differentials

The strategy of our approach is as follows. Each differential trail Ω =
(∆x,∆1,∆2,∆y) in 2-round differential (∆x,∆y) uniquely corresponds to
codeword (∆1,∆2) in CL. All possible trails (codewords) in the differential
have the form Supp(∆x) = Supp(∆1), Supp(∆2) = Supp(∆y). Derive con-
straints («maximum cost») for the entire set of such codewords. Divide the
set into several subsets. Compute contribution to the constraints («cost»)
and the corresponding upper bound («value») for each possible subset. Se-
lect subsets so that the upper bound («total value») is maximum and the
selection satisfies all constraints («total cost» does not exceed «maximum
cost»). Thus, we obtain the upper bound on the differential.

3.1 Auxiliary lemmas

Lemma 1 (The rearrangement inequality [9]). Let l ∈ N, and sup-
pose c1, c2, . . . , cl and d1, d2, . . . , dl are sequences of nonnegative values. Let
c̃1, c̃2, . . . , c̃l and d̃1, d̃2, . . . , d̃l be the sequences obtained by sorting original
sequences in nonincreasing order. Then

l∑

i=1

cidi ≤
l∑

i=1

c̃id̃i.

Lemma 2. Let l ∈ N, and suppose c1, c2, . . . , cl, and c̃1, c̃2, . . . , c̃l, and
d1, d2, . . . , dl are sequences of nonnegative values. Each of them sorted in
nonincreasing order. Suppose there exists l′, 1 ≤ l′ ≤ l, such that
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1) c̃i ≥ ci, for 1 ≤ i ≤ l′

2) c̃i ≤ ci , for l′ + 1 ≤ i ≤ l
3)
∑l

i=1 ci ≤
∑l

i=1 c̃i
Then

∑l
i=1 cidi ≤

∑l
i=1 c̃idi.

Proof. The proof of the lemma is given in particular in [6].

If statements 1-3 holds for some sequences c̃ and c, then we will say that
c̃ is greater than c under the conditions of Lemma 2.

Lemma 3. Let D be a h× v matrix. Let

D[i][j] ∈ {p1, p2, ..., pt, pmax}, 1 ≤ i ≤ h, 1 ≤ j ≤ v, t ∈ N,
0 ≤ p1 < p2 < . . . < pt < pmax ≤ 1, pk, pmax ∈ R, 1 ≤ k ≤ t.

Denote

νk = #{(i, j) : D[i][j] = pk, 1 ≤ i ≤ h, 1 ≤ j ≤ v}, 1 ≤ k ≤ t,

νmax(D) = #{(i, j) : D[i][j] = pmax, 1 ≤ i ≤ h, 1 ≤ j ≤ v}. (2)

Denote ωl(D) the number of rows containing exactly l elements pmax

ωl(D) = #{i : #{j : D[i][j] = pmax, 1 ≤ j ≤ v} = l, 1 ≤ i ≤ h},
v∑

l=1

ωl(D) · l = νmax(D),

lmax = max
ωl(D)6=0

(l) .

(3)

Let D̃ be the reordered matrix D (see Fig. 1). Distributions from (2) and (3)
are also holds for D̃.

The reordering procedure consists of three following steps:
1) sort each row of D̃ in nonicreasing order;
2) sort each column of D̃ in nonicreasing order;
3) reorder each unequal to pmax element:

∀i, j, i′, j′ : D̃[i][j] = pmax or D̃[i′][j′] = pmax or(
D̃[i][j] ≥ D̃[i′][j′], i′ > i or i′ = i, j′ > j

)
,

1 ≤ i, i′ ≤ h, 1 ≤ j, j′ ≤ v.

Then
h∑

i=1

v∏

j=1

D[i][j] ≤
h∑

i=1

v∏

j=1

D̃[i][j].
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pmax
pt

p2

p1

. . .h

v

lmax

ωlmax

1 2 ...

..
2
1

Figure 1: Example of matrix D̃ after the reordering procedure.

Proof. The proof of the lemma is given in [18].

Lemma 4. Let D and D̃ be given as in Lemma 3. Suppose c1, c2, . . . , ch is
a sequence of nonnegative values. Let c̃1, c̃2, . . . , c̃h be obtained by sorting the
above sequence in nonincreasing order. Then

h∑

i=1

ci

v∏

j=1

D[i][j] ≤
h∑

i=1

c̃i

v∏

j=1

D̃[i][j].

Proof. Directly follows from Lemmas 1 and 3.

3.2 Representation of trails in the differential

Consider an arbitrary differential (∆x,∆y), wt(∆x) + wt(∆y) =
B + 1. The differential consists only of trails (∆x,∆1,∆2,∆y) such that
Supp(∆x) = Supp(∆1) = {k1, k2, . . . , kt}, Supp(∆y) = Supp(∆2) =
{m1,m2, . . . ,mr}, t+ r = B + 1 = n+ 2.

It is easy to show that the number of differential trails does not exceed
T ≤ (28−1)2. Otherwise, there is a pair of codewords (∆1,∆2) and (∆′1,∆

′
2)

such that
wt ((∆1,∆2)⊕ (∆′1,∆

′
2)) < B.

Let’s imagine a set of differential trails in the form of a table. Such a
table, called Trails, has a size of T × (n+ 2). Each row is non-zero bytes of
the corresponding codeword

Trails[i] = ∆1[k1], . . . ,∆1[kt],∆2[m1], . . . ,∆2[mr], 1 ≤ i ≤ T,

EDP (∆x,∆y) =
T∑

i=1

t∏

j=1

DP(∆x[kj],Trails[i][j]) ·
t+r∏

j=t+1

DP(Trails[i][j],∆y[mj−t]).

(4)
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For definiteness let’s sort the table by the byte value in the first column
(see Fig.2).

Let an arbitrary byte of ∆x with an index kj, 1 ≤ j ≤ t be fixed. Con-
sider j-th column of Trails. Bytes with the same value x will have the same
probability DP(∆x[kj], x). Similarly for ∆y. Let us denote the corresponding
table by DP∗ (Trails), where

DP∗ (Trails[i][j]) = DP(∆x[kj],Trails[i][j]), 1 ≤ i ≤ T, 1 ≤ j ≤ t,

DP∗ (Trails[i][j]) = DP(Trails[i][j],∆y[mj−t]), 1 ≤ i ≤ T, t < j ≤ t+ r.
(5)

We will divide table columns into 3 groups (subtables). The group C
contains exactly 1 column. In the group TrailsI there are u columns. The
third group has v columns, 1 + u+ v = n+ 2.

Trails = C||TrailsI||TrailsII,

DP∗ (Trails) = DP∗ (TrailsI) ||DP∗ (TrailsI) ||DP∗ (TrailsII) ,
(6)

where || is concatenation. We also denote

Blockj = {TrailsI[i]||TrailsII[i] : C[i] = j, 1 ≤ i ≤ T} , j ∈ F∗28. (7)

T

n+ 2 = B + 1

1 u v

. . . . . .

01
....
01
01

02
....
02
02

FF
....
FF
FF

Block02

Figure 2: Representation of Trails

3.3 DDT simplification

Let all elements in each row (column) of the DDT be sorted in nonin-
creasing order. The row and the column with zero indexes are ignored. Let
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us denote the such table DDTrow (DDTcol correspondingly)

DDTrow[x][1] ≥ DDTrow[x][2] ≥ . . . ≥ DDTrow[x][28 − 1], x ∈ F∗28,

DDTcol[1][y] ≥ DDTcol[2][y] ≥ . . . ≥ DDTcol[2
8 − 1][y], y ∈ F∗28.

We define sequences mx, my and m as

mx[i] = max
a∈F∗

28

DDTrow[a][i], my[i] = max
a∈F∗

28

DDTcol[i][a], i ∈ F∗28, (8)

m[i] = max(mx[i],my[i]), 1 ≤ i ≤ 28 − 1.

The sequence m is «greater» than any sorted nontrivial row/column of
the DDT. Let r be any nontrivial sorted row/column of the DDT. Then,
m[i] ≥ r[i], 1 ≤ i ≤ 28−1. Denote νmax(m) = #{i : m[i] = pmax, 1≤i≤28−1}.
Note, that

∑28−1
i=1 m[i] ≥ 1.

We also define the sequences ρ, ρx, ρy as follows. Let ρx (ρy) be one
of the nontrivial sorted row (column) of the DDT. The sequence ρx (ρy)
must be greater than any other sorted row (column) of the DDT under the
conditions of Lemma 2,

∑28−1
i=1 ρx[i] =

∑28−1
i=1 ρy[i] = 1. If ρx is greater than

ρy under the conditions of Lemma 2, then ρ = ρx otherwise ρ = ρy.

3.4 Constraints

We formulate a Lemma giving us some restrictions on the set of code-
words.

Lemma 5. Let table TrailsII and sequence m be given as above. The table
DP∗ (TrailsII) is defined by analogy with (5). Let us denote ωl (DP∗ (TrailsII))
the number of rows containing exactly l elements pmax:

ωl (DP∗ (TrailsII)) = #{i : #{j : DP∗ (TrailsII[i][j]) = pmax, 1≤j≤v} = l, 1≤i≤T}.
(9)

Then
ω2 ≤

(
v

2

)
· (νmax(m))2 , (10)

and finally

v∑

l=2

ωl ·
(
l

2

)
≤
(
v

2

)
· (νmax(m))2 . (11)

Proof. Let’s consider two arbitrary columns of TrailsII. These columns do not
contain any identical byte pairs. The total number of different byte pairs does
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not exceed T ≤
(
28 − 1

)2. In each column not more than νmax(m) values are
mapped in pmax. Hence, not more than (νmax(m))2 byte pairs are mapped in
(pmax, pmax) . The number of ways to select 2 columns is

(
v
2

)
.

Thus we have (10).
Suppose there is a row containing 3 elements pmax. Then

(
3
2

)
= 3 pairs of

columns are generated, each of which contains a pair (pmax, pmax) . Similarly
for rows with l elements pmax. Each of them «takes»

(
l
2

)
pairs. Thereby we

obtain (11).

3.5 Bounds on DP∗(Block)

Suppose that we are given an arbitrary Block ∈ {Blockj, j ∈ F∗28}. The
block dimensions are h · (n + 1), h ≤ 28 − 1. We will give an upper bound
on Block’s contribution to the differential

∑h
i=1

∏n+1
j=1 DP∗ (Block[i][j]) . We

will use Lemmas 2, 3, 4.
Consider v = 0 and u = n+ 1. Then we have

h∑

i=1

u∏

j=1

DP∗ (Block[i][j]) ≤ max


max
x∈F∗

28

28−1∑

i=1

(DDT[x][i])u , max
y∈F∗

28

28−1∑

i=1

(DDT[i][y])u


 .

(12)
The inequality (12) is so-called «FSE 2003 bound» on MEDP [14]. Lemma
2 allows us to select a row (column) that maximizes expression (12). Then
we can rewrite inequality (12)

h∑

i=1

u∏

j=1

DP∗ (Block[i][j]) ≤
28−1∑

i=1

(ρ[i])u . (13)

Let v > 0. We will divide Block into two parts:

Block = BlockI||BlockII,
h∑

i=1

n+1∏

j=1

DP∗ (Block[i][j]) =
h∑

i=1

u∏

j=1

DP∗ (BlockI[i][j])
v∏

j=1

DP∗ (BlockII[i][j]) ,

(14)
where BlockI contains u columns, and BlockII contains v columns, u + v =
n+ 1. We will evaluate the contribution of BlockI by using the sequence

(ρ[1])u , (ρ[2])u , . . . ,
(
ρ[28 − 1]

)u
. (15)

We will also get a bound on the contribution of BlockII by using Lemma
3. Suppose that each column of DP∗ (BlockII) contains elements from the
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sequence m. Assume also that we know

ωl (DP∗ (BlockII)) = #{i : #{j : DP∗ (BlockII[i][j]) = pmax, 1≤j≤v} = l, 1≤i≤h},
0 ≤ l ≤ v,

v∑

l=1

ωl · l ≤ νmax(m) · v.

(16)
In other words, ωl is the number of rows containing exactly l elements pmax.
Let B̃lockII be a table obtained by the reordering procedure from Lemma 3.
Then we get

h∑

i=1

v∏

j=1

DP∗ (BlockII[i][j]) ≤
h∑

i=1

v∏

j=1

DP∗
(

B̃lockII[i][j]
)

Thanks to Lemma 4 , we finally obtain
h∑

i=1

n+1∏

j=1

DP∗ (Block[i][j]) ≤
h∑

i=1

(ρ[i])u
v∏

j=1

DP∗
(

B̃lockII[i][j]
)
. (17)

Thus, if we know the distribution ωl, 0 ≤ l ≤ v, then we can calculate
the upper bound on

∑h
i=1

∏n+1
j=1 DP∗ (Block[i][j]).

3.6 Optimization problem

Let’s will form all possible sets

si = {(l, ωl), 0 ≤ l ≤ v} , 1 ≤ i ≤ N. (18)

For each set
∑v

l=1 ωl · l = νmax(m) ·v is true. In fact, we construct all possible
partitions of the number νmax(m) · v. The maximum term in the partition
does not exceed v.

For each set si, calculate the estimate πi using (17) and «contribution» ζi
for constraints (11): ζi =

∑v
l=2 ωl ·

(
l
2

)
. We can choose such u and v, which

would minimize the final estimation. For most practical cases we use u = 1
and v = n. We get a set of pairs

(π1, ζ1), (π2, ζ2), . . . , (πN , ζN ′). (19)

Pairs with the same ζi value can be removed. The pair with the largest πi
must be left. Hence N ′ ≤

(
v
2

)
· (νmax(m))2.

We can estimate the first column of DP∗ (Trails) using the sequence ρx
(or ρy). Due to the fact that wt(∆x) ≥ 1 and wt(∆y) ≥ 1, we can choose
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ρx or ρy. We will choose so as to minimize the final value. For certainty, we
assume that ρx has been chosen.

Denote I = i1, i2, . . . , i28−1, 1 ≤ ij ≤ N ′, 1 ≤ j ≤ 28 − 1. Then

MEDPB+1 ≤ MEDPB+1 = max
I

28−1∑

j=1

ρx[j]·πij and
∑

i∈I
ζ i ≤

(
v

2

)
·(νmax(m))2 .

(20)
The optimal I is chosen by us using dynamic programming (see non-

optimized version of the pseudocode in Appendix A, Algorithm 4).
There is a trivial estimate on MEDPB+2 ≤

∑28−1
i=1 ρ[i] · MEDPB+1 =

MEDPB+1. Similar can be done for MEDPB+3 etc. Thus, we proved that
MEDP+

B+1 ≤ MEDPB+1.

3.7 Another constraints

We can compute the estimate on MEDP+
B+1 more precisely.

Consider the table DP∗(TrailsII). The number of rows that contains many
elements pmax is quite small.

Recall that wt(TrailsII[i]⊕TrailsII[j]) ≥ v− 1, i 6= j. Otherwise, there is
a codeword c ∈ CL, wt(c) < B. Thus, any two rows of TrailsII have exactly
one equal byte, or these rows do not have any matches.

In each column of TrailsII, no more than νmax(m) bytes are mapped in
pmax. TrailsII has v columns. Denote W = νmax(m) · v.

Suppose that some row of DP∗(TrailsII) contains w1 elements pmax.
Let’s say w1 bytes of W were involved. Let the other row contain w2

elements pmax. These two rows can intersect at most one byte. Therefore, at
least w2− 1 bytes are selected from W . The third row can intersect with the
first and the second rows. Hence we subtract w3− 2 from W . Continue until
W ≥ 0.

Let us have a series w1, w2, w3, ..., wT sorted in noninreasing order, where
T is the number of rows in TrailsII. Then

(
W −

l∑

i=1

(wi − (i− 1))

)
≥ 0 (21)

must be true for all l ≤ T .
Let’s form all series ψ = w1, w2, . . . , wl for which the inequality (21) is

true. Denote the set of such series by Ψ. We will use a relatively small value
of l (about 5, 6).
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We can modify the algorithm from Subsection 3.6 as follows. For each
set si from (18), we form a series ψ = w1, w2, . . . , wl. We obtain a sequence
similar to (19): (π1, ζ1, ψ1), (π2, ζ2, ψ2), . . . , (πN , ζN , ψN).

Hence, another constraint is added to the optimization problem (20):

sortl

(
ψi1||ψi2|| . . . ||ψi28−1

)
∈ Ψ, 1 ≤ ij ≤ N, 1 ≤ j ≤ 28 − 1,

where sortl is l largest elements of the sequence. Note that we do not need
to store the entire sequence ψi1||ψi2|| . . . ||ψi28−1

in memory. We only need the
first l values. Using the limitations described in this subsection requires a
lot of computing resources. Therefore, this modification is not used in the
calculation of bound on MEDP+

B+2.

3.8 Computing MEDP+
B+2 and other

Let us have (∆x,∆y) such that wt(∆x)+wt(∆y) = B+2 = n+3. Then
Lemma 5 can be reformulated by analogy as follows.

Lemma 6. Let the conditions of Lemma 5 be hold, but weight of the differ-
ential be equal to n+ 3. Then

v∑

l=3

ωl ·
(
l

3

)
≤
(
v

3

)
· (νmax(m))3 . (22)

The algorithm is similar to Subsection 3.6, but the optimization problem
is solved in two steps. As in Subsection 3.6:

– form all possible sets
si = {(l, ωl), 0 ≤ l ≤ v}, 1 ≤ i ≤ N ,

∑v
l=1 ωl · l = νmax(m) · v;

– for each set si, calculate the estimate πi by (17); ζi =
∑v

l=2 ωl ·
(
l
2

)
;

ηi =
∑v

l=3 ωl ·
(
l
3

)
.

We obtain the sequence (π1, ζ1, η1), (π2, ζ2, η2), . . . , (πN , ζN , ηN).
Let’s solve first optimization problem for all values η′ ≤

(
v
3

)
· (νmax(m))3.

Denote I = i1, i2, . . . , i28−1, ij ∈ N, 1 ≤ j ≤ 28 − 1.

π′ = max
I

28−1∑

j=1

ρx[j]·πij , under condition
∑

i∈I
ζi ≤

(
v

2

)
·(νmax(m))2 and

∑

i∈I
ηi = η′.

We can get all the values η′ by solving the optimization problem once.
Thus, the sequence (π′1, η

′
1), (π

′
2, η
′
2), . . . , (π

′
N ′, η

′
N ′) will be obtained,

N ′ ≤
(
v
3

)
· (νmax(m))3 .
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We will solve the second optimization problem

MEDP+
B+2 ≤ MEDPB+2 = max

I

28−1∑

j=1

ρx[j]·π′ij and
∑

i∈I
η′i ≤

(
v

3

)
·(νmax(m))3 .

The pseudocode in Appendix A contains a non-optimized version of the
algorithm. Application of the described approach is computationally infeasi-
ble for MEDP+

B+3 in most cases. Furthermore, the potential estimation shift
is very small (see summary table 1).

4 New bounds on MEDP for 2-round Kuznyechik

Kuznyechik block cipher [1] consists of a sequence of 9 rounds and a post-
whitening key addition. The block size is 128 bits (n = 16 bytes), the key
has a size of 256 bits. The cipher Sbox has no explicit analytical form [19],
such as in AES. The rows and columns of the DDT have different unbalanced
distributions. The sequence my is «greater» than mx. L-transformation is
defined as a LFSR over F28, the differential branch number B = n+ 1.

In [18] was proved that each 2-round best differential contains only one
differential trail
MEDP = MEDPB = max

Ω 6=0
EDCP(Ω) =

(
8

256

)13 ( 6
256

)4
= 2−86.66....

Using the proposed algorithms we showed that

MEDP+
B+1 ≤ 2−87.54..., MEDP+

B+2 ≤ 2−88.34....

The calculation MEDP+
B+1 and MEDP+

B+2 used the fact that wt (∆x) ≥ 2.
We can use ρx instead of ρ (the rows of DDT instead the columns) in at
least two coordinates. Obtained bound on MEDP+

B+3 will be not less than
2−88.42....

Table 1 shows all computed values. The numbers are rounded to the sec-
ond decimal place. The second data column presents the bounds we obtained
using «FSE 2003 bounds» [14]. The last column (*) shows the limitation on
the capabilities of the presented algorithm. For information about the linear
method, see Appendix B.

(pmax)B FSE2003
MEDPB≤ MEDPB = MEDP+

B+1 ≤ MEDP+
B+2 ≤ (*)MEDP+

B+3 ≤
−85 −83.97 −86.66 −87.54 −88.34 −88.42

(plin,max)B FSE2003
MELPB≤ MELPB = MELP+

B+1 ≤ MELP+
B+2 ≤ (*)MELP+

B+3 ≤
−74.54 −73.54 −76.73 −77.15 −79.63 −80.50

Table 1: Summary table of results for Kuznyechik (log2 scale).

V. Kiryukhin 229



An Algorithm for Bounding Non-minimum Weight Differentials in 2-round LSX-ciphers

5 Conclusion

We propose a dynamic programming algorithm for bounding non-
minimum weight differentials (linear hulls) in 2-round LSX-ciphers. Thanks
to the presented algorithm, we derive some new bounds on differentials
and linear hulls for 2-round Kuznyechik (Table 1). Similar results were ob-
tained for 2-round Khazad (Table 2), and as a result, the exact values of
MEDP = 2−45 + 2−60 and MELP = 2−37.80... are also proved.

The source codes of the presented algorithms can be found at:
https://gitlab.com/v.kir/diff2rLSX

For any LSX-cipher with independent round keys, the R-round MEDP
(MELP) is the upper bound for (R + 1)-round MEDP (MELP). The pre-
sented results are a step towards obtaining new nontrivial bounds on R-round
MEDP (MELP), i.e. new proofs of Kuznyechik strength against differential
and linear cryptanalysis.
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A Pseudocode of algorithms

Algorithm 4: Computing MEDPB+1

Require: (π1, ζ1), (π2, ζ2), . . . , (πN ′, ζN ′), and ρx, and s =
(
v
2

)
· (νmax(m))2

Ensure: MEDPB+1

1: ρ̃x := nondecreasing_sort(ρx) {0, . . . , 0, 2
256 , . . . , pmax}

2: ρ̃x := nonzero_elements(ρ̃x) { 2
256 , . . . , pmax}

3: state[s] := [0, . . . , 0] {indexing from 0}
4: for j := 1 to len(ρ̃x) do
5: new_state[s] := [0, . . . , 0] {indexing from 0}
6: prx := ρ̃x[j]
7: for c := 0 to s do
8: for i := 1 to N ′ do
9: pr := prx · πi + state[c]
10: pairs := ζ i + c

11: if pairs ≤ s then
12: if new_state[pairs] < pr then
13: new_state[pairs] := pr
14: end if
15: end if
16: end for
17: end for
18: state := new_state
19: end for
20: return max(state)

The pseudocode above (Algorithm 4) contains a non-optimized version
of the algorithm. The complexity of the algorithm is

O

(
len(ρ̃x) ·N ′ ·

(
v

2

)
· (νmax(m))2

)
,

where len(ρ̃x) is a number of nonzero elements in ρx.
If v = 16, νmax(m) = 2, len(ρ̃x) ≤ 27 (Kuznyechik), then the approxi-

mate number of operations is 225 (less than a minute on a common PC). The
number of distinct pairs N ′ = 7665.
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Algorithm 5: Computing MEDPB+2

Require: (π1, ζ1, η1), (π2, ζ2, η2), . . . , (πN , ζN , ηN), and ρx, and
spairs =

(
v
2

)
· (νmax(m))2, striplets =

(
v
3

)
· (νmax(m))3

Ensure: MEDPB+2

1: ρ̃x := nondecreasing_sort(ρx) {0, . . . , 0, 2
256 , . . . , pmax}

2: ρ̃x := nonzero_elements(ρ̃x) { 2
256 , . . . , pmax}

3: state[spairs][striplets] := [0, . . . , 0] {indexing from 0,0}
4: for j := 1 to len(ρ̃x) do
5: new_state[spairs][striplets] := [0, . . . , 0] {indexing from 0,0}
6: prx := ρ̃x[j]
7: for cpairs := 0 to spairs do
8: for ctriplets := 0 to striplets do
9: for i := 1 to N do
10: pr := prx · πi + state[cpairs][ctriplets]
11: pairs := ζi + cpairs

12: triplets := ηi + ctriplets

13: if pairs ≤ spairs and triplets ≤ striplets then
14: if new_state[pairs][triplets] < pr then
15: new_state[pairs][triplets] := pr
16: end if
17: end if
18: end for
19: end for
20: end for
21: state := new_state
22: end for
23: (π′1, η

′
1), . . . , (π

′
N ′, η

′
N ′) :=

(state[spairs][0], 0), . . . , (state[spairs][striplets], striplets)
24: return call Algorithm 4 ((π′1, η′1), (π′2, η′2), . . . , (π′N ′, η

′
N ′), ρx,

s = striplets)

The complexity of Algorithm 5 is estimated as trivial as Algorithm 4. If
v = 16, νmax(m) = 2, len(ρ̃x) ≤ 27, then N = 7665 and the approximate
number of operations is 241 (about an hour on common PC).

B Application to Linear Cryptanalysis

There is a certain duality between differential and linear cryptanalysis
[4]. It allows us to apply the algorithms described above to calculate linear
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characteristics.
We make the appropriate substitutions.
Differential probability (DP, EDP, EDCP, MEDP) is replaced by linear

probability (LP, ELP, ELCP, MELP correspondingly). DDT is replaced by
Linear Approximation Table (LAT). Input/output differences ∆x and ∆y
are replaced by input/output masks µx and µy correspondingly.

LP(µx, µy) = (2 Pr(µx • x = µy • f(x))− 1)2, µx, µy ∈ Fl
2, f : Fl

2 → Fl
2,

where • is the inner product over F2, and x ∈ Fl
2 is a uniformly distributed

random variable.
Differential branch number is replaced by linear branch number. If a linear

transformation generates an MDS code both values are equal to n+ 1.
The value pmax = max

a6=0,b
DDT[a][b] is replaced by

plin,max = max
a6=0,b

LAT[a][b] = LP(a, b), a, b ∈ F8
2.

By analogy with the differential trail a linear characteristic
Ω = (µx, µ1, µ2, µy) for 2 rounds is introduced. ELCP(Ω) is equal to

ELCP(Ω) =

(
n∏

j=1

LP(µx[j], µ1[j])

)(
n∏

j=1

LP(µ2[j], µy[j])

)
,

where µ2 = LT · µ1, L is a binary matrix such that y = L(x) = L · x and LT

is a transposed matrix.
The linear code CL is replaced by the code CLT.
The linear hull (similar to differential) is the set of all linear characteristics

having input mask µx and output mask µy.
The expected probability of the 2-round linear hull (µx, µy) is equal to:

ELP (µx, µy) =
∑

(µ1,µ2)∈F2·8·n
2

(
n∏

j=1

LP(µx[j], µ1[j])

)(
n∏

j=1

LP(µ2[j], µy[j])

)
and

MELP = max
µx 6=0,µy

ELP (µx, µy) .

(23)
In order to go to linear cryptanalysis, one needs to replace all formulas

in Section 3 according to the above analogies.
For 2-round Kuznyechik the only best linear hull containing 37 linear

characteristics Ω1,Ω2, ..., Ω37 is found [18].

MELP = MELPB =
37∑

i=1

= ELCP(Ωi) = 2−76.73....
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We show that

MELP+
B+1 ≤ 2−77.15..., MELP+

B+2 ≤ 2−79.63....

A bound on MELP+
B+3 will be not less than 2−80.50....

C Khazad

Khazad [12] is a 64-bit (n = 8 byte) block cipher using a 128-bit key. It is
an 8-round SP network. The plaintext is initially XORed with the whitening
key and then undergoes 8 identical rounds.

S-transformation and L-transformation are involutions, S = S−1, L = L−1.
The sequences mx and my are equal (see definition 8).
Due to this involution structure, we can consider only half of the subsets of

codewords. Let’s assume that for some 2-round differential (∆x,∆y) we know
the value of EDP(∆x,∆y). Then we know the value of EDP(∆y,∆x) =
EDP(∆x,∆y).

We have shown that each best differential contains two differential trails
Ω1 and Ω2.

EDCP(Ω1) = pBmax =

(
8

256

)9

= 2−45, EDCP(Ω2) = 2−60.

Eight best differentials (∆x,∆y) and eight differentials (∆y,∆x) were
found. For each of them MEDPB = EDP(∆x,∆y) = EDP(∆y,∆x) =
EDCP(Ω1) + EDCP(Ω2).

We proved that MEDP+
B+1 ≤ 2−44.99... and with improvements described

in Subsection 3.7 MEDP+
B+1 ≤ 2−45.02.... Using algorithm from Subsection

3.8, we get MEDP+
B+2 ≤ 2−45.09.... Thus

MEDP = MEDPB = 2−45 + 2−60.

We also found 16 best linear hulls: eight in the form (µx, µy) and eight in
the form (µy, µx). Each of them contains 108 linear characteristics Ω1, Ω2,
Ω3, ..., Ω108.

ELCP(Ω1) = 2−37.80... < pBlin,max = 2−36, ELCP(Ω2) = 2−67.70....

MELPB =
108∑

i=1

= ELCP(Ωi) = 2−37.80....

MELP+
B+1 ≤ 2−37.83..., MELP+

B+2 ≤ 2−37.92....

(24)
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Because of this, we get

MELP = MELPB = 2−37.80....

The obtaining of MEDP+
B+3 and MELP+

B+3 is computationally infeasible
task for us. Furthermore, the result of the algorithm will be not less than
2−45.11... and 2−37.94... respectively.

Khazad
(pmax)B FSE2003

MEDPB≤ MEDPB = MEDP+
B+1 ≤ MEDP+

B+2 ≤ (*)MEDP+
B+3 ≤

−45 −43.36 −44.99 −45.02 −45.09 −45.11

(plin,max)B FSE2003
MELPB≤ MELPB = MELP+

B+1 ≤ MELP+
B+2 ≤ (*)MELP+

B+3 ≤
−36 −35.86 −37.80 −37.83 −37.92 −37.94

Table 2: Table of results (log2 scale).

The best differentials

We show only 8 of the 16 differentials (∆x,∆y). The remaining differen-
tials (∆y,∆x) can be easy obtained by swapping ∆x and ∆y.
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∆x 1208f0000000000f log2 EDCP(Ωi)
Ω1 1248f0000000000f 0000b548fbeb4800 −45
Ω2 c8070a0000000023 0000130753a60700 −60
∆y 0000bf0818910800
∆x 081200f000000f00 log2 EDCP(Ωi)
Ω1 481200f000000f00 000048b5ebfb0048 −45
Ω2 07c8000a00002300 00000713a6530007 −60
∆y 000008bf91180008
∆x f0001208000f0000 log2 EDCP(Ωi)
Ω1 f0001248000f0000 b54800004800fbeb −45
Ω2 0a00c80700230000 13070000070053a6 −60
∆y bf08000008001891
∆x 00f008120f000000 log2 EDCP(Ωi)
Ω1 00f048120f000000 48b500000048ebfb −45
Ω2 000a07c823000000 071300000007a653 −60
∆y 08bf000000089118
∆x 0f00000000f00812 log2 EDCP(Ωi)
Ω1 0f00000000f04812 0048ebfb48b50000 −45
Ω2 23000000000a07c8 0007a65307130000 −60
∆y 0008911808bf0000
∆x 000f0000f0001208 log2 EDCP(Ωi)
Ω1 000f0000f0001248 4800fbebb5480000 −45
Ω2 002300000a00c807 070053a613070000 −60
∆y 08001891bf080000
∆x 00000f00081200f0 log2 EDCP(Ωi)
Ω1 00000f00481200f0 ebfb0048000048b5 −45
Ω2 0000230007c8000a a653000700000713 −60
∆y 91180008000008bf
∆x 0000000f1208f000 log2 EDCP(Ωi)
Ω1 0000000f1248f000 fbeb48000000b548 −45
Ω2 00000023c8070a00 53a6070000001307 −60
∆y 189108000000bf08

Table 3: The best 2-round Khazad differentials

The best linear hulls

As in the previous subsection, we show only 8 of the 16 linear hulls.
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µx 6f078e0000000500
µy 00006f0eb400e153

µx 076f008e00000005
µy 00000e6f00b453e1

µx 8e006f0705000000
µy 6f0e0000e153b400

µx 050000008e006f07
µy e153b4006f0e0000

µx 008e076f00050000
µy 0e6f000053e100b4

µx 00050000008e076f
µy 53e100b40e6f0000

µx 000005006f078e00
µy b400e15300006f0e

µx 00000005076f008e
µy 00b453e100000e6f

Table 4: The best 2-round Khazad linear hulls

Ωi µ1 µ2 log2 ELCP(Ωi) Ωi µ1 µ2 log2 ELCP(Ωi)

1 8e4c6f0000002c00 00008ee31300e11e -37.80 22 e9645e0000004000 0000e973a800b716 -75.71

2 a3a9c1000000e300 0000a3fccd0062d8 -67.71 23 b1476b0000007f00 0000b15d3000dae4 -75.71

3 039d5d0000007100 00000319b6005e40 -70.37 24 2de5ae000000cf00 00002d1fde0083c6 -75.71

4 f15a660000008b00 0000f19f540097eb -70.71 25 1deceb0000008800 00001dceb500f602 -75.81

5 8803e10000001e00 000088d8ec0069a1 -70.92 26 05d2d30000004300 000005224900d6ff -75.91

6 a4927b0000000100 0000a4cfa000df58 -71.47 27 daf0460000007600 0000dabb75009c92 -76.03

7 f9639d0000007d00 0000f9c371006455 -71.77 28 32e02c000000e600 000032c04f001ebb -76.34

8 1ba365000000ba00 00001bf54a007ebd -71.85 29 465283000000c600 000046f99b00c5b0 -76.40

9 0ba4a60000008700 00000b459300adfe -72.05 30 af36dd0000008600 0000af8a330072a6 -76.54

10 849cfd0000007b00 000084ae120079df -72.56 31 d66f5a0000001300 0000d6cd8b008cec -76.88

11 2f0cc70000006e00 00002f0efa00e8b9 -72.71 32 6167bf0000005e00 000061ab4400deb7 -76.92

12 bb97f90000002800 0000bb1031004225 -72.90 33 bf311e000000bb00 0000bf3aea00a1e5 -76.96

13 d3bd890000005000 0000d3efc2005a13 -72.98 34 c5f5c40000005f00 0000c564e40001ef -77.40

14 ecb68d0000000300 0000ec51e10061e9 -73.32 35 42f4640000005500 000042d340002670 -77.51

15 6728310000006c00 00006790bb005608 -74.23 36 a0349c0000009200 0000a0e57b003c98 -77.54

16 064f8e0000003200 0000063bff0088bf -74.28 37 4726b70000001600 000047f10900f08f -77.81

17 9aed4b0000008200 00009a791100d19d -74.62 38 bae3cd000000f800 0000ba18a300771a -77.85

18 b5e18c000000ec00 0000b577eb003924 -74.92 39 d020d40000002100 0000d0f674000453 -78.15

19 35db960000000400 000035f32200a33b -75.32 40 c96ad80000003a00 0000c9121a001191 -78.15

20 f715e8000000b900 0000f7a4ab001f54 -75.51 41 a80d670000006400 0000a8b95e00cf26 -78.30

21 1007c30000003d00 000010b0d900d343 -75.66 42 9804220000002300 000098683500bae2 -78.49

Table 5: One of the best 2-round Khazad linear hull,
µx = 6f078e0000000500, µy = 00006f0eb400e153 (part 1)
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Ωi µ1 µ2 log2 ELCP(Ωi) Ωi µ1 µ2 log2 ELCP(Ωi)

43 e5fb420000002500 0000e5055600a768 -78.68 76 a70f260000007000 0000a7d616008118 -85.22

44 ff2c130000004f00 0000fff88e00ecea -78.76 77 82d3730000004900 00008295ed00f160 -85.32

45 701448000000b300 000070130f0038cb -78.90 78 2943490000005c00 0000293505006006 -85.40

46 665c05000000bc00 0000669829006337 -79.02 79 903dd9000000d500 000090341000495c -85.60

47 f02e520000005b00 0000f097c600a2d4 -79.20 80 9f3f98000000c100 00009f5b58000762 -85.85

48 7e623d0000007700 00007e74d50043ca -79.32 81 de56a1000000e500 0000de91ae007f52 -85.85

49 aae40e000000c500 0000aaa87a00a459 -79.54 82 b708e50000004d00 0000b766cf00525b -86.19

50 b67cd10000009d00 0000b66e5d006764 -79.71 83 d96d1b0000000700 0000d9a2c300c2d2 -86.49

51 6f11ca0000009a00 00006fcc9e00a5b6 -79.85 84 9dd6f10000006000 00009d4a7c006c1d -86.49

52 93a084000000a400 0000932da600171c -80.03 85 4950c2000000d200 00004996d3008b8e -86.49

53 71607c0000006300 0000711b9d000df4 -80.15 86 8f385b000000fc00 00008feb8100d421 -86.49

54 2ade140000002d00 00002a2cb3003e46 -80.25 87 be452a0000006b00 0000be32780094da -86.71

55 6bb72d0000000900 00006be645004676 -80.34 88 b2da360000000e00 0000b244860084a4 -86.83

56 75c69b000000f000 000075314600ee34 -80.37 89 9ca2c5000000b000 00009c42ee005922 -86.83

57 b0335f000000af00 0000b055a200efdb -80.83 90 8977d5000000ce00 000089d07e005c9e -87.60

58 c481f00000008f00 0000c46c760034d0 -81.02 91 a67b12000000a000 0000a6de8400b427 -87.66

59 1f05820000002900 00001fdf91009d7d -81.34 92 8dd1320000005d00 00008dfaa500bf5e -87.85

60 fb8af4000000dc00 0000fbd255000f2a -81.40 93 caf7850000004b00 0000ca0bac004fd1 -88.19

61 6df8a30000003b00 00006dddba00cec9 -81.85 94 a5e64f000000d100 0000a5c73200ea67 -88.49

62 6c8c97000000eb00 00006cd52800fbf6 -82.05 95 5c85d2000000ac00 00005c0443008e32 -89.02

63 7dff600000000600 00007d6d63001d8a -82.19 96 fe58270000009f00 0000fef01c00d9d5 -89.66

64 814e2e0000003800 0000818c5b00af20 -82.37 97 4e6b780000003000 00004ea5be00360e -89.91

65 217ab2000000aa00 00002169200093b8 -82.57 98 52f3a70000006800 000052639900f533 -90.19

66 04a6e70000009300 0000042adb00e3c0 -82.82 99 682a700000007800 000068fff3001836 -90.49

67 eaf9030000003100 0000ea6a1e00e956 -82.83 100 e48f76000000f500 0000e40dc4009257 -90.49

68 d8192f000000d700 0000d8aa5100f7ed -82.90 101 317d710000009700 000031d9f90040fb -91.22

69 74b2af0000002000 00007439d400db0b -83.66 102 738915000000c200 0000730ab900668b -91.66

70 c027170000001c00 0000c046ad00d710 -83.74 103 62fae20000002f00 000062b2f20080f7 -92.19

71 eb8d37000000e100 0000eb628c00dc69 -83.85 104 0c9f1c0000006500 00000c76fe00107e -92.19

72 15d5100000007e00 00001592900005bc -84.03 105 173c79000000df00 00001783b4006ec3 -92.49

73 ccb80b0000007900 0000cc305300c76e -84.57 106 dcbfc80000004400 0000dc808a00142d -93.02

74 28377d0000008c00 0000283d97005539 -84.68 107 0f02410000001400 00000f6f48004e3e -94.49

75 55c81d0000008a00 00005550f40048b3 -85.02 108 3ad9d70000001000 00003a9c6a00ed05 -97.66

Table 6: One of the best 2-round Khazad linear hull,
µx = 6f078e0000000500, µy = 00006f0eb400e153 (part 2)
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Abstract

We study a randomised variant of one type of biometric recognition algorithms
which is intended to mitigate adversarial attacks. We show that the problem of an
estimation of security of the method can be formulated in the form of an estima-
tion of statistical distance between the probability distributions induced by initial
and randomized algorithm. A variant of practical password-based implementation is
discussed. The results of experimental evaluation are given.

Keywords: Biometric recognition, statistical distance, local binary patterns, password based
authentication

1 Introduction

The active implementation of biometric identification and authentication
technologies has led to the development of a wide range of attacks on systems
that use them. One of the most widespread types of attacks on biometric
systems are so-called adversarial attacks [4, 5], which consist in a careful
modification of the attacking biometric image that comes to the input of the
classifier. The danger of this class of attacks is that the biometric image is
transformed in such a way that it allows to get access to the system, and at
the same time in some sense does not disclose the fact of the attack.

To date, a wide range of approaches to counteracting this type of attack
have been proposed (see the draft NIST technical report [8]), which can be
divided into proactive (preventing the attack) and reactive (revealing the fact
of the attack).

The most interesting question is how to build proactive methods, or, in
other words, how to build biometric identification systems, a priori resistant
to adversarial attacks. The main problem in this case arises in connection
with the probabilistic nature of identification systems, namely the presence
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of identification errors. Most of the attacks use variants of gradient method
to modify attacking image so that its modified variant falls into the area of
second type errors of the classifier used in the system.

Mitigation methods for this attacks were actively developed for neural
networks, where we can recall adversarial training, gradient masking, Gaus-
sian augmentation of the training set. In a more general case, you can specify
approaches that use differential privacy and homomorphic encryption. With
the exception, perhaps, of homomorphic encryption, which has extremely
implementation unfriendly, these approaches do not provide complete pro-
tection against adversarial attacks.

In this paper we propose a method to mitigate adversarial attacks [3]
on LBP1-based recognition systems [1, 2], which is build with randomization
of the statistical criterion used in decision-making. This approach allows,
for example, to build password-biometric authentication systems, where the
recognition algorithm is significantly dependent on the password. In its turn,
this approach allows to get rid of drawback of existing methods of counterac-
tion, which is associated with the need to simultaneously preserve the quality
of recognition of a legitimate biometric image, which, in its turn, leads to the
preservation of the possibility of building adversarial attacks.

The further work is organised in the following way: in section 2 necessary
notations are given and LBP algorithm is described, in section 3 the mod-
ified algorithm is described, its properties and implementation aspects are
discussed, in section 4 experimental results are given.

2 Notation. LBP algorithm

We will use the following notations:

– N - number of people in database (number of classes);

– Mk - number of images in k-th class of database, 1 ≤ k ≤ N ;

– Y - input image described by its brigthness matrix: Y = (yij)m×n, yij ∈
[0, 255], i = 1,m, j = 1, n;

– Xkl - l-th image of k-th class in database, 1 ≤ k ≤ N , 1 ≤ l ≤ Mk,
described by its brigthness matrix: Xkl = (xij)m×n, xij ∈ [0, 255], i =
1,m, j = 1, n;

– t - size of the block (parameter of LBP algorithm);
1Local binary patterns
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– Bm′×n′
ij

∣∣
Z

- matrix block of image Z, Bm′×n′
ij

∣∣
Z

= (bxy)m′×n′, bxy =
zi+x,j+y, 0 ≤ x < m′, 0 ≤ y < n′;

– Pm′×n′
ij

∣∣
Z

— set of elements of block Bm′×n′
ij

∣∣
Z

without the central
element,
Pm′×n′
ij

∣∣
Z

= b11, b12, . . . , b1n′, b2n′, . . . , bm′n′, bm′,n′−1, . . . , bm′1, bm′−1,1, . . . , b21;

– s(x) - Heaviside step function;

– Hm′×n′
ij

∣∣
Z
- histogram of block Bm′×n′

ij

∣∣
Z
;

– HZ - histogram of image Z;

– T - statistic threshold;

– A||B - concatenation of vectors;

– Sn - the set of all permutations of the length n;

– U - uniform distribution.

The Local Binary Pattern Method (LBP) [1, 2] was proposed in 1996
for texture classification and later found wide application for image analysis.
The idea is not to consider the whole image as a multidimensional array, but
to highlight some local features of the object. It is a theoretically simple and
at the same time effective method, allows a simple implementation and high
performance. It is also resistant to monotonous change of illumination and
scale.

Consider a block Bt×t
ij

∣∣
Z
, t = 2q + 1, q = 1, 2, ... of brigtness matrix of

image Z. Then operator LBP : [0, 255]t×t → [0, 2t
2−1 − 1] when applied to

the block is defined by the following formula:

LBP (Bt×t
ij

∣∣
Z

) =
t2−1∑

q=0

2qs(pq − p(xcij ,y
c
ij)

),

where (xcij, y
c
ij) — coordinates of the central pixel BZ

t×t
∣∣
ij
, pq — brigtness of

a pixel with number q (in a certain ordering) from P t×t
ij

∣∣
Z
.

When building an identification system based on the LBP operator, an
LBP matrix is built for each Xkl image from the database and the Y input
image.

At the same time for image Z the blocks Bt×t
ij

∣∣
Z

are formed for any
i, j : 0 ≤ i ≤ m− t, 0 ≤ j ≤ n− t. Then LBP matrix is defined as

LZ = (LBP (Bt×t
ij

∣∣
Z

))m̂×n̂, 0 ≤ i ≤ m−t, 0 ≤ j ≤ n−t, m̂ = m−t+1, n̂ = n−t+1.
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To improve the recognition quality, all LBP matrices are combined into
large blocks of (nw, nh) size. In this way LZ is divided into non-intersecting
blocks Bm̆×n̆

i′j′
∣∣
LZ
, m̆ = m̂

nw
, n̆ = n̂

nh
:

Z =




Bm̆×n̆
00

∣∣
LZ

Bm̆×n̆
m̆,0

∣∣
LZ

. . . Bm̆×n̆
m̂−m̆,0

∣∣
LZ

Bm̆×n̆
0,n̆

∣∣
LZ

Bm̆×n̆
m̆,n̆

∣∣
LZ

. . . Bm̆×n̆
m̂−m̆,n̆

∣∣
LZ

. . .

Bm̆×n̆
0,n̂−n̆

∣∣
LZ

Bm̆×n̆
n̆,n̂−n̆

∣∣
LZ

. . . Bm̆×n̆
m̂−m̆,n̂−n̆

∣∣
LZ


 .

For each obtained block Bm̆×n̆
i′j′

∣∣
LZ

histogram Hij

∣∣
Z
is calculated. The his-

togram describes the distribution of values in LBP matrix block. To get a
full histogram of the image, the calculated histograms for blocks are concate-
nated:

HZ = Hm̆×n̆
00

∣∣
Z
||Hm̆×n̆

m̆,0

∣∣
Z
||...||Hm̆×n̆

m̂−m̆,n̂−n̆
∣∣
Z
.

Within the identification system for images from the database and the
input image there are histograms for which the distance is calculated. For
example, L1 metric can be used as a metric to estimate the proximity of
histograms:

d(H1, H2) =
∑

i

|H1(i)−H2(i)|.

The metric is used to determine the closest class of images with the nearest
neighbour method:

Near(HY ) = arg min
1≤k≤N

d(HY , HXkl
), 1 ≤ l ≤Mk.

For biometric system quality estimation FRR and FAR are ususally con-
sidered. A false positive response (FRR) is taken as the case in which the
identification algorithm accepts the input image Y as an element of the class
k′ 6= k, but Y lies in the class k. As a false negative response (FAR), we con-
sider the case in which the identification algorithm accepts the input image
Y as an element of the class k, but Y lies in the class k′ 6= k. Then the result
of the algorithm is described by the following cases:

– If k′ = k and d(Hkj, HY ) ≤ T , then the algorithm correctly accepts the
image (TP — true positive);

– If k′ = k and d(Hkj, HY ) > T , then false positive error occurs (FP —
false positive );

– If k′ 6= k and d(Hij, HY ) ≤ T , then false negative error occurs (FN —
false negative);
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– If k′ 6= k and d(Hij, HY ) > T , then the algorithm correctly rejects the
image (TN — true negative).

Then the error values are calculated as

FRR =
FP

TP + FP + TN + FN
,

FRR =
FN

TP + FP + TN + FN
.

So, the recognition algorithm is described by the following parameters:

– t - block size,

– (nw, nh) - large block size,

– T - threshold.

3 Modified LBP algorithm

3.1 Description

To build a facial identification system that can resist adversarial attacks,
an algorithm for calculating image characteristics is an important element.
The original LBP algorithm is not resistant to relatively low changes of pixel
brightness. This vulnerability can be successfully used to build an adversarial
attack as in [3]. Attackers take advantage of the fact that they know how
LBP works. This is why we offer a modification of the algorithm that uses a
pseudo-random permutation when constructing the operator.

For modification, it is proposed that for each case of identification a per-
mutation σ U−→ Sn, where n = t2 − 1 is generated. According to this permu-
tation, the elements from the set P t×t

ij

∣∣
Z
are selected. So the LBP operator

function takes the following form:

LBP ′(P t×t
ij

∣∣
Z

) =
t2−1∑

q=0

2qs(pσ(q) − p(xcij ,y
c
ij)

).

3.2 On the properties of the modified algorithm

We consider the black box model, i.e. the situation when the attacker is
unable to directly observe the process of recognition system functioning and
can only receive responses to the input data. This situation is encountered,
for example, in remote biometric identification. A classic approach for the
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attacker when mounting an adversarial attack in this case is teaching a local
model close to the one used in the identification system, and building an
adversarial image with its help. From this point of view, we need to use the
proposed method to ensure that the attacker cannot evaluate the true pa-
rameters of the recognition algorithm and, in particular, the true histogram.

Since the histograms of HZ are obtained by the concatenation of non-
intersecting block histograms, we will assume the independence of the cor-
responding histograms of Hij and estimate the method parameters for the
latter.

Consider probability distribution f , describing a corresponding histogram
of a block, P (xi = fi), i = 0, 2t2−1 − 1. Without loss of generality consider
fi < fj, i < j. Then we can evaluate the security of the proposed approach
in terms of the statistical distance between the initial f distribution and
the perturbed fπ, P (xi = fπi ), i = 0, 2t2−1 − 1. Note that for the permuted
distribution, the monotonicity property is no longer fulfilled.

In general, we can describe the difference between distributions in terms
of the statistical distance between them Df,fπ = maxi|fi − fπi |, in this case
the attacker will not be able to build an adversarial image if Df,fπ > ε(T ),
where ε(T ) depends on threshold T and ensures that both distributions are
sufficiently far from each over. For example, if ε(T ) > 2T then the attacker
will never be able to get adversarial image close to both distributions at the
same time.

Considering that the original image is divided into nwnh independent
blocks, if Df,fπ > 2T

nwnh
for each block, after concatenation the statistical

distance of resulting distributions will be larger than 2T (if we use the L1

metric), which means that the attacker will not be able to build an adversarial
image.

Definition 1. A «strong» permutation for distribution f is a permutation
with Df,fπ > ε(T ).

By a «weak»permutation we call a permutation which is not «strong».
It is interesting to estimate the number of «strong» permutations, for which
we can get the given value of the statistical distance. In general, such an
estimate is difficult to obtain, but experimental studies (see Section 4) show
a large number of zero elements in the Hij histograms (see Fig. 2).

Lemma 1. The number of «strong» permutations is equal to

r!−
min{|F0|,|F1|}∑

k=0

(|F0|
k

)( |F1|
|F1| − k

)(|F1|+ |Fε| − k
|Fε|

)
|F0|!|F1|!|Fe|!. (1)
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Proof. Consider the set of values f0, ..., f2t2−1−1 as a union of non-intersecting
sets F0 = {fi : fi = 0, i = 0, 2t2−1 − 1}, F1 = {fi : 0 < fi ≤ ε, i =

0, 2t2−1 − 1} and Fε = {fi : fi > ε, i = 0, 2t2−1 − 1}. Then, to calculate the
number of «strong» permutations, we subtract the number of «weak» per-
mutations from the total number of permutations. For «weak» permutations,
elements of the F0 set can be moved only to places, corresponding to the F0

and F1 sets, the number of possible permutations will depend on k — the
number of permutations moving elements between the sets. Then the total
number of possible options for choosing places for rearranging elements be-
tween the sets F0 and F1 will be equal to

∑min{|F0|,|F1|}
k=0

(|F0|
k

)( |F1|
|F1|−k

)
, and the

number of possible options for arranging elements from F0 in selected places
is |F0|!. Elements of the set Fε can be rearranged in the places corresponding
to the sets F1 и Fε. The number of options for choosing places for arranging
elements of the set Fε also depends on k, since some places of the set F1 are
already occupied by elements of the set F0, that is, only

(|F1|+|Fε|−k
|Fε|

)
possi-

ble places and |Fε|! ways to arrange elements in these places. The remaining
elements of the set F1 are arranged in the remaining possible places, which
gives as coefficient |F1|!.

Using the given reasoning it is possible to obtain security estimations for
specific instances of biometric systems.

3.3 Implementation aspects

One of possible ways to implement the proposed method can be repre-
sented by a password-biometric authentication system based on sequential
application of password-based key derivation functions (e.g., PBKDF2 [10]),
a key derivation function (e.g., [11]) and a Fisher-Yates random permutation
algorithm [9].

Additional use of the key derivation function in this case seems reason-
able due to the need to obtain permutations of a certain type. The function
kdf(S, T, L, P . . .) described in [11] allows to get permutations with the re-
quired properties by changing additional non-secret parameters: S - salt, P
- additional information, for the fixed key S, which is the result of password
transformation with the function PBKDF2. For example, we can sequentially
change salt until we get a «strong» permutation.

It should be noted that by changing non-specific parameters different
permutations can be produced for each block.
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LBP algorithm for
database

LBP algorithm for
input image

Algorithm
threshold

FAR, % FRR, %

Basic Basic 8 0 68.6
Basic Basic 9 0 34.3
Basic Basic 10 0 14.3
Basic Basic 11 75 5.7
Basic Modified 8 0 100
Basic Modified 9 0 100
Basic Modified 10 0 100
Basic Modified 11 0 100
Modified Modified 8 0 68.6
Modified Modified 9 0 34.3
Modified Modified 10 0 14.3
Modified Modified 11 75 5.7
Modified Basic 8 0 100
Modified Basic 9 0 100
Modified Basic 10 0 100
Modified Basic 11 0 100

Table 1: Identification results table for standard and proposed methods for t = 3

4 Experimental results

The experimental evaluation was performed on a database developed by
the University of Cambridge computer laboratory (AT&T Database) [6]. The
database contains a set of 40 photographs taken between April 1992 and April
1994. For each person 10 photos with different facial expressions, lighting,
head rotation are used.

The full database AT&T Database of a set of 40 images is used as a
testing base. Each image from the database is submitted to the identification
system, which builds a combined histogram for this image and compares it
with all histograms from the database using the closest neighbour method
and L1 metric. The images are considered to belong to the nearest neighbour
class, if the distance between them by the specified metric is less than the
threshold specified by the system.

The study compares type FRR and FAR errors when using standard and
modified LBP algorithms. Also the errors of both types have been evaluated
for the case when for the considered database only one way of construction
of histogram is used. The results for t = 3 are presented in Table 1, for t = 5
— in Table 2. Examples of LBP images with the standard and modified
algorithm are shown in Fig. 1, as well as the metric distances of L1 between
them.
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LBP algorithm for
database

LBP algorithm for
input image

Algorithm
threshold

FAR, % FRR, %

Basic Basic 15 0 48.6
Basic Basic 16 0 31.4
Basic Basic 17 25 15.7
Basic Basic 18 75 4.3
Basic Modified 15 0 100
Basic Modified 16 0 100
Basic Modified 17 0 100
Basic Modified 18 0 100
Modified Modified 15 0 48.6
Modified Modified 16 0 31.4
Modified Modified 17 25 15.7
Modified Modified 18 75 4.3
Modified Basic 15 0 100
Modified Basic 16 0 100
Modified Basic 17 0 100
Modified Basic 18 0 100

Table 2: Identification results table for standard and proposed methods for t = 5

original 20.1 18.7

Figure 1: Examples of basic and modified images for t = 3

Figure 2: An example of a typical histogram of a large block
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ε |F0| |F1| |Fε| Number of «weak»
permutations

Number of «strong»
permutations

2 179 46 29 ≈ 21576 ≈ 21684

5 179 61 14 ≈ 21621 ≈ 21684

7 179 65 9 ≈ 21629 ≈ 21684

9 179 67 7 ≈ 21636 ≈ 21684

11 179 69 5 ≈ 21642 ≈ 21684

13 179 71 4 ≈ 21654 ≈ 21684

17 179 72 2 ≈ 21653 ≈ 21684

20 179 73 1 ≈ 21661 ≈ 21684

Table 3: The table of cardinality of the sets of permutation elements depending on the
parameter ε and the corresponding number of permutations.

Number of blocks |F0| |F1| |Fε| Number of
«weak» permuta-
tions

Number of
«strong» per-
mutations

2 76 78 99 ≈ 21544 ≈ 21684

4 112 73 68 ≈ 21542 ≈ 21684

8 148 58 47 ≈ 21546 ≈ 21684

16 179 46 29 ≈ 21575 ≈ 21684

24 194 39 20 ≈ 21585 ≈ 21684

36 208 32 13 ≈ 21603 ≈ 21684

Table 4: Power table of sets of permutation elements depending on the number of parti-
tioning blocks and the corresponding number of permutations, ε = 2.

Given that the quality of the identification system depends on the chosen
permutation, it is necessary to estimate the number of «strong» and «weak»
histogram permutations. To do this, we considered the entire database, and
for various ε calculated the amount of the «weak» and «strong» permutations.
The table 3 shows the average sizes of the sets F0, F1, Fε for different values of
the parameter ε, t = 3. For these results, using the formula (1), we calculated
the amount of the «strong» histogram permutations for t = 3, ε = 2T+1

nwnh
=

2∗10+1
4∗4 = 2, which turned out to be approximately equal to 21684. The total

number of permutations has the same power (≈ 21684).
Due to the fact that the number of «weak» permutations is of a lower

order compared to the total number of permutations, the order of «strong»
permutations is close to the total number for large values of t (see Table
3). In addition, the number of «weak» permutations depends on the number
of blocks into which the image (see Table 4) is split. The results show that
with increasing number of blocks, the number of «weak» permutations also
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increases, but the recognition quality [1] also grows. Thus, the average es-
timates for the database in question allow us to conclude that the number
of «strong» permutations is an order of magnitude greater than the number
of «weak» permutations, which means that the system can be resistant to
spoofing attacks. The optimization of the system parameters depends on the
database used.
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Abstract
Development of signature schemes providing short signatures is a quite relevant

non-trivial challenge for cryptographers. Since the late 1980’s many short signa-
ture schemes have been proposed. The most perspective schemes are multivariate
schemes and schemes based on Weil pairing. Unfortunately, the cryptographic tools
used in these schemes are still not supported by most cryptographic software that
complicates their effortless use in practice.

In the current paper we investigate the opportunity of shortening the standard
ElGamal-type signatures. We propose three methods of shortening signatures (for
any ElGamal-type schemes such as ECDSA, GOST and SM2) and analyze how
applying these methods affects the security. Applying all three methods to the GOST
signature scheme with elliptic curve subgroup order q, 2255 < q < 2256, can reduce
the signature size from 512 to 320 bits. The modified scheme provides sufficient
security and acceptable (for non-interactive protocols) signing and verifying time.

Keywords: short signature scheme, ElGamal-type signature scheme, GOST, provable security.

1 Introduction

A signature scheme is one of the most widely used cryptographic protocol
in practice. It is a self-supporting protocol replacing a handwritten signature
and is used as a primitive in a huge amount of multiple protocols (e.g. TLS
Handshake [1] and IKEv2 [2]). Therefore, the operational characteristics of
signature scheme such as sizes of keys and signature, time complexity of
signing and verifying, are crucial for applications. Although all parameters
are important, in the current paper we focus only on the size of signature
values.

One of the applications requiring short signatures is the systems where a
human is asked to manually key in the signature. For example, product regis-
tration systems often ask users to key in a signature provided on a CD label.
Also, the size of signature influences the requirements on a channel capacity
which may be essential for low-bandwidth communication environments (e.g.
Internet of Things and QR codes).
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1.1 Related works

Due to the relevance of the considered issues many short signature
schemes have been proposed since the late 1980’s. One of these schemes
is known as a BLS signature scheme [3] based on Weil pairing and providing
160 bits signatures with sufficient for practice security.

Other type of short signature schemes is multivariate schemes based on
Hidden Field Equations (HFE) such as Quartz [5], Gui [10], SFLASH [4],
UOV [12], Rainbow [13]. Although several of these schemes have been bro-
ken due to newly developed attacks (see [6, 7]), a number of multivariate
schemes such as UOV, Rainbow withstood cryptanalysis (for suitable pa-
rameter sets) for more than 20 years. Also in 2016 the work [11] proposed
technique reducing the signature size of almost every multivariate signature
scheme by 10 to 15 % without increasing the key sizes or slowing down the
scheme significantly. The authors claim that by applying their technique to
the Gui signature scheme they obtain signatures of size only 110 bit, «which
are the shortest signatures of all existing digital signature schemes». How-
ever, the scheme has relatively large public key (about 100 KByte) and slow
verification time for the smallest signatures.

In light of the above, the BLS signature scheme is treated as a most
favourable solution. Unfortunately, currently Weil pairing is still a non-typical
cryptographic tool requiring generation and consequent deep analysis of so
called «pairing-friendly» curves. Hence, not any cryptographic software sup-
ports this type of curves (unlike typical well-investigated elliptic curves used
in standard signature schemes such as ECDSA and GOST). Therefore, the
task to provide shorter signatures using typical cryptographic primitives is
relevant.

1.2 Our contribution

In the current paper we consider the standard ElGamal-type signature
schemes [14] (particularly GOST [19, 20, 21, 22]) with two-component signa-
tures r‖s, where r and s are dlog2 qe-bit strings (here q is the prime order of
the used elliptic curve subgroup), and propose three methods of shortening
this type of signature:

– The first method is to replace an internal function f (a mapping from a
random elliptic curve point to an integer r ∈ Zq) by the hash function
with truncated output that implies the reduction of the r component
size.
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– The main idea behind the second method is to make the certain bits
of the r signature component to be constant and then to cut out them.
This method leads to increasing signing time.

– The last method is to directly truncate signature (r and/or s compo-
nent). This methods leads to increasing verification time.

All these methods are independent and can be applied together in any com-
bination.

The idea to use hash function for the ElGamal-type signature shorten-
ing is also briefly mentioned in [29]. Unlike our first method, the method
presented in [29] modifies the original signature scheme significantly due to
hashing the message and the r-component together. Moreover, from what we
understand, the authors propose to use the same hash function as for message
processing in the original signature scheme. Therefore, it is not clear by what
exact means signature shortening is made since the hash function output is
usually as long as the original components. Even if truncation of the hash
output is implicitly supposed to be done, authors present only asymptotic
security results (in terms of polynomial adversaries and negligible success
probabilities). However, such a result cannot be used for choosing hash out-
put length securely for practical application and concrete security bounds
should be presented. The paper [11] proposes similar technique as in the
last method but for multivariate signature schemes specifically. Unlike our
method, signature verification in [11] does not imply signature recovering.

We analyse how applying the methods affects the security by obtain-
ing concrete SUF-CMA-security bounds for modified schemes in the random
oracle model. The first method changes the internal structure of the base
scheme (function f) and in fact provides a new instance of the ElGamal-
type signature scheme. For presentation purposes we obtain security bounds
for the modified GOST signature scheme (named GOST-H) only, although
we believe that the proof can be easily generalized. Using standard tech-
niques we show that the hardness of elliptic curve discrete logarithm prob-
lem (ECDLP) and standard security properties of the hash function implies
SUF-CMA-security of the GOST-H signature scheme. The second and the
third methods are considered in general: for them we reduce the security
of the base unmodified scheme to the security of the corresponding modified
signature scheme. Applying all three methods to the GOST signature scheme
with EC subgroup order q, 2255 < q < 2256, can reduce the signature size
from 512 to 320 bits. The modified scheme provides sufficient security and
acceptable for non-interactive protocols signing (≈ 6 seconds) and verifying
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(≈ 3 seconds) time.

1.3 Paper organization

The remainder of the paper is organized as follows. In Section 2 basic
definitions and notations are introduced. Section 3 introduces ElGamal-type
signature schemes and describes the main object of the research — three
methods of shortening signatures of such type. In Section 4 we formally
define basic security notions for signature schemes and accompanying primi-
tives. Section 5 is devoted to the security analysis of the proposed methods.
We draw our conclusions in Section 6. Detailed proofs of our theorems are
relegated to the appendices due to space limitations.

2 Basic notations and definitions

By {0, 1}s we denote the set of s-component bit strings and by {0, 1}∗
we denote the set of all bit strings of finite length including the empty string.
For bit strings a and b we denote by a‖b their concatenation. Let |a| be the
bit length of the string a.

For a bit string u and a positive integer l 6 |u| let msbl(u) (lsbl(u)) be
the string consisting of the l rightmost (leftmost) bits of u. For integer r > 0
let str(r) (or just r) be the (blog2(r)c + 1)-bit representation of r > 0 with
the least significant bit on the left and zero bit if r = 0. For a bit string u
let int(u) be the integer r such that str(r) = u.

If p is a prime number then the set Zp is a finite field with characteristic
p. We assume the canonic representation of the elements in Zp as a natural
number in the interval [0 . . . p − 1]. Each non-zero element x in Zp has an
inverse 1/x. We define Z∗p as the set Zp without zero element.

We denote the group of points of elliptic curve over the field Zp as G, the
order of the prime subgroup of G as q and elliptic curve point of order q as
P . We denote the group generated by P as 〈P 〉 and neutral element in G as
O.

For any set A and B let Func(A,B) be the set of all mappings from A
to B. If the value s is chosen from a set S uniformly at random, then we
denote s U←− S.

If the variable x gets the value val then we denote x←− val. Similarly, if
the variable x gets the value of the variable y then we denote x←− y. If the
variable x gets the result of a probabilistic algorithm A we denote A $−→ x

(x $←− A). If we need to emphasize that A is deterministic than we denote
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it by A −→ x (x ←− A). The event when A returned value val as a result is
denoted by A→ val.

We define security properties using the notion of «experiment» played
between a challenger and an adversary. The adversary and challenger are
modelled using consistent interactive probabilistic algorithms. The challenger
simulates the functioning of the analysed cryptographic scheme for the ad-
versary and may provide him access to one or more oracles. The parameters
of an adversary A are its computational resources (for a fixed model of com-
putation and a method of encoding) and oracles query complexity. The query
complexity usually includes the number of queries. Denote by AdvM

S (A) the
measure of the success of the adversary A in realizing a certain threat, de-
fined by the security notion M for the cryptographic scheme S. The formal
definition of this measure will be given in each specific case.

3 Three methods of shortening

A signature scheme consists of three algorithms KGen, Sig,Vf such that:
algorithm KGen generates secret signing key sk and public signature verifi-
cation key pk; algorithm Sig takes as input a signing key sk and message
m and generates a signature sgn for message m; deterministic algorithm Vf
takes as input verification key pk, message m and candidate signature sgn
and outputs 1 (accept) or 0 (reject). It is required that for every (pk, sk)
outputted by KGen and every message m it holds that

Vf(pk,m, Sig(sk,m)) = 1.

The GenElGamal framework is introduced in [14].
We follow the notations of [19] and change the definition in [14] in the

following way: we represent the signature as the concatenation of vectors t
and s instead of pair of elements in Zq, we denote r as k, h as e, t as r, x as d,
X as Q. Moreover, we denote the GenElGamal signature scheme as GenEG.

The signature generated by the GenEG scheme is represented as r‖s,
where r, s ∈ Zq, thus, its size is at most 2 dlog qe. The following sections
introduce three methods of shortening signature size, we call the schemes
obtained by applying these methods GenEG-H, GenEGS and GenEGV respec-
tively.

3.1 GenEG-H scheme

The r component in all GenEG schemes is computed as the result of ap-
plying function f to point R. The idea behind the first method of shortening
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signature is to modify function f by splitting it into two functions. At first we
apply the compression function H2 to the x-coordinate of point R and then
we represent the result as an element in Z∗q. Note that the bit representation
of r will be shorter due to compression.

The modified function f is defined in the following way.

f(R) = φ(H2(R.x)),

where H2 maps Zp to {0, 1}b, b < dlog qe , and φ maps {0, 1}b to Z∗q. The
function H2 can be instantiated by the function H(1‖x) mod 2b, where H
is the hash function that maps {0, 1}∗ to Z2256. The function φ is defined
as follows: it maps x ∈ {0, 1}b \ {0} to int(x) and maps zero to 2b. This
definition of the φ function is always correct due to the fact that b < dlog qe.

In order to separate domains of the hash function used for different cases,
we redefine the hash function used for hashing messages as H1(x) = H(0‖x)
mod q.

We illustrate our method applying it to the GOST scheme which is a
special case of the GenEG scheme. The formal definition of the GOST scheme
is relegated to Appendix A. Note that function f in the GOST scheme (as
well as in the ECDSA scheme) is defined as

f(R) = R.x mod q.

We define the GOST-H scheme as follows.

KGen( )
1 : d

U←− Z∗q
2 : Q← dP

3 : return (d,Q)

Sig(d,m)

1 : e← H1(m)

2 : if e = 0 : e← 1

3 : k
U←− Zq

4 : if k = 0 : return ⊥
5 : R← kP

6 : r ← φ(H2(R.x))

7 : s← ke+ dr

8 : if s = 0 : return ⊥
9 : return r‖s

Vf(Q,m, r‖s)
1 : if s = 0 : return 0

2 : e← H1(m)

3 : if e = 0 : e← 1

4 : R← e−1sP − e−1rQ
5 : if φ(H2(R.x)) 6= r : return 0

6 : return 1

This method allows us to shorten the size of the signature from (2 dlog qe)
bits to at most (dlog qe+ b+ 1) bits. For instance, for b = dlog qe /2 we can
cut out one quarter of the size.

Note that we do not check the condition r = 0 in the GOST-H scheme,
because the function φ is defined in a such way that it does not map any
argument to zero.
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3.2 GenEGS scheme

The idea behind the second method is to «mine» during the signature
generation procedure. We generate signature until it meets certain additional
conditions: the first l bits of r should match the constant vector. Thus, we
can exclude these bits from the signature and reduce the signature size by l
bits.

The GenEGS.KGen algorithm is similar to the GenEG.KGen algorithm.
The GenEGS.Sig and GenEGS.Vf procedures are defined as follows.

Sig(d,m)

1 : cnt← 0

2 : if cnt > thr : return ⊥
3 : cnt← cnt+ 1

4 : r‖s← GenEG.Sig(d,m)

5 : if r‖s = ⊥ : goto 2

6 : if lsbl(r) 6= const : goto 2

7 : r∗ = msb|r|−l(r)

8 : return r∗‖s

Vf(Q,m, r∗‖s)
1 : r ← r∗‖const
2 : res← GenEG.Vf(Q,m, r‖s)
3 : return res

The scheme defined above has two new parameters: l – number of fixed
bits in r and thr – number of attempts to generate valid signature. These
parameters are not independent from each other and they are strictly related
to the generation time and probability of outputting the valid signature by
the GenEGS.Sig procedure. Thus they should be chosen in accordance with
the generating mechanism computing power. We will discuss the appropriate
values for these parameters in Section 5. The constant vector is an additional
scheme parameter, it can be set to l zero bits for simplicity.

Note that the number of loop iterations needed to generate the valid
signature depends on the probability of finding r satisfying the condition
lsbl(r) = const. In case of applying the method to the GenEG-H scheme, we
can estimate this probability as 2−l since the distribution of hash function
output is close to uniform. We claim that the situation will not change in case
of applying the method to schemes with function f(R) equal to R.x mod q
since function lsbl is proven to be good entropy extractor for x-coordinate of
point R (see [18] for more details).

3.3 GenEGV scheme

The idea behind the third method is to truncate the signature (either r
or s component) by t bits and search them during verification procedure.

L. Akhmetzyanova, E. Alekseev, A. Babueva, and S. Smyshlyaev 258



On Methods of Shortening ElGamal-type Signatures

The GenEGV.KGen algorithm is similar to the GenEG.KGen algorithm.
The GenEGV.Sig and GenEGV.Vf procedures are defined as follows.

Sig(d,m)

1 : r‖s← GenEG.Sig(d,m)

2 : if r‖s = ⊥ : return ⊥
3 : s∗ ← msb|s|−t(s)

4 : return r‖s∗

Vf(Q,m, r‖s∗)
1 : i← 0

2 : if i ≥ 2t : return 0

3 : s← s∗‖strt(i)
4 : i← i+ 1

5 : res← GenEG.Vf(Q,m, r‖s)
6 : if res = 0 : goto 2

7 : return 1

The construction defined above assumes truncating the s component of
the signature, however we can define this scheme similarly up to truncat-
ing the r component. The decision which part of the signature should be
truncated could depend on the possible optimization of verification process.

This method allows us to reduce the signature size by t bits. The value of
parameter t is strictly related to the signature verification time and should
be chosen in accordance with the verifier’s computing power.

Note that the proposed method is general and can be applied not only
to the GenEG signature scheme but also to any scheme with signature repre-
sented as a concatenation of two bit vectors. In particular, it can be applied
to the GenEGS scheme by replacing the GenEG.Sig and GenEG.Vf calls with
the corresponding GenEGS procedure calls.

4 Security notions

In this section we formally define basic security models used for signature
schemes and the assumptions on primitives.

Definition 1. For a signature scheme SS

AdvSUF-CMA
SS (A) = Pr

[
ExpSUF-CMA

SS (A)→ 1
]
,

where the experiment ExpSUF-CMA
SS (A) is defined in the following way:

ExpSUF-CMA
SS (A)

1 : (pk, sk)← SS.KGen( )

2 : L ← ∅

3 : (m, sgn)
$←− ASign(pk)

4 : if (m, sgn) ∈ L : return 0

5 : res← SS.Vf(pk,m, sgn)

6 : return res

Oracle Sign(m)

1 : sgn← SS.Sig(sk,m)

2 : L ← L ∪ {(m, sgn)}
3 : return sgn
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We analyse the security of the GOST-H scheme assuming the function H2

to be a random oracle. The random oracle model was introduced in [27] and
is an idealized model that assumes the existence of a public random function
H such that all parties can obtain H(x) (for any desired input value x) only
by interacting with an oracle computing H; parties cannot compute H (for
any input) on their own. Using a random oracle is a common way to ease the
cryptographic analysis by making it modular. However, one should always
keep in mind that a random oracle cannot be instantiated by any real hash
function and, therefore, one should use it very carefully, trying to interpret
the obtained security results. We discuss the meaning of random oracle model
for our proof in the next section.

Definition 2 (ECDLP problem).

AdvECDLP
G (A) = Pr

[
Q
U←− 〈P 〉 ; d $←− A(Q,P ) : dP = Q

]

Similar to [16] for the family H1 of hash fuctions we define signum-relative
collision resistance property (see Definition 3) and signum-relative division
resistance property (see Definition 4). Throughout the paper we consider
implicitly keyed hash functions H1: {0, 1}∗ 7→ Zq with initialization vector
assumed to be an implicit key. The experiments of the up-coming security
definitions should be understood as implicitly first picking a random initial-
ization vector IV ∈ IV and giving it to the adversary.

Definition 3 (SCR property). For the family of hash functions H1

AdvSCR
H1

(A) = Pr
[
(m1,m2)

$←− A : H1(m1) = ±H1(m2) ∧m1 6= m2

]

Definition 4 (SDR property). For the family of hash functions H1

AdvSDR
H1

(A) =

Pr

[
β1, β2

U←− {0, 1}b; (m1,Γ)
$←− A1(β1),m2

$←− A2(Γ, β2) :
H1(m1)

φ(β1)
= ±H1(m2)

φ(β2)

]

The SDR property is implied by the standard assumptions: zero resistance
and signum-relative preimage resistance properties of H1 (see Appendix B.4
for formal proof and definitions of these properties).

We estimate the advantages defined above based on the best known meth-
ods of solving the corresponding security tasks. For the ECDLP problem it
is the Pollard’s ρ-algorithm (see [28]), for the SCR notion it is the attack
based on birthday paradox and for the SDR notion (implied by the preimage
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resistance) it is the exhaustive search. So for the group G and for the fam-
ily of hash functions H1 we assume that for any adversary A with the time
complexity at most T

AdvECDLP
G (A) ≈ T 2

q
; AdvSCR

H1
(A) ≈ T 2

q
; AdvSDR

H1
(A) ≈ T

q
.

5 Security bounds

In this section we provide the security bounds for the schemes defined in
Section 3.

For the GOST-H scheme we provide the reduction from the ECDLP prob-
lem. We claim that the proof for the other GenEG-H schemes can be obtained
using the same technique.

Theorem 1. Let A be an adversary with time complexity at most T in the
SUF-CMA model for the GOST-H scheme, making at most QS queries to
the Sign oracle and at most QO queries to the H2 oracle. Then there exists
an adversary D that solves the ECDLP problem for the used elliptic curve
group G, an adversary C that breaks the signum-relative collision resistant
property of H1 and an adversaryM that breaks the signum-relative division
resistant property of H1, such that:

AdvSUF-CMA
GOST-H (A) 6

√
(QO + 2)

(
AdvSDR

H1
(M) · (QO + 2) + AdvECDLP

G (D)
)
+

+
QO + 3

2b
+ AdvSCR

H1
(C) +

(2QO +QS + 1)QS

q − 1
.

Furthermore, the time complexity of C is at most T+c((QS+3)T VGOST-H+QO),
the time complexities of D andM are at most 2T + 2c((QS + 4)T VGOST-H +
2QO + 4), where T VGOST-H is computational resources needed to verify one
signature by the GOST-H.Vf procedure, c is a constant that depends only on
a model of computation and a method of encoding.

Here QS and Q0 should be interpreted as a maximum number of signa-
tures known to the adversary and as a maximum number of the hash function
calls made by the adversary with the computational resources T respectively.
The QS value is set in accordance with application requirements and the QO

value depends on computational model and resources T . Usually we set QO

to
⌈
T

TH

⌉
, where TH is the resources needed to compute one hash value for

one-block message in the chosen computational model. It is correct as soon
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as we assume sequential computational model, however we note that any
parallel model of computations is equivalent to the corresponding sequential
computational model with more resources [26].

Proof sketch. The idea behind the proof is similar to the idea used in [15].
The proof consists of two steps. During the first one we show that the notions
of existential unforgeability under chosen message attack and under key-
only attack are nearly equivalent, assuming H1 is signum-relative collision
resistant. Next, using the forking lemma we show that the hardness of the
ECDLP in the group G and the signum-relative division resistance of H1

imply unforgeability under key-only attack. The full proof can be found in
Appendix B.

Note that for several steps we provide more accurate reductions than ar-
ticle [15] does (there are several unclarified places which seem to be incorrect,
for details see Appendix B). Note that providing accurate reductions is quite
important since potential mistakes can lead to practical vulnerabilities (see
e.g. [23, 24]).

The interpretation of the random oracle model in our case is as follows. If
the signature scheme turns out to be insecure, then, due to the proof sketch,
the ECDLP problem is solved or the used hash function does not sufficiently
disrupt the link between the domain and the range.

Remark 1. Note that the obtained reduction is not tight: there are no known
cryptanalytic attacks breaking the signature scheme with the specified proba-
bility and computational resources. This is the common problem of reductions
obtained using forking lemma. Moreover, several negative results are known.
Paillier and Vergnaud [25] show that the forgeability of several discrete log
based signatures cannot be equivalent to solving the discrete log problem in
the standard model, assuming the so-called one-more discrete log assumption
and algebraic reductions.

The only term depening on b is
QO + 3

2b
. Applying the assumed bounds

for AdvSDR
H1

, AdvSCR
H1

and AdvECDLP
G we have the biggest term in the bound

of order
√
QO · T√
q

. Thus, assuming T >
√
QO (that is reasonable due to

QO 6 T ) we obtain the following surprising result: reducing b up to
dlog2 qe

2
does not significantly change the final bound. Thus, this method allows to

shorten the size of the signature from 2 dlog2 qe bits to
3

2
dlog2 qe bits without

harming security.
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Theorem 2. Let A be an adversary with time complexity at most T in the
SUF-CMA model for the GenEGS scheme, making at most QS queries to the
Sign oracle. Then there exists an adversary B for the GenEG scheme in the
SUF-CMA model that makes at most QS · thr queries to the Sign oracle,
such that:

AdvSUF-CMA
GenEGS

(A) = AdvSUF-CMA
GenEG (B).

Furthermore, the time complexity of B is at most T + cQSthr, where c is
a constant that depends only on a model of computation and a method of
encoding.

The proof can be found in Appendix C.
Consider the QS parameter in detail. Unlike the previous theorem, here

QS cannot be interpreted as a number of signatures known to the adversary,
since the scheme can return the failure indicator very often (depending on the
parameters l and thr). Therefore, if N is a required for application number of

signatures, then QS should be set to
N

pr
, where pr is the probability to return

valid signature for one signing call. We assume that pr ≈ 1− (1− 2−l)thr.
Note that thr parameter should be chosen in such a way that the error

probability is small enough for practice. The optimal way is to choose thr = 2l

(in this case the error probability is less than e−1 for all l).

Theorem 3. Let A be an adversary with time complexity at most T in the
SUF-CMA model for the GenEGV scheme, making at most QS queries to the
Sign oracle. Then there exists an adversary B for the GenEG scheme in the
SUF-CMA model that makes at most QS queries to the Sign oracle, such
that:

AdvSUF-CMA
GenEGV (A) = AdvSUF-CMA

GenEG (B).

Furthermore, the time complexity of B is at most T + c · 2t · T VGenEG, where
T VGenEG is computational resources needed to verify one signature by the
GenEG.Vf procedure, c is a constant that depends only on a model of com-
putation and a method of encoding.

The proof can be found in Appendix D.
Note that parameter t affects the security bound via the time complexity

of the adversary B. If we consider this parameter to be very large then the
computational resources of B become too large, the GenEG scheme breaks
and, as a result, the security bound degenerates.

The Theorems 2 and 3 are presented not in the random oracle model.
However, if the security bound for the GenEG scheme is provided in the ran-
dom oracle model we can change the theorems accordingly. If the adversary
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A makes at most QO queries to H2 oracle, then in case of the Theorem 2 the
adversary B makes the same number of queries to its own H2 oracle and in
case of the Theorem 3 the adversary B makes at most QO + 2t queries to its
own H2 oracle.

The GOST-HV
S scheme. Let us introduce the GOST-HV

S scheme – the result
of applying all three methods to the GOST scheme which is the special
case of the GenEG scheme. The GOST-HV

S .KGen algorithm is similar to the
GOST.KGen algorithm. The GOST-HV

S .Sig and GOST-HV
S .Vf procedures are

defined as follows.

Sig(d,m)

1 : cnt← 0

2 : if cnt > thr : return ⊥
3 : cnt← cnt+ 1

4 : r‖s← GOST-H.Sig(d,m)

5 : if r‖s = ⊥ : goto 2

6 : if lsbl(r) 6= const : goto 2

7 : r∗ ← msb|r|−l(r)

8 : s∗ ← msb|s|−t(s)

9 : return r∗‖s∗

Vf(Q,m, r∗‖s∗)
1 : r ← r∗‖const
2 : i← 0

3 : if i ≥ 2t : return 0

4 : i← i+ 1

5 : s← s∗‖strt(i)
6 : res← GOST-H.Vf(Q,m, r‖s)
7 : if res = 0 : goto 2

8 : return 1

Summarizing the results of Theorems 1, 2, 3 and the bounds presented in
Section 4 we obtain the following security bound for the GOST-HV

S scheme:

AdvSUF-CMA
GOST-HV

S
(A) 6

√
2(QO + 2t + 2) · (QO + 2t + 2)T1 + 2T 2

1

q
+

+
QO + 2t + 3

2b
+

(2QO + 2t+1 +QS · thr + 1)QS · thr + T 2
1

q − 1
,

where
T1 6 T + 2T VGOST-H(QS · thr + 2t + 2) + 2QO + 4,

T VGOST-H is computational resources needed to verify one signature by the
GOST-H.Vf procedure.

The size of the short signature generated by the GOST-HV
S scheme is equal

to at most (dlog qe+ b+ 1− l − t), where parameters b, l and t characterize
three methods of shortening respectively. We provide the bounds for the
GOST-HV

S scheme for particular values of N, q, thr, T,QO: we set N to 106 as
it is reasonable number of signatures for our application, we use curve with
prime subgroup order q such that 2255 < q < 2256, we set thr to 2l by reasons
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Fixed parameters Variable parameter and corresponding security bound

l = 18, t = 18
b 128 100 80 70 60

AdvSUF-CMA
GOST-HV

S
(A) 2−35 2−35 2−19 2−9 1

b = 100, t = 18
l 10 18 35 50 77

AdvSUF-CMA
GOST-HV

S
(A) 2−35 2−35 2−34 2−19 1

b = 100, l = 18
t 10 18 30 64 80

AdvSUF-CMA
GOST-HV

S
(A) 2−35 2−35 2−35 2−27 1

Table 1: Security bounds for the GOST-HV
S scheme

discussed above and we set T to 260 assuming such computational power of
potential adversary for our application. Moreover, for simplicity we estimate
QO as T . The GOST-H.Vf procedure assumes two hash and two multiple
point calculation, we estimate T VGOST-H as 32 assuming the computational
resources measured in hash calculations.

Table 1 presents the evolution of security bound with changing one of the
scheme parameter as long as other two parameters are fixed. We choose l and
t equal to 18 in the first step based on the appropriate signing (≈ 6 seconds)
and verifying (≈ 3 seconds) time, we set b to 100 based on the security bound
obtained in the first step.

By choosing the optimal values of methods parameters (b = 100, l = 18
and t = 18) we reduce the signature size from 512 to 320 bits providing the
sufficient security for our application.

6 Conclusion

This paper introduces three methods of shortening ElGamal-type signa-
tures. The proposed methods do not imply increasing the key sizes and can be
applied together in any combination. Applying second and/or third method
leads to increasing signing and/or verifying time. The implementation of
these methods do not require any special cryptographic tools.

We apply these methods to ElGamal-type signature schemes and obtain
security bounds in the random oracle model. The presented theorems allow
us to estimate the security of the modified scheme by the security of the used
cryptographic primitives (elliptic curve group and hash function family) in
case of the first method and by the security of the original scheme in case of
the second and the third methods. The paper presents the security bounds
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for the GOST-HV
S scheme with elliptic curve subgroup order q, 2255 < q <

2256 with different parameter values (see Table 1). Choosing the optimal
parameter values for our application allows to reduce the signature size from
512 to 320 bits.
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A GOST definition

The GOST signature scheme is a special case of the GenEG scheme. We
define it relative to functions H, f and group G.

KGen( )
1 : d

U←− Z∗q
2 : Q← dP

3 : return (d,Q)

Sig(d,m)

1 : e← H(m) mod q

2 : if e = 0 : e← 1

3 : k
U←− Zq

4 : if k = 0 : return ⊥
5 : R← kP

6 : r ← f(R)

7 : if r = 0 : return ⊥
8 : s← ke+ dr

9 : if s = 0 : return ⊥
10 : return r‖s

Vf(Q,m, r‖s)
1 : if (r = 0 ∨ s = 0) : return 0

2 : e← H(m)

3 : if e = 0 : e← 1

4 : R← e−1sP − e−1rQ
5 : if f(R) 6= r : return 0

6 : return 1

The function f maps G∗ to Zq and for the GOST scheme is defined as
follows:

f(R) = R.x mod q.

There are some differences between the scheme defined above and the
standardized scheme defined in [19]. First, our version of the scheme can
output failure indicator ⊥. In contrast, function Sig in standardized scheme
always output a valid signature, going to line 3 in case of all «bad» events.
The second difference is that k is chosen randomly from the set Z∗q in the
standardized scheme, but in our scheme it is chosen from the set Zq, and the
procedure Sig outputs ⊥ in case of k = 0. We claim that these two differences
do not affect the security and correctness of the scheme.

B GOST-H security

B.1 Proof details

We provide the proof in the random oracle model, i.e. we replace function
H2 with the random oracle. Family of hash functions H1 is required to be
signum-relative collision resistant and signum-relative division resistant in
the sense of Definitions 3, 4.

Let us introduce SUF-KO security model for the signature scheme since
we use it during the proof.
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Definition 5. For a signature scheme SS

AdvSUF-KO
SS (A) = Pr

[
ExpSUF-KO

SS (A)→ 1
]
,

where the experiment ExpSUF-KO
SS (A) is defined in the following way:

ExpSUF-KO
SS (A)

1 : (pk, sk)← SS.KGen( )

2 : (m, sgn)
$←− A(pk)

3 : res← SS.Vf(pk,m, sgn)

4 : return res

The idea behind the proof is similar to the idea used in [15], however
several steps in [15] are unclear and seem to be incorrect. We provide more
accurate reduction than [15] does and point out the differences from [15]
throughout the proof. We split the proof into two parts. In Section B.2 we
show that if the adversary can forge the GOST-H scheme using some valid
pairs message-signature (i.e. in the SUF-CMA model), then we can construct
two adversaries: one of them breaks the signum-relative collision resistance
property of H1 and the other one makes forgery without any valid pairs
message-signature (i.e. in the SUF-KO model). In Section B.3 we construct
the adversary that breaks the signum-relative division resistance property
of H1 and the adversary that solves the ECDLP problem using the key-only
adversary constructed at the first step. The forking lemma (see [15]) is our key
tool on the second step. Both steps of the proof are organized as follows: at
first, we construct the sequence of experiments for the adversary and estimate
the difference between them (in some cases by constructing the adversaries
for H1 properties), after that we build another adversary who uses the first
adversary as a black box and implements the last experiment for him. We
highlight the changes in the experiment pseudocode.

We write abort in the experiment pseudocode as a shortcut for
«return 0» and in the oracle pseudocode to denote that experiment should
stop and return 0. We use lemma 2 from [17] to estimate the difference be-
tween two experiments Expi and Expj that are «identical-until-bad», i.e.
one experiment is derived from the other by adding the abort condition.
According to this lemma

Pr
[
Expi ⇒ 1

]
− Pr

[
Expj ⇒ 1

]
6 Pr[abort condition is met ] .

For presentation purposes we introduce the internal result of function f
and denote it as r′. More particularly, we denote H2(R.x) as r′ and thus
r = φ(r′). We assume that r′ is the element in {0, 1}b. Moreover, we assume
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throughout the proof that the GenEG signature is represented not like the
vector’s concatenation but as the pair of corresponding elements in Zq.

B.2 SUF-KO to SUF-CMA reduction

Theorem 4. Let A be an adversary with time complexity at most T in the
SUF-CMA model for the GOST-H scheme, making at most QS queries to the
Sign oracle and at most QO queries to the H2 oracle. Then there exists an
adversary B in the SUF-KO model for the GOST-H scheme making at most
(QO + 2) queries to the H2 oracle and exists an adversary C that breaks the
signum-relative collision resistant property of H1, such that:

AdvSUF-CMA
GOST-H (A) 6 AdvSUF-KO

GOST-H (B) + AdvSCR
H1

(C) +
(2QO +QS + 1)QS

q − 1
.

Furthermore, the time complexities of B and C are at most T + c((QS +
3)T VGOST-H +QO), where T VGOST-H is computational resources needed to verify
one signature by the GOST-H.Vf procedure, c is a constant that depends only
on a model of computation and a method of encoding.

Construction of adversary C. Let Exp0 denote the original security exper-
iment as defined in the SUF-CMA security model definition (see Figure 1).
We fix A – the adversary that makes forgery for the GOST-H scheme in the
SUF-CMA model. The adversary has the access to the random oracle H2 and
to the signing oracle Sign. We assume that adversary can make at most QO

queries to the oracle H2 and QS queries to the oracle Sign. Our goal is to
upper-bound Pr

[
ExpSUF-CMA

GOST-H (A)⇒ 1
]

= Pr
[
Exp0(A)⇒ 1

]
.

Note that we change the check for k being equal to zero (see line 4 in the
GOST-H.Sig procedure, Section 3.1) to the check for R being equal to zero
point (see line 5 in the Sign oracle). This change does not affect the scheme
but simplifies the proof.

Exp1 is the modification of the Exp0 obtained by implementingH2 using
«lazy sampling» (see Figure 2). The idea is to «open» new pairs (x,H2(x))
as soon as the adversary asks for it. We introduce the set Π – the subset
of (Zp, {0, 1}b), which is defined by the union of two sets ΠS and ΠO. We
store the pairs obtained from queries to the H2 oracle in ΠO set and the pairs
obtained from queries to the Sign oracle in ΠS set. If (α, β) ∈ Π, we denote
β as Π(α). We write (α, ·) ∈ Π shorthand for the condition that there exists
β such that (α, β) ∈ Π.

This modification does not affect the distribution ofH2 and Sign outputs.
Thus Pr

[
Exp0(A)⇒ 1

]
= Pr

[
Exp1(A)⇒ 1

]
.
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Proof. Exp0(A) = ExpSUF-CMA
GOST-H (A)

1 : d
U←− Z∗q

2 : Q← dP

3 : H2
U←− Func(Zp, {0, 1}b)

4 : L ← ∅

. . . . . . . .Setup completed . . . . . . . .

5 : (m, 〈r, s〉) $←− ASign,H2(Q)

6 : if (m, 〈r, s〉) ∈ L : abort

7 : if s = 0 : abort

8 : e← H1(m)

9 : if e = 0 : e← 1

10 : R← e−1sP − e−1rQ
11 : if φ(H2(R.x)) 6= r : abort

12 : return 1

Oracle Sign(m)

1 : e← H1(m)

2 : if e = 0 : e← 1

3 : k
U←− Zq

4 : R← kP

5 : if R = 0 : return ⊥
6 : r′ ← H2(R.x)

7 : r ← φ(r′)

8 : s← ke+ dr

9 : if s = 0 : return ⊥
10 : L ← L ∪ {(m, 〈r, s〉)}
11 : return 〈r, s〉

Oracle H2(α)

1 : return H2(α)

Figure 1: The Exp0 for the adversary A for the GOST-H scheme in the SUF-CMA model

Exp2 is the modification of the Exp1 in which forgeries obtained by
finding a signum-relative collision are not counted (see Figure 2, lines 7, 8, 9
are added). The Sign and H2 oracles do not change from the Exp1.

To estimate the difference between the Exp1 and Exp2, we should esti-
mate the probability that the Exp2 aborts in line 9.

Let construct an adversary C that breaks the signum-relative collision
resistant property of H1. The adversary C implements the Exp2 for A. Note
that he is able to do this as soon as we replace H2 implementation with
lazy sampling. Otherwise, the polynomial-time bounded adversary could not
choose function H2 randomly from the set Func(Zp, {0, 1}b) cause the den-
sity of this set is exponential. A delivers a forgery to C, and C finds the
signum-relative collision iff the condition in lines 7-8 is met.

Thus we obtain the following bound:

Pr
[
Exp1(A)⇒ 1

]
− Pr

[
Exp2(A)⇒ 1

]
6 AdvSCR

H1
(C).

The adversary C implements Exp2 and thus processes at most QS queries
to Sign oracle and at most QO queries to H2 oracle, checks the collision con-
dition and verifies the forgery obtained from A. Taking into account that
signature generation procedure and hash computation are faster than verifi-
cation procedure, C uses at most c((QS +2)T VGOST-H+QO) additional compu-
tational resources, where T VGOST-H is computational resources needed to verify
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Exp1(A)

1 : d
U←− Z∗q

2 : Q← dP

3 : (ΠO,ΠS)← (∅, ∅)
4 : Π← ΠO ∪ΠS

5 : L ← ∅

. . . . . . . .Setup completed . . . . . . . .

6 : (m, 〈r, s〉) $←− ASign,H2(Q)

7 : if (m, 〈r, s〉) ∈ L : abort

8 : if s = 0 : abort

9 : e← H1(m)

10 : if e = 0 : e← 1

11 : R← e−1sP − e−1rQ
12 : if φ(H2(R.x)) 6= r : abort

13 : return 1

Exp2(A)

1 : d
U←− Z∗q

2 : Q← dP

3 : (ΠO,ΠS)← (∅, ∅)
4 : Π← ΠO ∪ΠS

5 : L ← ∅

. . . . . . . .Setup completed . . . . . . . .

6 : (m, 〈r, s〉) $←− ASign,H2(Q)

7 : ∀(m∗, ·) ∈ L,m∗ 6= m :

8 : if H1(m
∗) = ±H1(m) :

9 : abort

10 : if (m, 〈r, s〉) ∈ L : abort

11 : if s = 0 : abort

12 : e← H1(m)

13 : if e = 0 : e← 1

14 : R← e−1sP − e−1rQ
15 : if φ(H2(R.x)) 6= r : abort

16 : return 1

Oracle Sign(m)

1 : e← H1(m)

2 : if e = 0 : e← 1

3 : k
U←− Zq

4 : R← kP

5 : if R = 0 : return ⊥
6 : if (R.x, ·) ∈ Π :

7 : r′ ← Π(R.x)

8 : else :

9 : r′ U←− {0, 1}b
10 : ΠS ← ΠS ∪ {(R.x, r′)}
11 : Π← ΠO ∪ΠS

12 : r ← φ(r′)

13 : s← ke+ dr

14 : if s = 0 : return ⊥
15 : L ← L ∪ {(m, 〈r, s〉)}
16 : return 〈r, s〉

Oracle H2(α)

1 : if (α, ·) ∈ Π :

2 : return Π(α)

3 : β
U←− {0, 1}b

4 : ΠO ← ΠO ∪ {(α, β)}
5 : Π← ΠO ∪ΠS

6 : return β

Figure 2: The Exp1 and Exp2 for the adversary A for the GOST-H scheme in the
SUF-CMA model. The Sign and H2 oracles are the same in the Exp1 and Exp2
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one signature by the GOST-H.Vf procedure, c is a constant that depends only
on a model of computation and a method of encoding.

Note that if we find signum-relative collision then we immediately con-
struct a forgery for the GOST-H scheme (it is also true for the GOST scheme)
in the SUF-CMA model. It is the interesting property of the GOST signa-
ture scheme implied by its construction, namely the equation for s component
computation. The probability of such collision event is part of the resulting
security bound.

Construction of adversary B. In the further experiments we change the Sign
oracle behaviour only (see Figure 3).

Oracle Sign(m) (Exp3)

1 : e← H1(m)

2 : if e = 0 : e← 1

3 : k
U←− Zq

4 : R← kP

5 : if R = 0 : return ⊥
6 : if (R.x, ·) ∈ Π :

7 : abort

8 : r′ U←− {0, 1}b

9 : ΠS ← ΠS ∪ {(R.x, r′)}
10 : Π← ΠO ∪ΠS

11 : r ← φ(r′)

12 : s← ke+ dr

13 : if s = 0 : return ⊥
14 : L ← L ∪ {(m, 〈r, s〉)}
15 : return 〈r, s〉

Oracle Sign(m) (Exp4)

1 : e← H1(m)

2 : if e = 0 : e← 1

3 : r′ U←− {0, 1}b
4 : r ← φ(r′)

5 : s
U←− Zq

6 : R← e−1sP − e−1rQ
7 : if R = 0 : return ⊥
8 : if (R.x, ·) ∈ Π :

9 : abort

10 : ΠS ← ΠS ∪ {(R.x, r′)}
11 : Π← ΠO ∪ΠS

12 : if s = 0 : return ⊥
13 : L ← L ∪ {(m, 〈r, s〉)}
14 : return 〈r, s〉

Oracle Sign(m) (Exp5)

1 : e← H1(m)

2 : if e = 0 : e← 1

3 : r′ U←− {0, 1}b
4 : r ← φ(r′)

5 : s
U←− Zq

6 : if s = 0: abort

7 : R← e−1sP − e−1rQ
8 : if R = 0 : return ⊥
9 : if (R.x, ·) ∈ Π :

10 : abort

11 : ΠS ← ΠS ∪ {(R.x, r′)}
12 : Π← ΠO ∪ΠS

13 : if s = 0 : return ⊥
14 : L ← L ∪ {(m, 〈r, s〉)}
15 : return 〈r, s〉

Figure 3: The Sign oracles in the Exp3, Exp4, Exp5

The Sign oracle in the Exp3 is the modification of the Sign oracle in
the Exp2 by adding the abort condition in case of choosing R.x that already
belongs to set Π (lines 6-7). We should estimate the probability of this event
to estimate the difference between the Exp2 and Exp3.

The value k is uniformly distributed in a set Z∗q of cardinality (q − 1).
Thus R.x is uniformly distributed in a set of cardinality (q − 1)/2. In the
worst case the adversary A has already made all queries to the H2 oracle
and thus Π contains at least QO elements. The abort condition is met if the
value R.x hits one of elements in Π. We can estimate this probability as
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QO +QS/2

(q − 1)/2
=

2QO +QS

q − 1
. As these lines are executed at most QS times, the

overall probability can be bounded by
(2QO +QS)QS

q − 1
.

We obtain the following bound:

Pr
[
Exp2(A)⇒ 1

]
− Pr

[
Exp3(A)⇒ 1

]
6 (2QO +QS)QS

q − 1
.

The signature oracle in the Exp4 gets along with only public information.
Values r′ and s are randomly chosen from the relevant sets and then point
R is constructed. We define the corresponding pair in H2 implementation
by saving this pair in the ΠS set. Note that if we couldn’t do so (i.e., R.x
already belongs to the Π), the abort condition is met like in the Exp3. This
step differs from [15] in the order of ⊥ outputs and abort conditions.

Consider the distribution on r′, s and ⊥. Note that if the distributions
on r′ are identical in both experiments then the distributions on r are iden-
tical too. In the Exp3 r′ is distributed uniformly in {0, 1}b, k is distributed
uniformly in Z∗q except of the values that lead to R.x that already belongs to
Π. k and r are independent from each over in the equation for s, therefore
s is distributed uniformly in Zq except of the values corresponding to «bad»
values of k. In the Exp4 r′ and s are also distributed uniformly on the cor-
responding sets and s values that lead to the same «bad» events as in the
Exp3 are excluded. The probability of returning ⊥ is also the same in these
experiments.

The probability of abort in the Exp3 and Exp4 is the same because R
is uniformly distributed in the set of cardinality q in both experiments and
zero point is excluded.

Thus we conclude that

Pr
[
Exp3(A)⇒ 1

]
= Pr

[
Exp4(A)⇒ 1

]
.

Finally we are moving to the Exp5. The abort condition in line 6 is added
to the signing oracle. Note that line 13 is redundant now, however we keep it
for clarity. The qualitative significance of this modification is following: the
set ΠS contains only those pairs (R.x, r′) that lead to valid signatures now,
because the condition in line 13 can never be met. Note that there is no such
step in [15].

We estimate the difference between the Exp4 and Exp5 by estimating
the probability of abort condition in line 6. Per each execution it is equal to
1/q, so the overall probability can be bounded by QS/q.
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We obtain the following bound:

Pr
[
Exp4(A)⇒ 1

]
− Pr

[
Exp5(A)⇒ 1

]
6 QS

q
.

Before constructing the adversary B we summarize the obtained bounds:

Pr
[
Exp0(A)⇒ 1

]
− Pr

[
Exp5(A)⇒ 1

]
= (Pr

[
Exp0(A)⇒ 1

]
−

− Pr
[
Exp1(A)⇒ 1

]
) +

(
Pr
[
Exp1(A)⇒ 1

]
− Pr

[
Exp2(A)⇒ 1

])
+

+
(
Pr
[
Exp2(A)⇒ 1

]
− Pr

[
Exp3(A)⇒ 1

])
+ (Pr

[
Exp3(A)⇒ 1

]
−

− Pr
[
Exp4(A)⇒ 1

]
) +

(
Pr
[
Exp4(A)⇒ 1

]
− Pr

[
Exp5(A)⇒ 1

])
6

6 AdvSCR
H1

(C)+
(2QO +QS)QS

q − 1
+
QS

q
6 AdvSCR

H1
(C)+

(2QO +QS + 1)QS

q − 1
.

Let construct the adversary B for the GOST-H scheme in the SUF-KO
model that uses A as the black box (see Figure 4).

BH∗
2 (Q)

1 : (ΠO,ΠS)← (∅, ∅)
2 : Π← ΠO ∪ΠS

3 : L ← ∅

4 : (m, 〈r, s〉) $←− ASimSign,SimH2(Q)

5 : ∀(m∗, ·) ∈ L,m∗ 6= m :

6 : if H1(m
∗) = ±H1(m) :

7 : abort

8 : if (m, 〈r, s〉) ∈ L : abort

9 : if s = 0 : abort

10 : e← H1(m)

11 : if e = 0 : e← 1

12 : R← e−1sP − e−1rQ
13 : if φ(SimH2(R.x)) 6= r : abort

14 : r′ ← φ−1(r)

15 : if (R.x, r′) ∈ ΠS :

16 : Find corresponding (m1, 〈r1, s1〉) ∈ L
17 : Compute d

18 : (m, 〈r, s〉) $←− SignB(d,m)

19 : return (m, 〈r, s〉)

SimH2(α)

1 : if (α, ·) ∈ Π :

2 : return Π(α)

3 : β ← H∗2 (α)

4 : ΠO ← ΠO ∪ {(α, β)}
5 : Π← ΠO ∪ΠS

6 : return β

SignB(d,m)

1 : e← H1(m)

2 : if e = 0 : e← 1

3 : k
U←− Z∗q

4 : R← kP

5 : r ← φ(H∗2 (R.x))

6 : s← ke+ dr

7 : if s = 0 :

8 : e1 ← H1(m1)

9 : if e1 = 0 : e1 ← 1

10 : s1 ← ke1 + dr

11 : return m1, 〈r, s1〉

Figure 4: The adversary B for the GOST-H scheme in the SUF-KO model that uses the
adversary A for the GOST-H scheme in the SUF-CMA model
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Adversary B simulates the Sign and H2 oracles using SimSign and
SimH2 to answer the A queries. The SimSign algorithm is similar to the
oracle Sign in the Exp5.

After receiving the forgery fromA, B verifies this forgery by itself. Assume
that A delivers a valid forgery (m, 〈r, s〉) (we denote it as (m̃, 〈r̃, s̃〉)), i.e.
the line 15 is reached. This means that the set Π contains the pair (R̃.x, r̃′):
either this pair was already in the Π before verification check in line 13 or it
was saved after SimH2 call during this check. There are two possible cases.
If (R̃.x, r̃′) ∈ ΠO, the forgery is already valid with respect to the oracle H∗2
and B can simply forward it to its own challenger. If (R̃.x, r̃′) ∈ ΠS, B can
recover the signing key d as described below and construct the new forgery
with the SignB algorithm.

Note that the set ΠS contains only such pairs (R.x, r′) that result in
the valid signatures 〈r, s〉. This is provided by the Exp5 modification of the
Sign oracle. Thus if (R.x, r′) ∈ ΠS the adversary B can search through
L and find element (m1, 〈r1, s1〉), which was established during A signing
queries, meanwhile r′1 and R1 corresponding to (m1, 〈r1, s1〉) satisfy: r′1 = r̃′,
R1.x = R̃.x. This search can be realized since it’s possible to find all elements
in L with r1 = φ(r̃′), compute e1 = H1(m1) and R1 = e−1

1 s1P − e−1
1 r1Q and

check whether R1.x = R̃.x.
The R1.x = R̃.x implies R1 = ±R̃ and thus k1 = ±k̃. So the following

linear equation system holds:
{
s̃ = k̃ẽ+ dφ(r̃′);

s1 = ±k̃e1 + dφ(r̃′);

for ẽ = H1(m̃), e1 = H1(m1). There are two unknown variables k̃ and d in
the system above. Moreover, φ(r̃′) 6= 0 due to the definition of φ. This system
has a unique solution whenever ẽ 6= ±e1. Observe that case ẽ = ±e1 and
thus H1(m̃) = ±H1(m1) is excluded by lines 5, 6, 7 if m̃ 6= m1. The m̃ = m1

condition (together with r̃ = r1 condition) implies (m̃, 〈r̃, s̃〉) = (m1, 〈r1, s1〉)
and thus is excluded by line 8. Summing all, we can always compute d if the
pair (R̃.x, r̃′) belongs to ΠS.

The only remaining challenge is constructing valid forgery by B using
signing key d. B invokes SignB procedure for the message m̃ that merely
repeats the GOST-H.Sig procedure except for s = 0 case. In this case B
constructs the forgery for message m1, found on the previous step, using the
same value of k (and r consequently). We claim that s1 is always nonzero.
This follows from the fact that ẽ 6= ±e1 as discussed above and thus s1 =
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ke1 + dr = ke1 + (s− kẽ) = k(e1 − ẽ) 6= 0. Note that [15] does not consider
s = 0 case.

We conclude that if A delivers a valid forgery (m̃, 〈r̃, s̃〉) to B, B delivers
a valid forgery to its own challenger and

Pr
[
Exp5(A)⇒ 1

]
= Pr

[
ExpSUF-KO

GOST-H (B)⇒ 1
]
.

All in all we proved:

AdvSUF-CMA
GOST-H (A)− AdvSUF-KO

GOST-H (B) = Pr
[
ExpSUF-CMA

GOST-H (A)⇒ 1
]
−

−Pr
[
ExpSUF-KO

GOST-H (B)⇒ 1
]

=
(
Pr
[
Exp0(A)⇒ 1

]
− Pr

[
Exp5(A)⇒ 1

])
+

+
(
Pr
[
Exp5(A)⇒ 1

]
− Pr

[
ExpSUF-KO

GOST-H (B)⇒ 1
])
6

6 AdvSCR
H1

(C) +
(2QO +QS + 1)QS

q − 1
.

Note that the number of queries made by B to the H∗2 oracle is at most
QO + 2.

The adversary B needs the same amount of computational resources as
C, but it also generates new signature in some cases. Thus B uses at most
c((QS + 3)T VGOST-H +QO) additional computational resources.

B.3 ECDLP to SUF-KO reduction

Theorem 5. Let B be an adversary with time complexity at most T in the
SUF-KO model for the GOST-H scheme, making at most QO queries to the
H2 oracle. Then there exists an adversary D that solves the ECDLP problem
and exists an adversaryM that breaks the signum-relative division resistant
property of H1, such that:

AdvSUF-KO
GOST-H (B) 6

√
QO

(
QO · AdvSDR

H1
(M) + AdvECDLP

G (D)
)

+
QO + 1

2b
.

Furthermore, the time complexities of D andM are at most 2T + 2c(QO +
T VGOST-H), where T VGOST-H is computational resources needed to verify one sig-
nature by the GOST-H.Vf procedure, c is a constant that depends only on a
model of computation and a method of encoding.

Proof. Let Exp0 denote the original security experiment as defined in the
SUF-KO security model definition (see Figure 5). We fix B – the adversary
that makes forgery for the GOST-H scheme in the SUF-KO model. The
adversary has the access to the random oracle H2, we assume that adversary
can make at most QO queries to this oracle.

L. Akhmetzyanova, E. Alekseev, A. Babueva, and S. Smyshlyaev 277



On Methods of Shortening ElGamal-type Signatures

Using the same trick as in Section B.2, we define Exp1 similar to the
Exp0 but with the H2 implemented by «lazy sampling» (see Figure 5). As
before,

Pr
[
Exp0(B)⇒ 1

]
= Pr

[
Exp1(B)⇒ 1

]
.

The Exp2 is the modification of the Exp1 in the following way: values
βj, j = 1, . . . , QO + 1, are sampled during experiment initializing phase
and H2 oracle just translates them one by one responding to the queries
(see Figure 5). Note that additional βQO+1 value is sampled since challenger
queries the H2 oracle on the finalization step and one more β is used if
Π doesn’t contain (R.x, ·) element (see line 13). We introduce flag flg to
indicate (R.x, ·) /∈ Π and abort experiment in case when βQO+1 matches
φ−1(r) (see line 14). We estimate the difference between Exp1 and Exp2 by
estimating the probability of this event. Note that this step differs from [15].

Pr
[
βQO+1

U←− {0, 1}b; βQO+1 = φ−1(r)
]
6 1

2b
.

Therefore, we obtain the following bound:

Pr
[
Exp1(B)⇒ 1

]
− Pr

[
Exp2(B)⇒ 1

]
6 1

2b
.

Construction of algorithm C. We construct a deterministic algorithm C that
takes a vector (Q, β1, . . . , βQO ; ρ) as input, invokes the adversary B on input
Q and a random tape derived from ρ and processes the queries to the H2

oracle as they are processed in the Exp2 (see Figure 6). Note that random
choice in line 4 is made with randomness derived from ρ. Here and after we
write «abort » as a shortcut for «return ⊥». If B aborts also C aborts. As
B returns a forgery to C, C validates it and finds the index j ∈ {1, . . . , QO}
of the corresponding query to the H2 oracle. Note that this index always
exists cause C aborts if (R.x, ·) /∈ Π before the verification check in line 11.
Based on the above,

acc = Pr
[
Q
U←− G∗, β1, . . . , βQO

U←− {0, 1}b; C(Q, β1, . . . , βQO) ; ⊥
]

=

= Pr
[
Exp2(B)⇒ 1

]
.

Therefore,

Pr
[
ExpSUF-KO

GOST-H (B)⇒ 1
]
−acc =

(
Pr
[
Exp0(B)⇒ 1

]
− Pr

[
Exp1(B)⇒ 1

])
+

+
(
Pr
[
Exp1(B)⇒ 1

]
− Pr

[
Exp2(B)⇒ 1

])
+
(
Pr
[
Exp2(B)⇒ 1

]
− acc

)
6 1

2b
.
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Exp0(B) = ExpSUF-KO
GOST-H (B)

1 : d
U←− Z∗q

2 : Q← dP

3 : H2
U←− Func(Zp, {0, 1}b)

. . . . . . . .Setup completed . . . . . . . .

4 : (m, 〈r, s〉) $←− BH2(Q)

5 : if s = 0 : abort

6 : e← H1(m)

7 : if e = 0 : e← 1

8 : R← e−1sP − e−1rQ
9 : if φ(H2(R.x)) 6= r : abort

10 : return 1

Oracle H2(α)

1 : return H2(α)

Exp1(B)

1 : d
U←− Z∗q

2 : Q← dP

3 : Π← ∅

. . . . . . . .Setup completed . . . . . . . .

4 : (m, 〈r, s〉) $←− BH2(Q)

5 : if s = 0 : abort

6 : e← H1(m)

7 : if e = 0 : e← 1

8 : R← e−1sP − e−1rQ
9 : if φ(H2(R.x)) 6= r : abort

10 : return 1

Oracle H2(α)

1 : if (α, ·) ∈ Π :

2 : return Π(α)

3 : β
U←− {0, 1}b

4 : Π← Π ∪ {(α, β)}
5 : return β

Exp2(B)

1 : d
U←− Z∗q

2 : Q← dP

3 : Π← ∅
4 : flg ← false

5 : i← 0

6 : β1, . . . , βQO+1
U←− {0, 1}b

. . . . . . . .Setup completed . . . . . . . .

7 : (m, 〈r, s〉) $←− BH2(Q)

8 : if s = 0 : abort

9 : e← H1(m)

10 : if e = 0 : e← 1

11 : R← e−1sP − e−1rQ
12 : if (R.x, ·) ∈ Π : flg ← true

13 : if φ(H2(R.x)) 6= r : abort

14 : if flg = false : abort

15 : return 1

Oracle H2(α)

1 : if (α, ·) ∈ Π :

2 : return Π(α)

3 : i← i+ 1

4 : β ← βi

5 : Π← Π ∪ {(α, β)}
6 : return β

Figure 5: The Exp0, Exp1 and Exp2 for the adversary B for the GOST-H scheme in the
SUF-KO model
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C(Q, β1, . . . , βQO ; ρ)

1 : Π← ∅
2 : flg ← false

3 : i← 0

4 : βQO+1
U←− {0, 1}b

5 : (m, 〈r, s〉)← BSimH2(Q; ρ)

6 : if s = 0 : abort

7 : e← H1(m)

8 : if e = 0 : e← 1

9 : R← e−1sP − e−1rQ
10 : if (R.x, ·) ∈ Π : flg ← true

11 : if φ(SimH2(R.x)) 6= r : abort

12 : if flg = false : abort

13 : r′ ← φ−1(r)

14 : find j ∈ {1, . . . , QO} : r′ = βj

15 : return (j,m, 〈r, s〉)

ForkC(Q)

1 : Pick random coins ρ for C

2 : β1, . . . , βQO
U←− {0, 1}b

3 : (j,m1, 〈r1, s1〉)← C(Q, β1, . . . , βQO ; ρ)

4 : β′j , . . . , β
′
QO

U←− {0, 1}b

5 : if βj = β′j : abort

6 :
(
j′,m2, 〈r2, s2〉

)
← C(Q, β1, . . . , βj−1, β′j , . . . , β

′
QO

; ρ)

7 : if j 6= j′ : abort

8 : return (m1, 〈r1, s1〉 ,m2, 〈r2, s2〉)

D(Q)

1 : (m1, 〈r1, s1〉 ,m2, 〈r2, s2〉)← ForkC(Q)

2 : if H1(m1)/r1 = ±H1(m1)/r2 : abort

3 : compute d
4 : return d

Figure 6: The C algorithm that uses the adversary B for the GOST-H scheme in the
SUF-KO model; the ForkC algorithm that uses C algorithm and the adversary D that
solves ECDLP problem using ForkC algorithm
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The algorithm C invokes the adversary B, processes at most QO queries
to H2 oracle and verifies the forgery obtained from B. Thus computational
complexity of C is at most T + c(QO + T VGOST-H), where T is the computa-
tional resources of B, T VGOST-H is computational resources needed to verify one
signature by the GOST-H.Vf procedure, c is a constant that depends only on
a model of computation and a method of encoding.

We apply the forking lemma (see [15]) and construct the forking algorithm
ForkC (see Figure 6). If C aborts also ForkC aborts. According to the forking
lemma the probability frk that ForkC terminates without aborting can be
estimated as

Pr
[
Q
U←− G∗; ForkC(Q) ; ⊥

]
= frk ≥ acc

(
acc

QO
− 1

2b

)
.

Construction of adversary D. Finally we construct the adversary D that
solves the ECDLP problem (see Figure 6). At first D invokes ForkC algorithm
with the same input as its own input. If ForkC aborts alsoD aborts. Obtaining
two pairs (message, signature) from ForkC, D checks whether the condition
in line 2 holds and otherwise computes d with the algorithm described below.

Using the pairs obtained from ForkC adversary D computes e1 =
H1(m1), e2 = H1(m2) and constructs the following linear system of equa-
tions: 




R1 = e−1
1 s1P − e−1

1 r1Q;

R2 = e−1
2 s2P − e−1

2 r2Q;

r1 6= r2.

By construction of ForkC second execution of C differs only since the j-th
query of B to the H2 oracle. Therefore the j-th input α = R.x to the H2

oracle was the same in two executions and we claim that R1.x = R2.x and
thus R1 = ±R2. We transform the system above to the following equation

e−1
1 s1P − e−1

1 r1Q = ±e−1
2 s2P ∓ e−1

2 r2Q;

and compute d by the following formula:

d =
e−1

1 s1 ∓ e−1
2 s2

e−1
1 r1 ∓ e−1

2 r2

.

Note that condition e−1
1 r1∓ e−1

2 r2 6= 0 holds due to abort in line 2. Summing
all, D computes d as soon as ForkC does not abort and condition in line 2 is
not met.
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Construction of adversaryM. We can estimate the probability of aborting in
line 2 by constructing an adversaryM = (M1,M2) for the signum-relative
division resistance property (see Figure 7).

The construction of adversary M1 is quite similar to lines 1-3 of
ForkC algorithm up to the following difference: adversary M1 guesses j∗ ∈
{1, . . . , QO} (see line 3 of M1) and puts needed value β to the j∗-position
in the C input. If C aborts, also M1 aborts. Obtaining (j1,m1, 〈r1, s1〉),
adversary M1 checks whether j∗ is guessed correctly, and, if so, returns
its internal state Γ and m1 to its own challenger. Adversary M2 is in-
voked on input (Γ, β′) and simulates lines 4-7 of ForkC algorithm up to
the following difference: it puts β′ to the j∗-position in the C input. If C
aborts, also M2 aborts. Once M2 gets (j2,m2, 〈r2, s2〉), it checks whether
j1 = j2 and, if so, returns m2 to its own challenger. Adversary M wins if
H1(m1)/φ(β) = ±H1(m2)/φ(β′).

M1(β)

1 : d
U←− Z∗q

2 : Q← dP

3 : j∗ ← {1, . . . , QO}
4 : Pick random coins ρ for C

5 : β1, . . . , βQO
U←− {0, 1}b

6 : βj∗ ← β

7 : (j1,m1, 〈r1, s1〉)← C(Q, β1, . . . , βQO ; ρ)

8 : if j1 6= j∗ : abort

9 : Γ← (Q, β1, . . . , βj∗ , ρ)

10 : return (m1,Γ)

M2(Γ, β
′)

1 : (Q, β1, . . . , βj∗ , ρ)← Γ

2 : β′j∗ , . . . , β
′
QO

U←− {0, 1}b

3 : β′j∗ ← β′

4 : if β′j∗ = βj∗ : abort

5 : (j2,m2, 〈r2, s2〉)← C(Q, β1, . . . , βj∗−1, β′j∗ , . . . , β
′
QO

; ρ)

6 : if j1 6= j2 : abort

7 : return m2

Figure 7: The adversaryM for the SDR property that uses algorithm C

Let denote AdvSDR
H1

(M) as εSDR
H1

. Note that the adversary M wins if it
guesses j∗ correctly and the abort condition (see line 2 in D’s pseudocode)
is met. Then we can estimate the probability of abort condition as

Pr[H1(m1)/r1 = ±H1(m1)/r2 ] 6 QOε
SDR
H1

.
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Therefore we obtain the following bound:

δ = Pr[D solves ECDLP ] = Pr

[
(ForkC(Q) ; ⊥) ∧

(
H1(m1)

r1
6= ±H1(m2)

r2

)]
=

= Pr[ForkC(Q) ; ⊥ ]−Pr

[
(ForkC(Q) ; ⊥) ∧

(
H1(m1)

r1
= ±H1(m2)

r2

)]
≥

≥ frk−QOε
SDR
H1
≥ acc

(
acc

QO
− 1

2b

)
−QOε

SDR
H1

=
1

QO
acc2− 1

2b
acc−QOε

SDR
H1

.

By decision of the following inequation:
1

QO
acc2 − 1

2b
acc− (QOε

SDR
H1

+ δ) 6 0.

we can bound the acc value as:

acc 6 QO

2b
+
√
QO

(
QOεSDR

H1
+ δ
)
.

Summarizing all the results, we obtain the final bound to complete the
proof:

AdvSUF-KO
GOST-H (B) = Pr

[
ExpSUF-KO

GOST-H (B)⇒ 1
]
6 acc+

1

2b
6

6
√
QO

(
QO · AdvSDR

H1
(M) + AdvECDLP

G (D)
)

+
QO + 1

2b
.

Both D andM invoke the algorithm C twice, thus their computational
complexities are at most 2T + 2c(QO + T VGOST-H).

B.4 Signum-relative division resistance property

In this section we consider the signum-relative division resistance property
of H1 and show that this notion is implied by the standard assumptions: zero
resistance and signum-relative preimage resistance properties of H1.

Let us formally introduce these two properties.

Definition 6 (Zero-resistance property). For the family of hash functions
H1

AdvZR
H1

(A) = Pr
[
m

$←− A : H1(m) = 0
]

Definition 7 (Signum-relative preimage resistance property). For the family
of hash functions H1

AdvSPR
H1

(A) = Pr
[
y
U←− Z∗q;m

$←− A(y) : H1(m) = ±y
]
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We construct the adversary S that breaks the signum-relative preimage
property and uses the adversary M = (M1,M2) that breaks the signum-
relative division resistance property as a black box (see Figure 8).

S(y)

1 : β1
U←− {0, 1}b

2 : (m1,Γ)
$←−M1(β1)

3 : if H1(m1) = 0 : abort

4 : β2 ← φ−1(y · φ(β1) · (H1(m1))
−1)

5 : m2
$←−M2(Γ, β2)

6 : return m2

Figure 8: The adversary S for the SPR property that uses the adversaryM for the SDR
property

Let denote H1(m1) = 0 condition as Event. We can estimate the prob-
ability of Event by constructing an adversary P that breaks the zero-
resistance property. Adversary P simply simulates lines 1-2 of S pseudocode
and wins if the Event takes place. Thus

Pr[Event ] = AdvZR
H1

(P).

Consider the distribution on β2 values. Let denote(
y · φ(β1) · (H1(m1))

−1
)

as γ. As y is chosen randomly from Z∗q, we
claim that γ is distributed uniformly on Z∗q. Note that Z∗q contains less
elements than Z2dlog qe and thus for different values of β2 the probability
Pr
[
γ
U←− Z∗q; φ−1(γ) = β2

]
may not be the same. However, we claim that for

different values of β2 this probability will not differ more than by 1/(q − 1).
We find this difference negligible and consider the distribution on β2 as close
to uniform.

If abort condition in line 3 is not met and β2 is distributed uniformly on
{0, 1}b, the adversary S realizes the same experiment for M as in Defini-
tion 4. Thus we can estimate the probability of S success as

Pr[S breaks SPR-property ] = Pr
[
Event ∧ (M breaks SDR-property)

]
=

= Pr[M breaks SDR-property ]−Pr[Event ∧ (M breaks SDR-property)] >
> Pr[M breaks SDR-property ]− Pr[Event ] .

Consequently,

AdvSDR
H1

(M) 6 AdvSPR
H1

(S) + AdvZR
H1

(P).
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C GenEGS security

Let A be an adversary for the GenEGS scheme in the SUF-CMA model.
We construct the adversary B for the GenEG scheme in the SUF-CMA model
that uses A as the black box (see Figure 9). Note that B has the access to
its own signing oracle Sign∗.

BSign∗
(Q)

1 : L ← ∅

2 : (m, r∗‖s) $←− ASimSign(Q)

3 : if (m, r∗‖s) ∈ L : abort

4 : r ← r∗‖const
5 : return (m, r‖s)

SimSign(m)

1 : cnt← 0

2 : if cnt > thr : return ⊥
3 : cnt← cnt+ 1

4 : r‖s← Sign∗(m)

5 : if r‖s = ⊥ : goto 2

6 : if lsbl(r) 6= const : goto 2

7 : r∗ = msb|r|−l(r)

8 : L ← L ∪ {(m, r∗‖s)}
9 : return r∗‖s

Figure 9: The adversary B for the GenEG scheme in the SUF-CMA model that uses the
adversary A for the GenEGS scheme in the SUF-CMA model

Adversary B invokes A as a subroutine. B simulates the Sign oracle
for A with SimSign procedure. Similarly to the GenEGS.Sig procedure, B
generates «full» signatures with its own oracle until the r component matches
the constant vector and truncates r before outputting the signature.

Obtaining the forgery from A, B recovers r component by concatenation
it with constant vector and forwards it to its own challenger.

If A makes a valid forgery, B also makes it. Thus

Pr
[
ExpSUF-CMA

GenEGS
(A)⇒ 1

]
= Pr

[
ExpSUF-CMA

GenEG (B)⇒ 1
]
.

Assume that A makes at most QS queries to the signing oracle. Then B
by construction makes at most QS · thr queries to its own signing oracle.

D GenEGV security

Let A be an adversary for the GenEGV scheme in the SUF-CMA model.
We construct the adversary B for the GenEG scheme in the SUF-CMA model
that uses A as the black box (see Figure 10). Note that B has the access to
its own signing oracle Sign∗.
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BSign∗
(Q)

1 : L ← ∅

2 : (m, r‖s∗) $←− ASimSign(Q)

3 : if (m, r‖s∗) ∈ L : abort

4 : i← 0

5 : if i ≥ 2t : abort

6 : s← s∗‖strt(i)
7 : i← i+ 1

8 : res← GenEG.Vf(Q,m, r‖s)
9 : if res = 0 : goto 5

10 : return (m, r‖s)

SimSign(m)

1 : r‖s← Sign∗(m)

2 : if r‖s = ⊥ : return ⊥
3 : s∗ ← msb|s|−t(s)

4 : L ← L ∪ {(m, r‖s∗)}
5 : return r‖s∗

Figure 10: The adversary B for the GenEG scheme in the SUF-CMA model that uses the
adversary A for the GenEGV scheme in the SUF-CMA model

Adversary B invokes A as a subroutine. B simulates the Sign oracle
for A with SimSign procedure. Similarly to the GenEGV.Sig procedure, B
truncates s component before outputting the signature.

Obtaining the forgery from A, adversary B iterates through all possible
variants of s and verifies signature until the verification procedure stops with
1. Note that B needs at most 2t · T VGenEG additional computational resources
to recover the s component, where T VGenEG is computational resources needed
to verify one signature by the GenEG.Vf procedure.

If A makes a valid forgery, B also makes it. Thus

Pr
[
ExpSUF-CMA

GenEGV (A)⇒ 1
]

= Pr
[
ExpSUF-CMA

GenEG (B)⇒ 1
]
.

Adversary B by construction makes the same as A number of queries to
its own signing oracle.
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Abstract

The article provides a new double point compression method (to 2dlog2(q)e+ 4
bits) for an elliptic curve Eb : y2 = x3 + b of j-invariant 0 over a finite field Fq such
that q ≡ 1 (mod 3). More precisely, we obtain explicit simple formulas transforming
the coordinates x0, y0, x1, y1 of two points P0, P1 ∈ Eb(Fq) to some two elements of Fq
with four auxiliary bits. In order to recover (in the decompression stage) the points
P0, P1 it is proposed to extract a sixth root 6

√
Z ∈ Fq of some element Z ∈ Fq. It is

known that for q ≡ 3 (mod 4), q 6≡ 1 (mod 27) this can be implemented by means of
just one exponentiation in Fq. Therefore the new compression method seems to be
much faster than the classical one with the coordinates x0, x1, whose decompression
stage requires two exponentiations in Fq.

Keywords: finite fields, pairing-based cryptography, elliptic curves of j-invariant 0, double
point compression.

1 Introduction

In many protocols of elliptic cryptography one needs a compression
method for points of an elliptic curve E over a finite field Fq of characteristic
p. This is done for quick transmission of the information over a communica-
tion channel or for its compact storage in a memory. There exists a classical
method, which considers an Fq-point on E ⊂ A2

(x,y) as the x-coordinate with
one auxiliary bit to uniquely recover the y-coordinate by solving the quadratic
equation over Fq.

Consider an elliptic curve Eb : y2 = x3 + b for b ∈ F∗q , which is of j-
invariant 0. Ordinary curves of such the form have become very popular in
elliptic cryptography, especially in pairing-based cryptography [1]. This is due
to the existence of (maximally possible) degree 6 twists for them, leading to
faster pairing computation [1, §3.3]. One of the latest reviews of standards,
commercial products and libraries for this type of cryptography is given in
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[2, §5]. Last time, the most popular choice for the 128-bit security level is the
so-called Barreto-Lynn-Scott Fp-curve BLS12-381 [3], where p ≡ 3 (mod 4),
p ≡ 10 (mod 27), and dlog2(p)e = 381.

The simultaneous compression of two points (x0, y0), (x1, y1) from E(Fq)
(so-called double point compression) also has reason to live. It occurs, for ex-
ample, in pairing-based protocols of succinct non-interactive zero-knowledge
proof (NIZK). One of the most notable recent works in this field is [4].

Double point compression has already been discussed in [5] not only for
j(E) = 0, but in a slightly different way. In that article authors do not try
to compress points as compact as possible. Instead of this they find formulas
transforming the coordinates x0, y0, x1, y1 to some three elements of the field
Fq. The advantage of their approach is the speed, because it should not solve
any equations in the decompression stage.

By virtue of [6, Example V.4.4] the ordinariness of the curve Eb means
that p ≡ 1 (mod 3) or, equivalently, ω := 3

√
1 ∈ Fp, where ω 6= 1. There

is on Eb the order 6 automorphism [−ω] : (x, y) 7→ (ωx,−y). Consider the
geometric quotient GK ′b := E2

b/[−ω]×2, which is an example of so-called
generalized Kummer surface [7, §1.3].

Our double compression is based on Fq-rationality ofGK ′b, which is almost
obvious (see §3). This concept of algebraic geometry means that for almost all
(in some topological sense) points of GK ′b their compression (and subsequent
decompression) can be accomplished by computing some rational functions
defined over Fq. To recover the original point belonging to E2

b (Fq) from a given
Fq-point on GK ′b we find an inverse image of the natural map E2

b → GK ′b
of degree 6. Since ω ∈ Fq, it is a Kummer map, that is the field Fq(E2

b ) is
generated by a sixth root of some rational function from Fq(GK ′b).

In the article [7] the author solves a similar task (almost in the same way),
namely the compression task of points from Eb(Fq2), where q ≡ 1 (mod 3),
q ≡ 3 (mod 4), and b ∈ F∗q2. Its actuality for pairing-based cryptography is
explained in the introduction of [7]. There we use so-called Weil restriction
(descent) Rb of Eb with respect to the extension Fq2/Fq (see [7, §1.2.1]). For
this Fq-surface we have Rb(Fq) = Eb(Fq2). Besides, the map [−ω] is naturally
induced to the order 6 automorphism [−ω]2 : Rb

∼−→ Rb.
We next consider the generalized Kummer surface GKb := Rb/[ω]2 under

the order 3 automorphism [ω]2 := ([−ω]2)
2. In order to prove Fq-rationality

of GKb we use quite complicated algebraic geometry (unlike GK ′b). In ac-
cordance with [8, §8] from Fq-rationality of GKb it follows Fq-rationality
of the generalized Kummer surface Rb/[−ω]2 'Fq GKb/[−1]. However,
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this fact does not provide explicit formulas of a birational Fq-isomorphism
Rb/[−ω]2 ∼99K A2. Nevertheless, such formulas can be easily derived in the
same way as for GK ′b (for details see §4).

2 Double compression

For the sake of generality we will consider any pair of elliptic Fq-curves
of j-invariant 0, where q ≡ 1 (mod 3), i.e., ω ∈ Fq. Namely, for i = 0, 1 let
Ei : y

2
i = x3

i + bi, that is Ebi in our old notation. These curves are isomorphic
at most over Fq6 by the map

ϕ : E0
∼−→ E1, (x0, y0) 7→

(
3
√
βx0,

√
βy0

)
,

where β := b1/b0. Also, for k ∈ Z/6 let ϕk := ϕ ◦ [−ω]k = [−ω]k ◦ ϕ and

Si :=
{

(xi, yi) ∈ Ei | xiyi = 0
}
∪
{

(0 : 1 : 0)
}
⊂ Ei[2] ∪ Ei[3].

Using the fractions

X :=
x0

x1
, Y :=

y0

y1
,

we obtain the compression map

com: (E0×E1)(Fq) \ S0×S1 ↪→ F2
q ×Z/6×Z/2,

com(P0, P1) :=

{(
X, Y, n, 0

)
if ∀k ∈ Z/6: ϕk(P0) 6= P1,(

x0, y0, k, 1
)

if ∃k ∈ Z/6: ϕk(P0) = P1,

where n ∈ Z/6 is the position number of the element z := x1y1 ∈ F∗q in the
set
{

(−1)iωjz
}1,2

i=0,j=0
ordered with respect to some order in F∗q . For example,

in the case q = p this can be the usual numerical one. Note that the condition
ϕk(P0) = P1 is possible only if the isomorphism ϕ is defined over Fq, that is
6
√
β ∈ Fq. Finally, if it is necessary, points from (S0×S1)(Fq) can be separately

processed, using few additional bits.

3 Double decompression

Let u := x3
1, v := y2

1, and Z := u2v3 = z6. Since x0 = Xx1, we have
x3

0 = X3u. Hence

Y 2 =
y2

0

y2
1

=
x3

0 + b0

x3
1 + b1

=
X3u+ b0

u+ b1
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and
u =

b0 − b1Y
2

Y 2 −X3
, v = u+ b1.

Using the number n ∈ Z/6, we can extract the original sixth root

z = x1y1 = 3
√
u
√
v =

6
√
Z =

3

√√
Z.

For q ≡ 3 (mod 4), q 6≡ 1 (mod 27) according to [1, §5.1.7], [9, §4]

a :=
√
Z = ±Z q+1

4 , 3
√
a = θae, hence z = ±θZe q+1

4

for some θ ∈ F∗q , θ9 = 1 and e ∈ Z/(q−1). Moreover, e has an explicit simple
expression depending only on q. We eventually obtain the equalities

x1 = fn(X, Y ) :=
uv

z2
, y1 = gn(X, Y ) :=

z

x1
.

If Y 2 = X3, then

x3
0 + b0

x3
1 + b1

=
x3

0

x3
1

⇔ b0x
3
1 = b1x

3
0 ⇔ ∃j ∈ Z/3: x1 = ωj 3

√
βx0.

This means that ϕk(P0) = P1 for k ∈ {j, j + 3}. Thus the decompression
map has the form

com−1 : Im(com) ∼−→ (E0×E1)(Fq) \ S0×S1,

com−1
(
t, s,m, bit

)
=

{
(tfm, sgm, fm, gm) if bit = 0,(
(t, s), ϕm(t, s)

)
if bit = 1,

where fm := fm(t, s), gm := gm(t, s).

Remark 1. Although the new point compression-decompression method con-
tains a lot of inversion operations in the field Fq, this is often harmless in
regard to timing attacks [1, §8.2.2, §12.1.1]. The point is that this type of
conversion is mainly applied to public data.

4 Extension of the compression technique

Our approach still works well for compressing Fq2-points on the curve
Eb : y2 = x3 + b, where b ∈ F∗q2. For simplicity we take q ≡ 3 (mod 4), i.e.,
i :=
√
−1 /∈ Fq. Let b = b0 + b1i (such that b0, b1 ∈ Fq) and

x = x0 + x1i, y = y0 + y1i, X :=
x0

x1
, Y :=

y0

y1
.
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Building on the equations of the Weil restriction Rb = RFq2/Fq(Eb) (see
[7, §1.2.1]), we obtain

u := x3
1 =

2b0Y − b1γ(Y )

α(X)γ(Y )− 2β(X)Y
, v := y2

1 =
β(X)u+ b0

γ(Y )
,

where

α(X) := 3X2 − 1, β(X) := X(X2 − 3), γ(Y ) := Y 2 − 1.

As above, the degenerate cases (whenever the denominator of X, Y , u, or v
equals 0) can be easily handled independently.

Finally, consider an elliptic Fq2-curve Ea : y2 = x3+ax of j-invariant 1728,
where q ≡ 1 (mod 4). According to [1, Example 2.28] the latter condition is
necessary for the ordinariness of Ea. Our technique also remains to be valid
for compressing Fq-points of E2

a (if a ∈ F∗q ) and Fq2-points of Ea, because there
is on Ea the Fq-automorphism [i] : (x, y) 7→ (−x, iy) of order 4. However in
the second case one needs to take another basis of the extension Fq2/Fq.
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Abstract

The work is devoted to the study quantum versions of the differential and linear
cryptanalysis based on using a combination of the quantum minimum/maximum
search algorithm and the quantum counting algorithm.

We have estimated the complexity and the required resources for applying the
quantum differential and quantum linear cryptanalysis to searching round keys of
block ciphers E : Vn × Vm → Vm, E(key, P ) = C, which is a composition from R
round, E1 : Vk × Vm → Vm, i.e. E ≡ (E1)R = ER. It is shown that the imple-
mentation of the quantum linear method requires less logical qubits than for the
implementation of the quantum differential method.

The complexity of the quantum differential and linear methods can be less than
the complexity of the quantum brute-force key searching by Grover’s algorithm,
when the encryption E : Vn × Vm → Vm and m < n/2.

The acceleration of calculations due to "quantum parallelism" in the quantum
differential and linear cryptanalysis, based on a combination of Grover’s quantum
algorithms and quantum counting algorithm, is apparently absent, because the using
of quantum counting as "subprogram" in the Grover algorithm eliminates quantum
acceleration, as far as O(

√
K) ·O(

√
K) ≈ O(K).

Keywords: Symmetric cryptography, quantum attacks, differential and linear cryptanalysis,
block ciphers, Grover’s algorithm, quantum counting.

1 Introduction

Quantum computing is one of the areas of quantum technology that has
been developing since the end of the 20th century. Attempts to accelerate
calculations by using quantum parallelism are used in cryptanalysis, including
quantum differential and quantum linear cryptanalysis.

It was shown in [1, 2, 3] that using the Bernstein-Vazirani and Simon’s
quantum algorithms, we could search for quasilinear structures of Boolean
functions and difference relations with significant characteristics with poly-
nomial complexity.

The works [4, 5] are devoted to quantum differential and linear cryptanal-
ysis based on a combination of Grover’s algorithm [6] and quantum counting
algorithm [7, 8]. Unfortunately, there are some inaccuracies and gaps.

CTCrypt 2020 293



Quantum Differential and Linear Cryptanalysis

In this regard, the main goal of this work is to describe in detail the
quantum differential and linear cryptanalisis methods, to obtain estimates of
subkeys searching complexity, and also to display the main problems that may
arise during the application of these methods, provided that an ideal universal
quantum computer comes into the world and when the difference and linear
relationships, with corresponding characteristics, are already known.

2 Quantum differential cryptanalysis

Following [5], we describe a method for recovering the first round key
with using quantum algorithms.

Suppose that we have difference (a, b)R−1 with the difference characteris-
tic p(a,b)R−1

and all N = 2m possible pair blocks of plain text and cipher text
(Pi, Ci), Pi, Ci ∈ Vm, i ∈ 0, 2m − 1 received on the same secret key.

Since the difference characteristic is p(a,b)R−1
= maxx,y∈Vm\{0} p(x,y)R−1

, it
is required to find such a candidate for the first round key K1 that the
probability of the difference relation "If P ′i ⊕ P ′j = a, then Ci ⊕ Cj = b" on
R−1 rounds will be the maximum, P ′i = E1(K1, Pi) is the result of applying
one iteration of the encryption algorithm to the known block Pi on the round
key K1.

Let Z(K1) is the number of pairs of plaintext blocks (P ′i , P
′
j),

i, j ∈ 0, 2m − 1 on which the property "If P ′i ⊕ P ′j = a, then Ci ⊕ Cj = b"
is performed,

Z(K1) =
2m−1∑

i,j=0

Ind(Ci ⊕ Cj = b|P ′i ⊕ P ′j = a),

or, if we denote remaining R − 1 rounds on the true secret key Ci =
ER−1(key, P ′i ), then

Z(K1) =
2m−1∑

i=0

Ind(ER−1(key, P ′i )⊕ ER−1(key, P ′i ⊕ a) = b),

where Ind(x) ∈ {0, 1} is an indicator that the logical expression x is per-
formed.

If on the round key K1 the probability of the difference (a, b) implemen-
tation is maximum, then on the round key K1 the value of Z(K1) is also
maximum.

Thus the task of finding probable candidates for K1 is equivalent to
optimizing the value of Z(K1), i.e. finding such round key K1 on which
Z(K1)→ max.
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The quantum differential method of cryptanalysis is based on a combi-
nation of the quantum algorithm for finding the minimum [9] (in our case
finding the maximum) and the quantum counting algorithm (see [7, 8]), due
to which computation acceleration is expected compared to the classical case.

In the classical case, in order to find Z(K1) it is necessary to check
all known possible pairs (Pi, Ci), Pi, Ci ∈ Vm, i ∈ 0, 2m − 1, i.e. for each
pair of blocks (Pi, Ci), calculate P ′i = E1(K1, Pi) and check if the property
"If P ′i ⊕ P ′j = a, then Ci ⊕ Cj = b " is performed.

In the quantum case, we want to use quantum parallelism, i.e. get a
superposition of all possible iterative keys K1 and the corresponding values
Z(K1). Initial quantum state - state of uniform distributed superposition

∑

K1

1√
2k
|K1〉 |Z(K1)〉 ,

to which we will apply the amplitude amplification procedure to search for
candidates for the K1.

First of all, from the knownN = 2m pairs of blocks (Pi, Ci), i ∈ 0, N − 1,
it is necessary to prepare the state

2m−1∑

i=0

1√
2m
|Pi〉 |Ci〉 .

This state can be obtained by applying generalized CNOT (C|t) gates,
in which qubit t is controlled by the set of qubits C. Generalized gates
CNOT (C|t) can be implemented without using ancilla qubits (see [10]),
therefore, we will consider generalized gates CNOT (C|t) as one logic gate.

As an example, let’s consider the case when blocks of plaintext and ci-
phertext are three-bit vectors defined in the table 1.

The pair number i Pi Ci
0 000 001
1 001 010
2 010 011
3 011 100
4 100 101
5 101 110
6 110 111
7 111 000

Table 1: The table of values (Pi, Ci) for an example of constructing a quantum circuit
that prepares the quantum state

∑7
i=0

1√
23
|Pi〉 |Ci〉.

Quantum circuit for preparing
∑7

i=0
1√
23
|Pi〉 |Ci〉 represented in figure 1.
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|0〉 H • • •

|0〉 H • • •

|0〉 H • • •

|0〉

|0〉

|0〉

1

Figure 1: Quantum circuit for preparing
∑7

i=0
1√
23
|Pi〉 |Ci〉. The upper three qubits cor-

respond to the block Pi, the bottom three qubits correspond to the block Ci, specified in
table 1. The highest bit orders of Pi and Ci are on the top, the lower orders are on the
bottom. There are no operations required to initialize |111〉 |000〉 since the bottom three
qubits are already initialized in the states |0〉.

The figure 1 uses the generalized elements of CNOT (C|t) with several
controlled qubits (see [10], section 4.3), which means the composition of sev-
eral CNOT (C|t) by analogy with the diagram in the figure 2.

• • •
≡

1

Figure 2: Element CNOT with several controlled qubits.

Let’s consider a way to prepare the state |K1〉 |Z(K1)〉 for an arbitrary
first round key K1 ∈ Vk. We estimate Z(K1) using the quantum counting
algorithm, for which it is necessary to set the corresponding Boolean function
fK1

and evaluate |f−1
K1

(1)|:
Number of a pair

Pi, Ci
x1 x2 . . . xm f(x1, x2, . . . , xm)

i = 0 00 . . . 00 Ind(ER−1(key, P ′0)⊕ ER−1(key, P ′0 ⊕ a) = b)
i = 1 00 . . . 01 Ind(ER−1(key, P ′1)⊕ ER−1(key, P ′1 ⊕ a) = b)
i = 2 00 . . . 10 Ind(ER−1(key, P ′2)⊕ ER−1(key, P ′2 ⊕ a) = b)
i = 3 00 . . . 11 Ind(ER−1(key, P ′3)⊕ ER−1(key, P ′3 ⊕ a) = b)

...
...

...
i = N − 1 11 . . . 11 Ind(ER−1(key, P ′N−1)⊕ ER−1(key, P ′N−1 ⊕ a) = b)

Table 2: The table of values of the Boolean function fK1 , by which we evaluate the value of
Z(K1). P ′i = E1(K1, Pi) - the result of applying one iteration of the encryption algorithm
to the well-known plaintext block Pi on the iteration key K1.

For preparing the quantum state
∑N−1

i=0
1√
N
|Pi〉 |Ci〉, O(N) quan-
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tum operations are required. To implement fK1
, we need to prepare∑N−1

i=0
1√
N
|Pi〉 |Ci〉 twice. Figure 3 shows a quantum circuit that implements

fK1
.

|K1〉 /k • • |K1〉

|Pi〉 /m E1(K1, Pi) |P ′i 〉

|Ci〉 /m • |Ci〉

|Pi〉 /m E1(K1, Pi) ⊕a |P ′i ⊕ a〉

|Ci〉 /m ER−1(key, P ′i )⊕ ER−1(key, P ′i ⊕ a) •
∣∣ER−1(key, P ′i )⊕ ER−1(key, P ′i ⊕ a)

〉

|0〉 CNOT (b)
∣∣Ind(ER−1(key, P ′i )⊕ ER−1(key, P ′i ⊕ a) = b)

〉

1

Figure 3: Implementation of fK1 as a quantum circuit. E1(K1, Pi) - one iteration of the en-
cryption function on the key K1 and the plaintext block Pi, which is theoretically possible
without the using of ancilla qubits (see [11], [12]) The operation ⊕a is the application of
one-qubit gates X on those qubits whose numbers correspond to "1" bits of the difference
a ∈ Vm. The operation ER−1(key, P ′i )⊕ER−1(key, P ′i ⊕ a) is performed using m standard
two-qubit operations CNOT , and CNOT (b) - generalized CNOT , inverting the lower
qubit, in which the difference b ∈ Vm acts as a control vector.

Note that [5] does not contain a detailed description of the implementa-
tion of the function fK1

(see [5], section 3.2), as a result of which understated
estimates of the complexity and necessary quantum resources (qubits and
gates) are obtained.

In order to get the state
∑

K1

1√
2k
|K1〉 |Z(K1)〉 it is enough to initialize

k qubits in the state |0〉, apply the operator H⊗k (which consists of k stan-
dard Hadamard gates H) to these qubits and perform the quantum counting
procedure in the figure 4 (except qubit measurement operations)

|0〉 H •

QFT−1

.

.

.
· · ·

|0〉 H •

|0〉 H •

|0〉 H •

|0〉 /n H⊗n

G20 G21 G22 G2wN−1

|1〉 H

1

Figure 4: Quantum circuit for determining the angle θ of Grover’s iteration G. The control
register contains wN = dm/2e+ 3 qubits.

relatively to the boolean function fK1
, the implementation circuit of which

is shown in the figure 3. After quantum counting procedure, we obtain a
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superposition of iterative keys and corresponding estimates
∑

K1

1√
2k
|K1〉 |θK1

〉 .

The complexity of the quantum counting procedure is O(2wN ) Grover
iterations with respect to the Boolean function fK1

. The probability of success
of the quantum counting procedure is at least 4/π2.

When we use the Grover algorithm (see [6, 10]) for searching one of
the M correct solutions among N possible,

√
M
N = sin

(
θ
2

)
, in order to ob-

tain the number Z(K1) from the estimates θK1
after applying the quantum

counting procedure, it is necessary to calculate F (θ) = N sin2
(
θ
2

)
. How-

ever, to search for candidates for the first iteration key K1, it is not neces-
sary to calculate F (θ) = N sin2

(
θ
2

)
, since θ ∈ [0, 1) and if θ1 > θ2, then

N sin2
(
θ1

2

)
> N sin2

(
θ2

2

)
.

To searching for candidates for the first round key K1, it is enough to get
the state

∑
K1

1√
2k
|K1〉 |θK1

〉. Next, the amplitude amplification algorithm
(Grover’s algorithm) is used for searching round keys with a maximum value
of Z(K1).

Quantum Differential Cryptanalysis

Input. Block cipher with round encryption E : Vk × Vm → Vm, N = 2m

pairs of plain text and cipher text blocks (Pi, Ci), Pi, Ci ∈ Vm, i ∈ 0, 2m − 1
received on the same secret key, difference relation (a, b)R−1 with p(a,b)R−1

,
such that two simple hypotheses can be distinguished by classical statistical
methods

H0 : P ("If P ′i ⊕ P ′j = a, then Ci ⊕ Cj = b") ∼ Be(1/2m−1);

H1 : P ("If P ′i ⊕ P ′j = a, then Ci ⊕ Cj = b") ∼ Be(p(a,b)R−1
),

provided 1/2m−1 < p(a,b)R−1
, with acceptable error probabilities. The case

when p(a,b)r = minx,y∈Vm\{0} p(x,y)r and p(a,b)R−1
= 0 is known as the impossible

differential method.
Output. Round key K1 with a maximum value of Z(K1).
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Preparation step

1: Prepare two registers with quantum states
∑N−1

i=0
1√
N
|Pi〉 |Ci〉. The com-

plexity of this stage of O(N) quantum operations.

2: Select a random round key K, calculate the value of Z(K). At this step,
we can get the exact value of Z(K) by analysing all N pairs of blocks
of open and encrypted text on a classic computer, then calculate the
initial value θcurrent := θK = 2 arcsin

√
Z(K)
N .

This step can be performed with the complexity of O(2d
m
2 e+3) Grover

iterations relatively to the Boolean function fK , with a probability
of at least 4/π2 estimate θ̃current, which has a predicted error level
∆θ̃current ≤ 2−3 (see [7, 8, 10]).

Search procedure

1: Initialize k qubits in state |0〉, apply the H⊗k operator to these qubits,
consisting of k standard Hadamard gatesH. Thus, we obtain an uniform
distributed superposition of keys

∑
K1

1√
2k
|K1〉.

2: Execute the quantum counting as in the figure 4 with using
wN = dm/2e+ 3 control qubits to determine ||fK1

|| without applying
measurements of qubits.

fK1
: Vk × Vm → V1,

fK1
(Pi) = Ind(ER−1(key, P ′i )⊕ ER−1(key, P ′i ⊕ a) = b).

A quantum circuit implementing fK1
is shown in the figure 3.

The complexity of the quantum counting is O(2wN ) Grover iterations
relatively to the Boolean function fK , with a probability of at least
4/π2 we get a superposition of the estimates θ̃K1

which has a predicted
error level ∆θ̃K1

≤ 2−3.

Thus, after quantum counting we obtain a superposition of round keys
and the corresponding estimates

∑
K1

1√
2k
|K1〉

∣∣∣θ̃K1

〉
(other registers are

omitted for clarity, because they are not involved in the further search
procedure), at this step we need k + 4m+ 1 + wN logical qubits.

3: The value θcurrent is used as a threshold value, the set of all possible
round keys K ∈ Vk is divided into two classes: the first class of "bad"
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keys θK ≤ θcurrent and the second class of "good" keys θK > θcurrent.
This classification can be described by the Boolean function

g(θ̃K1
, θcurrent) = Ind(θ̃K1

> θcurrent),

g : VwN × VwN → V1.

The Boolean function g(θ̃K1
, θcurrent) can be implemented as follows.

We could initialize one ancilla qubit |q〉 = |1〉, and consider it as high
order bit of binary decomposition θcurrent. If after subtraction in the
binary number system θcurrent − θ̃K1

, the high order bit is changed and
will be "zero" (we get |q〉 = |0〉 ), then θ̃K1

> θcurrent. This method of
comparing two integers was proposed by [16] and could be implemented
by inverting a quantum circuit that implements the operation of adding
two integers (see [17], [18], [19]).

Perform the quantum counting procedure as in the figure 4 with using
wK = dk/2e+ 3 control qubits – with a probability of at least 4/π2 and
complexity O(2wK) Grover iterations relatively to the Boolean function
g, we obtain the estimate θg, by which we find

||g|| ≈ M̃g = 2k · sin2

(
θg
2

)
.

In order to guarantee the condition ||g|| < 2k/2 needed for the quantum
counting procedure, we can increase the search space by adding one
ancilla qubit (see [10]). We need at least k + 4m+ 1 + wN + (wK + 3)
logical qubits, where in (wK + 3) we mean 1 ancilla qubit is taken into
account for the implementation of the subtraction when implementing
g, 1 ancilla qubit to increase the search space and 1 ancilla qubit to
implement the Grover iteration relatively g.

4: Apply the Grover algorithm to search for the first round key relative
to the Boolean function g. After

[
π
4

√
2k

M̃g

]
Grover iterations and mea-

surement of qubits with probability sin2(
2

[
π
4

√
2k

M̃g

]
+1

2 θg) we get one from
M̃g possible solutions, i.e. such a key is K ′1 on which θK ′1 > θcurrent.
Set θcurrent = θK ′1 and repeat the search procedure again. To implement
the Grover algorithm relatively g we need k + 4m+ 1 + wN + 2 logical
qubits, one ancilla qubit needs to implement the subtraction with im-
plementation of g and another one qubit needs to implement the Grover
iteration.
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If each quantum counting procedure execute correctly, then to search for
the key K with the maximum value θK , i.e. with the maximum value of
Z(K), it is required no more than M̃g iterations of the search procedure (for
M̃g obtained at the first start of the search procedure).

The lower bound of search procedure success probability can be estimated
by 4

π2 · 4
π2 · 0.5 = 0.0821279 (this estimate is for the case when the quantum

counting procedure performed only twice and the success probability of the
Grover’s algorithm for searching maximum > 0.5), i.e. on average, it will
take about 12 starts to find the new value of θcurrent.

The complexity of each searching procedure is at least

O

(
2wN + 2wK +

[
π

4

√
2k

M̃g

])

quantum operations.

Remark 1. 1. The work [15] presents the results of a successful simula-
tion of SDES key searching by using Grover’s algorithm in the Quipper
quantum simulator. The correct scheme for implementing one Grover
iteration is shown in the figure 5.

|K〉 /10 • • H⊗10 2 |010〉 〈010| − I10 H⊗10 |K〉

|P 〉 /8 E(K,P ) • E(K,P )† |P 〉

|q〉 CNOT (C) |q〉

1

Figure 5: One iteration of the Grover’s algorithm for SDES key searching [15].

2. It might seems that quantum circuit in the figure 6 also work correctly,
where the encryption function E(K,P ) in figure 6 is implemented only
once. However, the results of experiments in Quipper quantum simula-
tor indicate that quantum circuit in figure 6 does not lead to success,
i.e. "inversion about mean" doesn’t increase the amplitude of target se-
cret key. Consequently, we have to implement the encryption function
E(K,P ) as quantum circuit and the inverse quantum circuit E(K,P )†

(after inverting the flag qubit) at each iteration of the Grover’s algo-
rithm.
|K〉 /10 • H⊗10 2 |010〉 〈010| − I10 H⊗10 H⊗10 2 |010〉 〈010| − I10 H⊗10

|P 〉 /8 E(K,P ) • • · · ·

|1〉 CNOT (C) CNOT (C)

1

Figure 6: Wrong iteration of the Grover’s algorithm for SDES key searching [15].
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It follows from the fact that the two-qubit CNOT operation swaps the
corresponding amplitudes (see [10]):

|q1q2〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 CNOT (q1|q2)−−−−−−−→
CNOT (q1|q2)−−−−−−−→ α00 |00〉+ α01 |01〉+ α10 |11〉+ α11 |10〉 ,

therefore, in order for "inversion about mean" increases amplitude of
the target secret key, we have to implement E(K,P )†.

3. Therefore, at step 4 of presented search procedure, quantum count-
ing relatively to the boolean function fK1

for preparing∑
K1

1√
2k
|K1〉

∣∣∣θ̃K1

〉
should be performed at each Grover iter-

ation! The general view of the correct quantum circuit that implements
one Grover iteration at step 4 is shown in the figure 7.

|K1〉 /k • • H⊗k 2
∣∣0k
〉 〈

0k
∣∣− Ik H⊗k |K1〉

|ψ〉 /4m+wN+3 QuantumCounting(g) • QuantumCounting(g)† |ψ〉

|q〉 θK > θcurrent |q〉

1

Figure 7: The correct implementation of one Grover’s algorithm iteration with using
quantum counting as a "subprogram".

4. In case when the quantum countings in step 4 are performed at each
Grover’s iteration, the inversion of the flag qubit in Grover’s algorithm
that correspond to the indicator of the event θ̃K1

> θcurrent is performed
with a probability at least 4

π2 .

Then, if the correct executions of quantum countings are independent
events, the lower bound of the success probability of the entire algorithm

should be multiplied by
(

4
π2

)
[
π
4

√
2k

M̃g

]

. For simplicity, we will not take this
into account, as if the success probability of quantum counting at each
Grover’s iteration is equal to one.

5. For completeness, we present estimates of complexity in two cases. In
the first case, in the author’s opinion, the wrong case, the quantum
counting at step 4 is performed once, i.e. get an understated estimates
of the complexity. In the second case, at step 4, the quantum counting
procedure and its inversion is performed at each Grover iteration.
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Conditions The complexity of the quantum differential
cryptanalysis (number of quantum operations)

1.At step 4, quantum counting is
performed only once (false) O(N + 2wN + 2wK + 2wK · 1 +

[
π
4

√
2k

M̃g

]
)

2.At step 4, quantum counting
and its inversion are performed
at each Grover iteration (true).

O(N + 2wN + 2wK + 2wK+1 ·
[
π
4

√
2k

M̃g

]
)

Table 3: Estimates of the complexity of the quantum differential cryptanalysis:
1) O(N + 2wN + 2wK + 2wK · 1 +

[
π
4

√
2k

M̃g

]
) - an understated estimates of the complex-

ity, optimistic from the point of view of a quantum cryptanalyst.
2) O(N + 2wN + 2wK + 2wK+1 ·

[
π
4

√
2k

M̃g

]
) - the correct estimate.

3) Required at least k + 4m+ 1 + wN + (wK + 3) logical qubits, where wN = dm/2e+ 3,
wK = dk/2e+ 3.

Obtained estimates of the complexity of quantum differential cryptanal-
ysis are more accurate than estimate O(2k/2 + 2m/2) from [4] and [5]. If the
number of known pairs N < 2m, the scheme for applying the quantum differ-
ential cryptanalysis does not change, it is possible to reduce the complexity
at the preparation step.

3 Quantum linear cryptanalysis

By analogy with the section 2, we describe a quantum linear cryptanalysis
for recovering the first round key with using quantum algorithms.

Suppose we have a linear relationship (a, b)R−1 with characteristic p(a,b)R−1

and N = 2m of all possible pairs (Pi, Ci), Pi, Ci ∈ Vm, i ∈ 0, 2m − 1 received
on the same secret key.

We consider the case when p(a,b)R−1
= maxx,y∈Vm\{0} p(x,y)R−1

and we need
to find such a candidate for the first round key K1, that the probability of
the linear relation 〈P ′i , a〉 = 〈Ci, b〉 in R − 1 rounds is maximal (〈x, y〉 -
the scalar product of binary vectors x, y ∈ Vm in GF (2), P ′i = E1(K1, Pi) -
the result of applying one iteration of the encryption algorithm to the known
plaintext block Pi on the key K1).

Let Z(K1) is the number of pairs (P ′i , Ci), i ∈ 0, 2m − 1 on which the
linear relation 〈P ′i , a〉 = 〈Ci, b〉 is realized,

Z(K1) =
2m−1∑

i=0

Ind(〈P ′i , a〉 = 〈Ci, b〉),

where Ind(x) ∈ {0, 1} is an indicator that the logical expression x is satisfied.
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If on the round key K1 the probability of the linear relation (a, b) is
maximum, then on the round key K1 the value of Z(K1) is also maximum.

Thus the task of finding probable candidates for K1 is equivalent to
optimizing the value of Z(K1), i.e. finding such round key K1 on which
Z(K1)→ max.

In the classical case, in order to find Z(K1) using a known material
on round key K1, it is necessary to check all known material, i.e. for each
pair of blocks (Pi, Ci), calculate P ′i = E1(K1, Pi) and check if the property
〈P ′i , a〉 = 〈Ci, b〉 is realized.

In the quantum case, as in quantum differential cryptanalysis, we want
to use quantum parallelism, i.e. get a superposition of all possible iterative
keys K1 and the corresponding values Z(K1). Initial quantum state is the
state of uniform distributed superposition

∑

K1

1√
2k
|K1〉 |Z(K1)〉 ,

to which we will apply the amplitude amplification procedure to search for
candidates for the K1.

First of all, from the knownN = 2m pairs of blocks (Pi, Ci), i ∈ 0, N − 1,
it is necessary to prepare the state

2m−1∑

i=0

1√
2m
|Pi〉 |Ci〉 .

This state can be obtained by applying generalized CNOT (C|t) gates,
in which qubit t is controlled by the set of qubits C. Generalized gates
CNOT (C|t) can be implemented without using ancilla qubits (see [10]),
therefore, we will consider generalized gates CNOT (C|t) as one logic gate.

An example of initializing
∑N−1

i=0
1√
N
|Pi〉 |Ci〉 is presented in section 2

(see table 1 and figure 1).

Let’s consider a way to prepare the state |K1〉 |Z(K1)〉 for an arbitrary
first round key K1 ∈ Vk. We estimate Z(K1) using the quantum counting
algorithm, for which it is necessary to set the corresponding Boolean function
fK1

and evaluate |f−1
K1

(1)|:
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Number of a pair
Pi, Ci

x1 x2 . . . xm f(x1, x2, . . . , xm)

i = 0 00 . . . 00 Ind(〈P ′0, a〉 = 〈C0, b〉)
i = 1 00 . . . 01 Ind(〈P ′1, a〉 = 〈C1, b〉)
i = 2 00 . . . 10 Ind(〈P ′2, a〉 = 〈C2, b〉)
i = 3 00 . . . 11 Ind(〈P ′3, a〉 = 〈C3, b〉)
...

...
...

i = N − 1 11 . . . 11 Ind(〈P ′N−1, a〉 = 〈CN−1, b〉)

Table 4: The table of values of the Boolean function fK1 , by which we evaluate the value of
Z(K1). P ′i = E1(K1, Pi) - the result of applying one iteration of the encryption algorithm
to the known plaintext block Pi on the iteration key K1.

To prepare the quantum state
∑N−1

i=0
1√
N
|Pi〉 |Ci〉, O(N) we need quan-

tum operations. To implement fK1
, in contrast to section 2, the state∑N−1

i=0
1√
N
|Pi〉 |Ci〉 have to be prepared once. Figure 8 shows a quantum

circuit that implements fK1
.

|K1〉 /k • |K1〉

|Pi〉 /m E1(K1, Pi) • |P ′
i 〉

|Ci〉 /m • |Ci〉

|1〉 CNOT (a) CNOT (b) |Ind(〈P ′
i , a〉 = 〈Ci, b〉)〉

1

Figure 8: Implementation of fK1 as a quantum circuit. E1(K1, Pi) - one iteration of the
encryption function on the key K1 and the plaintext block Pi, which is theoretically
possible without the use of ancilla qubits (see [11], [12] ) Here the operations CNOT (a)
and CNOT (b) are sets of ||a|| and ||b|| of standard two-qubit gates CNOT , for which
control bits correspond to "1" bits in binary representation of a ∈ Vm and b ∈ Vm.

In order to get the state
∑

K1

1√
2k
|K1〉 |Z(K1)〉 it is enough to initialize k

qubits in the state |0〉, apply the operator H⊗k (which consists of k standard
Hadamard gates H) to these qubits and perform the quantum counting pro-
cedure as in the figure 4 (except for measurement operations qubits) relatively
to the Boolean function fK1

, the implementation of which is shown in the
figure 8. After the quantum counting procedure, we obtain a superposition
of round keys and estimates

∑

K1

1√
2k
|K1〉 |θK1

〉 .

The complexity of the quantum counting procedure is O(2wN ) Grover
iterations relatively the Boolean function fK1

. The success probability of the
quantum counting is at least 4/π2.
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Since in the Grover algorithm when we search one of the M correct solu-
tions among N possible

√
M
N = sin

(
θ
2

)
, in order to obtain the number Z(K1)

from the estimates θK1
after applying the quantum counting procedure, it is

necessary to calculate F (θ) = N sin2
(
θ
2

)
. However, as in section 2, it is not

necessary, since θ ∈ [0, 1) and if θ1 > θ2, then N sin2
(
θ1

2

)
> N sin2

(
θ2

2

)
.

To search for candidates for the first round key K1, it is enough to get
the state

∑
K1

1√
2k
|K1〉 |θK1

〉. Next, the amplification amplification algorithm
(Grover’s algorithm) is used to search for iterative keys with a maximum
value of Z(K1).

Quantum linear cryptanalysis

Input. Block cipher with round encryption E : Vk × Vm → Vm, N = 2m

pairs of plain text and cipher text blocks (Pi, Ci), Pi, Ci ∈ Vm, i ∈ 0, 2m − 1
received on the same secret key, the linear relation (a, b)R−1 with characteris-
tic p(a,b)R−1

, such that two simple hypotheses can be distinguished by classical
statistical methods

H0 : 〈P ′i , a〉 = 〈Ci, b〉 ∼ Be(1/2) vs H1 : 〈P ′i , a〉 = 〈Ci, b〉 ∼ Be(p(a,b)R−1
),

provided 1/2 < p(a,b)R−1
, with acceptable error probabilities.

The case when p(a,b)r = minx,y∈Vm\{0} p(x,y)r and p(a,b)R−1
< 1/2 is consid-

ered similarly, except that it is necessary to find the round key K1 with the
minimum value Z(K1).
Exit. Round key K1 with a maximum value of Z(K1).

Preparation step

1: Prepare two registers with quantum states
∑N−1

i=0
1√
N
|Pi〉 |Ci〉. The com-

plexity of this stage of O(N) quantum operations.

2: Select a random round key K, calculate the value of Z(K). At this step,
we can get the exact value of Z(K) by analysing all N pairs of blocks
of open and encrypted text on a classic computer, then calculate the
initial value θcurrent := θK = 2 arcsin

√
Z(K)
N .

This step can be performed with the complexity of O(2d
m
2 e+3) Grover

iterations relatively to the Boolean function fK , with a probability
of at least 4/π2 estimate θ̃current, which has a predicted error level
∆θ̃current ≤ 2−3 (see [7, 8, 10]).
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Search procedure

1: Initialize k qubits in state |0〉, apply the H⊗k operator to these qubits,
consisting of k standard Hadamard gatesH. Thus, we obtain an uniform
distributed superposition of keys

∑
K1

1√
2k
|K1〉.

2: Execute the quantum counting as in the figure 4 with us-
ing wN = dm/2e+ 3 control qubit to determine ||fK1

|| with-
out applying measurement of qubits. fK1

: Vk × Vm → V1,
fK1

(Pi) = Ind(〈P ′i , a〉 = 〈Ci, b〉). A quantum circuit for implementing
fK1

is shown in the figure 8.

The complexity of the quantum counting is O(2wN ) Grover iterations
relatively to the Boolean function fK , with a probability of at least
4/π2 we get a superposition of the estimates θ̃K1

which has a predicted
error level ∆θ̃K1

≤ 2−3.

Thus, after the quantum counting, we obtain a superposition of round
keys and the corresponding estimates

∑
K1

1√
2k
|K1〉

∣∣∣θ̃K1

〉
(other regis-

ters are omitted for clarity, because they are not involved in the further
search procedure), at this stage we need k + 2m+ 1 + wN logical qubits.

3: The value θcurrent is used as a threshold value, the set of all possible
round keys K ∈ Vk is divided into two classes: the first class of "bad"
keys θK ≤ θcurrent and the second class of "good" keys θK > θcurrent.
This classification can be described by the Boolean function

g(θ̃K1
, θcurrent) = Ind(θ̃K1

> θcurrent),

g : VwN × VwN → V1.

The Boolean function g(θ̃K1
, θcurrent) can be implemented as follows.

We could initialize one ancilla qubit |q〉 = |1〉, and consider it as high
order bit of binary decomposition θcurrent. If after subtraction in the
binary number system θcurrent − θ̃K1

, the high order bit is changed and
will be "zero" (we get |q〉 = |0〉), then θ̃K1

> θcurrent. This method of
comparing two integers was proposed by [16] and could be implemented
by inverting a quantum circuit that implements the operation of adding
two integers (see [17], [18], [19]).

Perform the quantum counting procedure as in the figure 4 with using
wK = dk/2e+ 3 control qubits – with a probability of at least 4/π2 and
complexity O(2wK) Grover iterations relatively the Boolean function g,
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we obtain the estimate θg, by which we find

||g|| ≈ M̃g = 2k · sin2

(
θg
2

)
.

In order to guarantee the condition ||g|| < 2k/2 needed for the quantum
counting procedure, you can increase the search space by adding one
ancilla qubit (see [10]). We need at least k + 2m+ 1 + wN + (wK + 3)
logical qubits, where in (wK + 3) we mean 1 ancilla qubit is taken into
account for the implementation of the subtraction when implementing
g, 1 ancilla qubit to increase the search space and 1 ancilla qubit to
implement the Grover iteration relatively g.

4: Apply the Grover algorithm to search for the first round key relative
to the Boolean function g. After

[
π
4

√
2k

M̃g

]
Grover iterations and mea-

surement of qubits with probability sin2(
2

[
π
4

√
2k

M̃g

]
+1

2 θg) we get one from
M̃g possible solutions, i.e. such a key is K ′1 on which θK ′1 > θcurrent.
Set θcurrent = θK ′1 and repeat the search procedure again. To implement
the Grover algorithm relatively g we need k + 2m+ 1 + wN + 2 logical
qubits, one ancilla qubit needs to implement the subtraction with im-
plementation of g and another one qubit needs to implement the Grover
iteration.

If each quantum counting procedure execute correctly, then to search for
the key K with the maximum value θK , i.e. with the maximum value of
Z(K), it is required no more than M̃g iterations of the search procedure (for
M̃g obtained at the first start of the search procedure).

The lower bound of search procedure success probability can be estimated
by 4

π2 · 4
π2 · 0.5 = 0.0821279 (this estimate is for the case when the quantum

counting procedure performed only twice and the success probability of the
Grover’s algorithm for searching maximum > 0.5), i.e. on average, it will
take about 12 starts to find the new value of θcurrent.

The complexity of each searching procedure is at least

O

(
2wN + 2wK +

[
π

4

√
2k

M̃g

])

quantum operations.
Note that the same remarks are true (as remarks 1 in section 2) regarding

the presented search procedure. Quantum counting relatively to the boolean

D. Denisenko 308



Quantum Differential and Linear Cryptanalysis

function fK1
for preparing

∑
K1

1√
2k
|K1〉

∣∣∣θ̃K1

〉
and it’s inversion have to be

performed at each Grover iteration. A general view of the correct quantum
circuit that implements one Grover iteration at step 4 is shown in the figure 7.

Conditions The complexity of the quantum linear cryptanalysis
(number of quantum operations)

1.At step 4, quantum counting is
performed only once (false). O(N + 2wN + 2wK + 2wK · 1 +

[
π
4

√
2k

M̃g

]
)

2.At step 4, quantum counting
and it’s inversion are performed
at each Grover iteration (true).

O(N + 2wN + 2wK + 2wK+1 ·
[
π
4

√
2k

M̃g

]
)

Table 5: Estimates of the complexity of the quantum linear cryptanalysis:
1) O(N + 2wN + 2wK + 2wK · 1 +

[
π
4

√
2k

M̃g

]
) - an understated estimates of the complexity,

optimistic from the point of view of a quantum cryptanalyst.
2) O(N + 2wN + 2wK + 2wK+1 ·

[
π
4

√
2k

M̃g

]
) - the correct estimate.

3) Required at least k + 2m+ 1 + wN + (wK + 3) logical qubits, where wN = dm/2e+ 3,
wK = dk/2e+ 3.

In case number of pairs N < 2m, the scheme of applying the quantum
linear cryptanalysis does not change, it is possible to reduce the complexity
at the preparatory stage.

4 Conclusion

1. For a quantum linear cryptanalysis we need fewer logical qubits than to
implement a quantum differential crypanalysis.

2. The complexity of the quantum differential and linear crypanalysis may
turn out to be less than the complexity of key searching by the Grover’s
algorithm, if E : Vn × Vm → Vm and m < n/2.

3. In case number of pairs N < 2m, the schemes for applying the quantum
differential and linear crypanalysis do not change, it is possible to reduce
the complexity at the preparatory stage. The required number of logical
qubits remains the same as in the case of N = 2m.

4. Acceleration of computations due to "quantum parallelism" in the quan-
tum differential and linear cryptanalysis, when we talk about key search,
is apparently absent. Using quantum counting as a "subprogram" of
the Grover algorithm eliminates quantum acceleration, since the main
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part of computation complexity described by O(
√
K) ·O(

√
K) ≈ O(K)

quantum operations.
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Abstract

The existence of some structure in a code can lead to the decrease of security of
the whole system built on it. Often subcodes are used to “disguise” the code as a
“general-looking” one. However, the security of subcodes, whose Hadamard square
is equal to the square of the base code, is reduced to the security of this code,
i.e. this condition is undesirable. The paper finds the limiting conditions on the
number of vectors of degree r removing of which retains this weakness for Reed–
Muller subcodes and, accordingly, conditions for it to vanish. For r = 2 the exact
structure of all resistant subcodes was found. For an arbitrary code RM(r,m), the
desired number was estimated from both sides. Finally, the ratio of subcodes, whose
Hadamard square is not equal to the square of the original code, was proven to
tend to zero if additional conditions on the codimension of the subcode and the
parameter r are imposed and m→∞. Thus, the implementation of checks proposed
in the paper helps to immediately filter out some insecure subcodes.

Keywords: post-quantum cryptography, code-based cryptography, Reed–Muller subcodes,
Reed–Muller codes, Hadamard product, McEliece cryptosystem.

1 Introduction

The security of all standardized cryptographic algorithms used all around
the world is based on the complexity of several number-theoretical problems.
They usually are the discrete logarithm or factorization problem. However,
in 1994 P. Shor showed [1] that quantum computers could break all schemes
constructed this way. And in 2001 the Shore’s algorithm was implemented
on a 7-qubit quantum computer. Since then various companies have been
actively developing more powerful quantum computers. Progress in this area
poses a real threat to modern public-key cryptography.

There are several approaches to build post-quantum cryptographic
schemes. One approach is to use error-correcting codes. No successful
quantum-computer attacks on “hard” problems from this area are known.
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Classical examples of code-based schemes are the McEliece cryptosystem [2]
and the Niederreiter cryptosystem [3], that are equivalent in terms of security.

The interest in code-based schemes as post-quantum ones can be noticed
while analyzing the works submitted to the contest for prospective public-key
post-quantum algorithms which was announced in 2016 by the US National
Institute of Standards and Technology (NIST) [4]. The algorithms that win
this contest will be accepted as US national standards. 21 of 69 applications
filed (that is, almost a third of all works) were based on coding theory. Despite
the fact that some of them were attacked, it seems that this approach looks
quite promising and deserves further study and development. This interest
is also traced in Russian cryptography. Code-based schemes were chosen by
the Technical Committee for Standardization “Cryptographic and Security
Mechanisms” (TC 26) as one of directions in developing draft Russian na-
tional standards of post-quantum cryptographic algorithms.

When one is facing the challenge to synthesize a new code-based scheme,
the first thing to think about is the choice of basic code. Some schemes do not
specify the code, thus leaving it to the discretion of the user. Such schemes
are usually more reliable since their security is often directly reduced to NP-
complete problems. Most often, these problems are decoding and syndrome
decoding. However, choosing a special code also has some advantages. For
example, such codes provide asymmetric complexity in solving the decoding
problem for the legal user and adversary. In addition, due to the structure of
the code, the sizes of the public keys can be significantly reduced.

However, the structure can also cause a significant decrease in security of
the code, therefore one of the most important tasks is to “disguise” the code
as a “general-looking” one. One solution is to use subcodes. This approach
allows to “destroy” the structure of the code, retaining the ability to work with
the result in mostly the same way as with the original one. Nevertheless, it is
worth considering that many of proposed systems based on subcodes turned
out to be vulnerable. So in [5] and [6] С. Wieschebrink built efficient attacks
on some special cases of the Berger–Loidreauo cryptosystem [7], that is based
on subcodes of the Reed–Solomon code. The McEliece cryptosystem based
on subcodes of algebraic geometry codes was attacked in [8]. The digital
signature based on modified Reed–Muller codes and described in [9] was also
attacked during the peer review at the NIST contest.

One of the mechanisms for analyzing codes with a hidden structure is the
use of the technique of Hadamard product of two codes. This method was
used by M. Borodin and I. Chizhov in [10] to improve Minder–Shokrollahi
attack [11] on the McEliece cryptosystem based on Reed–Muller codes. In

V. Vysotskaya 313



Characteristics of Hadamard Square of Reed–Muller Subcodes of Special Type

another work [12] this technique allowed Chizhov and Borodin to reduce
the security of the cryptosystem on subcodes of Reed–Muller codes of codi-
mension one to the security of the scheme on full codes. The paper [13]
describes the distinguisher between random codes and Reed–Solomon codes
using Hadamard product.

In our paper the mentioned technique will be used to analyze Reed–Muller
subcodes in standard basis without restriction on codimension. The main
question that we will try to answer is: which Reed–Muller subcodes do not
allow Chizhov–Borodin’s approach. Since the reduction can be performed to
a subcode, which Hadamard square coincides with the square of the original
code, we will look for conditions under which this equality ceases to hold.
Codes obtaining these conditions will be called unstable codes, the others
– stable codes. In addition we will try to compute the probability that a
randomly chosen Reed–Muller subcode is unstable.

In Section 2 the exact structure of all stable subcodes of RM(2,m) is
found. Thus, to provide the security it is necessary to choose at least another
subcode. To be sure that a subcode of RM(2,m) is unstable it is sufficient to
excludem+1 monomials of degree 2 from it’s standard basis. For an arbitrary
Reed–Muller code RM(r,m) in Section 3 we estimate (both from the above
and below) the number of vectors of degree r that must be excluded from the
basis of the code in order to distort its square. Finally, in Section 4 we show
that the ratio of unstable subcodes tends to zero (as m → ∞) given some
additional conditions on the codimension of the subcode and the parameter r.
Thus, it is not enough to choose an arbitrary Reed–Muller subcode when
synthesizing a real scheme. It is necessary to check the property formulated
below as Proposition 4. At the same time subcodes satisfying this property
require additional consideration since they may have some special structure.

2 The structure of stable RM(2,m) subcodes

Recall that Reed–Muller code RM(r,m) is the set of all Boolean functions
f of m variables such that deg(f) 6 r. Consider the code RM(1,m). We
look for the minimum number of monomials f1, . . . , fw of degree 2 such that
the code

span
(

(RM(1,m) ∪ {f1, . . . , fw})
)2

= RM(4,m).

Here the squaring operation refers to the squaring of Hadamard. Hadamard
product of two vectors is a vector obtained as a result of component-wise
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product of coordinates of these vectors:

(a1, . . . , an) ◦ (b1, . . . , bn) = (a1b1, . . . , anbn),

and Hadamard product of two codes A and B is the span of all pairwise
products of form a ◦ b, where a ∈ A, b ∈ B.

We will consider Reed–Muller codes spanned by their standard basis. The
standard basis of the Reed–Muller code RM(r,m) includes all monomials
of m variables of degree from 0 to r inclusively, i.e.

1, x1, x2, . . . , xm, x1x2, . . . , xm−1xm, . . . , x1 · · · xr, . . . , xm−r−1 · · ·xm.

So we look for minimum number of monomials f1, . . . , fw of degree 2 such
that the code

span
(
RM(1,m) ∪ {f1, . . . , fw}

)
(1)

is stable. Obviously, after finding this number, one can also answer another
question: what is the maximum number of monomials of degree 2 that can
be removed from the basis of the code RM(2,m) so that the code

span
(
RM(2,m) \ {g1, . . . , gq}

)
(2)

is still stable. And so, after removing (q+1) basis vectors, one gets an unstable
code.

Now let us proceed to the graph interpretation of this problem. We match
a subcodeA ⊂ RM(2,m) with a graphG withm vertices labeled x1, . . . , xm.
An edge {xi, xj} is present if and only if monomial xixj ∈ A.

We will say that a graph with m vertices satisfies the property P if

1. the degree deg(v) of any vertex v is not less than (m− 3);

2. if deg(v) = m − 3 and edges {v, u} and {v, w} are missing, then the
edge {u,w} is present.

The case deg(x1) = m − 3 is shown in Fig.1, where lines denote present
edges.

Theorem 1. Subcode of the form (1) is stable if and only if the property P
is satisfied for the corresponding graph.

Proof. Denote G = (V,E) the graph corresponding to the subcode of
form (1). Note that the condition

span
(

(RM(1,m) ∪ {f1, . . . , f`})
)2

= span
(
{f ′1, . . . , f ′w′}

)
, (3)
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x1

x2

x3
x4

xm−1

xm

Figure 1:

a b

c d

Figure 2: Graph H

where f ′i are monomials of degree 4, is equivalent to the condition that any
induced subgraph of G with 4 vertices has a subgraph isomorphic to the
graph H shown in Fig.2. The edges {a, b} and {c, d} correspond to degree-2
monomial used to produce the monomial abcd. Also note that from (3) it
follows that subcode (1) is stable if we can obtain any monomial of degree 4
as product of some fi and fj, then any monomial of degree 3 can be obtained
as product of some fi and some xj,

Now we can prove the necessity. Fix any vertex v. If any 3 incident edges
{v, uj} for j = 1, 2, 3 are missing, then the induced subgraph on vertices
v, u1, u2, u3 would not have the necessary subgraph. The contradiction proves
that deg(v) > m− 3.

If, however, deg(v) = m − 3 and edges {u, v1} and {u, v2} are missing,
the edge {v1, v2} must be present, as otherwise none of the induced 4-vertex
subgraphs containing vertices {u, v1, v2} will have the necessary subgraph.
Thus, the property P is satisfied.

Now to the proof of sufficiency. Fix any induced subgraph with 4 vertices.
Note that it satisfies the property P for m = 4. If any vertex v has degree 1,
i.e. the edge {v, w} is present, but {v, u1} and {v, u2} are not, then by P
the edge {u1, u2} must be present. Thus, we have edges {v, w} and {u1, u2}
necessary for the H-isomorphic subgraph.

If all 4 vertices have degree at least 2, then we can find a simple cycle
in our graph. Obviously, its length is either 3 or 4. If it is 4, the presence
of H-isomorphic subgraph is obvious. Otherwise, we have a triangle u, v, w
and, moreover, the fourth vertex q has degree at least 2. Assume (without
loss of generality) the edge {q, u} is present, then for H-isomorphic subgraph
we can take the edges {q, u} and {v, w}.

From Theorem 1 the minimum number of edges is obtained in case if the
condition P is true for the graph and the degree of each vertex is (m − 3).
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It remains to describe such graphs.

Proposition 1. If the condition P is satisfied for some graph G and the
degree of each vertex is (m − 3), then the complementary graph G is union
of cycles of length at least 4.

Proof. Graph G is triangle-free and all its vertices have degree 2. Choose
an arbitrary vertex u1. It is not isolated, therefore, one can select a vertex
adjacent to it, call it u2, As deg(u2) = 2, there exists some adjacent vertex
u3 6= u1. Continue in this way until uj coincides with one of u1, . . . , uj−1. Note
that uj cannot coincide with ui for i > 1 as it would mean that deg(ui) > 3.
Thus u1, . . . , uj−1 form a simple cycle. Its length is at least 4, as G is triangle-
free.

Thus, we have described the structure of the graph corresponding to
the minimal stable subcode of form (1). Now let us describe the complete
structure of such codes. Let us call a bamboo graph a tree which either has
one vertex or has two vertices of degree 1 and every other vertices of degree 2.

Proposition 2. If the condition P is satisfied for some graph G, then the
complementary graph G is a union of cycles of length at least 4 and bamboo
graphs.

Proof. We proceed as in Proposition 1 and try to find a cycle in G. But we
can stop in a vertex of degree 1, thus obtaining a bamboo graph. Isolated
vertices are bamboo graphs by definition.

Corollary 1. Assume that m > 4. Then minimum number of monomials of
degree 2 needed to get a stable subcode of form (1) is m(m−3)/2; maximum
number of monomials of degree 2 such that the code of form (2) is stable
is m.

Proof. As follows from Theorem 1, we need to consider the subcodes corre-
sponding to graphs satisfying property P . From Proposition 2 it follows that
G has no more than m edges (this bound is exact for graph consisting of cy-
cles). Thus G has at least C2

m−m = m(m− 3)/2 edges. Moreover, it means
that removing not more than m edges we remain in the stable code.

Note that removing m+ 1 or more monomials of degree 2 from the code
RM(2,m) we get an unstable code.
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3 Lower and upper bounds for minimal stable RM(r,m)

subcodes sizes

In this section we try to carry out argument for r > 2. That is, we will
look for the minimum number w, such that the code

span
(
RM(r − 1,m) ∪ {f1, . . . , fw}

)
(4)

is stable. Here fi is a monomial of degree r. We match a subcode
A ⊂ RM(r,m) with a hypergraph G with m vertices labeled x1, . . . , xm.
An r-edge {xi1, . . . , xir} is present if and only if monomial xi1 . . . xir ∈ A. In
the general case the condition similar to having an H-isomorphic subgraph
in each 4-vertex induced subgraph is equivalent to condition of the code (4)
being stable. Namely, each set of 2r vertices must be covered by two disjoint
r-edges. Let us denote a graph satisfying this condition by stable graph. Note
about covering monomials of lower degrees is the same as in the case of r = 2.

To find the minimum number of monomials of degree r to remove for
obtaining an unstable code can be computed by subtracting from the total
number of r-edges w + 1 one. Therefore, we will not dwell on this issue
separately.

In what follows we will use terms “graph” and “hypergraph” interchange-
ably. Denote w(r,m) the mininal number of degree-r monomials needed to
make subcode (4) stable, or, alternatively, minimal number of edges in a
stable r-hypergraph with m vertices.

Proposition 3. For any natural r and m > 2r

w(m, r) > C2r
m /C

r
m−r.

Proof. Note that any set of 2r vertices in a stable graph contains at least
one edge. Moreover, any edge is contained in exactly Cr

m−r such sets. Thus
total number of edges multiplied by Cr

m−r is at least number of all sets of 2r
vertices, which is C2r

m . This gives the necessary bound.

Corollary 2. Any stable graph contains at least 1/Cr
2r edges of a complete

graph.

Proof. The total possible number of r-edges in a graph withm vertices is Cr
m.

Then
C2r
m

Cr
m−r · Cr

m

=
(r!)2

(2r)!
=

1

Cr
2r

.
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Let all the vertices of the graph be divided into sets Si, i = 1, . . . , t of
size 2r, intersecting each other in some way. Let the size of maximum pairwise
intersection be h. Let us denote S = {Si}ti=1.

Lemma 1. If h < r/3, then for any set Q /∈ S, |Q| = 2r there are at most
two sets from S such that their intersection with Q have size at least r.

Proof. Assume that Q intersects with at least 3 sets such that intersection
size is at least r. Without loss of generality we assume that the sets are
S1, S2 and S3. Let us denote Q ∩ S1 = A1, Q ∩ S2 = A2, Q ∩ S3 = A3.
Since |Q| = 2r, then it is obvious that |A1 ∪ A2 ∪ A2| 6 2r. On the other
hand, according to the inclusion-exclusion formula,

|A1 ∪ A2 ∪ A2| > |A1|+ |A2|+ |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3|.

Then
3∑

i=1

|Ai| 6 2r + 3h.

By condition |Ai| > r, i ∈ {1, 2, 3}, therefore
3∑

i=1

|Ai| > 3r.

Whence 3r 6 2r + 3h and h > r/3, which contradicts the hypothesis of the
theorem.

Let us find the maximum possible number of edges that can be removed
from the complete graph using the above arguments, such that the graph
remains stable.

Theorem 2. For any natural r > 2, m > 2r and h < r/3

w(m, r) 6 Cr
m − T (r,m, h) · (Cr

2r − 2) ,

where

T (r,m, h) = max
{
t : ∃S1, . . . , St

(
Si ⊂ {1, . . . ,m} &

& |Si| = 2r & (i 6= j ⇒ |Si ∩ Sj| 6 h), i, j ∈ {1, . . . , t}
)}
.

Proof. Note that two disjoint r-edges are sufficient to cover a set of 2r ver-
tices. Thus, it is possible to remove δ = (Cr

2r− 2) r-edges from the complete
graph on the 2r vertices and preserve the stability of it. Obviously, no more
edges can be removed.
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Suppose that δ edges are removed from each set from S so that all of
them are covered by at least two r-edges. It remains to verify that there
exists a similar cover for any set of 2r vertices. Since by construction we
can certainly cover any set Si, we will prove that we can also cover any set
Q /∈ S, |Q| = 2r.

Note that if the cardinality of the intersection with some Si does not
exceed (r−1), then removing edges in it does not affect the number of edges
in Q. At the same time, according to Lemma 1, for h < r/3 any set of size
2r can have intersection of size at least r with no more than two sets from
S. If there is only one such set, say, S1, then we have two cases:

1. |Q ∩ S1| = 2r − 1. In this case there exist some edge e1 ∈ (Q ∩ S1)
not containing vertex v, {v} = S1 \ Q (as S1 must be covered by two
disjoint edges). Thus, we can take e2 = Q \ e1 (it must be present as
we have removed only edges contained inside sets Si), and {e1, e2} form
the disjoint cover of Q.

2. |Q ∪ S1| < 2r − 1. In this case there are at least two vertices v1 and v2

inside Q \ S1 and the cover can be formed using any two disjoint edges
e1, e2 ⊂ Q such that v1 ∈ e1, v2 ∈ e2.

Now consider the case when there are exactly two sets S1 and S2 in-
tersecting with Q at no less than r vertices. Assume that |A1| > r + h.
Then, according to the inclusion-exclusion formula |A1∩A2| = |A1|+ |A2|−
|A1 ∪ A2| > r + h + r − 2r = h that contradicts with |S1 ∩ S2| 6 h. Thus
r 6 |Ai| 6 r + h, i ∈ {1, 2}. So there are at most 2 · Cr

r+h edges removed
from Q. Note that

Cr
2r

2 · Cr
r+h

=
(2r)! r!h!

2r! r! (r + h)!
=

(
2r

r + h

)(
2r − 1

r + h− 1

)
. . .

(
r + 1

2(h+ 1)

)
. (5)

The last multiplier is greater than 1 for r > 3. For others holds

2r − i
r + h− i <

2r

r + h
<

6

4
.

Besides for r > 2 there at least 3 multipliers in product (5). So for r > 3 we
can claim

Cr
2r

2 · Cr
r+h

> 2.

For r = 2 and r = 3 the inequality can be verified directly.
There are Cr

2r/2 pairs of disjoint edges inside Q, so there remains at least
one such pair after removal of 2 · Cr

r+h < Cr
2r/2 edges from Q.
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So we obtained a stable graph removing δ edges from a complete graph
for each set from S. It remains to note that |S| is the number of sets of size 2r
whose intersections are not larger than h.
Remark 1. In [14] P. Erdös and J. Spencer introduce the value m(n, k, t).
It determines the size of the largest set of k-element subsets of {1, . . . , n}
such that any two members of this set intersect in less than t elements. Later
V. Rödl [15] proves that

lim
n→∞

m(n, k, t) =
Ct
n

Ct
k

.

That is, in our case,

lim
m→∞

T (r,m, h) = lim
m→∞

m(m, 2r, br/3c) =
C
br/3c
m

C
br/3c
2r

.

4 The ratio of unstable RM(r,m) subcodes

We consider subcodes of the standard basis of the Reed –Muller code in
which ` vectors are missing. This number is called the codimension of the
subcode. Let us denote the set of subcodes of codimension ` by RM `(r,m).

For the given parameter s and the set I = {ij}sj=1 we will call unordered
pairs {A,B} critical partition if:

A ∩B = ∅,
A ∪B = I,

1 6 |A|, |B| 6 r.

Then it is impossible to obtain the monomial xi1 . . . xis after squaring
a subcode if and only if at least one element of each critical partition is
removed. This follows from the fact that if this monomial is present in the
square of the code, it should be formed of a pair {A,B} from the appropriate
critical partition. But by the hypothesis either A or B is absent.

Obviously, the following proposition is true.
Proposition 4. A code is unstable RM(r,m) subcode if and only if at least
one element from each critical partition for some monomial xi1 . . . xis is re-
moved.
Proposition 5. For the given parameter s and the set I the number of
critical partitions is

w(s) =

min{r,s−1}∑

p=max{s−r,1}

1

2
Cp
s .

V. Vysotskaya 321



Characteristics of Hadamard Square of Reed–Muller Subcodes of Special Type

Proof. On the one hand the sizes of the subsets must not exceed r. On the
other hand the partition must be non-trivial, that is, partitioning into an
empty set and a set, coinciding with I, is unacceptable. Finally, when con-
sidering all partitions, each pair is counted twice.

Let us order in some way (say, lexicographically) the elements of each
critical partition and then the critical partitions themselves. Now we con-
sider any set M consisting of elements of critical partitions and having the
property that for every critical partition M contains at least one element of
this partition. We can encode M with a string α ∈ {1, 2, 3}w(s), where

αj =





1 ⇔ the 1st element of the j-th pair lies in M ,
2 ⇔ the 2nd element of the j-th pair lies in M ,
3 ⇔ both elements of the j-th pair lie in M ;

We will also write M(α) to denote the set corresponding to a given
α ∈ {1, 2, 3}w(s). It can be easily seen that

|M(α)| = #α(1) + #α(2) + 2 ·#α(3),

where #α(c) is the number of symbols c in the string α.
Let us denote k =

∑r
p=0C

p
m the dimension of the original code (or the

number of vectors in its standard basis). There are exactly two kinds of
unstable subcodes: those containing monomial 1 and those not containing it.
There are obviously C`−1

k−1 subcodes of the second kind.
Now we fix s, an index set I of size s and a string α ∈ {1, 2, 3}w(s).

Among the subcodes of the first type there are

C
`−|M(α)|
k−1−2w(s)

ones that satisfy the condition: among the monomials comprising critical
partitions for I exactly monomials fromM(α) are absent. The reason is that
we need to choose `− |M(α)| monomials from all monomials of degree more
than 0 that do not comprise any critical partition (there are k − 1 − 2w(s)
of them).

For a given s there are Cs
m variants of choosing index set I. But some

codes may be counted several times. So we can consider the following theorem
proved.

Theorem 3. The number of unstable RM(r,m) subcodes is

θ 6
2r∑

s=2

Cs
m ·

∑

α∈{1,2,3}w(s)

C
`−|M(α)|
k−1−2w(s) + C`−1

k−1.
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Theorem 4. If ` = const and r > 2` + 1, then the ratio of unstable
RM(r,m) subcodes tends to zero as m→∞.

Proof. Our goal is the asymptotic estimate of the probability of the event
that after removing ` vectors from the standard basis of the code RM(r,m),
the square of the resulting code will differ from RM(2r,m). The upper bound
for it is θ/C`

k.We divide this bound into two parts and show the tendency to
zero for each of them independently. For one of them it follows immediately
from the fact that

C`−1
k−1

C`
k

=
`

k
−−−→
m→∞

0,

since k →∞ as m→∞.
Now we consider the first part and denote it’s numerator by γ. Notice

that

#α(1) + #α(2) + 2 ·#α(3) = |M(α)| > w(s) = #α(1) + #α(2) + #α(3).

Then the number of removed vectors that are elements of critical partitions
for s is |M(α)| > w(s) and the total number of removed vectors is `. That
is, w(s) 6 ` and we can consider only parameters s satisfying this condition.
Then

2w(s) =

min{r,s−1}∑

p=max{s−r,1}
Cp
s 6 2`. (6)

We consider separately two cases. If s > r+1, we have min{r, s−1} = r
and in the sum (6) there is the element Cr

s . Thus

2` > 2w(s) > Cr
s > s.

The last inequality follows from the fact that

Cr
s =

sr

r!
=

(r + 1)

2
· (r + 2)

3
· . . . (s− 1)

r
· s

1
.

If, on the other hand, s < r+ 1, we have max{s− r, 1} = 1 and there is
the element C1

s in the sum (6). Hence

2` > 2w(s) > C1
s = s.

So either way the inequality s 6 2` is satisfied.
We simplify the upper bound for γ using this inequality and the mono-

tonicity of the binomial coefficient Ck
n with respect to the parameter k, which
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guarantees the increase of the value Ck
n with the increase of k:

2r∑

s=2

Cs
m ·

∑

α∈{1,2,3}w(s)

C
`−|M(α)|
k−1−2w(s) 6

2∑̀

s=2

C2`
m ·

∑

α∈{1,2,3}w(s)

C
`−|M(α)|
k−1−2w(s) 6

6 2` · C2`
m max

s∈[2,2`]

{
C`−z
k−1−2w(s) · 3w(s)

}
,

where z = minα∈{1,2,3}w(s)

{
|M(α)|

}
.

Note that ` = const and 3w(s) 6 const, since s 6 2`, and w(s) < 2s. The
last is true by virtue of

2s = (1 + 1)s =
s∑

p=0

Ck
s >

1

2

min{r,s−1}∑

p=max{s−r,1}
Cp
s = w(s).

These considerations, as well as the monotonicity of the binomial coefficient
Ck
n with respect to n and the inequality |M(α)| > w(s), allow us to obtain

the upper bound

const · C2`
m · C`−w(s)

k 6 const · C2`
m · C`−1

k := ψ.

We proceed to the ratio estimation.

γ

C`
k

6 ψ

C`
k

=
const · C2`

m · C`−1
k

C`
k

=
const · C2`

m · `
k − `+ 1

=
const · C2`

m

k − `+ 1
6 const ·m

2`

2k
.

After tending m to infinity we can claim that such p = 2`+ 1 exists, that is,
summand Cp

m > mp is an element of the sum representation of k. Then

const · m
2`

2k
6 const · m

2`

m2`+1
= const · 1

m
−−−→
m→∞

0.

Future research

More accurate estimates on the minimal stable code sizes for general case
are still required, as are better estimates of the ratio of stable subcodes. In
addition, an idea for future research could be to find an analogues of the
obtained results for an arbitrary basis of the Reed–Muller code.
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[13] Couvreur A., Gaborit P., Gauthier-Umãna V., Otmani A., Tillich J.-P., “Distinguisher-
based attacks on public-key cryptosystems using Reed–Solomon codes”, Designs, Codes and
Cryptography, 73:2 (2014), 641–666.

[14] Erdös P., Spencer J., Probabilistic Methods in Combinatorics, Akadèmiai Kiadó, Budapest,
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Abstract

The main goal of this work is to construct a McEliece-type cryptosystem with
IND-CCA2 property in the standard model and an effective data transfer rate. The
proposed modification is based on the application of the s-repetition method and uses
one common secret permutation. The modification requires to transmit s encrypted
blocks for s/2 information messages, that makes this modification more effective
than most other modifications based on the s-repetition method. The paper also
provides additional cryptosystems with the semantic security.

Keywords: McEliece-type cryptosystem, s-repetition method, IND-CCA2-security,
IND-CPA-security, standard model

1 Introduction

Active research in the field of code-based asymmetric cryptosystems is
related to their possible applications in post-quantum era. The complexity
of such cryptosystems is based on the problem of decoding a general linear
code that makes them immune to known attacks on quantum computers.
The first code-based cryptosystem built on the basis of the Goppa code was
proposed by R. McEliece [1]. Replacing the Goppa code with some other
codes leads to a weakening of the system. In particular, for generalized Reed-
Solomon codes (GRS-codes), Reed-Muller binary codes (RM-codes), direct
sums of GRS-codes, direct sums of binary RM-codes, effective algorithms
for finding suitable private keys by public keys are found [2]–[4]. Moreover,
changing the method of constructing a public key can weaken the system.
For instance, for the cryptosystem V.M. Sidelnikov [5] and its generalization
[6] in [7] a way was found to create a suitable private key. Note that for the
original McEliece system on Goppa code, polynomial key-recovery attacks
(structural attacks) are not currently known. At the same time, the original
McEliece system, regardless of the code used, is vulnerable to attacks on
ciphertexts. One of the most successful attacks is attack based on decoding
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by information sets [8]. In [9] a modification of the McEliece cryptosystem was
proposed that provides protection against chosen plaintext attack. However,
this modification remains vulnerable to the strongest class of attacks, the
so-called adaptive chosen ciphertext attacks.

In [10], authors constructed modifications that provide protection against
structural attacks and, at the same time, are immune to adaptive chosen
ciphertext attacks. However, the proposed design has a low data transfer
rate (the ratio of the length of the message to the length of the encrypted
text). In this paper, on the basis of the construction from [10], the task is to
construct a system with security against adaptive chosen ciphertext and an
effective data transfer rate.

In addition to the introduction, the paper contains three sections. The
first section introduces a definition of an asymmetric cryptosystem and the
necessary concepts of attack models. Original McEliece cryptosystem [1] and
the randomized McEliece cryptosystem [9] are also defined in this section.
The second section is devoted to the construction of new cryptosystems.
Security of the constructed cryptosystems is considered in the third section.
The fourth section considers security parameters of constructed cryptosystem
and comparison with other IND-CCA2 schemes.

2 Preliminaries

2.1 Security notions

Let n, t be natural, 2t < n, [n] = {1, ..., n}, β ⊆ [n], 2[n] is set of all
subsets of [n], Fq be a Galois field of cardinality q, where q is the degree of a
prime number. The support of the vector m = (m1, ...,mn)(∈ Fnq ) is the set
supp(m) = {i : mi 6= 0} and the Hamming weight of this vector is a number
wt(m) = |supp(m)|. A function γ : N→ [0, 1] is negligible of k, if

∀c ∈ N ∃kc ∈ N ∀k > kc : γ(k) 6 k−c.

We will use the notation of the algorithms similarly to the [11]. Notation
y ← A(x1, x2, ...) means that the algorithm A runs with input parameters
x1, x2, ... and outputs value y. If the algorithm A has access to the output
of the algorithm (oracle) O then we write y ← AO(x1, x2, ...). Notation
A∅(x1, x2, ...) means that A does not have access to the output of any oracle.
If S is a finite set, then s ∈R S denotes the operation of picking an element
at random and uniformly from S. Denote by En,t,β the subset of Fn2 such that
any vector e = (e1, ..., en)(∈ En,t,β) has Hamming weight t and ei = 0 for any
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i ∈ β. We will write En,t when β = ∅. To consider security notions of public
key cryptosystems it is convenient to define a cryptosystem as a triplet of
algorithms i.e. Σ = (K, E ,D), where:

1) K is a probabilistic polynomial-time key generation algorithm which
takes as input a security parameter N ∈ N and outputs a pair of public-key
and a secret-key (pk, sk),

2) E is probabilistic polynomial-time encryption algorithm which takes
as input a public-key pk and a message m, and outputs a ciphertext c; we
will write {m}Σ

pk as encryption of the message m with the key pk,
3) D is deterministic polynomial-time decryption algorithm which takes

as input a secret-key sk and a ciphertext c, and outputs either a message m
or a symbol ⊥ in the case, when the ciphertext is incorrect; decryption of the
ciphertext c on the secret key sk we will denote {c}Σ

sk.
Now we will define the security of Σ = (K, E ,D) under chosen plaintext

attack (CPA) and under adaptive chosen ciphertext attack (CCA2) in the
same way as in [11]. Let’s consider adversary A = (A1,A2), where A1 and
A2 are polynomial time algorithms: the first one takes public key as input
and outputs the pair of plain texts (m1,m2) and state information st formed
during generation of plaintexts. For g ∈ {CPA,CCA2} the advantage of the
adversary A in randomized game or experiment g is determined by the value:

Advg
Σ,A(N) = 2Pr





(pk, sk)← K(N)
(m0,m1, st)← A1(pk)

b← {0, 1}
c← {mb}Σ

pk

: A2(c, st) = b




− 1, (1)

where Pr{x} denotes probability of the event x. Note that if g = CPA
then A1 = A∅

1 and A2 = A∅
2 ; if g = CCA2 then A1 = AO1

1 and A2 = AO2
2 ,

whereO1 andO2 are decryption oracles. Note that oracleO2 is not allowed to
decrypt the challenge ciphertext c. It is said that the cryptosystem Σ has the
property of indistinguishability under chosen plaintext attack (IND-CPA) if
for any polynomial algorithm A = (A1,A2) the advantage of AdvCPA

Σ,A (N) is
a negligible function in N . Analogically the cryptosystem Σ has the property
of indistinguishability under adaptive chosen cyphertext attack (IND-CCA2)
if for any polynomial algorithm A = (A1,A2) the advantage of AdvCCA2

Σ,A (N)
is a negligible function in N .

To construct the CCA2-modification of McEliece cryptosystem it is nec-
essary to define signature scheme (SS) and one-time strongly unforgeable
feature in the same way as [10]. A signature scheme is triplet of algorithms
SS = (K, Sign, Check), where K is key generation algorithm which takes
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as input a security parameter N ∈ N and outputs a signing-key dsk and a
verification-key vk, Sign is signing algorithm which takes as input a signing-
key dsk and a message m, and outputs a signature σ, Check is checking
algorithm which takes as input a verification-key vk a message m and a
signature σ, and outputs 1 if σ is valid for m and 0 otherwise.

Let SS = (KSS, Sign, Chk) be a signature scheme and A = (A1,A2) is
adversary, where A1 and A2 are polynomial time algorithms: the first gen-
erates message by verification key and the second tries to form new message
with correct signature. Then the probability of forging signature scheme SS
by the adversary A is determined by the value:

Pfal
SS,A(N) = Pr





(vk,dsk)← K(N)
(m, st)← A1(vk)
σ ← Sign(dsc,m)

(m∗, σ∗)← A2(m, σ, st)

: Chk(vk,m∗, σ∗) = 1




,

where (m∗, σ∗) 6= (m, σ). It is said that a signature scheme SS is one-
time strongly unforgeable if for all polynomial time algorithms A the value
Pfal

SS,A(N) is negligible function of N . It is important to note, that one-time
strongly unforgeable signature scheme can be constructed using one-way
functions (see [12], [13]).

2.2 Original McEliece cryptosystem McE

Consider the McEliece cryptosystem McE = (KMcE, EMcE,DMcE) on the
linear [n, k, d]-code C(⊆ Fnq ), where n is the length, k is the code dimension,
and d is the minimum code distance. Let G be the generator matrix of the
code C, t = bd−1

2 c. A secret key sk is a pair (S, P ), where S is a non-singular
(k × k)-matrix over the field Fq, and P is a permutation (n× n)-matrix. A
public key pk is a pair (G̃ = SGP, t). Encryption of a message m ∈ Fkq is
performed according to the rule:

{m}McE
pk = mG̃+ e = c, e ∈R En,t. (2)

To decrypt the ciphertext c one should use an effective decoder DecC : Fnq →
Fkq of the code C and the secret key sk:

{c}McE
sk = DecC(cP−1)S−1. (3)

Note that, the ciphertext c from (2) can be decoded by information sets.
Recall that for [n, k]q-code C the set τ = {i1, ..., ik} ⊆ [n] is called in-
formation set if any generator matrix GC of C has submatix of full rank,
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consisted of columns on positions from τ . For M ∈ N, the vector m(∈ FMq )
and the ordered set ω = {ω1, ..., ωl} ⊆ [M ], where ω1 < ... < ωl, we con-
sider the projection operator Πω : FMq → F|ω|q acting according to the rule:
Πω(m) = (mω1

, ...,mωl). The M parameter for this operator will be clear
from the context. The submatrix of GC consisted of columns on positions
from τ we denote by Πτ(GC). If Πτ(G̃) has full rank and vector Πτ(c) is
error-free (or supp(τ) ∩ supp(e) = ∅) then

m = Πτ(c) · (Πτ(GC))−1.

In general, the probability of the event that the vector Πτ(c) has no errors is
negligible. But in some cases this probability can be increased, for example,
when message is encrypted two times on the same public key [14]. To resist
such attacks, one can use the randomization method.

2.3 Randomized McEliece McEl

Now we consider randomized McEliece cryptosystem McEl =
(KMcEl, EMcEl,DMcEl) first proposed in [9]. Let x ∈ Fn1

q , y ∈ Fn2
q , z ∈ Fnq ,

n1 + n2 = n, then z = x ‖ y will be a concatenation of the vectors x and
y. For the code C the encryption rule for m(∈ Flq) in randomized McEliece
McEl has the form:

{m}McEl
pk = {m ‖ r}McE

pk = c, r ∈ Fk−lq .

To decrypt the ciphertext c, it is enough to apply the rule (3) and discard
the last k − l symbols:

{c}McEl
sk = Π[l]({c}McE

sk ).

3 S-concatenation construction

3.1 Basic cryptosystem bMcEl

On the basis of the cryptosystem McEl we construct a new randomized
cryptosystem bMcEl = (KbMcEl, EbMcEl,DbMcEl) and call it the basic cryp-
tosystem. For ω consider a subset G(ω) of permutations group Sk acting on
the elements of the set [k]:

G(ω) = {π ∈ Sk : π(1) = ω1, ..., π(l) = ωl}.
With every permutation π from G(ω) we associate a permutation (k × k)-
matrix Rπ. The encryption rule of basic McEliece bMcEl has the form:

{m}bMcEl
pk,ω = {(m ‖ r1)Rπ}McE

pk ‖ {(m ‖ r2)Rπ}McE
pk = c1 ‖ c2 = c,
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where m ∈ Flq, ω ⊂R [k], |ω| = l, r1 ∈R Fk−lq , r2 is formed in accordance
with the restriction supp(r1− r2) = [k] \ω, π ∈R G(ω), and error vectors e1

and e2 in McE-encryption are chosen so that e1 ∈R En,t, e2 ∈R En,t,supp(e1).
It is obvious that

wt(e1) + wt(e2) = 2t. (4)

To decrypt the ciphertext c one should calculate

{c}bMcEl
sk = Πη({c1}McE

sk ), η = [k] \ supp({c1}McE
sk − {c2}McE

sk ). (5)

Note that for random r, random ω and any m it is computationally
hard to find ω from a vector (m ‖ r)Rπ. In average, the adversary has to
enumerate (

l + k−l
2

l

)

variants as average weight of r is k−l
2 .

3.2 Auxiliary S-concatenation McEliece b̂McEs
l

Now we construct auxiliary modification of McEliece cryptosystem
b̂McEs

l = (K
b̂McEsl

, E
b̂McEsl

,D
b̂McEsl

) based on bMcEl. Key generation algo-
rithm K

b̂McEsl
takes as input a security parameter N ∈ N and outputs a

public and a secret keys of the form:

pk = (pk1, ..., pks), sk = (sk1, ..., sks),

(pki, ski) = KbMcEl(N), i ∈ [s];

encryption algorithm E
b̂McEsl

takes as input a public-key pk and a message
m = (m1 ‖ ... ‖ms) where mi ∈ Flq, and outputs a ciphertext c:

{m}b̂McEsl
pk = c′ = [c′1,1 ‖ c′1,2] ‖ ... ‖ [c′s,1 ‖ c′s,2], (6)

where [c′j,1 ‖ c′j,2] = {mj}bMcEl
pkj ,ω

for j ∈ [s] and ω is chosen randomly once
for all j = 1, ..., s. Decryption of the ciphertext c′ is perfomed as follows. For
each c′i from c′ = c′1 ‖ ... ‖ c′s it finds m′i = {c′i}bMcEl

ski
and ηi according to (5)

and outputs

m′ =

{
m′1 ‖ ... ‖m′s, if η1 = ... = ηs

⊥, otherwise
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3.3 S-concatenation McEliece bMcEs
l

Let us construct a CCA2-modification bMcEs
l = (KbMcEsl , EbMcEsl ,DbMcEsl )

using the one-time strongly unforgeable signature scheme SS =
(KSS, Sign, Check). Key generation algorithm of our modification KbMcEsl

takes as input a security parameter N ∈ N and outputs a public-key pk and
a secret key sk of the form

pk = ((pk0
i , pk

1
i ))

s
i=1, sk = ((sk0

i , sk
1
i ))

s
i=1, (7)

where (pkbi , sk
b
i ) = KbMcEl(N), b ∈ {0, 1}, i ∈ [s]. Encryption algorithm

EbMcEsl takes as input a public-key pk and a message m = (m1 ‖ ... ‖ ms)
where mi ∈ Flq, and outputs a ciphertext c:

c = {m}bMcEsl
pk = c′ ‖ vk ‖ σ,

where (dsk,vk) = KSS(N), vk = (vk1, ..., vks) ∈ {0, 1}s, c′ = {m}b̂McEsl
pkvk

,
σ = Sign(dsk, c′) and

pkvk = (pkvk1
1 , ..., pkvkss ). (8)

Decryption algorithm DbMcEsl takes as input a secret-key sk and a cipher-
text c, and outputs either a message m ∈ Fslq or a symbol ⊥. On the first
step, DbMcEsl checks signature of the message. If Check(c′,vk, σ) = 0 then

DbMcEsl outputs ⊥, otherwise it computes and outputs m′ = {c′}b̂McEsl
skvk

where
skvk = (skvk1

1 , ..., skvkss ).

4 Security of S-concatenation

In this section we will consider the case q = 2.

4.1 Security assumptions

Let McE be the McEliece cryptosystem with security parameter N . The
security of McE is based on two following standard assumptions.

Assumption 1. There is no polynomial algorithm capable of distinguishing
the (k×n)-matrix of the public key of the McE cryptosystem from a random
(k × n)-matrix with non-negligible probability in N .

Assumption 2. There is no polynomial algorithm that solves the problem
of decoding a general linear code.
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According to [15], the problem of decoding a general linear code is NP -
hard. Since P 6= NP has not been proved, we formulate this only as an
assumption.

Note that, if these assumptions hold, then one can say that McE is one
way trapdoor function (or OW-CPA secure) [16]. The hardness of most McE-
type cryptosystems is based on the above assumptions (for example, [9],
[10], [17]). To formulate the following theorems we should introduce auxiliary
assumption.

Assumption 3. There is no polynomial algorithm that takes as input ci-
phertext c of the McE and the number L ∈ N, and outputs 0 if c corre-
sponds to an information message of a weight less than L and outputs 1
if c corresponds to an information message of weight L with non-negligible
distinguishing advantage in the N .

4.2 Semantic security of bMcEl

Let Bt be the random variable such that Pr{Bt = β} = (Ct
n)
−1 for any

β ⊆ [n], |β| = t. Denote by En,t,β random variable with uniform distribution
over the set En,t,β.

Lemma 1. Random variables En,t,∅ and En,t,Bt have the same distribution.

The random variables En,t,∅ and En,t,Bt take values from the set En,t. Let
e is arbitrary vector from En,t. By definition Pr{En,t,∅ = e} = 1

Ctn
. Let us

find the probability of event En,t,Bt = e:

Pr{En,t,Bt = e} = Pr{(Bt = β ∧ supp(e) ∩ β = ∅), En,t,β = e}
= Pr{(Bt = β ∧ supp(e) ∩ β = ∅)}×
× Pr{En,t,β = e|(Bt = β ∧ supp(e) ∩ β = ∅)}
= Ct

n−t(C
t
n)
−1(Ct

n−t)
−1 = (Ct

n)
−1.

For public matrix G̃ and secret permutation (k×k)-matrix Rπ, π ∈ G(ω),
define matrix (

G̃1
ω

G̃2
ω

)
= RπG̃,

where there are l rows in G1
ω and k − l rows in G2

ω.

Theorem 1. bMcEl is IND-CPA secure if assumptions 1-3 hold.
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Represent the ciphertext of bMcEl as a system of the form {m}bMcEl
pk =

c = X ‖ Y , where

X = mG̃1
ω ⊕ r1G̃

2
ω ⊕ e1,

Y = mG̃1
ω ⊕ (1⊕ r1)G̃

2
ω ⊕ e2,

where 1(∈ Fk−l2 ) is a vector of ones.
Let us consider X and Y independently of each other. The part X is

a ciphertext of the McEl with the public key G̃′ = RπG̃. Note that the
system McEl is IND-CPA-secure [9]. Since we considerX and Y independent,
then the vector 1 ⊕ r1 is a random vector. From here, Y differs from a
ciphertext of the McEl with the public key G̃′ in distribution of error vector
e2, chosen randomly from En,t,supp(e1). However, as X and Y are considered
independetly then according to Lemma 1, an error vector from En,t,supp(e1)

and an error vector from En,t,∅ have the same distribution. From here Y is
indistinguishable (∼) from a ciphertext of the McEl with the public key G̃′.

Now we have to consider the dependence between X and Y . The aim is
to prove that Y does not provide any additional information about X for a
polinomial time adversary. For this, we denote Z = X ⊕ Y and consider the
vector c′ obtained by adding X to the second part:

c′ = X ‖ (Y ⊕X) = X ‖ Z, (9)

where

X = mG̃1
ω ⊕ r1G̃

2
ω ⊕ e1,

Z = 1G̃2
ω ⊕ e1 ⊕ e2.

Since ω is unknown for the adversary, then for a random choice of ω the
vector 1G̃2

ω ⊕ e1 is a ciphertext of the McE corresponding to a random
information message with a fixed weight k − l. The vector 1G̃2

ω ⊕ e1 ⊕ e2 is
also a ciphertext of the McE corresponding to a random information message
with a fixed weight k− l, but with an error vector having a weight of 2t (see
(4)). It should be noted that Z does not contain any secret information
about X, except ω and the error vector e1. Lets show that any polynomial
adversary cannot recover ω and e1 from Z (ω cannot be recovered from X).
Suppose that the adversary can obtain ω. For this one have to know the
vector (0 ‖ 1)RπG̃ = 1G̃2

ω. But the vector (0 ‖ 1)Rπ is random vector
of weight k − l. Since the cryptosystem McE is OW − CPA secure [16],
then the adversary cannot recover 1G̃2

ω (and therefore the set ω) from Z.
It also means that the adversary cannot recover e1 ⊕ e2 and e1 from Z.
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Note that the adversary also cannot find e1 from X. Then for unknown
e1 according to Lemma 1 the error vector e2 has random distribution over
En,t. Now we consider 1G̃2

ω ⊕ e2. Since ω is unknown for the adversary, then
for a random choice of ω the vector 1G̃2

ω ⊕ e2 is indistinguishable from a
ciphertext of the McE corresponding to a random information message with
a fixed weight k − l. However, by the assumption 3, a ciphertext of the
McE corresponding to a random information message with a fixed weight
k − l is indistinguishable from a ciphertext of the McE corresponding to a
random information message with a weight less than or equal to k−l. In other
words, 1G̃2

ω⊕e2 is indistinguishable from a vector of the form: r′G̃⊕e2, where
wt(r′) 6 k−l. According to [9] a vector of the form r′G̃⊕e2 is pseudorandom
vector and indistinguishable from a random vector u ∈ Fn2 . From here Z =
1G̃2

ω⊕e2⊕e1 is indistinguishable from u⊕e1. Thus the polynomial adversary
cannot recover any information about e1 from Z. Summing up, the vector c′

is indistinguishable from vector

mG̃1
ω ⊕ u1 ‖ e1 ⊕ u2, (10)

where random vector u1 is indistinguishable from r1G̃
2
ω ⊕ e1 and random

vector u2 is indistinguishable from 1G̃2
ω ⊕ e2. Note, that e1 has information

about r1G̃
2
ω ⊕ e1 (∼ u1) but it is masked in Z by 1G̃2

ω ⊕ e2 (∼ u2). Thus c′

is indistinguishable from a random vector.

4.3 Security of bMcEs
l

We say that b̂McEs
l is (1− ε)-verifiable if there is such polynomial time

algorithm Verify with binary output that if Verify outputs 1, then D
b̂McEsl

outputs some vector m′ 6=⊥ with probability 1 − ε, otherwise, when Verify
outputs 0 the algorithm D

b̂McEsl
outputs ⊥ with probability 1 − ε, where

ε = ε(N) is negligible in N .

Lemma 2. b̂McEs
l is (1− ε)-verifiable.

To prove we should construct algorithm Verify. By definition Verify takes
as input a vector c′ of the form (6), a public key pk and one ski, i ∈ [s]. Using
ski algorithm Verify decrypts corresponding subvector c′i and finds the set ηi
(ηi = ω if c′i does not changed during transmission). Now Verify calculates
xj = c′j,1⊕c′j,2 for each j 6= i (j ∈ [s]) (c′j,1, c′j,2 are from (6)). Since ηi and pk
(matrix G̃j) are known, then it is easy to construct the vector (0 ‖ 1)RπiG̃j,
where πi is any permutation from G(ηi). On the next step one can calculate
zj = xj ⊕ (0 ‖ 1)RπiG̃j. Now Verify has to check that wt(zj) = 2t for
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each j ∈ [s] (see (4)). If at least one check fails then Verify returns 0. From
Singleton bound we have 2t 6 n− k. So the number of coordinates without
errors n − 2t not less than k and information set decoding algorithm (see
for example [18]) may be executed. As coordinates with errors are known
(from supp(z)), then Verify can execute information set decoding algorithm
in polynomial time to decrypt vector xj. Using decrypted xj Verify finds ηj
and checks that ηj = ηi for each j 6= i (j ∈ [s]). If the equalities are satisfied
then Verify returns 1, otherwise Verify returns 0. So, by the construction, if
Verify returns 1 then D

b̂McEsl
(c′) will output m′ 6=⊥ with probability 1− ε′,

where ε is the probability of information set decoding algorithm error. Here,
ε′ is the probability that the submatrix G̃0

j composed of columns of matrix G̃j

with numbers from [n]\ supp(zj) has not full rank. According to assumption
1 the matrix G̃j is indistinguishable from a random matrix. Since G̃0

j is a
random set of columns of matrix G̃j, then G̃0

j is also indistinguishable from a
random (k×n− 2t)-matrix. According to [19] (Theorem 1) for the probability
P ′ that a random (k × n− 2t)-matrix has full rank the following inequality
holds:

P ′ >
{

0.288, n− 2t = k

1− 2−(n−2t−k), n− 2t > k
(11)

Since n− 2t− k grows with growth of N , then 2−(n−2t−k) is negligible in N .
In other words, ε′ = 2−(n−2t−k). From here the probability that information
set decoding algorithm not failed for all of the s matrices is (1−ε′)s. It means
that ε = 1− (1− ε′)s. For fixed s the ε is negligible in N.

Theorem 2. b̂McEs
l is IND-CPA secure if assumptions 1-3 hold.

Let c = {m}b̂McEl
pk = [c1,1 ‖ c1,2] ‖ ... ‖ [cs,1 ‖ cs,2]. Consider a vector

c′ = [c1,1 ‖ c1,2 ⊕ c1,1] ‖ ... ‖ [cs,1 ‖ cs,2 ⊕ cs,1]. Using the representation (9)
we have:

c′ =[m1G̃
1
1,ω ⊕ r1,1G̃

2
1,ω ⊕ e1,1 ‖ 1G̃2

1,ω ⊕ e1,1 ⊕ e1,2] ‖
...

[msG̃
1
s,ω ⊕ rs,1G̃

2
s,ω ⊕ es,1 ‖ 1G̃2

s,ω ⊕ es,1 ⊕ es,2]

According to (10) we can rewrite the left parts:

c′ =[m1G̃
1
1,ω ⊕ u1,1 ‖ 1G̃2

1,ω ⊕ e1,1 ⊕ e1,2] ‖
...

[msG̃
1
s,ω ⊕ us,1 ‖ 1G̃2

s,ω ⊕ es,1 ⊕ es,2]
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Group the left and right parts of the subvectors together (using a simple and
not secure permutation) and get an equivalent vector c′′:

c′′ =[m1G̃
1
1,ω ⊕ u1,1 ‖ ... ‖msG̃

1
s,ω ⊕ us,1] ‖

[1G̃2
1,ω ⊕ e1,1 ⊕ e1,2 ‖ ... ‖ 1G̃2

s,ω ⊕ es,1 ⊕ es,2].

Let Ḡ1 = diag(G̃1
1,ω, ..., G̃

1
s,ω), Ḡ2 = (G̃2

1,ω ‖ ... ‖ G̃2
s,ω), ū1 = (u1,1 ‖ ... ‖

us,1) and ēj = (e1,j ‖ ... ‖ es,j), (j ∈ {1, 2}). Then we can write

c′′ = mḠ1 ⊕ ū1 ‖ 1Ḡ2 ⊕ ē1 ⊕ ē2.

Consider the left part. Since ui,1 (i ∈ [s]) are independent of each other, then
ū1 is pseudorandom vector and mḠ1⊕ ū1 is pseudorandom vector. Now one
can look at the right part. According to assumption 3 and [9] and as proved
in the theorem 1 for smaller dimensions the right part can be rewritten as
ē1 ⊕ ū2, where ū2 ∈ Fsn2 is a pseudorandom vector. Similarly to theorem 1
vector ē1 consists information about ū1 but it is masked by ū2. Thus c′′ is
indistinguishable from a random vector.

We will prove the following theorem by very close technique to [10].

Theorem 3. Let SS be one-time strongly unforgeable signature scheme. Then
bMcEs

l with security parameter N and fixed s is IND-CCA2 secure if as-
sumptions 1-3 hold.

Let A is the IND-CCA2 adversary. Similar to [10] we consider two games:
Game1 which is equivalent to the CCA2 (see (1) where g = CCA2) game and
Game2, the same as Game1, except that the signature-keys (vk∗,dsk∗) that
are used for the challenge-ciphertext c∗ are generated before the interaction
with A. Note that Game2 always outputs ⊥ if A sends a decryption query
c = c′ ‖ vk ‖ σ with vk = vk∗.

In [10] (Lemma 2) it is proved that Game1 and Game2 are indistin-
guishable to adversary A if SS is one-time strongly unforgeable signature
scheme. Now we will prove that AdvGame2

bMcEsl ,A(N) is negligible in N . On the
contrary, let AdvGame2

bMcEsl ,A(N) > γ, where γ = γ(N) is not negligible in N
function. Now we consider CPA-game (see (1) where g = CPA) and con-
struct an algorithm Â on the basis of A. Let pk∗ = (pk∗1, ..., pk

∗
s) is a public

key formed in CPA-game. Â generates a pair (vk∗,dsk∗)← K(N). Then Â
computes the public key pk of the form (7) by setting pkvk

∗
= pk∗ (see (8))

and remaining components pkij are generated using K(N). Thus, computed
pk by Â is identically distributed to the pk generated by Game2. On the
next step, when A sends c = c′ ‖ vk ‖ σ, where vk 6= vk∗, Â pick an
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index i such that vki 6= vk∗i and checks the result of V erify(c′, pk, skvkii ). If
V erify(c′, pk, skvkii ) =⊥, then Â returns ⊥, otherwise Â, using information
set decoding, decodes all vectors [c′i,1]. Note that information set decoding
is performed in polynomial time because Â knows the set ω and error-free
coordinates (Â finds ω and e1⊕e2 while running the algorithm Verify). Thus
Â finds the information message m. By the definition of Verify we have that
D

b̂McEsl
output vector m with probability 1− ε, where ε = ε(N) is negligible

in N function. From here the distribution of the output of Â in CPA-game
is indistinguishable from distribution of the output in Game2 (since b̂McEs

l

is (1 − ε)-verifiable, the distributions differ by ε, where ε is negligible func-
tion). When A sends the challenge-messages m0,m1, Â forwards m0,m1

to the CPA-game and receives a challenge ciphertext c∗′. After Â computes
σ = Sign(dsk∗, c∗

′
) and sends c∗ = c∗

′ ‖ vk∗ ‖ σ∗ to A. Note that the
distribution of c∗ is indistinguishable from distribution as in Game2. From
here

AdvCPA
bMcEsl ,Â

(N) = AdvGame2
bMcEsl ,A(N)− ε > γ − ε.

Since γ − ε is not negligible then Â breaks IND-CPA security of bMcEs
l ,

which contradicts Theorem 2.

5 Assessment of the constructed system

5.1 Security parameters

Let us consider the general security parameters of the constructed system
- underlying code C, plaintext length l and one-time strong signature scheme
SS. Since (pkbi , sk

b
i ) = KbMcEl(N) = KMcE(N), b ∈ {0, 1}, i ∈ [s] then

one can use known results of evaluating the code parameters of the original
McEliece cryptosystem. In the general case, in [20] it is recommended to
choose code parameters with at least 86 security bits (for 2020 year). So, in
accordance with the table 1.1 from [21] it is suggested to use [4096, 3604, 83]-
code with 129 security bits. The fulfilment of the assumption 3 depends on
the choice of the parameter l (in our case L = k − l). Unfortunately, we
have not yet studied the exact boundaries at which this assumption satisfied.
But, in order to complicate the possibility of distinguishing by finding ω
from (0 ‖ 1)RπG̃ = 1G̃2

ω we can recommend to choose l = k/2. Then the
adversary has to enumerate

(
k/2
k

)
variants to find ω from 1G̃2

ω. It is proposed
to use a one-time strong signature scheme, on the one hand resistant to
quantum attacks, on the other hand, having a small public key size (since
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the number of repetitions s is equal to the size of the verification key). In
[22] authors compared different signature schemes. So, according to table 2
from [22] we suggest to use Stern signature as a one-time strong signature
scheme with a small public key size (347 bits).

5.2 Comparison

Let us to make a comparison of the proposed scheme with some known
IND-CCA2 secure schemes based on McEliece cryptosystem.

Scheme Plaintext Cyphertext Public key Secret key
Dottling et al. l n · |vk|+ |vk|+ |σ| 2 · |vk| · |pkMcE| 2 · |vk| · |skMcE|
Persichetti ∗ n · k + |vk|+ |σ| 2 · k · |pkMcE| 2 · k · |skMcE|
Proposed l · |vk| 2 · n · |vk|+ |vk|+ |σ| 2 · |vk| · |pkMcE| 2 · |vk| · |skMcE|

|vk| – verification key size, |σ| – signature size, |pkMcE| – McE public key size, |skMcE| –
McE private key size, ∗ – is explained below.

Table 1: IND-CCA2 secure schemes based on McEliece cryptosystem.

All cryptosystems in the Table 1 use s repetition method. So, for conve-
nience, we have replaced the number of repetitions s with the corresponding
parameter. In particular, in Dottling and proposed scheme s is replaced with
verification key size |vk|. In Persichetti’s work, the number of repetitions is
equal to code dimension k. It is important to note, that we did not specify
plaintext size of the scheme proposed by Persichetti, because its original size
is 1 bit. However, it can be extended to multiple bits using hard-core func-
tions. Unfortunately, Persichetti’s scheme has a large cyphertext size. For
instance, in Table 2 compared cyphertext sizes for considered schemes for
suggested code and one-time strong signature scheme parameters.

Scheme Cyphertext size
Dottling et al. 1.541.659
Persichetti 14.882.331
Proposed 2.962.971

Table 2: Cyphertext sizes for suggested parameters.

Thus, for the suggested parameters, the data transfer rate of the proposed
scheme is approximately 186 times higher than in Dottling’s scheme (for
Persichetti’s scheme the data transfer rate not compared because plaintext
size is not specified).
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Abstract

We propose a new key sharing protocol executing with constant public noise-
less (at least of eavesdroppers) channels. In contrast to well-known protocols (like
Diffie-Hellman etc.) it does not use cryptographic assumptions (like integer factor-
ing, discrete logarithm etc.). This protocol does not imply any advantages for legiti-
mate users against eavesdroppers except for authentication. It is based on EVSKey
Scheme, proposed recently by G. Qin and Z. Ding. But because we prove that such
scheme is insecure, it needs significant modification. We introduce an artificial noise
and privacy amplification procedure for this purpose. Simulation results are pre-
sented concerning key bit error probabilities for both legitimate and illegal users.
The error decoding probabilities are calculated for LDPC codes application. The
amount of Shannon information leaking to eavesdroppers is estimated. The channel
traffic needed for execution of the proposed protocol is given too.

Keywords: key sharing, physical layer security, privacy amplification, quantum computers.

1 Introduction

Solving the key sharing problem between legitimate users, connected by
some communication channels, has been in research focus within many years.
But it has not yet been solved completely.

The protocols based on some cryptographic assumptions (factoring, dis-
crete log, error correction) and first of all Diffie and Hellman Scheme were
known many years ago [1]–[4]. But some of them can be broken if quantum
computers occur realized in the future.

A new approach to key distribution problem based on the notion of phys-
ical layer security (PHY) was developed in recent years (see excellent sur-
vey [5]). This approach exploits some physical properties of real communica-
tion channels connecting legitimate users sharing a secret key in the presence
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of eavesdroppers. A pioneer paper by A. Wyner [6] and its extension in the
papers [7], [8], covering the issue, is worth to mention too. Legitimate chan-
nels were there supposed to be superior to eavesdropper ones on the SNR
(Signal-Noise Ratio) parameter.

This approach was further developed by Maurer [9]. He proposed the
use of so-called public discussion and privacy amplification. It enables to
transform unfavorable SNR of legitimate users against eavesdroppers into
advantageous one at the cost of additional information exchange on public
channels. Some results for the case of active eavesdropper were presented in
the paper [10].

Other PHY-based protocols execute channels with random parameters
(say, fading channels with multipath wave propagation). This technique was
used also in MIMO-based systems intended for communication between mo-
bile units [11]–[13]. But it is worth to note, that all the key sharing methods
mentioned above had been designed for known SNR in the eavesdropper
channels or for the case, where the number of antennas in the eavesdropper
MIMO-based systems was limited by some value. However, such requirements
to enemy system is obviously unrealistic. Key distribution problem can be
solved effectively also in the frame of so-called quantum cryptography, where
however special quantum channels and devices [14] should be implemented.

Also there is a demand to share secret keys between users, connected by
constant (practically noiseless) channels (as Internet for example), without
any cryptographic assumption due to a risk of quantum computers to be
applied in the future.

In Section 2 we remind the key sharing protocol based on extraction of
matrix eigenvalues described in [11] as EVSKey Scheme. We show that it
is in fact insecure. Next, we improve this protocol in order to provide the
upper bound for SNR in eavesdropper channel. In Section 3 we present some
channel transform primitives. Section 4 is devoted to results of simulation.
In Section 5 we optimize protocol parameters to provide both security and
reliability of the shared key. Section 6 concludes the paper and proposes the
problems for further investigation.

2 Key sharing protocol based on extraction of matrix
characteristic polynomials

Let us remind the scheme EVSKey [11] used in the current paper in order
to generate the binary raw sequence for further creation of the shared key.
The scenario corresponding to this scheme is presented in Figure 1.
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Before a transmission Alice (A) and Bob (B) generate their own random
unitary reference matrices XA, XB ∈ Cn×n as well as random unitary ma-
trices GA, GB ∈ Cn×n. n is the number of “antennas” employed by each of
the users, and length of pilot signal too. Matrices HAB, HBA are n×n chan-
nel matrices with independent Gaussian matrix elements distributed accord-
ing to (hAB)ij, (hBA)ij ∼ CN(0; 1). NA1, NB1 are AWGN (Additive White
Gaussian Noise) matrices (nA1)ij, (nB1)ij ∼ CN(0;σ2) of proper noises for
legitimate users A and B, respectively.

Figure 1: The scenario corresponding to EVSKey Scheme.

Let us introduce the following matrices: P = HBAGB, Q = HABGA.
Then PQ and QP can be estimated by users via the least square method as:

PQ ≈ YA2(XA)−1

QP ≈ YB2(XB)−1 (1)

It is well known [11] that square matrices of the same size PQ and QP
have the same eigenvalues. Therefore, they have the same characteristic poly-
nomials (CP):

CP [PQ] = CP [QP ] (2)

Thus, from (2) we conclude that the legitimate users A and B are able to
extract the same characteristic polynomials after a completion of protocol
through noiseless channels although matrices PQ and QP can be different.

But, firstly, we are to demonstrate, that E is able to intercept key bits,
although it was claimed in [11], that it is impossible. Unfortunately, the last
statement is wrong.

In order to prove our claim, let us consider firstly a scenario where the
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“combined” eavesdropper E intercepts signals:

ỸA1 = HBEGBXB, ỸA2 = HBEGBHABGAXA

ỸB1 = HAEGAXA, ỸB2 = HAEGAHBAGBXB

(3)

where HAE, HBE denote E’s channel matrices and all noises are equal to
zero.

Proposition 1. Let EV (Y ) denote the set of eigenvalues of matrix Y . Then

EV (Y ) = EV (PQ) = EV (QP )

where
Y = ỸA2(ỸB1)

−1ỸB2(ỸA1)
−1 (4)

and (Y )−1 = (Y )−1
P is the Moore-Penrose pseudoinverse matrix [15] in the

general case of rectangular (not square) matrix Y .
For all random matrices described above, the (Y )−1 does exist with 100%

probability.

Proof. Substituting (3) into (4), we get:

Y = HBEGBHABGAXAX
−1
A G−1

A H−1
AEHAEGAHBAGBXBX

−1
B G−1

B H−1
BE

After simple matrix transforms, Y can be presented as follows:

Y = HBEGBHABGAHBAGB(HBEGB)−1 = (HBEGB)QP (HBEGB)−1

The last relation means that Y is similar to matrix QP and thus
EV (Y ) = EV (QP ) [16] for any matrices HAE, HBE.

If both legitimate users and eavesdropper have practically the same
noises, then simulation shows that the probabilities of the shared key bits
be close to one another for legitimate users and eavesdropper.

Hence, the original scheme EVSKey is useless for key sharing. Fortunately,
it can be modified with the use of artificial noises NA1, NB1 providing lower
noisy power bound for the eavesdropper, that cannot be decreased, because
it is controlled by the legitimate users only.

Before we present the following part of key sharing protocol, it is im-
portant to show that not one, but, at least, two, artificial noises NA1, NB1

should be added. Otherwise, the eavesdropper would be able to intercept the
legitimate key without any errors. Indeed, let us assume that only B creates
artificial noise. Then we get:

YB1 = QXA, YA2 = P (YB1 +NB1)
YA1 = PXB, YB2 = QYA1
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Next, A extracts CP from the matrix:

YA2X
−1
A = P (YB1 +NB1)X

−1
A = PQ+ PNB1X

−1
A

whereas B extracts the key from CP of the matrix:

YB2X
−1
B = QYA1X

−1
B = QP

The eavesdropper E extracts the key from CP of the matrix:

Y = YA2(YB1)
−1YB2(YA1)

−1 = PQ+ PNB1X
−1
A (5)

Thus (5) implies that E gets exactly the same key as legitimate user A.
This means that such situation has to be excluded.

3 Description of channel transform primitives

In the following section there will be presented the results of simulation
regarding the key bit errors in the presence of two artificial noises NA1, NB1.
Let Pl, Pe be the key bit error rate (BER) for legitimate users and eaves-
dropper, respectively. If legitimate users dominate over eavesdropper, that is
Pl < Pe, then we can apply privacy amplification theorem [9]. It states that,
there such an algorithm exists, which provides approaching to zero both key
BER for legitimate users and Shannon information leaking to an eavesdrop-
per as the length of code words is increasing.

But, for the situation, where the key BER’s satisfy inequality Pl > Pe, it
is necessary to apply in advance some additional protocol (primitive), that
reduces the previous inequality to the opposite one (Pl < Pe).

Several examples of such primitives are given in [9]. It seems, that the
best of them is protocol known as “a preference improvement of the main
channel” (PIMC). Let us consider the protocol PIMC, slightly modified for
our purpose, in more detail.

Let legitimate users exploit constant noiseless channels. Let Alice and
Bob are exchanging by messages YA1, YA2, YB1, YB2 as it is shown in Fig-
ure 1. Having estimated the matrices YA2(XA)−1, YB2(XB)−1 they get sets
of eigenvalues, which differ due to artificial noises. After quantization (see
Section 4) users get a little bit different binary strings KA, KB. Those raw
key bit strings will be used later to form the final shared key bit string. Obvi-
ously, such a bit exchange could be interpreted in terms of binary symmetric
channels without memory (BSC). Eve in her turn gets signal Y (5) (both
noises NA1, NB1 included) and therefore her sample of raw key bit string
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KE. Thus, both legitimate and illegal users implement two BSC: one with
BER Pl, another – with BER Pe respectively and Pl > Pe supposedly.

To inverse the last inequality legitimate users repeat S times each bit
transmitting over the channel we call the main. They agree to accept such
S-blocks if and only if each of them separately receives the same bit S times,
no matter if these blocks are identical or not. This case both inform each
other about block acceptance via the public noiseless channel.

Supposing that bit errors are independent it is easy to see, that such
protocol forms the following BER in the main (legal) channel:

P̃l =
2P S

l (1− Pl)S
((1− Pl)S + P S

l )2
(6)

To get such S-fold bit repetition disturbed by noises Alice and Bob gen-
erate S times in a row one and the same random matrices P , Q, XA, XB and
each time different random noise matrices NA1, NB1 (only these two artificial
noises NA1, NB1 are added).

At the same time eavesdropper E intercepts S-blocks over BSC with
BER Pe and controls public noiseless channels. E knows exactly which S-
blocks were accepted by B. But because E’s channel is believed statistically
independent of the main channel (A → B), she should take decision about
bits corresponding to S-block using majority rule. This means, that she takes
a decision, that S-block carries bit “0”, if this block has more zeroes than ones.
And she decides the bit to be “1”, if the number of ones in that S-block is
larger than that of zeroes. Then the BER after such decision will be for odd
S the following:

P̃e =
S∑

i=S+1
2

(
S

i

)
P i
e(1− Pe)S−i (7)

4 Results of simulation

Quantization of eigenvalues sets.
To get binary key bit strings KA, KB legal users are first to quantize

eigenvalue sets of matrices YA2(XA)−1, YB2(XB)−1. In a similar manner ma-
trix Y (4) is also quantized by E. Since matrices are complex, eigenvalues
can be quantized both on magnitude and on phase. To provide bit strings
resembling random binary string one has to divide complex plane into parts
in such a way that each eigenvalue hits each cell with equal probability. In
first approximation, matrices whose eigenvalues are to be quantized equal to
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PQ, QP (1). Both matrices P , Q are products of Ginibre matrix H and
unitary one G, thus being both Ginibre ones too. Eigenvalues distribution
of independent Ginibre matrices product is well known [17]. The probability
density function (PDF) f(λ) of eigenvalues λ of matrices PQ,QP is even, i.e.
depends only on absolute value r = |λ|. For the product of two independent
Ginibre square n× n matrices PDF equals to

f(λ) =
2

πn
K0(2r)

n−1∑

m=0

r2m

(m!)2

Here K0(z) is the modified Bessel function of the second kind (of zero order).
Therefore, we divided the complex plane into sectors of equal angles. We

also divided the plane into rings [0; r1], [r1; r2], . . . of equal probability to be
hit by eigenvalues:

∫ r1

0

f(r)dr =

∫ r2

r1

f(r)dr = . . .

Thus, we got segments “of equal probabilities”.
The optimal number of sectors and rings is a matter of trade-off and in-

vestigation. We mean trade-off between numbers of bits one could extract by
quantization and magnitude of BER due to noises. If the number of segments
N is much greater than that of eigenvalues n then the total information one
could get per each session of protocol (matrix exchange) can be estimated
as [13]

log2

(
N + n− 1

n

)
= log2

(N + n− 1)(N + n− 2) . . . N

n!

In this article we assume the complex plane to be divided into 8 sectors
and 8 rings, i.e. 8× 8 = 64 segments.

To each segment we assign an address (i; j), where i, j = 0, 1, . . . , 7 are
the numbers of sectors and rings respectively. Each eigenvalue we associate
with segment address into which it gets. Addresses are converted to binary
form. Thus, one gets 6 × n bits string. To get longer string one repeats
the procedure and concatenates the resulting strings. The final binary string
forms the raw shared key (KA, KB).

Modified key sharing protocol was numerically modeled. Results of simu-
lations are presented in Table 1. The simulations have been carried out for two
sizes (n = 4, 64) of square matrices P , Q, for two noise values (σ2 = 0.1, 0.2)
and two values of the number of repetitions (S = 3, 5), when executing the
primitive described in Section 3.
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The table displays estimates of BER’s, which occur during a single signal
exchange (Pl, Pe) and those observed after S times repetition (P̃ exp

l , P̃ exp
e ),

for both legal and illegal users. The table also shows the values of the prob-
abilities (P̃ theor

l , P̃ theor
e ) calculated by the formulas (6, 7).

Table 1: Simulation results and theoretical predictions for the BER: of legal users P̃ exp
l ,

P̃ theor
l and eavesdropper P̃ exp

e , P̃ theor
e .

n = 4, σ2 = 0.1, Pl = 0.260, Pe = 0.212 :

S P̃ exp
l P̃ theor

l P̃ exp
e P̃ theor

e

3 0.031 0.080 0.034 0.116
5 0.003 0.011 0.0056 0.068

n = 4, σ2 = 0.2, Pl = 0.294, Pe = 0.251 :

S P̃ exp
l P̃ theor

l P̃ exp
e P̃ theor

e

3 0.043 0.125 0.048 0.157
5 0.004 0.024 0.009 0.100

n = 64, σ2 = 0.1, Pl = 0.083, Pe = 0.091 :

S P̃ exp
l P̃ theor

l P̃ exp
e P̃ theor

e

3 0.0037 0.0015 0.019 0.023
5 0.00017 0.000012 0.0085 0.0065

n = 64, σ2 = 0.2, Pl = 0.085, Pe = 0.117 :

S P̃ exp
l P̃ theor

l P̃ exp
e P̃ theor

e

3 0.0039 0.0016 0.043 0.038
5 0.00014 0.000014 0.031 0.013

It is clear, that users win due to repetition procedure: error probabilities
are reducing. But legal users have an advantage: their BER decreases with
the increase of the matrix size more rapidly than the eavesdropper BER.
Although decreasing is not so swift as theory predicts.

Both formulas (6, 7) for P̃l, P̃e are based on the assumption of inde-
pendence of errors between the legal and eavesdropper channels in each bit.
While constructing long raw key bit string from sequence of several exchang-
ing matrices it is true for bits originating from different independent matrices.
And it is not so for bits got from eigenvalues of one and the same matrix.
Probably this is one of the reasons for the discrepancy between experimental
and theoretical P̃l, P̃e values. The second reason is that both legitimate users
and eavesdropper are subject to the same artificial noises NA1, NB1. But in
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the sequel we operate only with our experimental results.

5 Optimization of key-sharing protocol parameters in
order to provide given security and reliability

It has been proved by the Enhanced Privacy Amplification Theorem [18],
that the Shannon information I received by the eavesdropper, about the final
key sequence shared by the legitimate users, satisfies the inequality:

I ≤ 2−(k−tc−l0−r)

α ln 2
(8)

where k is the length of the string, generated by A and B after a completion
of the protocol PIMC; tc is the Renyi (or collision) information, obtained by
eavesdropper E about the string, received by E through a BSC with BER
equals to P̃e; r is the number of check bits sent by one of the legitimate users
to another in order to reconcile their strings; l0 is the length of the final key.
α is a coefficient, that approaches to 0.42 for any fixed r, as k, r, and k − r
are increasing. We recall, that the privacy amplification procedure, providing
the inequality (8), can be performed in two stages: firstly with the use of a
hash function chosen randomly from universal2 class and, secondly, by special
“puncturing” of hash string [18].

Let us consider a scenario, that allows to optimize parameters: k, r, S (see
(6, 7)) for given prior values lo, Io (an upper bound of information leakage)
and P̃ld – the probability of incorrect decoding of final key string by legitimate
users.

1. Given Io, find the bound value

k − tc − lo − r = − log2 (Ioα ln 2) = λ1 (9)

2. Calculate the value of Renyi entropy [18]:

Hc = − log2

(
P̃ 2
e +

(
1− P̃e

)2
)

3. Taking into account the relation

tc = k − kHc,

we get by (9)
kHc − r = λ1 + lo.
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4. In order to provide decrease of P̃ld for bit string of length k and with
execution of r check bits it is necessary to satisfy to the main Shannon
inequality:

k

k + r
< C,

where
C = 1 + P̃l log2 P̃l +

(
1− P̃l

)
log2

(
1− P̃l

)

is the channel capacity.

5. Therefore, to get the parameters of error correction code (k + r; r) we
have to solve the system of inequalities

{
2−(k−tc−l0−r)

α ln 2 ≤ Io
k
k+r < C

It can be easily transformed into linear one:
{
r ≤ kHc − λ1 − l0
r > kHL

C

(10)

where HL = 1− C = −P̃L log P̃L − (1− P̃L) log(1− P̃L).

The system has solution if, and only if, C > HL/HC . At low BER values
it implies, that P̃l should be approximately twice smaller than P̃e. In this
case the feasible region is infinite wedge on (k; r) plane of dots with integer
coordinates. The solution of (10) corresponding to minimum sum k + r is

{
r0 = HL

λ1+l0
CHc−HL

k0 = C λ1+l0
CHc−HL

(11)

We can take different values Pl, Pe from simulation results (see Table 1)
and vary parameter S in (6, 7) in order to obtain new values P̃l, P̃e, those
that would improve our protocol. For example one could increase the length
of final key lo or to make it more secure by decreasing the value Io. It is worth
to note, that we do not find so far a final key reliability in terms of the P̃ld
value, but we only guarantee (due to Shannon’s theorem) the existence of
such encoding and decoding procedures, that provide an approaching of this
probability to zero.

Selection of the constructive encoding/decoding procedures requires fur-
ther investigations. Seemingly, it should be one of the well-known class of
codes like LDPC close to the Shannon limit for large block lengths [19]. But
before, it is necessary to specify the value Io in a reasonable manner.
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Let us present a lower bound for P̃ed, based on Fano’s inequality [20]:

H(U/V ) ≤ h(P̃ed) + P̃ed log2(M − 1) (12)

where H(U/V ) is conditional entropy for eavesdropper E;

h(x) = −x log2 x− (1− x) log2(1− x), 0 ≤ x ≤ 1

M is the number of possible keys, in our case it is equal to 2l0. P̃ed is the
probability of incorrect decoding by E, that is a transformation of the key
string into another one. It is worth to note that the inequality (12) entails
large probability P̃ed of incorrect decoding at entropy H(U/V ) large enough.

Hence for given M = 2lo and Io, we can find the lower bound for P̃ed. It
is easy to show that the probability P̃ed satisfying to (12) approximately is:

P̃ed =
H(U/V )

lo
=
lo − Io
lo

= 1− Io
lo

Thus we conclude, that if lo = 64 and Io = 10−3, then the probability of
correct key string decoding P̃cd = 1 − P̃ed = Io/lo = 1.5625 · 10−5. It is no
problem to decrease P̃ed by decreasing the value Io.

Examples:
So, let us adopt n = 64 and the amount of information leakage be I0 =

10−3 bit. Using formulas (11), we get a set (see Table 2) of parameters for
error correction codes k0, r0 to bring in the very end (after hashing procedure)
the final l0 length keys and Io = 10−3.

Table 2: Parameters k0, r0 of the recommended error correction codes

σ2 = 0.1, Pl = 0.083, Pe = 0.091 :

S 3 5 3 5 3 5 3 5
l0 64 64 128 128 256 256 512 512
k0 4138 3420 7634 6310 14626 12091 28611 23651
r0 151 8 279 15 534 29 1044 56

σ2 = 0.2, Pl = 0.085, Pe = 0.117 :

S 3 5 3 5 3 5 3 5
l0 64 64 128 128 256 256 512 512
k0 884 867 1631 1599 3125 3064 6113 5993
r0 34 2 62 3 120 6 234 12

To implement the protocol one has to elaborate a suitable error correction
code. As a trial code we chose lower-density parity-check code (LDPC) with
parameters taken close to the presented in Table 2.
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The probabilities Pld of incorrect decoding of the key bit string by le-
gitimate user after error correcting procedure had been fulfilled were got by
simulation. It was conducted with given parameters and given BER obtained
by formulas taken from [19]. Results could be seen in last column of Table 3.

Eventually let us estimate traffic (Tr) that is needed in order to form the
final key of length l0 after performing the key sharing protocol.

1. In one attempt users exchange n×nmatricesQXA+NA, P (QXA+NA),
PXB+NB,Q(PXB+NB). Suppose the matrix elements are represented
in β bits format (for example, if real numbers are stored in standard 32
bits format, then β = 64 bits). The users need to transmit βn2 bits for
each matrix, in total 4βn2 bits.

2. As a result, each user gets n eigenvalues and, after quantization, m =⌈
log2N

⌉
bits string for one eigenvalue or mn bits for the whole set of

eigenvalues. Here N is the number of quantization levels; the brackets
denote the ceiling function: dxe = ceil (x).

3. Steps 1 and 2 are repeated S times, after which Alice sends Bob nm-bits
string γA via public channel to inform about S-fold repeats of the same
bit on her side. Bob replies with a similar string γB. The intermediate
value of traffic at this step is

4Sβn2 + 2nm

4. Alice and Bob reduce their bit strings with regard to coinciding ones ’1’
in the strings γA и γB. Let us denote by P the probability that a definite
bit has the same value S times in a row for both users notwithstanding
whether the S-blocks coincide between the users or not:

P =
(
(1− Pl)S + P S

l

)2

This probability can be replaced by relative frequency. After reduction
of their bit strings, each of the users gets mnP-bits string.

Now, to produce k0-bits string one needs to fulfill the inequality

XmnP ≥ k0

by a proper choice of the number X of session reruns. The smallest possible
value is

X =
⌈ k0

nmP
⌉
.
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Table 3: Parameters of some LDPC codes, chosen close to recommended ones (Table 2),
where Ieffo is the upper bound of information leakage, corresponding to specified before
(k0, r0) parameters LDPC codes.

σ2 = 0.1, Pl = 0.083, Pe = 0.092 :

S k0 k0

k0 + r0

Ieff
0 (bit)

Pld

l0 r0 Tr(MB)
3 4140

0.965 0.00089
0.0046

64 150 7.11
5 3420

0.998 0.00091
0.0022

64 8 14.18
3 7636

0.965 0.00015
0.0050

128 276 13.12
5 6310

0.998 0.00354
0.0007

128 15 26.19
3 14630

0.965 0.00023
0.0026

256 532 25.14
5 12510

0.998 2× 10−6 0.0001
256 30 51.87
3 28635

0.965 3× 10−7 0.0023
512 1035 49.23
5 24092

0.998 9× 10−7 0.0032
512 57 99.89

σ2 = 0.2, Pl = 0.085, Pe = 0.117 :

S k0 k0

k0 + r0

Ieff
0 (bit)

Pld

l0 r0 Tr(MB)
3 910

0.963 0.00025
0.0020

64 35 1.58
5 1301

0.998 4× 10−15 0.0013
64 3 5.41
3 1659

0.963 0.00014
0.0030

128 63 2.89
5 1599

0.998 0.0088
0.0016

128 3 6.63
3 3135

0.963 0.00061
0.0027

256 120 5.46
5 3064

0.998 0.00091
0.0005

256 6 12.70
3 6123

0.963 0.00052
0.0020

512 234 10.44
5 5996

0.998 0.00086
0.0003

512 12 24.86
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Therefore, the traffic in total is equal to

Tr =
⌈ k0

nmP
⌉ (

4Sβn2 + 2nm
)
bit

Assuming

N = 8× 8 = 64, β = 64, P =
(
(1− Pl)S + P S

l

)2

and adding r0 check bits one gets the traffic in total as follows:

Tr =
⌈ k0

6n
(
(1− Pl)S + P S

l

)2

⌉ (
256Sn2 + 12n

)
+ r0 bit

or
Tr ≈ 32 · 10−6 n2S

⌈ k0

6n
(
(1− Pl)S + P S

l

)2

⌉
MB (13)

The calculated values by (13) are inserted in the 5th column of Table 3
(lower rows). We can see that having selected given protocol parameters, we
can perform a trade-off between security (Io) and reliability (Pld).

There is only one new procedure (verification of key string authenticity),
that has not been discussed before. By the way, this procedure is necessary for
any key sharing protocol in presence of an active adversary (eavesdropper).
Otherwise, the adversary could impersonate legitimate users and eventually
share with them a common key.

It is possible to use authentication method based on the so-called short-
key [21]. The Needham-Schroder authentication protocol [22] can also be used
if users have initially distributed short keys to some trusted center. Another
way is if users can provide the so-called paring procedure during their “face
to face” meeting (like Mag Pairing or Physical vibration [23], [24]).

6 Conclusion

We have proposed key sharing protocol for noiseless public constant
parameter communication channels (like Internet or “Direct seen” between
users). The main novelty of our scenario is that it is not based on some unre-
alistic requirements like given SNR, cryptographic assumption for eavesdrop-
per or multipath wave propagation, which are different for legitimate users
and eavesdropper. As far as we know our solution is a novelty among the
scenarios mentioned above. The core of our protocol is the EVSKey Scheme
proposed in [11]. But we have proved that such protocol itself is insecure.
Therefore, we modified it by introducing artificial noise by legitimate users
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that does not allow a decreasing of this noise power by eavesdropper. We also
modified the PIMC protocol of S-fold bit repetition. Next, we apply effective
procedure of privacy amplification that provides both security and reliability
for legitimate users. It seems at first glance that the paper [25] is devoted
to a solution of the same problem as our paper. But in fact, it has only one
common notion – “artificial noise”, while many differences, namely:

– it is executed there either a MIMO system in fading channels or a set of
“helpers”; our protocol is used with constant parameter public channel
due to information exchange between two users without any helpers,

– in [25] it is created noise in “zero-space”, whereas we execute special
protocol imposing to eavesdropper an artificial noise,

– in [25] it is provided zero noise by “zero-forcing”, but we provide a lower
bound only for noise power,

– finally, in [25] it is guaranteed only some given secrecy capacity, but it
is still unknown how to realize it, namely – how to provide constructive
encoding/decoding procedures? But we, on the contrary, calculate Shan-
non information leakage to eavesdropper after application of the known
privacy amplification procedure and find LDPC codes that provide high
reliability of the key bits delivering to legitimate users.

– We have published recently the paper [27], which treated the same prob-
lem and used similar approach of its solution (artificial noise and privacy
amplification). However, in the current paper we have made a signifi-
cant advance. First of all now this protocol of matrices exchange is used
itself to produce key bit string. In [27] it was used to produce bit string
carrier for genuine key string. Secondly, now we have another method of
PIMC protocol execution and application of error correction by LDPC
codes with a calculation of the error probabilities after decoding proce-
dure. The required error correction complexity and channel traffic are
also presented.

One important open problem for further investigation is an elaboration
of error correction algorithm for LDPC-codes. It is known from [26] that
effective implementation of LDPC decoders is so-called belief propagation
consisting of consecutive iterations where each of them has two main steps:
first step – check-node update and second one – variable-node update. If the
parity-check matrix of LDPC code consists of dv ones in each column and dc
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ones in each row, then the number of arithmetic operations on the first step
is approximately

n(dc + blog2 dcc − 2), (14)

where bac is the greatest integer less than or equal to a. The second step
takes about ndv operations.

Let us consider the 13th example taken from Table 3 with n = k0 + r0 =
3255. Taking (217.8) usable LDPC code, we get dc = 8 and the total number
of arithmetic operations at one iteration is approximately 735630. The num-
ber of the requested iterations has to be specified with further investigation,
but typically it is 5÷ 10.
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Abstract

In this paper, we follow the ideas of Ren et al. (IJ Network Security, 19(6), 1072-
1079., 2017) and Dallot, L. (Western European Workshop on Research in Cryptology
(pp. 65-77). Springer, Berlin, Heidelberg, 2008) and we propose to replace the Goppa
codes with QC-LDPC codes in the digital signature scheme mCFS. With this modi-
fication, we obtain a considerable reduction in public key sizes (the main problem in
code-based cryptography) whithout losing security in the scheme. Indeed, our theo-
retical security model is the same of the mCFS scheme and we perfomed a security
analysis for the hash function and the public/private key setting with the new family
of codes introduced. We also propose a set of parameters for different security levels
in the scheme; for example, we can get 80 bits of security with 61 270 bits in the
public key size, 128 bits of security with 179 904 bits in the public key size and 256
bits of security with 498 944 bits in the public key size.

Keywords: digital signatures scheme based on codes, QC-LDPC codes.

1 Introduction

In 1994, Shor proposed a quantum polynomial time algorithm for solv-
ing the Integer Factorization Problem and Discrete Logarithm Problem [5].
Therefore, all public-key cryptosystems that are currently used in practice
will become insecure once sufficiently large quantum computers can be built.
The research on post-quantum cryptography (secure in the era of quantum
computer) has grown considerably. In 2015, the National Security Agency
(NSA) announced a transition to quantum-resistant algorithms, and in 2016,
the National Institute of Standards and Technology (NIST) published a stan-
dardization plan for post-quantum cryptography [6, 7]. Since then the code-
based cryptography became a serious candidate to replace the current asym-
metric cryptography.

Design a digital signature scheme based on codes is a challenging task.
The classic idea of hash-based signature schemes is as follows: (a) apply a
hash function H to the message msg getting H(msg), (b) consider the hash
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value as the cipher text and decrypt it with the private key Dkpriv (H (msg)),
(c) conform the signature as the pair

(
msg,Dkpriv (H (msg))

)
. For code based

signature algorithm, however, it’s very hard to accomplish the second step.
The reason is the output of cipher text should be a syndrome associated with
a vector whose distance to a codeword must be less than the error correction
capacity t of the code.

The CFS [8] is the main proposal of digital signature algorithm based on
codes. It’s a probabilistic algorithm, which could not pause transforming the
hash value of the message repeatedly until a valid syndrome has been found.
It’s uses an increment counter to tag the number of decoding attempts and
on average this number is t!. This number could grow relatively fast and it’s
the reason for the main inefficiency of the CFS scheme.

In [2] it was developed a mCFS algorithm which is based on CFS signa-
ture algorithms but much secure. The idea of the proposal is to replace the
counter by a random value uniformly distributed over {1, . . . , 2n−k} but it
does not solve the problem of inefficiency. Using the Merkle-Damgard prin-
ciple [9, 10] to design hash functions, in [3] an improvement to the mCFS
signature algorithm was proposed to obtain an efficient code based digital
signature algorithm, namely mCFSc. The design of the scheme is based on a
compression function whose output is a syndrome associated with a vector
whose distance to a codeword is less than or equal to the error correction
capacity of the code t. This solves the inefficiency problems of the mCFS
scheme without reducing security and the main disadvantage is that by us-
ing the Goppa codes, the sizes of keys are very large, which has been the
traditional problem to solve in code-based cryptography.

In this paper we propose to replace the Goppa codes with QC-LDPC
codes in the digital signature scheme mCFS. The use of this family of codes
is one of the main alternatives proposed to NIST as a post quantum standard
[4]. With this modification, we obtain a considerable reduction in public
key sizes (the main problem in code-based cryptography) whithout losing
security in the scheme. Our theoretical security model is the same of the
mCFS scheme and we perfomed a security analysis for the hash function and
the public/private key setting with the new family of codes introduced. We
describe how to design the base compression function of the hash function
and the process of generating and verifying the signature using this family
of codes. We also propose a set of parameters for different security levels in
the scheme.
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2 Preliminaries

We follows [19] to show the essential elements of coding theory.

Definition 1. A [n, k] binary linear code C of length n and dimension k is
a k-dimensional subspace of Fn2 , which can be represented by two matrices; a
k×n generator matrix G, such that C = {mG, m ∈ Fk2} or by a (n−k)×n
parity check matrix H, such that C = {c ∈ Fn2 , cHT = 0}, where c is a
codeword of C.
Definition 2. The Hamming weight of a binary codeword is the number of
non-zero coordinates in the codeword which is denoted by w(x). The Ham-
ming distance d between two codewords is defined as the number of positions
in which the two codewords differ. The minimum distance dmin of a code is
the minimum Hamming distance between any two of its codewords.

Definition 3. A p × p circulant matrix over F2[x] is obtained by cyclically

right shifting of the first row as follows: A =




a0 a1 . . . ap−1

ap−1 a0 . . . ap−2
... ... . . . ...
a1 a2 . . . a0


. A

circulant matrix is completely described by only its first row.

If we consider the ring F2[x]/(xp + 1), the map A a(x) =
∑p−1

i=0 aix
i is

an isomorphism and therefore, a circulant matrix is associated to a polyno-
mial in the variable x with coefficients over F2 given by the elements of the
first row of the matrix.

Definition 4. A Quasi-Cyclic (QC) code of length n and dimension k is a
linear code where k = k0 · p; n = n0 · p and its parity check matrix has the
form

H =




H00 H01 . . . H0(n0−1)

H10 H11 . . . H1(n0−1)
... ... . . . ...

H(r0−1)0 H(r0−1)1 . . . H(r0−1)(n0−1)




where each submatrix Hij, 0 ≤ i ≤ r0 − 1, 0 ≤ j ≤ n0 − 1 is a circulant
matrix of order p. The main property of QC codes is that each cyclic shift of
a codeword by p positions is also a codeword.

Definition 5. [1] A Low Density Parity Check (LDPC) code is a linear code
admitting a parity-check matrix with constant row weight w = O(1) when
n→∞.
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Definition 6. A Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes
is a particular class of QC codes that are characterized by low-density-parity-
check matrices.

3 Digital signature scheme mCFSQC-LDPC

3.1 Key generation

It is considered a binary QC-LDPC code with length n = n0p, dimension
k = k0p and redundancy r = p, where k0 = n0 − 1.

The private key is formed by two matrices: (1) the the full-rank sparse
parity-check matrix H, randomly chosen, having the following form

H =
(
H0 H1 . . . Hn0−1

)

where each Hi, i ∈ [0, n0 − 1] is a circulant p × p matrix with weight dv in
each row or column; and (2) the sparse n0p×n0p non-singular transformation
matrix Q

Q =




Q00 Q01 . . . Q0(n0−1)

Q10 Q11 . . . Q1(n0−1)
... ... . . . ...

Q(n0−1)0 Q(n0−1)1 . . . Q(n0−1)(n0−1)




where each Qij, i, j ∈ [0, n0−1] is a circulant p×p matrix. The row/column
weight of Q is constant and equal to m =

∑n0−1
i=0 mij for some fixed j ∈

[0, n0 − 1] where mij is the row/column weight of Qij.

The public key is obtained by multiplying the matrices H and
(
QT
)−1

L = H
(
QT
)−1

Due to the QC structure of matrix L, it is only necessary to store the first
row of it. Therefore, the public key size is n0p bits.

3.2 The hash function

The hash function H follow the ideas proposed in [11] based on Merkle-
Damgard design principle. Let f : Fs2 → Fr2, r < s be the compression
function. The hash function H is obtained by doing the following:
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– select the initial vector of length r and select s−r initial bits msg0 from
a given message msg. Both vectors are concatenated forming the initial
input to the compression function.

– the i-th iteration consists in the concatenation of the r output bits of
the compression function f in the previous iteration i − 1 with msgi,
that is, s− r bits of the message.

The process ends when all the bits of the message are processed. During the
final round, if the remaining bits of the message are insufficient to s−r bits, a
padding scheme should be used. The hash value will be the output of function
f in the last round. The following figure illustrates the above procedure.

The compression function Given the QC-LDPC code of length n dimension
k capable of correcting t errors, n0 is selected such that n0 ≤ t. Any codeword
can then be divided into n0 blocks, each block of n/n0 = p bits.

Definition 7. A codeword of weight n0 is regular if it has exactly one non-
zero position in each of the n0 intervals

[
(i− 1) n

n0
, i nn0

]
i=1,...,n0

.

The public key matrix L can be divided into n0 matrices L =
(L1, L2, . . . , Ln0

) of size r × n
n0

where

Li = (l(i−1) n
n0

+1, l(i−1) n
n0

+2, . . . , li nn0
), i = 1, . . . , n0

and lj, j = 1, . . . , n is the jth column of L.
The compression function f : Fs2 → Fr2 where s = n0 log2

n
n0

and r = p it
is constructed by the algorithm 6.
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Algorithm 6: The compression function
Data: s = n0 log2

n
n0

bits of the message msg
Result: a binary string of length p

1 For all x ∈ Fs2, x is divided into n0 blocks of equal length:

x = (x1, . . . , xn0
), xi ∈ F

log2
n
n0

2 , i = 1, . . . , n0;
2 Convert each xi to an integer between 0 and n

n0
− 1;

3 Choose the corresponding (xi + 1)th column in each Li, that is
l(i−1) n

n0
+xi+1;

4 Calculate f(x) =

n0⊕

i=1

l(i−1) n
n0

+xi+1;

The essential question in the definition of the above compression function
is that f(x) is exactly the syndrome of a regular vector y of length n and
weight n0, that is, f(x) = LyT and w(y) = n0 (see Theorem 1 of [3]). The
above guarantees that the output of the hash function H is the syndrome of
a regular vector y of length n and weight n0.
Suppose that the message msg length is q bits. The number of binary XORs
of the compression function required for each document input is estimated
as follows: in each iteraion are perfomed n0 XORs each with p bits, that is,
n0p = n XORs of bits. The number of bits read in the document at each
iteration is s−r = n0 log2

n
n0
−p and therefore we have d q

n0 log2
n
n0
−pe iterations.

We can approximate the number of binary XORs by

NXOR ≈
qn

n0 log2 p− p

3.3 Signature generation and verification

Let msg be the message to sign, H the hash functionn previously pro-
posed and sign the signature. The algorithm 7 shows the process of signature
generation.

Algorithm 7: Signature generation
Data: msg, L, H
Result: sign

1 Choose a one-time random number R ∈ {1, 2, . . . , 2p};
2 Calculate x = H (H(msg)‖R);
3 Decode v = Dec (x);
4 Calculate y = vQ;
5 sign = (msg,R‖y);

E. D. Fiallo 363



A digital signature scheme mCFSQC−LDPC based on QC-LDPC codes

Let sign′ = (msg,R′‖u) be the signed message received and the private
key formed by the matrices H and Q. The algorithm 8 shows the process of
signature verification.

Algorithm 8: Signature verification
Data: sign′ = (msg,R′‖u), L
Result: Accept or Reject

1 Calculate a = H (H(msg)‖R′);
2 Calculate b = LuT ;
3 Accept if a = b, Reject if otherwise;

Proof that signature verification works:

b = LuT =
(
H
(
QT
)−1
)

(vQ)T = H
((
QT
)−1

QT
)
vT = HvT

that is, b is a syndrome vector. If R′ = R and b corresponds to the output
of the hash function H, we have that

a = H (H(msg)‖R′) = H (H(msg)‖R) = HvT = b

4 Security Analysis

In our construction, the Goppa codes have been replaced by the QC-
LDPC codes. This means two fundamental differences regarding the schemes
mCFS and mCFSc: (i) the random hash function h of the scheme mCFS and
the Goppa code based hash function hc of the scheme mCFSc, is replaced by
the QC-LDPC code based hash function H; (ii) the relationship between the
signer’s public an private keys is now subject to the security of the McEliece
variant based on QC-LDPC codes ([4] specifically). This means that the
theorical security model of our signature scheme is equivalent to the mCFS
and mCFSc schemes. We then focus the practical security analysis towards
the replaced crypto primitives.

4.1 Security of the hash function

A cryptographic hash function has to be pre-image (inversion) resistant
and collision resistant. For the hash function used, the inversion and collision
finding is reduced to solve to two NP-complete problems: Regular Syndrome
Decoding (RSD) and 2-Regular Null Syndrome Decoding (2-RNSD) [11].

From the practical point of view, in the same paper, was showed that
there are two kinds of algorithms to attacks the hash function: Information
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Set Decoding (ISD) and Wagner’s Generalized Birthday Paradox [12]. Com-
putational complexity is known for both attacks, that is, the Work Factor
(WF):

WFPre =
p32p(
p
n0

)n0
, WFCol = 2

p
3.3 , WFWagner

Col = p2a2p/(a+1)

where the parameter a = 1, 2, . . . is subject to the following restriction for
its selection:

2a

a+ 1
≤ n0

p
log2 p

The use of QC codes in the hash function was proposed in [13] and was
broken in [14] using a linearization technique based on the fact that ratio
p/n0 of the hash function is small (p/n0 ≤ 2) and does not take advantage
of the QC codes.

In [15] a new collision attacks based on the structure of QC codes was
introduced. This new attack is very efficient when p/n0 ≤ 4, and can be
extended to the case p/n0 > 4, but the complexity grows exponentially with
p and also requires p to be a power of 2. The attack can be even improved if
it is used together with Wagner’s attack, so as to remove the dependency in
the ration p/n0.

The following table summarizes what was explained above and shows the
WF of the attacks to the proposed hash function.

Attack Conditions Work Factor(WF)
Linearization p ≤ 2n0 p3

Cyclic p ≤ 4n0 (p/4)3

Cyclic + Wagner - (p/2)2a
′
2(p/2)/(a′+1)

For the improved cyclic attack with the use of the Wagner attack (Cyclic +
Wagner), we have that a′ = a or a′ = a− 1.

4.2 Security against Key Recovery Attacks (KRA)

If an attacker wants to compromise the signer’s private key, he needs to
perform a key recovery attack against the McEliece variant based on QC-
LDPC codes. The only known way to do this -better than a exhaustive key
search- is the dual code attack, which is based on the classic ISD algorithm
for decoding.

In our case, only the dual code is used both in the private key matrix
(private code) and in the public key matrix (public code). The relationship
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between both matrices is given by L = H
(
QT
)−1 where H is sparse but(

QT
)−1 is not. In fact, it is well known that the inverse of sparse matrix

is not generally sparse. However, to evaluate the security against the dual
code attack we will consider the worst possible case:

(
QT
)−1 it is also sparse

of weight m. This guarantees a security level below of the actual security
against the attack.

The WF of this attack is

WFQC−LDPC
DUAL =

WFISD(n, p, n0 · dv ·m)

p

where n0 · dv ·m is the weight of each row of L and dv is the column weight
of H. To calculate WFISD(n, p, n0 · dv ·m) the approximation given in [16]
can be used getting:

WFQC−LDPC
DUAL =

2n0·dv·m·log2
n0
n0−1

p

5 Proposed parameters and comparisons

When choosing parameters we want cyclic together with Wagner’s attack
to be the most efficient against hash function. To avoid linearization and
cyclic attacks we need n0 ≤ p/4. We select p prime. This is less efficient
when is power of 2 but the code has the same kind of properties than a
random code [17][18].

80-bit security: We select p = 557 which allows n0 ≤ 139. Set n0 = 110,
select the row/column weight of each circulant matrix dv = 9 and select de
row/column weight of the Q matrix m = 7. These parameters also guarantee
83 bits of security against KRA and the public key size is n0p = 61 270 bits.

128-bit security: We select p = 937 which allows n0 ≤ 234. Set n0 = 192,
select the row/column weight of each circulant matrix dv = 11 and select de
row/column weight of the Q matrix m = 9. These parameters also guarantee
134 bits of security against KRA and the public key size is n0p = 179 904
bits.

256-bit security: We select p = 1 949 which allows n0 ≤ 487. Set n0 = 256,
select the row/column weight of each circulant matrix dv = 17 and select
de row/column weight of the Q matrix m = 11. These parameters also
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guarantee 260 bits of security against KRA and the public key size is
n0p = 498 944 bits.

To compare the public key sizes with the scheme mCFSc, we have relied
on the security update to the McEliece based on Goppa codes given in [20].
The following table shows the public key sizes for each security level.

Security mCFSc mCFSQC−LDPC

80 bits 454 839 61 270
128 bits 1 534 896 179 904
256 bits 7 685 340 498 944

6 Conclusions

We have to replace the Goppa codes with the QC-LDPC codes in the
digital signature scheme mCFS which allowed us to greatly reduce the public
key sizes without losing security. The corresponding security analysis was
perfomed in the hash function and in the public/private key setting with the
introduction of this new family of codes and a set of parameters was proposed
for different levels of security.

We conjecture that with the corresponding analysis and a consequent
adjustment in the parameters, the scheme is safe against attacks on quantum
computers.
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Abstract

In this work, we discuss in detail a flaw in the original security proof of the W-
OTS+ variant of the Winternitz one-time signature scheme, which is an important
component for various stateless and stateful many-time hash-based digital signature
schemes. We update the security proof for the W-OTS+ scheme and derive the
corresponding security level. Our result is of importance for the security analysis of
hash-based digital signature schemes.

Keywords: post-quantum cryptography, hash-based signatures, W-OTS signature.

1 Introduction

Many commonly used cryptographic systems are vulnerable with respect
to attacks with the use of large-scale quantum computers. The essence of this
vulnerability is the fact that quantum computers would allow solving discrete
logarithm and prime factorization problems in polynomial time [1], which
makes corresponding key sharing schemes and digital signatures schemes
breakable. At the same time, there exist a number of mathematical oper-
ations for which quantum algorithms offer little advantage in speed. The
use of such mathematical operations in cryptographic purposes allows de-
veloping quantum-resistant (or post-quantum) algorithms, i.e. cryptographic
systems that remain secure under the assumption that the attacker has a
large quantum computer. There are several classes of post-quantum crypto-
graphic systems, which are based on error-correcting codes, lattices, multi-
variate quadratic equations and hash functions [2].

Among existing post-quantum cryptographic systems, hash-based signa-
ture schemes [3] attracted significant attention. This is easy to explain since
the security of hash-based cryptographic primitives is a subject of extended
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research activity, and hash functions are actively used in the existing cryp-
tographic infrastructure. One of the main components of their security is
as follows: For hash functions finding a pre-image for a given output string
is computationally hard. Up to date known quantum attacks are based on
Grover’s algorithm [4], which gives a quadratic speed-up in the brute-force
search. Quantum attacks, in this case, are capable to find (i) preimage, (ii)
second preimage, and (iii) collision, with time growing sub-exponentially with
a length of hash function output. Moreover, the overall performance of hash-
based digital signatures makes them suitable for the practical use. Several
many-time hash-based digital signatures schemes are under consideration for
standardization by NIST [5] and IETF [6, 7].

We note that still the cryptographic security of hash-based digital sig-
natures is a subject of ongoing debates, so security proofs for such schemes
regularly appear (see e.g. [8, 9, 10, 11, 12, 13, 14]). These studies are partially
focused on the security of basic building blocks of many-time hash-based digi-
tal signatures, which are one-time signature scheme. In particular, a variant of
the Winternitz signature scheme, which is known as W-OTS+ is considered.
The original security proof for the W-OTS+ scheme is presented in Ref. [8],
and the W-OTS+ scheme is used in XMSS(-MT) [7], SPHINCS [9], Gravity
SPHINCS [12], and SPHINCS+ [11] hash-based digital signatures. The secu-
rity of many-time digital signatures obviously depends on the security level
of the used one-time signature scheme.

In this work, we study the security of the W-OTS+ signature scheme. We
identify security flaws in the original security proof for W-OTS+, which lead
to the underestimated level of the security. We modify the security analysis
of the W-OTS+ scheme.

The paper is organized as follows. We introduce necessary definitions and
notations as well as describe the W-OTS+ scheme in Sec. 2. In Sec. 3 we
provide a detailed updated security analysis of the W-OTS+ and discuss its
differences from the previous version. We conclude in Sec. 4.

2 Preliminaries

2.1 One-time and many-time hash-based signatures

The Winternitz one-time signature (W-OTS) [15, 16] has been introduced
as an optimization of the seminal Lamport one-time signature scheme [17].
In order to use such one-time signature in practice several its modifications
have been discussed. In particular, the W-OTS+ scheme has received a sig-
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nificant attention in the view of standardization processes, in which one of
the candidates is the XMSS signature that uses the W-OTS+ [5].

It order to use hash-based digital signatures in practice one should make
them usable for many times. In order to do so it is possible to use Merkle
trees. Using a root of the tree one can authenticate public keys of many one-
time signature. This idea is used in several many-time hash-based signatures
based on the W-OTS+ scheme. The security of many-time digital signatures
clearly depends on the security level of the used one-time signature scheme.
The original security proof for the W-OTS+ scheme is presented in Ref. [8].

We note that there are other modifications of the W-OTS scheme (e.g.
see [6, 18]), however they are beyond the scope of the present paper.

2.2 Definitions and notations

We start our discussion with introducing basic definitions and notations
also used in Ref. [8]. Let x $← X denote an element x chosen uniformly
at random from some the set X. Let y ← Alg(x) denote an output of the
algorithm Alg processed on the input x. We write log instead of log2 and
denote a standard bitwise exclusive or operation with ⊕, d·e and b·c stand
for standard ceiling and floor functions.

Definition 1 (Digital signature schemes). Let M be a message space. A
digital signature scheme Dss = (Kg, Sign,Vf) is a triple of probabilistic poly-
nomial time algorithms:

– Kg(1n) on input of a security parameter 1n outputs a private key sk and
a public key pk;

– Sign(sk,M) outputs a signature σ under secret key sk for message M ∈
M;

– Vf(pk, σ,M) outputs 1 iff σ is a valid signature on M under pk;

such that ∀(pk, sk)← Kg(1n),∀(M ∈M) : Vf(pk, Sign(sk,M),M) = 1.

Consider a signature scheme Dss(1n), where n is the security parameter.
A common definition for the security of Dss(1n), which is known as the
existential unforgeability under the adaptive chosen message attack (EU-
CMA), is defined using the following experiment.
Experiment ExpEU−CMA

Dss(1n) (A)

(sk, pk)← Kg(1n).

M. Kudinov, E. Kiktenko, and A. Fedorov 371



Security Analysis of the W-OTS+ Signature scheme:
Updating Security Bounds

(M ?, σ?)← Asign(sk,·)(pk).

{(Mi, σi)}qi=1 be the query answers for Sign(sk, ·).

Return 1 iff Vf(pk, σ?,M?) = 1 and M ? /∈ {Mi}qi=1.

In our work we consider one-time signatures, so the number of allowed quires
q is set to 1.

Let SuccEU−CMA
Dss(1n) (A) = Pr

[
ExpEU−CMA

Dss(1n) (A) = 1
]
be the success probability

of an adversary A in the above experiment.

Definition 2 (EU-CMA). Let t, n ∈ N, t = poly(n), Dss(1n) is a digital
signature scheme. We call Dss EU− CMA-secure if the maximum success
probability InSecEU−CMA(Dss(1n), t) of all possibly probabilistic adversaries
A running in time ≤ t is negligible in n:

InSecEU−CMA(Dss(1n); t)
def
= max

A

{
SuccEU−CMA

Dss(1n) (A)
}

= negl(n).

We then consider proof of the EU-CMA property for the W-OTS+ scheme
on the basis of the assumption that the scheme is constructed with the func-
tion family having some particular properties. Let us discuss these required
properties in detail.

Consider a function family Fn = {fk : {0, 1}n → {0, 1}n}k∈Kn, where Kn
is some set. We assume that it is possible to generate k $← Kn and evaluate
each function from Fn for given n in poly(n) time. Then, we require three
basic security properties for Fn: (i) it is one-way (OW), (ii) it has the second
preimage resistance (SPR) property, and (iii) it has the undetectability (UD)
property.

The success probabilities of an adversary A against OW and SPR of Fn
are defined as follows:

SuccOW
Fn (A) =

Pr[k
$← Kn, x $← {0, 1}n, y = fk(x), x′ ← A(k, y) : y = fk(x

′)] (1)

and

SuccSPR
Fn (A) =

Pr[k
$← Kn, x $← {0, 1}n, x′ ← A(k, x) : (x 6= x′) ∧ (fk(x) = fk(x

′))], (2)

respectively. By using these notations, we introduce the basic definitions of
OW and SPR.
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Definition 3 (One-wayness and second preimage resistance of a function
family). We call Fn one-way (second preimage resistant), if the success prob-
ability of any adversary A running in time ≤ t against the OW (SPR) of
Fn is negligible:

InSecOW(SPR)(Fn; t) def
= max

A
{Succ

OW(SPR)
Fn (A)} = negl(n). (3)

To define the UD property we first need to introduce a definition of the
(distinguishing) advantage.

Definition 4 (Advantage). Given two distributions X and Y we define the
advantage AdvX ,Y(A) of an adversary A in distinguishing between these two
distributions as follows:

AdvX ,Y(A) = |Pr
[
1← A(X )

]
− Pr

[
1← A(Y)

]
|. (4)

Consider two distributions DUD,U and DUD,Fn over {0, 1}n × Kn. Sam-
pling of an element (u, k) from the first distribution DUD,U is realized in the
following way: u $← {0, 1}n, k $← Kn. Sampling of an element (u, k) from the
second distribution DUD,Fn is realized by sampling k $← Kn and x $← {0, 1}n,
and then setting u = fk(x). The advantage of an adversary A against the UD
of Fn is defined as the distinguishing advantage between these distributions:

AdvUD
Fn (A) = AdvDUD,U ,DUD,Fn(A). (5)

Definition 5 (Undetectability). We call Fn undetectable, if the advantage
of any adversary A against the UD property of Fn running in time ≤ t is
negligible:

InSecUD(Fn; t) def
= max

A
{AdvUD

Fn (A)} = negl(n). (6)

2.3 The W-OTS+ signature scheme

Here we describe the construction of the W-OTS+ signature scheme. First
of all, we define basic parameters of the scheme. Let n ∈ N be the security
parameter, andm be the bit-length of signed messages, that isM = {0, 1}m.
Let w ∈ N be so-called Winternitz parameter, which determines a base of
the representation that is used in the scheme. Let us define the following
constants:

l1 =

⌈
m

log(w)

⌉
, l2 =

⌊
log(l1(w − 1))

log(w)

⌋
+ 1, l = l1 + l2. (7)
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By using the described above function family Fn, we define a chaining func-
tion cik(x, r) for x ∈ {0, 1}n, r = (r1, . . . , rj) ∈ {0, 1}n×j, and j ≥ i ≥ 0 as
follows:

c0
k(x, r) = x, cik(x, r) = fk(c

i−1
k (x, r)⊕ ri) for i > 0. (8)

In what follows ra,b is a substiring (ra, . . . , rb) of r if b > a or it is an empty
string otherwise.

Now we are ready to define the basic algorithms of the W-OTS+ scheme.
Key generation algorithm (Kg(1n)) consists of the following steps:

1. Sample the values

k
$← K, r = (r1, . . . , rw−1)

$← {0, 1}n×(w−1). (9)

2. Sample the secret signing key

sk = (sk1, . . . , skl)
$← {0, 1}n×l. (10)

3. Compute the public key as follows:

pk = (pk0, pk1, . . . , pkl) = ((r, k), cw−1
k (sk1, r), . . . , c

w−1
k (skl, r)). (11)

Signature algorithm (Sign(sk,M, r)) consists of the following steps:

1. Convert M to the base w representation: M = (M1, . . . ,Ml1) with
Mi ∈ {0, . . . , w − 1}.

2. Compute the checksum C =
∑l1

i=1(w − 1 −Mi) and its base w repre-
sentation C = (C1, . . . , Cl2).

3. Set B = (b1, . . . , bl) = M ||C as the concatenation of the base w repre-
sentations of M and C.

4. Compute the signature on M as follows:

σ = (σ1, . . . , σl) = (cb1k (sk1, r), . . . , c
bl
k (skl, r)). (12)

Verification algorithm (Vf(pk, σ,M)) consists of the following steps:

1. Compute (b1, . . . , bl) as it is described in steps 1-3 of the signature al-
gorithm.

2. Do the following comparison:

pki
?
= cw−1−bi

k (σi, rbi+1,w−1), i ∈ {1, . . . , l}. (13)

If the comparison holds for all i, return 1, otherwise return 0.
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We assume that the runtime of all three algorithm is determined by the
evaluation of fk, while time, which is required for other operations, in negli-
gible. Thus, the upper bound on the runtime of Kg, Sign, Vf is given by the
value of lw.

3 Security of W-OTS+

3.1 Security proof

In this section we consider the security proof of the W-OTS+ scheme. The
general line of our proof coincides with the one from Ref. [8]. However there
are important differences, which yield another expression for the resulting
security value.

Theorem 1. Let n,w,m ∈ N and w,m = poly(n). Let Fn = {fk :
{0, 1}n → {0, 1}n}k∈Kn be a one-way, second preimage resistant, and unde-
tectable function family. Then, the insecurity of the W-OTS+ scheme against
an EU-CMA attack is bounded by

InSecEU−CMA(W-OTS+(1n, w,m); t, 1)

< lw ·
(
w · InSecUD(Fn; t̃) + InSecOW(Fn; t̃) + w · InSecSPR(Fn; t̃)

)
(14)

with t̃ = t+3lw+w−2, where time is given in number of evaluation function
from F .
Proof. The proof is by contrapositive. Suppose there exists an adversary A
that can produce existential forgeries for W-OTS+(1n, w,m) scheme by run-
ning an adaptive chosen message attack in time ≤ t with the success proba-
bility εA ≡ SuccEU−CMA

W-OTS(1n,w,m)(A).
Then we are able to construct an oracle machineMA that either breaks

the OW or SPR of Fn using the adversary algorithm A. Consider a pseudo-
code description ofMA in Algorithm 9 and block scheme in Fig. 1(a).

The algorithm is based on the following idea. We generate a pair of W-
OTS+ keys, and then introduce OW and SPR challenges in the αth chain,
where the index of the chain α, position of the OW challenge β, and position
of the SPR challenge γ are picked up at random [see also Fig. 1(b)]. Then
we submit a modified public key pk′ to A. The adversary can ask to provide
a signature for some message M . If the element bα calculated from M is less
than β, that is it locates below our challenge yc, then we are not able to
generate a signature and we abort. Otherwise, we compute the signature σ
with respect to our modified public key and give it to A. Finally, we obtain
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some forged message-signature pair (M ′, σ′), and if the forgery is valid then
σ′ eventually contains the solution for the one of our challenges. Otherwise
MA return fail.
Algorithm 9:MA

Input : Security parameter n, function key k, OW challenge yc and SPR challenge xc.
Output: A value x that is either a preimage of yc (i.e. fk(x) = y) or a second preimage

for xc under fk (i.e. f(xc) = f(x) and x 6= xc) or fail.
1 Generate W-OTS+ key pair: (sk, pk)← Kg(1n)

2 Choose random indices α $← {1, . . . , l}, β $← {1, . . . , w − 1}
3 if β = w − 1 then
4 set r′ = r
5 else

6 Choose random index γ $← {β + 1 . . . w − 1}
7 Set r′ = r and replace r′γ by cγ−β−1

k (yc, rβ+1,w−1)⊕ xc
8 Obtain modified public key pk′ by setting pk′0 = (r′, k), pk′i = cw−1

k (ski, r
′) for

1 ≤ i ≤ l, i 6= α, and pk′α = cw−1−β
k (yc, r

′
β+1,w−1)

9 Run ASign(sk,·)(pk′)
10 if ASign(sk,·)(pk′) queries to sign message M then
11 Compute B = (b1, . . . , bl) which corresponds to M
12 if bα < β then
13 return fail

14 Generate signature σ of M with respect to the modified public key:
i. Run σ = (σ1, . . . , σl)← Sign(M, sk, r′)
ii. Set σα = cbα−βk (yc, r

′
β+1,w−1)

15 Reply to the query using σ

16 if ASign(sk,·)(pk′) returns valid (σ′,M ′) then
17 Compute B′ = (b′1, . . . , b

′
l) which corresponds to M ′

18 if b′α ≥ β then
19 return fail

20 else if β = w − 1 or cβ−b
′
α

k (σ′α, r
′
b′α+1,w−1) = yc then

21 return preimage cw−1−b′α−1
k (σ′α, r

′
b′α+1,w−1)⊕ rβ

22 else if x′ = c
γ−b′α−1
k (σ′α, r

′
b′α+1,w−1)⊕ rγ 6= xc and

c
γ−b′α
k (σ′α, r

′
b′α+1,w−1) = cγ−βk (yc, rβ+1,w−1) then

23 return second preimage x′ = c
γ−b′α−1
k (σ′α, r

′
b′α+1,w−1) + r′γ .

24 else
25 return fail

26 else
27 return fail

We start with computing the success probability ofMA in solving one of
the challenges. Let ε̃A be a probability that Algorithm 9 execution comes to
the line 20. More formally, it can be written as follows:

ε̃A = Pr[bα ≥ β ∧ “Forgery is valid” ∧ b′α < bα], (15)

where the event “Forgery is valid” stands for (1 ← Vf(pk;σ′;M ′)) ∧ (M ′ 6=
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Figure 1: In (a) an introducing image and second pre-image challenges in the public key
of the W-OTS+ scheme is shown.
In (b) the block scheme ofMA is depicted. A bullet marks a point for UD challenge.

M). We denote the whole event of Eq. (15) as “Forgery is fortunate”.
We then can consider two mutually exclusive cases: either (i) β = w − 1

or the chain started from σ′α come to yc at the βth level, or (ii) β < w−1 and
the chain started from σ′α does not come to yc at the βth level. Let these two
case realizing with probabilities p and (1 − p) correspondingly conditioned
by the event “Forgery is fortunate”.

In the first case, the adversary A somehow found a preimage for the yc.
The total probability of this event is upper bounded by InSecOW(Fn; t̃), so
we can write

p · ε̃A ≤ InSecOW(Fn; t̃). (16)

The time t̃ = t + 3lw + w − 2 appears as the upper bound on the total
running time of A plus each of the W-OTS+ algorithms Kg, Sign, and Vf
plus preparing αth chain in pk′ (see line 8 in Algorithm 9).

In the second case, we have a collision somewhere between (β+ 1)th and
(w − 1) level. If the collision appears at the level γ we obtain the second
preimage of xc. Since the SPR challenge was taken uniformly at random, the
value of r′γ remains to be a uniformly random variable, therefore there is no
way for A to detect and intentionally avoid the position γ. Thus, we obtain
the collision at the level γ with probability (w− 1−β)−1 > w−1 conditioned
by the event “Forgery is fortunate”. On the other hand, this probability is
upper bounded by InSecSPR(Fn; t̃). So we have

(1− p) ε̃A
w
< InSecSPR(Fn; t̃). (17)
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Again, the time t̃ = t+ 3lw+w−2 appears as the upper bound on the total
running time of our algorithm.

By combining Eq. (16) and Eq. (17), we obtain the following expression:

ε̃A < InSecOW(Fn; t̃) + w · InSecSPR(Fn; t̃). (18)

In the remainder of the proof we derive a lower bound for ε̃A as the
function of εA. We note that in general A may behave in a ‘nasty’ way
making ε̃A � εA e.g. by always asking to sign ‘bad’ messages with bα < β or
avoiding forgeries in ‘good’ positions b′α > bα. In other words, the algorithm
may avoid crossing the point shown in Fig. 1(a). This behaviour of A means
that it can somehow reveal the challenge position from the modified public
key pk′. We below consider the strategy of using this possible ability of A to
break UD property.

Consider two distributions DM and DKg over {1, . . . , w− 1} × {0, 1}n×
{0, 1}n×(w−1)×Kn. An element (β, u, r, k) is obtained from DM by generat-
ing all subelements β, u, r, and k uniformly at random from the correspond-
ing sets. At the same time, an element (β, u, r, k) is obtained from DKg by
generating β, r, and k uniformly at random, but setting u = cβk(x, r) with
x

$← {0, 1}n. One can see that DKg corresponds to the generation of elements
in W-OTS+ signature chain from the secret key element up to the βth level.

Consider a pseudocode of Algorithm 10 of a machine M′A taking the
security parameter n and an element from either DM or DKg as input. One
can see that the operation ofM′A is very similar to the operation ofMA.

Given an input (β, u, r, k) from DM, M′A sets yc = u and then works
exactly as M up to line 19 of the Algorithm 9. If the event “Forgery is
fortunate” happens, then M′A returns 1. Otherwise, it returns 0. So given
an input (β, u, r, k) from DM,M′A outputs 1 with probability ε̃A.
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Algorithm 10:M′A

Input : Security parameter n, a sample (β, u, r, k).
Output: 0 or 1.

1 Generate W-OTS+ key pair: (sk, pk)← Kg(1n) taking bitmasks from r and a function
for chain fk instead of random ones

2 Choose random index α $← {1, . . . , l}
3 Obtain modified public key pk′ by setting pk′0 = (r, k), pk′i = cw−1

k (ski, r
′) for

1 ≤ i ≤ l, i 6= α, and pk′α = cw−1−β
k (u, r′β+1,w−1)

4 Run ASign(sk,·)(pk′)
5 if ASign(sk,·)(pk′) queries to sign message M then
6 Compute B = (b1, . . . , bl) which corresponds to M
7 if bα < β then
8 return 0

9 Generate signature σ of M with respect to the modified public key:
i. Run σ = (σ1, . . . , σl)← Sign(M, sk, r′)
ii. Set σα = cbα−βk (yc, r

′
β+1,w−1)

10 Reply to the query using σ

11 if ASign(sk,·)(pk′) returns valid (σ′,M ′) then
12 Compute B′ = (b′1, . . . , b

′
l) which corresponds to M ′

13 if b′α ≥ β then
14 return 0

15 else
16 return 1

Let us consider the behavior of M′A given an input from DKg. In this
case A obtains a fair W-OTS+ public key. The probability thatM′A outputs
1 is thus given by

ε̂A ≡ Pr[bα ≥ β ∧ “Forgery is valid” ∧ b′α < bα]

= εA · Pr[bα ≥ β ∧ b′α < bα|“Forgery is valid”]
≥ εA · Pr[bα = β ∧ b′α < bα|“Forgery is valid”]. (19)

Here we used the fact that in the considered case Pr[“Forgery is valid”] = εA.
Then we can write

Pr[bα = β ∧ b′α < bα|“Forgery is valid”]
= Pr[bα = β|“Forgery is valid”] · Pr[b′α < bα|bα = β ∧ “Forgery is valid”]

(20)

and consider each term of the RHS in detail. Let X be a random variable
equal to a number of elements in the requested W-OTS+ signature σ which
lie above the zero level, which is conditioned by the fact the the forgery
produced by A is valid (if one gives σ to A). More formally we define X as
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follows:

X = |{i : 1 ≤ i ≤ l, bi > 0}| conditioned by “Forgery is valid”. (21)

Since α and β are chosen at random from the sets {1, . . . , l} and {1, . . . , w−
1} we have

Pr[bα = β|“Forgery is valid”] =
X

l(w − 1)
>
X

lw
. (22)

Then, since the forged message M ′ has at least one element in its signature
σ′ which went down through its chain compared to the signature σ, and this
element is certainly among X elements, we have

Pr[b′α < bα|bα = β ∧ “Forgery is valid”] ≥ 1

X
. (23)

Taking together Eqs. (19), (22), (23), and putting the result into Eq. (19) we
obtain

ε̂A >
εA
lw
. (24)

By the definition, the advantage of distinguishing DM DKg by M′A is
given by

AdvDM,DKg
(M′A) = |ε̃A − ε̂A|. (25)

Using the obtained bound (24) and expanding absolute value in Eq. (25) we
come to the following upper bound on εA:

εA < lw ·
(
AdvDM,DKg

(M′A) + ε̃A
)
. (26)

The remaining step is to derive an upper bound of AdvDM,DKg
(M′A) using

the maximal possible insecurity level of the UD property. For this purpose
we employ the hybrid argument method. First, we note that

AdvDM,DKg
(M′A) =

w−1∑

β′=1

1

w − 1
AdvDβ=β′

M ,Dβ=β′
Kg

(M′A), (27)

where Dβ=β′

M and Dβ=β′

Kg denote distributions with fixed first subelement β =
β′. Expression (27) leads to the fact that there must exist at least one value
β? such that

AdvDβ=β?

M ,Dβ=β?

Kg
(M′A) ≥ AdvDM,DKg

(M′A). (28)

Then we define a sequence of distributions {Hi}β
?

i=0 over {1, . . . , w − 1} ×
{0, 1}n × {0, 1}n×(w−1) × Kn, such that an element (β, u, r, k) is generated
from Hi by setting

β = β?, x
$← {0, 1}n, u = cβ

?−i
k (x, rj+1,w−1), (29)
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and sampling r and k uniformly at random from the corresponding spaces.
One can see that H0 and Hβ? coincide with Dβ=β?

Kg and Dβ=β?

M , correspond-
ingly. So, Eq. (28) can be rewritten as follows:

AdvHβ? ,H0
(M′A) ≥ AdvDM,DKg

(M′A). (30)

The triangular inequality yields the fact that there must exist two consecutive
distributions Hi? and Hi?+1 with 0 ≤ i? < β? such that

AdvHi? ,Hi?+1
(M′A) ≥ 1

β?
AdvDM,DKg

(M′A) >
1

w
AdvDM,DKg

(M′A). (31)

We are ready to construct our final machine BM′A, shown in Algorithm 11,
which employsM′A to break the UD property.
Algorithm 11: BM′A

Input : Security parameter n, a sample (u, k).
Output: 0 or 1.

1 Generate r
$← {0, 1}n(w−1)

2 Input n and (β?, c
β?−(i?+1)
k (u, ri?+1,w−1), r, k) into M ′A

3 return the result from M ′A

One can see that

AdvDUD,U ,DUD,Fn(BM′A) = AdvHi? ,Hi?+1
(M′A), (32)

since the input toM′A with (u, k) from DUD,U is equivalent to a sample from
Hi?+1, while this input to M′A with (u, k) from DUD,Fn is equivalent to a
sample from Hi?. Indeed,

c
β?−(i?+1)
k (fk(x), ri?+1,w−1) = cβ

?−i?
k (x⊕ ri?, ri?,w−1) (33)

and x ⊕ ri? is indistinguishable from the uniformly random string. At the
same time, we have

AdvDUD,U ,DUD,Fn(BM′A) ≤ InSecUD(Fn; t̃). (34)

The runtime bound t̃ = t + 3lw + w − 2 is obtained as sum of time t
required for A, at most 3lw calculations of fk required in Kg, Sign, and Vf
used in M′A, and at most w − 2 calculations of fk, while preparing input
forM′A in BM′A (line 2 in Algorithm 11) and preparing αth chain inM′A

(line 3 in Algorithm 10) (the total number of fk evaluations is given by
w − 1− (i? + 1) ≤ w − 2).

By combining together Eqs. (31), (32), and (34) we obtain

AdvDM,DKg
(M′A) < w · InSecUD(Fn; t̃). (35)
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Then putting this result into Eq. (26) we arrive at

εA < lw ·
(
w · InSecUD(Fn; t̃) + ε̃A

)
(36)

Finally, taking into account Eq. (18) we obtain the desired upper bound.

Remark 1. One can note that the bound t̃ = t+3lw+w−2 can be tightened
at least to t̃ = t + 3lw by firstly choosing the value α and then removing
calculation of αth chain within Kg used in MA and M′A. However, it has
almost no practical value since usually is assumed that t� 4lw.

3.2 Difference from the previous version of the proof

Here we point out main differences between our security proof and the
original proof from Ref. [8] that contains a slightly different security bound,
namely:

InSecEU−CMA(W-OTS+(1n, w,m); t, 1)

≤ wl ·max
{

InSecOW(Fn; t′), w · InSecSPR(Fn; t′)
}

+

w · InSecUD(Fn; t?), (37)

where t′ = t+ 3lw and t? = t+ 3lw + w − 1.
First of all, during the discussion ofMA, that is the same in both proofs,

it was stated that Pr[bα = β] ≥ 1
w , motivated by the fact that β is chosen

uniformly at random (see p. 181 of [8]). However, as we discussed in our
proof, A may reveal the chain containing challenges, and also may always
ask to sign a message with bα = 0 thus making Pr[bα = β] = 0.

In the proof of [8] it is stated that Pr[b′α < β|“Forgery is valid”∧bα = β] ≥
l−1. This is also may not be correct if A is able to reveal the chain containing
challenges and, e.g., make forgery only with b′α = β. Actually, accounting
a possibility of hostile behavior of A forces us to introduce the “Forgery
is fortunate” event and bound its probability by employing InSecUD(. . .).
We note that our treatment also gives a different factor before the term
InSecUD(. . .).

Moreover, in Ref. [8] the obtained bound contains
max{InSecOW(. . .), wInSecSPR(. . .)} instead of InSecOW(. . .) + w ·
InSecSPR(. . .). Perhaps, it appeared by putting multiples p and (1 − p) on
the opposite side of inequalities corresponded to Eq. (16) and Eq. (17) of
the present paper.

Finally, the used different runtime bounds t′ and t? for breaking OW/SPR
and UD of Fn, however, as it is shown above they can be considered to be
the same.
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Anyway, as we demonstrate below, both expressions (14) and (37) pro-
vide close levels of security. Moreover, we note that the security level of
W-OTS+ used in the security proof of SPHINCS coincides with the derived
expression (14) (see #ots term on page 382 of [9]).

3.3 Security level

Given results of the Theorem 1, we are able to compute the security level
against classical and quantum attacks. Following reasoning from Refs. [8, 19],
we say the scheme has security level b if a successful attack is expected to
require 2b−1 evaluations of functions from Fn. We calculate lower bound on b
by considering the inequality InSecEU−CMA(W-OTS+(1n, w,m); t, 1) ≥ 1/2.
We assume that

InSecOW(F(n); t) = InSecSPR(F(n); t) = InSecUD(F(n); t) =
t

2n
(38)

for brute force search attacks with classical computer [3], and

InSecOW(F(n); t) = InSecSPR(F(n); t) = InSecUD(F(n); t) =
t

2n/2
(39)

for attack with quantum computer using Grover’s algorithm [4]. We also
assume that t � 4lw, so all runtime bounds used in (14) and (37) are the
same: t̃ ≈ t′ ≈ t? ≈ t. The results of comparison are shown in Table 1.
The new bound is smaller the previous one by log l(2w+1)

lw+1 ≈ 1 bit for typical
parameter values w = 16 and l = 67.

Bound from [8] Bound from present work
Classical attacks b > n− logw − log(lw + 1) b > n− log(lw)− log(2w + 1)
Quantum attacks b > n

2
− logw − log(lw + 1) b > n

2
− log(lw)− log(2w + 1)

Table 1: Comparison of security levels for the W-OTS+ scheme.

4 Conclusion and outlook

Here we summarize the main results of our work. We have recapped the
security analysis of the W-OTS+ signature presented in Ref. [8], and pointed
out some of its flaws. Although the updated security level almost coincides
with the one from Ref. [8], we believe that our contribution is important for
a fair justification of the W-OTS+ security.

We note that a security analysis of the many-times stateless signature
scheme SPHINCS+, which uses W-OTS+ a basic primitive and which was

M. Kudinov, E. Kiktenko, and A. Fedorov 383



Security Analysis of the W-OTS+ Signature scheme:
Updating Security Bounds

submitted to NIST process [11], originally was based on another approach
for evaluating the security level [10]. However, it was discovered that the
employed security analysis has some critical flaws (see C.J. Peikert official
comment on Round 1 SPHINCS+ submission [20]).

Recently, a new approach for the security analysis of hash-based signature
was introduced [14]. It suggests a novel property of hash functions, namely the
decisional second-preimage resistance, and therefore requires an additional
deep comprehensive study.
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